
EXTENDED BASIC

User's Manual

093-000085-06

Ordering No. 093-000065

©Data General Corporation 1971, 1972, 1973, 1974, 1975

All Rights Reserved.

Printed in the United States of America

Rev. 06, February 1975

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The Information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval,

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

Original Release-
First Revision
Second Revision •

Third Revision
Fourth Revision -

Fifth Revision
Sixth Revision

•November, 1971
•May, 197 2

September, 1972

•March, 197 3

•September, 1973
'.January, 1975
February, 1975

This revision of the Extended BASIC User's
Manual, 093-000065-06, constitutes a major
revision and supersedes ail previous revi-
sions and addenda.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

GENERAL INFORMATION 1-1

DOCUMENTATION CONVENTIONS 1-2
Underlining. 1-2
Symbols ... 1-2
Terminal Devices . 1-3
Statement and Command Descriptions 1-3
Abbreviations 1-4
Terminology. 1-4

USING EXTENDED BASIC 1-5
Logging On 1-5
Creating A New Program. 1-6
Running A Program. . 1-7
Correcting The Program. . 1-8
Interrupting Program Execution 1-8
Logging Off 1-8
Example Of An Extended BASIC Program. 1-9

CHAPTER 2 EXTENDED BASIC ARITHMETIC

NUMBERS 2-1
Single Precision Calculations 2-1
Double Precision Calculations 2-2
Internal Number Representation 2-2

VARIABLES 2-3

ARRAYS 2-3
Array Elements 2-4
Declaring an Array. 2-4

ARITHMETIC OPERATIONS 2-5
Priority of Arithmetic Operations. 2-5
Use of Parentheses. 2-6
Relational Operators and Expressions . 2-6

TABLE OF CONTENTS (Continued;

CHAPTER 3 COMMONLY USED BASIC STATEMENTS

COMMENTING A PROGRAM 3-1

REM ... 3-1

STOPPING EXECUTION OF A PROGRAM. 3-2

END. .. 3-2

STOP. 3-3

ASSIGNMENT STATEMENT 3-4

LET. 3-4

INPUT STATEMENTS 3-5

INPUT ... 3-5

DATA 3-8

READ .. 3-9

RESTORE 3-11

OUTPUT STATEMENTS 3-12

PRINT. 3-12

TAB (X) 3-17

DIMENSIONING ARRAYS 3-19

DIM. 3-19

PROGRAM LOOPS 3-21

FOR and NEXT. .

.

3-21

SUBROUTINES 3-27

GOSUB and RETURN 3-27

BRANCH STATEMENTS 3-30

GOTO. ... 3-30

IF — THEN. 3-32

ON-GOTO and ON-GOSU3 3-35

il

TABLE OF CONTENTS (Continued)

CHAPTER 4 EXTENDED BASIC FUNCTIONS

CHAPTER 5

INTRODUCTION TO EXTENDED BASIC FUNCTIONS. 4-1

ARITHMETIC FUNCTIONS .,.,..,...,....,.......,.,...,,..,, 4-3
RND(X) .. 4-3
RANDOMIZE ... 4-5
SGN(X) 4-6
INT(X) .. 4-7
ABS (X) 4-8
SQR(X) .. 4-9
EXP(X) .. 4-10
LOG(X)0 4-11

TRIGONOMETRIC FUNCTIONS 4-12
SIN (X) |..... 4-12
COS(X) .. 4-13
TAN (X) ...

.

4-14
ATN (X) 4-15

SYSTEM FUNCTIONS 4-16
SYS (X) 4-16

USER DEFINED FUNCTIONS 4-17
DEF and FNa (d) 4-17

STRING INFORMATION

STRING CONVENTIONS 5-1
String Literals 5-1
String Variables 5-2
Dimensioning String Variables. 5-2
Substrings .. 5-3
Assigning Values To String Variables. 5-5
Strings in IF - THEN Statements 5-6
String Concatenation 5-7

STRING FUNCTIONS 5-8
LEN(XS) ... 5-8
POS(X$,Y$,Z) 5-9
STR$ (X) .. . 5-10
VAL(X$) ... 5-11

STRING ARITHMETIC 5-12

XII

TABLE OF CONTENTS (Continued)

CHAPTER 6 MATRIX MANIPULATION

DIMENSIONING MATRICES 6-1

MATRIX MANIPULATION STATEMENTS 6-2

Matrix Assignment. 6-2

Zero Matrix (ZER) . . 6-3
Unit Matrix (CON) 6-5

Identity Matrix (IDN) 6-6

MATRIX I/O STATEMENTS 6-8

MAT READ 6-8
MAT INPUT 6-9

MAT PRINT. 6-10

MATRIX CALCULATION STATEMENTS 6-11
Addition and Subtraction 6-11
Multiplication. 6-13
Inverse Matrix (INV) 6-16
Matrix Determinant (DET) 6-19

Matrix Transposition (TRN) 6-20

CHAPTER 7 FILE INPUT AND OUTPUT

FILE CONCEPTS 7-1

Definition of a File 7-1

File Name and Extension 7-1

Reserved File Names 7-2

File Attributes 7-2

FILE STATEMENTS 7-3

OPEN FILE 7-3

CLOSE FILE 7-8

WRITE FILE 7-9

READ FILE 7-11

PRINT FILE 7-13

INPUT FILE 7-14

MAT WRITE FILE 7-15

MAT READ FILE 7-16

MAT PRINT FILE 7-18

MAT INPUT FILE 7-19

EOF(X) 7-20

IV

TABLE OF CONTENTS (Continued)

CHAPTER 8 INTERACTIVE SYSTEM COMMANDS

INTRODUCTION. }-l

PROGRAM DEVELOPMENT AND EXECUTION COMMANDS. 8-2
.. 8-2
.. 8-3
.. 8-4

J-6

NEW. ...
ERASE ..
LIST ...*.
PUNCH ..
SAVE .. 8-8
LOAD. 8-9
ENTER. o_i n

RUN ... 8-11
RENUMBER.
CON

SIZE.

BYE
PAGE

....................................... 8-13

.... 8-15
.................................. 8-17

...................................... 8_i8
8-19

TAB 8-20

SYSTEM COMMUNICATION COMMANDS . . .
."• 8-21

MSG. .

NOMSG.
3-21

^-23
NOESC 8-24
ESC. 5-25
NOECHO. 8-26
ECHO. 8-27

DISK DIRECTORY MAINTENANCE COMMANDS 8-28
FILES 8-28
LIBRARY, 8-29
WHATS. 8_30
MSK. 8-31
DELETE
RENAME
CHAIR.

,

8-32
8-33
8-34

COMMANDS DERIVED FROM BASIC STATEMENTS 8-36
Perform File I/O. 3-35
Desk Calculator. 8-36
Desk Calculator - Using Program Values............ 8-36
Dynamic Program Debugging. 3-37

TABLE OF CONTENTS (Continued)

CHAPTER 9 ADVANCED BASIC STATEMENTS AND COMMANDS

INTRODUCTION ... 9-1

ON-ERR. .. 9-2

RETRY .. 9-3

DELAY .. 9-4

ON-ESC. .. 9-5

PRINT USING. ... 9-7

PRINT FILE USING 9-17
CHAIN .. 9-18
CALL. .. 9-20

TIME. .. 9-21
TINPUT. .. 9-23

APPENDIX A ERROR MESSAGES

BASIC Error Messages. A-

3

File I/O Error Messages. A-10

APPENDIX B CALLING AN ASSEMBLY LANGUAGE SUBROUTINE FROM EXTENDED BASIC

Character String Storage and Definitions. B-l
Linking the Assembly Language Subroutine. B-2

APPENDIX C PROGRAMMING ON MARK-SENSE CARDS

APPENDIX D HOLLERITH CHARACTER SET

APPENDIX E ASCII CHARACTER SET

APPENDIX F STATEMENT, COMMAND AND FUNCTION SUMMARY

F.

1

COMMONLY USED BASIC STATEMENTS. F-l
F .

2

ARITHMETIC AND SYSTEM FUNCTIONS. F-4
F .

3

STRING FUNCTIONS F-7
F.

4

MATRIX MANIPULATION. F-8
F .

5

FILE INPUT AND OUTPUT. F-10
F.

6

INTERACTIVE SYSTEM COMMANDS F-12
F.

7

ADVANCED BASIC STATEMENTS AND COMMANDS. F-15

VI

CHAPTER 1

INTRODUCTION

GENERAL INFORMATION Extended BASIC provides programmers with an

interactive programming language that operates
under Data General's Real Time Disk Operating
System (RDOS) or Data General's Real Time
Operating System (RTOS) . Extended BASIC may be
configured to include:

• Disks
• Floating Point Hardware
• Swapping
• Fixed Point Multiply/Divide
• Mapping
• Single or Double Precision

Data General's Extended BASIC is an implementation
of the BASIC language as developed at Dartmouth
College. Extended BASIC includes such features
as:

• String Manipulation
• Format Control
• Assembly Language Subroutines
• Matrix Operations
• Fixed and Variable Length File Manipulation
• Program and Keyboard Modes

The following Data General documents may be
referred to for further Information:

09 3-000075 RDOS Real Time Disk Operating
System User's Manual

093-000083 Introduction to the Real Time
Disk Operating System

093-000119 Extended BASIC System Manager's
Guide

1-1

GENERAL INFORMATION (Continued)

093-000087 BATCH User's Guide

DOCUMENTATION
CONVENTIONS

093-000056 Real Time Operating System
Reference Manual

Underlining Where clarification is required in the examples

used in this manual, underlined copy denotes

entries input by the user. Copy not underlined

indicates entries output by BASIC.

Symbols The symbols listed below are used throughout

this manual to simplify descriptions.

p__\ _^_____. ________________

• pore s

e

nt

e

a
_ _ ___

Carriage
Return

^SCape or
iLTmode key

Space

Brackets

Braces

generates an automatic line

feed in addition to the

carriage return.

When using BASIC, pressing
the ESCape key echoes an

asterisk (*) on the user's

nes used in this man-

emphasize a space

ter

.

a optional arguments
tatement or command.

te a choice of Items

.te that the preceding
ay be repeated.

1-2

Terminal Devices

Statement
and Command
Descriptions

The statements and commands described in Chapters
3 through 9 of this manual are presented as fol-
lows :

_j

Remark:

Exampl<

General Format; The BASIC word Is shown in Its

generalized format with capital letters used
to indicate literal entries, lowercase ital-
ics used for variable entries, and brackets
used to indicate optional arguments. Paren-
theses are to be Inserted as Indicated.

Purposes A brief statement which describes the
operation performed by the statement, com-
mand or function.

Remarks: Pertinent comments related to the use
of the statement, command, or function. Any
rules or cautions are included under this
heading.

1-3

Statement
an^Command
Descrip_tions_

(Continued)

Examples: Typical uses are provided to help-

describe the BASIC word and its format.

Abbreviations The following abbreviations are used In the gen-

eral formats provided In the descriptions of

BASIC statements and commands. The abbreviations
are italicized in the formats and represent com-

monly used terms which are defined in the appro-
priate chanters of the manual.

r^h^nt^-1f^ "" "
' ""

'

i

var numeric variable

expr numeric expression
re I -expr relational expression
s tring li

t

'string literal

vol numeric values
line no. line number
cot column

control var control variable

]

mar
string variable
matrix variable

lll^IL——
a disk file name or a device

Terminology The BASIC language Includes words, sometimes
referred to as keywords or instructions which,

when written in an appropriate format, can be

used as statements and functions in a program or
as console commands to the BASIC system.

Some BASIC words can be used alone to perform an

operation. Others require one or more arguments
In order to be properly executed.

INPUT A,B A and B are arguments to
the INPUT instruction.

A BASIC program is made up of BASIC statements.
Each statement Includes a properly formatted
BASIC word preceded by a line number in the range
1 to 9999. The line number given to a BASIC

statement determines the order in which it is

executed. Generally, program execution begins

1-4

Terminology (Continued)

USING
EXTENDED BASIC

with the lowest numbered line and is followed
sequentially by the next higher numbered line
unless otherwise directed by statements such as
GOTO or GOSUB.

Each program statement is written on a separate
line. The programmer terminates each line with
a carriage return ())

.

* 5 PRINT "SAMPLE PROGRAM"
*10 LET A=5
*15 LET B=2
*20 PRINT A*B
*25 END

BASIC console commands do not include line num-
bers and are executed by the system immediately
after the user terminates the command with a car-

riage return.

RUN) BASIC executes the user's current
program starting from the lowest
numbered line.

Logging On The user can log onto the system as soon as the

BASIC prompt message DGC READY is output to the

terminal. The log on procedure is begun when the

user presses the ESCape key. During this proce-
dure the system will request the user's identifi-
cation. The user responds by typing his or her
four character identification code, assigned by
the System Manager, followed by a carriage return

()). The identification is not echoed at the

terminal to protect the confidentiality of the

user's identification.

If the identification entered is valid, the system
will output the date, time and terminal number
assigned, followed by an asterisk {*) prompt.

1-5

Logging On (Continued)

The asterisk {*) prompt is used by BASIC to sig-

nal that the user may enter a command or a pro-

gram statement.

The format of the log on procedure is as follows:

DGC READY

ESC -*- user presses ESC.

ACCOUNT ID: XXXx) -<- 4 character ID,

not echoed.

AAAAAMM/DD/YYAAAAAHH : MMiSIGN-ON , AZ^Z

date txme terminal no.

* + asterisk prompt.

Creating A New Having successfully logged onto the system, the

Program user may enter a new program, make corrections to,

or run an old program. It is generally good

practice to type the NEW command before preceding

with entering a new program. This command (NEW)

clears the user's work area in memory and thereby

prevents the interspersion of lines from previous

programs into the user's new program. This com-

mand, as well as other system and interactive

commands used for such purposes as retrieving and

storing programs, is described in Chapter 8.

When typing a new program, the user must be cer-

tain to begin each line with a line number of not

more than four digits and end each line with a

carriage return. If a typing error is detected

before the carriage return Is pressed, the user

can correct it by pressing the RUBOUT key once

for each character to be erased until the incor-

rect character is reached and then continue by

typing the correct characters. Each time the

RUBOUT key is pressed, a backarrow (<-) is echoed

at the terminal. For example:

* 10 PRINT "CONR^-RRECTION BY RUBOUTS"

1-6

Program
(Continued)

In line number 10, the user rubbed out two char-
acters (R and N) and then completed the line, A
LIST command would output the corrected line

,

* LIST :: -'

0010 PRINT "CORRECTION BY RUBOUTS"
*

In addition, the user may delete the entire cur-

rent line by typing SHIFT-L which is echoed as a

backslash (\) and a carriage return.

*10 PRINT "CONR\ (SHIFT-L to delete line)

10 PRINT "CORRECTION BY RUBOUT" (line typed over)

The SHIFT-L character may also be used to delete

the current console command line.

:RU\ (SHIFT-L to delete line:

Running A Program When the user has completed typing a program, it

can be executed by giving the command:

RUN)

The program will be run starting from the lowest
numbered statement, assuming there are no runtime
system errors (see Appendix A) and will output

results requested via PRINT statements.

Programs which were previously written and SAVEd

may be run by -typing:

*LOAD filename/1

*runJ
(filename Is the name of a

user ' s program)

1-7

Correcting The Program After running a program, the user may find it

necessary to change the program because of error
messages or incorrect results. Corrections can
be made to the program by any of the following
procedures:

A new statement may be substituted for a

statement containing errors by retyping the

entire line (including line number)

.

b. A statement may be eliminated from the pro-

grain by typing its line number followed by
a carriage return.

125) (line 125 is deleted)

Additional statements may be inserted into
the program between existing statements
simply by typing the new statements with
intermediate line numbers. If the number
of statements to be inserted exceeds the

number of line numbers available between the
statements, it may be necessary to use the

RENUMBER command (described in Chapter 8)

to change the increment between line numbers.
It is generally good practice when writing
a program, to allow an increment of 10

between line numbers for program correction
and expansion.

Interrupting
Program
Execution

To stop the execution of a running program, the
listing of a program, or any other task which is

being performed by BASIC, the user may press the
ESCape key to interrupt the process. BASIC will
then output an asterisk prompt to signal the user
that a new command may be entered.

Logging Off Having completed working with BASIC at the term-
inal, the user logs off by typing the command BYE
The BASIC system will then output a summary of

usage information and put the terminal in an idle
state

.

1-1

Logging Off (Continued)

*bye)
mmamm/dd/yy

MM/DD/YY
MM/DD/YY

HH:MM
HH ; MM
HH : MM

SIGN-OFF,
CPU USED,

1/0 USED,

zz

QQ
RR

DGC READY

where: MM/DD/YY is today's date.
HH : MM
ZZ

QQ

RR

is the current time of day.
is the terminal port number.
is the number of CPU seconds
consumed during the terminal
session calculated to the
nearest tenth of a second,
is the number of input and
output statements executed
(OPEN, CLOSE, READ, WRITE,
etc.

)

Example Of An
Extended BASIC
Program

The following example is shown in a manner which
includes the logging in, communicating with the
system operator, running the program, and logging
off by the user.

DGC READY
ESC
ACCOUNT- ID: KAST

j

10/23/74

(Press ESC key)

(KAST not echoed)
10:32 SIGN-ON, 2

*MSG OPER PLS MOUNT TAPE #1255 (NO RING))
*FR0M OPER: DONE-TAPE ON MT12
*MSG OPER THANX)

* L0AD "PRODUCTION")

*LIST J

0010 DIM A$(10)
0020 INPUT "TAPE MOUNTED ON",A$
0030 A$=A$,« , :0'*

0040 OPEN FILE (0,3) ,A$

0050 READ FILE (0),A,B,C$
0060 IF EOF(0)=1 GOTO 200

0070 PRINT A,B,C$

(Continued on
next page)

1-9

Example Of An (Continued)

Extended BASIC
Program 0100 GOTO 50

0200 CLOSE FILE{0)
0210 PRINT "END OF JOB"
0220 STOP

*run)
tape mounted on mt12 j

end of job

STOP AT 0220
*MSG OPER PLS RELEASE MT12)

*FROM OPER: TAPE REMOVED FROM MT12
*BYE)

10/23/74 10:40 SIGN-OFF, 2

10/23/74 10:40 CPU-USED, .3

10/23/74 10:40 I/O-USED,

DGC READY

1-10

NUMBERS

CHAPTER 2

EXTENDED BASIC ARITHMETIC

An extended BASIC number may be in the range of
5.4 * 10-79 < n < 7.2 10 75 Numbers may be
expressed as integers, floating point or in
exponential form (E-type notation)

.

BASIC provides either all single precision or
all double precision calculations. The format
of converted numeric data (for example, as con-
verted by a PRINT statement) is dependent upon
the BASIC system generated.

Single
Precision
Calculations

On conversion, any floating point or integer
number that consists of six digits, or less, is
formatted without using exponential form. A
floating point or integer number that requires
more than six digits is printed in the follow-
ing E-type notation.

(sign) n.nnnnnE(sign)XX

Where n.nnnnn is an unsigned number carried
to five decimal places with trailing zeros
suppressed, E means "times 10 to the power
of", XX represents an unsigned exponential
value

.

Number Single Precision Output Format

2,000,000 2E+06
108.999 108.999
.0000256789 2.56789E-05
24E10 2.4E+11

2-1

Double
Precision
Calculations

On conversion, any floating point or integer
number that consists of eight digits, or less,

is formatted without using exponential form,

A floating point or integer number that requires
more than eight digits is printed in the follow-
ing E-type notation.

(sign) n . nnnnnnnE { s ign) XX

where n.nnnnnnn is an unsigned number
carried to 7 decimal places with trailing
zeros suppressed, E means "times 10 to

the power of", and XX represents an

unsigned exponential value.

Number Double Precision Output Format

.666666666
108.999868

111111111.99

.6666667

108.99987
1.1111111E+08

Internal
Number
:

. ".,r • no :; tin..

Internally, BASIC stores numbers in a format
compatible with other Data General Corporation
software such as FORTRAN IV and the relocatable

assemblers. Single precision floating point

numbers are stored in two consecutive 16-bit
words of the form:

.where: S is the sign of the mantissa.
= positive, 1 = negative.

The mantissa is a normalized six

digit hexadecimal fraction.
C is the characteristic and is an

integer expressed in excess 64

code.

2-2

Internal
Number
Repre sentation
(Continued)

Double precision floating point numbers add 2

words of precision to the mantissa, which can
be represented as :

1 7 8 15

s

..
• - ~\

4v*-

48 63

VARIABLES The names of numeric variables (shown in program
statements as vav) are expressed as either a

single letter or a single letter followed by a

digit. For example :

Acceptable Vari able Una ^ceptable Variable
'.

: .i~" .;• Names

A 6A

A3 AZ
Z

Z6

In addition to numeric variables, string vari-
ables (suar) are also permitted in BASIC and are
discussed in Chapter 5.

ARRAYS An array represents an ordered set of values.
Each member of the set is called an array element,
An array can have either one or two dimensions.
An array name may be a single letter, or a

single letter followed by a digit.

2-3

Array Each of the elements of an array is identified

Elements by the name of the array followed by a parenthe-
sized subscript,

B3(l) , h/;. , , . ., 13 '?
, B3{9)

For a two-dimensional array, the first number

gives the number of the row and the second gives

the number of the column for each element. The

elements of array C(2,3) would be:

C(l,l) C(l,2) C(l,3)

C(2,l) C(2,2) C(2,3)

A reference to element zero (0) will be inter-

preted as a reference to element 1. A negative

reference is an error.

If a variable is referenced both with and with-

out subscripts, then two distinct variables will
be defined by BASIC. For example:

*10 DIM Al [11]

*20 LET Al = 17

*30 LET Al(l) = 27

In all subscripting contexts, brackets ([])

may be used in place of parentheses [()].

Declaring Most arrays are declared in a DIM statement,

an Array which gives the name of the array and its

dimensions

.

The lower bound of a dimension is always 1;

the upper bound is given in the DIM statement.

Dimensional information is enclosed in either
parentheses or square brackets immediately
following the name of the array in the DIM
statement.

*5 DIM A(15) , Bl[2,33

There is no limitation on the number of elements
in a given array dimension other than restric-
tions due to available memory.

2-4

Declaring
an Array
(Continued)

If an array is not declared in a DIM statement

then a default value of 10 is assigned to each

dimension of the array.

*10 C[3,4] = 11

If C has not appeared in a DIM statement which

was executed prior to the execution of line 10,

then when line 10 is executed C will be given

dimensions [10,10].

ARITHMETIC
OPERATIONS

A numeric expression (shown in program statement
formats as expr) can be composed of numbers,

numeric variables, array variables and functions,

linked together by arithmetic operators. The

operators used in writing numeric expressions

are:

h: .razor
'l-_-

i -_L_
"' Example

Priority of
Arithmetic
Opera tions

+ Unary plus A+C+B)
- Unary minus A+(-B)

+ Exponentiation A+B (A to the B power
* Multiplication A*B

/ Division A/B
+ Addition A+B
- Subtraction A-B

See Chapter 5 for string arithmetic operators.

BASIC evaluates numeric expression (expr) in the

following order proceeding from left to right:

1. Any expr within parentheses are evaluated
before any unparenthesized expr. When par-

enthesized exprs are nested, the innermost

expv is always evaluated first.

2. Unary plus and minus

3

.

Exponentiation

4. Multiplication and division (equal priority)

5. Addition and subtraction (equal priority)

2-5

>nty of 6 . When two operators are of equal precedence
(* and /) , evaluation proceeds from left
to right.

For example :

Z-A + B*C + D

Step 1. A is subtracted from Z

Step 2. C + D is evaluated
Step 3. B is multiplied by the result

of Step 2.

Step 4. result of step 3 is added to the
result of Step 1.

Use of
Parentheses

Since parenthesized exprs are evaluated first,
the programmer can use parentheses to change
the order of evaluation for an expr . Using
the same variables as in the previous example;

Z -
((A + B) C) t D

1 is

Step 1. A + B is evaluated.
Step 2 . The value from step

multipled by C.

Step 3. The value from step 2 is raised
to the D power.

Step 4. The value from step 3 is sub-
tracted from Z.

Parentheses may also be used to clarify the
order of evaluation and legibility of an expv.
For example, the following exprs are equivalent;

A * B f 3/4 + B/C + D 1 3

((A*B+3)/4) + {(B/C) + D 1 3)

Relational
Operators and

Relational operators are used to compare two
exprs in a relational-expression (rel-expr) .

A relational expression is of the form:

exprl relational operator expr2

2-6

Relational
Operator s and

Expressions
(Continued)

The relational operators used in BASIC are;

Symbol Meaning Example

= Equal A = B
< Less than A < B
<= Less than or equal A <= B
> Greater than A > B
>= Greater than or

equal A >= B
<> Not equal A <> B

Strings may also be used in the place of the
expT in relational expressions. Their usage
is described in Chapter 5.

2-7

CHAPTER 3

COMMONLY USED BASIC STATEMENTS

COMMENTING A PROGRAM

REM

s /

c

F

REM [message]

message: text comment.

Purpose: To insert explanatory comments within a program,

Remarks

:

REM statements are ignored when the program is

executing. However, the REM statement is stored

with the program and is output exactly as

entered when LISTed.

If control is transferred to a REM statement

from a GOTO or GOSUB statement, then execution

continues with the next executable statement

following the REM statement. If no executable

statement follows the REM statements then the

program will act as though an END statement were

encountered and control will return to inter-

active mode.

Examples: *10 REM — REMARKS THROUGHOUT A PROGRAM CAN

*20 REM — HELP EXPLAIN THE PURPOSE OF STATEMENTS

*30 REM — LINES 10, 20, 30 ARE NOT EXECUTED.

3-1

*ECUTION OF

END END

Purpose: To terminate execution of the program and to

return control to interactive mode.

Remarks: Data General's implementation of Extended BASIC

does not require the inclusion of an END state-

ment to declare the physical end of a program.

If control passes through the last executable
statement of the program and if that statement
does not change the flow of control (that is,

the statement is not a GOTO, etc.) then the

program will transfer control to interactive

mode. The END statement is included in this

implementation for compatibility with BASIC

programs written for other systems. Multiple

END statements may appear in the same program,

and when encountered will terminate execution
of the program followed by a prompt (*) printed
at the user's terminal.

Examples: *20 PRINT "PROGRAM DONE'
*30 GOTO 60

*50

*60 END
* RUN
PROGRAM DONE

END AT 0060
*

3-2

STOP STOP

^__

Purpose: To terminate execution of the program and to

return control to interactive mode.

Remarks; STOP statements may be placed anywhere in the

program to terminate execution. When STOP is

encountered in the program the system will print
the following message on the user's terminal:

STOP AT XXXX

where XXXX is the line number of the

STOP statement.

After resumption of interactive mode, the pro-
gram may be restarted in its initial state (see

RUN) or continued in its current state (see CON

or run line number) .

Examples: *LXST
0810 REDETERMINATE PROGRAM BY STOP

0020 INPUT A
0030 IF A<0 THEM GOTO §050
0040 GOTO 0020
005? STOP

RUN
I I

? 3
? -5

STOP AT §050

3-3

ASS IGNMENT STATEMENT

LET [let] var = expr

var:

expr:

numeric variable name,

an arithmetic expression.

Purpose: To evaluate expr and assign the resultant value

to var.

Remarks

:

Use of the mnemonic LET is optional.

The variable var may be subscripted.

String expressions may be assigned to string

variables (see Chapter 5)

.

Examples: * 10 LET A=A+1 Variable A is assigned a

value one greater than it

was before.
* 20 A (2,1) = B+2+10 The element in row 2/column

1 of array A is assigned
the value of expression
B+2+10.

3-4

INPUT STATEMENTS Input statements are used to define and read data
that is to be used during program execution.

t^

input input ["string lit"a] var [>var] . ..[-,]

var: a list of variables
separated by commas.

string literal: a message or prompt.
(See Chapter 5 for
detailed string inform-

ation.)

Purpose: To assign the values supplied by input from the
user's terminal to a list of variables.

Remarks: 1. The INPUT statement may be used to enter
numeric data, string data (see Chapter 5)

or both to a program.

2. When an INPUT statement is executed, a

question mark (?) is output as an initial
prompt unless the INPUT statement contains
the "string literal" option. Then the

"string literal" is output as an initial
prompt.

3. The user responds by typing a list of data,
where each datum is separated from the next
by a comma or a carriage return. The list

is terminated with a carriage return.

4. If the data list is terminated with a

carriage return before a value has been
supplied for each of the elements of the
variable list, then a question mark (?) will
be output as a prompt, indicating there are
further data list elements which must be

supplied.

3-5

INPUT

Remarks:

(Continued)
The data Input in response to the prompt
must be of the same mode (numeric or string)

as the variable in the INPUT statement list

for which the data is being supplied. Vari-

ables in the INPUT statement list may be

subscripted or unsubscripted.

If data input from the terminal does not
match the mode of a variable in the INPUT

statement list, then a \ ? is output to the

terminal for the data in error.

If the variable list is terminated with a

semi-colon, then the cursor is left follow-
ing the last input data item. Otherwise, a

carriage return-line feed is output.

Examples: 1. *UST
0005 1MPUT A#B*C#D,E
§010 PRINT A+B#C+D,D*E

RUN

3 7 9

SJD AT 0010

2, *L1ST
0010 INPUT WA#B,C,D,E* M,A,B,,C,D,E
0020 PRINT A#B#C*D#D*E

*RUN
A# Bji €# D#£ 1,2 ? 3#4#5
3 7 9

END AT §020
*

3-6

INPUT

Examples:
(Continued) 3. *LS ST

0010 INPUT A#B#CI
0020 PRINT •• NO RETURN*

RUN
? A\ ? I,2#3 NO RETURN

END AT 0020

3-7

DATA

3 v

F

l"svriKg lit")]

a list of numeric values
and string literals.

Purpose: To provide values for variables appearing in
READ statements.

Remarks: The DATA statement is a non-executable statement.
The values appearing in a DATA statement or
statements form a single list.

The first element of this list is the first item
in the lowest numbered DATA statement. The last
item in this list is the last item in the highest
numbered DATA statement.

Both numbers and string literals (see Chapter 5)

may appear in a DATA statement and each value in
the DATA statement list must be separated from
the next value by a comma.

Examples; 100 DATA 1, 17, "AB r CD" , -1.3E-13

(See the READ and MAT READ statements for usage
and additional examples,)

3-?

READ
READ

s

c

F

»' a list of numeric and

string variables
separated by commas.

Purpose; To read values from the data list (DATA state-

ments) and assign them to the variables listed

in the READ statement.

Remarks READ statements are always used in conjunc-

tion with DATA statements.

3.

The variables listed in the READ statement

may be subscripted or non-subscripted and

may be numeric or string (see Chapter 5)

.

The order in which variables appear in the

READ statement is the order in which values

for the variables are retrieved from the

data list.

A data element pointer is moved to the next

available value in the data list as values

are retrieved for variables in READ state-

ments. If the number of variables in the

READ statement exceeds the number of values

in the data list, an END OF DATA error

message is printed.

The mode (numeric or string) of the READ

statement variable must match the mode of

the corresponding DATA element value or a

READ/DATA TYPES error message is printed.

The RESTORE statement can be used to reset

the data element pointer to the first item

of the lowest numbered DATA statement or to

the first item of a particular DATA state-

ment.

3-9

READ
(Continued)

Examples;

*LISTmm READ JbB#C
§020 READ DC 11,

M

21 # DC 31
0030 PRINT Ct2#DC23t2
8040 READ E
§050 PRINT E
0060 READ FS
0070 PRINT. FS
0080 DATA i#2*3#4,5*6#7# wABC<
0090 END

RUN
9

1

ABC

23

mD AT 0090
*

In this example the variables are assigned
values as follows:

Variable Value
A 1

B 2

C 3

D(l) 4

D{2) 5

D{3) 6

E 7

F$ ABC

3-10

RESTORE

S v

C v

RESTORE {line no. 3

line no,: a DATA statement line

number.

Purpose: To reset the position of the data element pointer,

Remarks: If the RESTORE statement is used without a line

number argument, then the data element pointer is

reset to the beginning of the data list.

If the RESTORE statement is used with a DATA
statement line number argument, then the data
element pointer is positioned to the first

value in the DATA statement line.

Examples: 5 READ A,B,C
10 READ D,E,F
15 RESTORE 50

20 READ G,H,I
2 5 RESTORE
30 READ J,K,L
40 DATA 2,4,6
50 DATA 8,10,12

In the above example the variables are assigned
values as follows:

V.:.r:. ..:
". Values

A 2

B 4

C 6

D 8

E 10

F 12

G 8

H 10

I 12

J , 2

K 4

L 6

3-11

OUTPUT STATEMENTS to print the results
tiinal

.

iiil

Semicolon (;)

:

expr:
string lit:

expr
(

"string lit"\ n
a substitute for keyword
PRINT.

a numeric expression.
a message or prompt. {See

Chapter 5 for detailed
string information.

)

Purpose: To perform one of the following print operations
on the user's terminal:

1, Print the result of a computation.

2, Print verbaturn the characters in a string
literal.

3, Print a combination of uses 1 and 2.

4, Print a blank line (skip a line)

.

Remarks

;

Prin^ting Numbers

Numbers (integer, decimal, or E-type) are printed
in the following form:

sign number space

The sign is either minus (-) or blank for plus
and the number is always followed by a blank
space. (See Chapter 2 for further details on
numeric formats)

,

Zone Spaci _ : _""-__- t

The print line on a terminal is divided in print
zones. The width of a print zone is determined
by the TAB command described in Chapter 8. The

3-12

PRI NT-

Remarks :

(Continued)
Zone Spacii

default value for TAB ii

following examples. Tbu

a line is column 0.

Dutput (Continued)

.4 and is used in the

hirst column number on

13

+ 14 ">

columns columns

28 41
*- 14 ->

columns

42 55
^ 14 ^
columns

58 69
-<- 14 -»-

columns

A comma (,) between items in the PRINT statement

list causes the next item to be printed in the

leftmost position of the next printing zone. If

there are no more printing zones on the current

line, printing continues in the first printing

zone on the next line. If a list element

requires more than one print zone, the next item

in the list is printed in the next free print

zone (see example 1)

.

Before each list item is printed its length is

compared with the space remaining on the line.

If insufficient space is left on the current line

the item is moved to the next line. If the

length of the item is greater than the width of

the page {see PAGE command in Chapter 8) then

an error message is issued.

t: .:..:: / .: .on.'.'.. ' -. :
." he ;u_

A semicolon (;) between items in the PRINT state-

ment list causes the next item to be printed at

the next character position. Note that a space

is always printed after a number and that a

space is reserved for the plus (+) sign even

though it is not printed. (See example 2.)

3-13

PRINT

Remarks

:

(Continued;

Spacing

When the last item in a print list has been
printed, a carriage return and line feed is out-
put unless the last item in the list is .-_'.._ Dwed
by a comma (,) or semicolon (;). In this case
the carriage return and line feed are not output
and the next item is printed on the same line
according to the comma or semicolon punctuation.
(See example 3.)

Printing Blank Lines

A PRINT statement with no list of print items or
punctuation will cause a carriage return and line
feed to be output. (See example 4.)

Additional printing versatility can be accom-
plished by use of the TAB(X) function, the TAB=
command, The PAGE= command the PRINT USING
statements described in Chapters 8 and 3,

Examples:]_, *LI ST
0010 LET X^25
0020 PRINT "THE SQUAEE ROD'* CF X XSt*,?QRCX>

RUN
THE SQUARE ROOT OF X 1 Si 5

END AT 0020

i f i

14 28

3-14

PRINT

Examples

:

(Continued) r; z

22* I

:2*gf ;z i^«e? ~*2 i£*efs y~

t + + I t

11 15 21 26 32

(column positions!

3.

Lines 20 and 30 use the semicolon (;) form

for keyword PRINT and then use the semicolon

as the spacing character.

#u ?v
5 PA6E?§
*!£ LET X«5
#Si PH1MT X#CX*2)f6#
*3f PRINT Xf4
*m FKIX7 m^lU m

*RUN
5 iE*m
FIN

fflD AT ^r48
*

+ f

14

625

t

28

(coluron po s i

t

ions)

Notice that the trailing comma in line 20

causes the value of X+4 in line 30 to be
printed in zone 3 rather than zone 1.

3-15

PRINT

Examples;

(Continued) :*5

mzz p^.ikt XICX*2)f6#X*2
0030 PRINT X-251 <X*2> t8

0£<e? ^H1»T X-100
H1IS II PEIWT
0S60 '?!*?? "DOME"

RUM
5 IE* 06 10
-20 lE+§8
-95

DONE

WD AT i960

i

14 (column positions)

At line 20, the comma and semicolon spacing
characters are both used. Line 50 outputs
a blank line before "DONE".

3-16

TAB(X) Tm(earpr)

W \

'eccpv: an expression which is

evaluated to an integer,

Purpose: The TAB(X) function, which may only be used in

PRINT statements, tabulates the print position

to the column number evaluated from expr.

Remarks

:

Columns are numbered through 71 for con-

ventional terminals. More than one TAB(X)

function may appear in a PRINT statement

and the column number indicated by the

function is always relative to column 0.

The position at which the next item in the

print list is printed will depend on the

value of expT and on the punctuation (; or,)

following the TAB(X) function.

If e;wr evaluates to a column number greater

than or equal to the current column and less

than the width of the page, then the new
current column position becomes the value of

the expression. If the TAB function is

followed by a semi-colon {;) then no change

is made in the value of the current column
following evaluation of the TAB function.

If a comma (,) follows the TAB function and

If the current column position is at the

beginning of a zone then no further changing

occurs. Otherwise the current column posi-

tion Is set to the start of the next zone.

After the determination of the current col-

umn the next PRINT list Item Is output.

(See PRINT statement remarks.)

If expr evaluates to a column number lower

than the present column number, the TAB{X)

function is ignored, and positioning pro-

ceeds as in 2

.

3-17

TAB(X)

Remarks

:

(Continued)
If expT evaluates to a column number greater
than the carriage length, the expression is

reduced modulo the carriage length and posi-
tioning proceeds as in 2.

If expr evaluates to 0, then TAB(O) causes
a carriage return and line feed and posi-
tioning proceeds as in 2

.

Example:
LIST
0005 LET A»-6
0010 LET B=*5

0015 PRINT TA£C8>1AJ
0020 END

TAB<2*B>J2*A

RUN
-6 -12

END AT 0020
*

10 (Column positions)

Notice the use of the semicolon {-,) in line
15 after "A" to prevent spacing to the next
print zone and passing position 2*B (Column
10).

3-18

DIMENSIONING
ARRAYS

DIM
DIM rv

F

array : a BASIC numeric
identifier,

m : the number of elements
in a one dimensional array.

tow: the number of rows In the

array.
cot: the number of columns in

the array

.

Purpose: To explicitly define the size of one or more
numeric variable arrays. Dimensioning of string
arrays is discussed in Chapter 5.

Remarks

:

Array Elements

The concept of arrays is described in Chapter 2.

The DIM statement is used to declare the size of

an array to be a number of elements other than
the default number (10) for each dimension.

* 10 DIM A(13) ,B(7,7) ,C(20,S)

The initial value of all elements in an array is

zero until assigned a value by the user's pro-
gram.

Any variable or expression that is used for a

subscript must evaluate to a value in the range:

l<yalue<upper bound declared In DIM statement

* 5 X=2
* 10 PRINT A(l,X+2)

If the variable or expression subscript does not
evaluate to an integer, BASIC will convert it

using the INT function (See Chapter 4)

.

3-19

DIM

Remarks

:

(Continued)

Array ^ Elements (Continued)

If a subscript evaluates to an integer larger
than the upper bound of the dimension for the

array or smaller than 0, the subscript error
message is printed.

Redimensioning Arrays

It is possible to redimension a previously
defined array during execution of a program
by declaring the array in another DIM statement.

The total number of elements of the newly
dimensioned array must not exceed the previous
total number of elements.

* 100 DIM A (3, 2)

200 DIM A(2,3!

* 300 DIM A(2 r 2)

The values assigned to elements in array A (3, 3)

are reassigned to elements in array A (2, 3) and

ehen to elements in array A(2,2).

12 3

4 5 6

1 2

3 4

A(l,l) = 1 A(l,l) = 1 A(l,l) = 1

A(l,2) = 2 A(l,2) = 2 A(l,2) = 2

A(l,3) = 3 A(i,3) = 3 A(2 f l) = 3

A (2,1) = 4 A(2,l) = 4 A(2,2) = 4

A(2,2) = 5 A(2,2) = 5

A (2, 3) = 6 A{2,3) = 6

A(3,l) = 7

A (3, 2) = 8

A{3,3) = 9

3-20

PROGRAM LOOPS Programs which require the repetitive operation
of a block of statements until a termination
condition is met can be simplified by use of a

FOR - NEXT program loop.

A program loop begins with a FOR statement which
provides the specifications for repetition, a

block of statements which is executed during each
repetition of the program loop, and a NEXT state-
ment which denotes the end of the loop.

FOR statement
(block of statements)
NEXT statement

FOR and NEXT

s J

c

F

FOR control var = exprl TO expr2 [step exprS]
(Block of statements)
next control vor

control vor:

exprl:

expr2:

expr3:

(Block of statements)

:

a non-subscripted numeric
variable.
a numeric expression which
defines the first or ini-
tial value of the control
variable.
a numeric expression which
defines the terminating
value of the control vori-
able.

a numeric expression which
defines the increment added
to the control yap iable
each time the loop is

executed,
any statements which may
also contain FOR - NEXT
loops

.

Purpose: To establish the initial, terminal and incremen-
tal values for a control variable which Is used
to determine the number of times a block of
statements contained in a FOR - NEXT loop are to
be executed. The loop is repeated until the value
of the control Portable meets the termination
condition.

3-21

FOR anO NEXT

(continued)

Remarks: Rules

1. control variable* must not be subscripted.

2. Every FOR or NEXT statement must have a

matching NEXT or FOR statement or an error

message is printed.

3. Expressions exprl 3 expr2 and exprS may have

positive or negative values and exprZ must

not be zero.

4. If STEP exprZ is omitted from the FOR - NEXT

statement, then exprZ is assumed to be +1.

5. The termination condition for a FOR - NEXT
loop is dependent upon the values of exgrt

and exprS . The loop terminates if: exprS
is positive and the next value of control
vor is greater than expr2; exprZ is negative
and the next value of control vor is less

than expr2.

If the value of exgrl (the initial value)

meets the termination condition, then the

loop is not performed even once.

6. If the body of a FOR - NEXT loop is entered

at any point other than the FOR statement,

then, upon encountering the NEXT statement

corresponding to the skipped FOR statement

an error message will be issued.

7. When the termination condition is met, the

loop will be exited and the value of the

control vor will be final value of control

Par,

3-22

FOR and NEXT

Remarks

;

(Continued)
A loop may be exited using a GOTO or GOSUB
statement before the control itzpiable has
met the termination condition,

Program Loop Operation

1. The expressions exprl 3 exprB and exprZ
are evaluated. If exprZ is not specified
it is assumed to be +1.

2. The control var is set equal to exprl

.

3. If exprZ is positive and control var>expr2
then the termination condition is satisfied
and control is passed to the statement fol-
lowing the corresponding NEXT statement.

If exprZ is negative and control var<expr2
then the termination condition is satisfied
and control is passed to the statement fol-
lowing the corresponding NEXT statement.

Otherwise, the following steps are performed,

4. The statements in the FOR - NEXT block are
executed.

5. When the corresponding NEXT statement is

executed, control var is set equal to

control var + sxprZ.

6. Repeat step 3.

Nesting Loops

FOR - NEXT loops may be nested to a depth speci-
fied by the system manager. The FOR statement
and its terminating NEXT statement must be com-
pletely contained within the loop in which it is

nested. For example:

3-23

FOR and NEXT

Remarks:

(Continued)

(Continued)

Ne sting
_
Loops (Continued)

Legal Nesting

__ FOR X =

_ FOR Y =

FOR Z =

L XLXT Z

_ NEXT Y

-.NEXT X

Illegal Nesting

FOR X =

FOR Y =

NEXT X

NEXT Y

Examples: 1. *LJST
§010 FOR I«l TO 9
0020 NEXT 1

§030 PRIMT I

* 'JX

9

END AT 0030 -

*

2 .*L1ST
0040 FOR J»l TO 9 STEP 3
0050 NEXT J
0060 PRINT J

RUN
7

END AT 0060

I equal last value
assigned during
execution of loop.

Final value
of J before
terminating
value was
exceeded.

3-24

FOR and NEXT 3. *LI.S

0010
0020

SxaixroXos i
0830

(Continued) 0040
0050
0060
0070

LET P»3« 14159
FOR 1»0*P/180 TO 360*P/i80 STEP 45*P/I80

PRINT TABC3010*SIWCI))1 ,,X ,,

FOR J*l TO 3
PRINT TABC30>1 M*M

NEXT J
NEXT I

RUN
X
*

*

*

*

*
*
*
X
*
*

*
m
*

*
*
*

*
*
*

*
*
*

END AT 0070
*

3-25

FOR and NEXT (Continued)

Examples; 4. #LI ST
(Continued) 0010 FOR I«J TO 3 STEP -1

0020 PRINT •'SHOULD NOT ENTER HERE*
0030 NEXT I

0040 PRINT I

RUN
1

mV AT 0040
*

3-26

SUBROUTINES A subroutine Is a group of program ;

which is entered via the GOSUB stab
exited via the RETURN statement. Rather than
repeat the statements at each point they are

required, the statements are written into the

program only once and are accessed by a GOSUB
statement. The RETURN statement allows control
to return to the statement following the last
GOSUB statement. In this manner, the program
continues at the appropriate place after the
subroutine has been executed.

GOSUB and RETURN GOSUB line no,

RETURN

S v

F

line no. : a line number,

Purpose; GOSUB directs program control to the first state-
ment of a subroutine. RETURN exits the sub-
routine and returns program control to the next
statement following the GOSUB statement that
caused the subroutine to be entered.

Remarks' A subroutine may only be entered by using a

GOSUB statement. Otherwise, the RETURN-NO
GOSUB error message is printed when the
RETURN statement is executed.

A subroutine may have more than one RETURN
statement should program logic require the

subroutine to terminate at one of a number
of different places.

Although a subroutine may appear anywhere
in a program, it is good practice to place
the subroutine distinctly separate from
the main program. In order to prevent
inadvertant entry to the subroutine by other
than a GOSUB statement, the subroutine

3-27

GOSUB and RETURN

Remarks

:

(Continued)
should be preceded by a STOP statement or

GOTO statement which directs control to a

line number following the subroutine.

4, Subroutines may be nested to a depth speci-
fied by the system manager. Nesting occurs
when a subroutine is called during the exe-

cution of a subroutine. On execution of a

RETURN statement, control is passed to the

statement immediately following the most
recently executed GOSUB statement.

Examples: LIST
z-siz birr s^6
§§2§ SOS0B 8100
mZB LET A« 10
0040 GOSUB 0100
085^ t^b3P

0100 FOR 1=1 TO A STEP 2
0110 PRINT 11

S«20 MOCT 1

0.130 PRINT
§140 RETURM

RUM

STOP AT §050

3-28

GOSUB and RETURN

Examples;

(Continued) §010 GOSUB 0040
0020 PRINT »f EXAMPLE*
0030 STOP
mm PRIHT wNESTM f

0050 GOSUB 0080 .

0060 PRINT "INE"*
0070 RETURN
0080 PRINT "ED**;
0090 GOSUB 0120
0100 PRINT "ROUT"

J

0110 RETURN
0120 PRINT " SUB" J

0130 RETURN

RUM
NESTED SUBROUTINE EXAMPLE

STOP AT 0030
*

3-29

BRANCH STATEMENTS The following statements permit branching from
one portion of a program to another. The GOTO
statement is unconditional and provides branching
to the line number specified in the statement.
The ON-GOTO/GOSUB and IF-THEN statements are con-

ditional and branching occurs on the basis of

evaluated conditions.

GOTO GOTO line no.

s J

c

F

line no. : a program statement line

number.

Purpose: To unconditionally transfer control to a state-
ment that is not in normal sequential order.

Remarks If control is transferred to an executable
statement, that statement and those follow-

ing will be executed.

If control is transferred to a non-execut-
able statement (e.g., DATA) program execu-
tion will continue at the first executable
statement which follows the non-executable
statement.

Examples: (Continued on next page)

3-30

GOTO

Examples;

(Continued)

*LIST
0810 READ X
0020 PRINT X
0030 GOTO 0010
0040 DATA 1#2#3#4,5
0050 DATA 20,21,23
0060 END

RUN
1

2
3
4
5

20
21
23

ERROR 15 AT 0010 » END OF DATA

3-31

IF — THEM

C v

P
r I

IF

cpel-expr i

them statement

lexpr

rel-expr: a relational expression as

defined in Chapter 2.

expv: a numeric expression.
statement: any BASIC statement except

FOR, NEXT, DBF, END, DATA

and REM.

Purpose: To execute a statement on the basis of whether

an expression or a relational expression is true

or false.

Remarks 1- If, after evaluation, the relational expres-

sion, rel-expr , is true, then the program
statement following the THEN is executed.

If the relation is false, program execution

continues at the next sequential statement
after the IF—THEN statement.

2. A numeric expression (exp-r) may be used in

place of a relational expression. The

numeric expression is considered false if it

has a value of and is true if it has a

non-zero value.

Note: Since the internal representation of non-

integer numbers may not be exact (for example

.2 can not be exactly represented), it Is advis-

able to test for a range of values when testing

for a non-integer. For example, if the result

of a computation, A, was to be 1.0 a reliable

test for 1 is

IF ABS (A-1.0)<1.0E-6 THEN...

If this test succeeds, then A is equal to 1 to

within 1 part in 10+6. This is approximately

the accuracy of single precision floating point

calculations.

3-32

IF -- THEN

Examples:

(Continued)
i, * 10 IF A=B THEN GOTO 100

* 20 IF A=B GOTO 100
* 30 IF A-B <= 5 THEN 0=0
* 40 IF A*B < 50 THEN GOSUB 300
* 50 IF MB > 100 GOSUB 400

Lines 10 and 20 are equivalent variations
of the IF — THEN statement.

2- *LIST
0005 REM— -START
0010 L£T.N»ti
0020 INPUT "X« W,X
0030 17 X THEN Q0T0 8050
0040 GOTO 0100
0050 IF X>»N T8EN GOTO 0080
0068 PRINT X #

WX IS LESS THAN 10*
0070 Q0T0 i20 _

-

008 PRINT X# ,rX GREATER OR EQUAL TO 10'

0090 GOTO 0020
mm PRINT X# ^»§w
3.1 U-, iv r-

mm
X«5
5

X-7

X«12
. 12
X»ig
.10
X»0

BIZ A? ^tl?

X IS LESS THAN 10

X IS LESS THAN 10

X GREATER OR EQUAL TO 10

X GREATER OR EQUAL TO 10

3-33

IF — THEN

Examples:

(Continued)
3.*LiST

0020 LET AS 855 ** 1 2ABC34**
0030 IF X«5 THEN IF ASC 3#X3* t,ABCM THEN PRINT "SUPER 1

0840 END

*RUN
SUPER

WD AT 0040
*

This example compares strings in the

relational expression. See Chapter 5

for detailed string information.

3-34

ON-GOTO
ON-GOSUB

(GOTO

ON expr < > line no. [3 line no.] .

.

(GOSUB

^

expr: a numeric expression which
is evaluated to an integer.

line "no.: a list of line numbers in

the current program whose
positions in the argument
list are numbered from 1

through n.

Purpose; To transfer control to one of several lines in a
program depending on the computed value of an

expression at the time the statement is executed,

Remarks

:

The expression expr is evaluated and if it
is not an integer, the 'fractional portion
is ignored.

2. The program transfers control to the line
number whose position in the argument list
corresponds to the computed value of expr.

3. If expr evaluates to an integer that is

greater than the number of lines given in

the argument list or that is less than or
equal to zero, the ON statement is ignored
and control passes to the next statement.

4. -She ON-GOSUB statement must contain an argu-

ment list whose lines are the first line of
subroutine within the current program.'

Example: *10 ON M-5 GOTO 500,75,1000

If M-5 evaluates to 1, 2 or 3 then control will
transfer to statement 500, 75 or 1000, respec-
tively. If M-5 evaluates to any other value,
control will transfer to the next sequential
BASIC statement in the program.

3-35

CHAPTER '-\

E'Tr::e Teic

INTRODUCTION
TO EXTENDED
BASIC
FUNCTIONS

Extended BASIC provides functions to perform cal-

culations which eliminate the need to write pro-
grams to perform these calculations. The func-
tions generally have a three character mnemonic
name and are followed by a parenthesized expres-
sion (expr) which is the function argument. Gen-

erally, a function may he used as an expression,
or may be included as part of an expression.

The following extended BASIC functions are de-
scribed in this chapter.

Function Value Produced

RDN(X)

SGN(X)
1NT(X)

ABS(X)

SQR(X)

EXP(X)

LOG{X)
SIN(X)

COS(X)
TAN(X)
ATN(X)

SYS(X)

FNa(d)

Random number between and 1

The algebraic sign of X
The integer value of X

Absolute value of X

Square root of X (X _> 0)

ex (-178 <_ X < 175)

Natural logarithm of X (X > 0)

Sine of X (X expressed in radians)
Cosine of X (X expressed in radians)
Tangent of X (X expressed in radians)
Arctangent of X (result expressed
in radians)
System functions
User defined function

In addition, there are a number of functions
which are described in other chapters of this
manual which relate to strings, matrices and
files.

4-1

INTRODUCTION
TO EXTENDED
BASIC FUNCTIONS
(Continued)

Function

TAB(X)

LEN(XS)

POS(X$,Y$,Z)
STR$ (X)

VAL(S$)

EOF(X)

Printing Function

"String Functions

File Function

Refer to Chapter

3

4-2

ARITHMETIC
FUNCTIONS

RND(X) BED (expr)

s«

c

F .

expr: a numeric expression
(required, but not used)

Purpose To produce a pseudo-random number N, such that
< N < 1.

Remarks The RND function requires an argument (expr) ,

although the argument does not affect the result-
ing random number nor does the RND function
affect the argument.

The RND function, each time it is called, pro-

vides a pseudo-random number in the range to 1.

The sequence in which these numbers is provided

is fixed. The length of the sequence is 2+16 for

single and double precision arithmetic.

Since the sequence of pseudo numbers is fixed,
and the start point in the sequence is reset to
the same point each time a NEW or RUN is issued,
the sequence of numbers provided by RND is repro-
ducible (see RANDOMIZE for exceptions) . The
sequence generated on systems using double pre-
cision is different from that generated on sys-
tems using single precision.

Each occurance of the RND function yields the
value of the next random number in the list.

4-3

RND(X)
(Continued)

Examples: *LIST
0005 TAB =10
0010 FOR 1-1
0020 PRINT
0030 NEXT I

RUN
•21232

END AT 0030
•RUN

TO 4
RNDC1>#

14464

•21132 . 14464

•852625

•852625

.927054

.927054
END
*

AT 0030

Running the above program a second time will

produce the same five random numbers.

*LIST
0005 TAB » 10

0010 FOR J«l TO 4
0020 PRINT INTC10*RND< 1>)#

0030 NEXT J

RUN
2 18 9

END AT 0030
*

This program will produce five random

integers in the range to 9

.

4-4

RANDOMIZE RANDOMIZE

Purpose: To cause the random number generator to start at
a different point in the sequence of random num-
bers generated by RND.

Remarks: Normally the same sequence of random numbers is
generated by successive use of the RND function.
This feature is useful for debugging programs.
When the program has been found to run success-
fully, the RANDOMIZE statement should be included
in the program before the first occurrence of a
RND function if different start points in the
sequence are desired.

The RANDOMIZE statement resets the random number
generator based on the time of day thereby pro-
ducing different random numbers each time a pro-
gram using the RND function is run.

Example

:

*10 RANDOMIZE
*20 PRINT RND(O)

This program will print a different value each
time it is run.

4-5

SGN(X) sgu (expr)

F v

exgv: a numeric expression

Purpose: To return a +1 if exgv is greater than 0, a

if exgv equals 0, and a -1 if exgv is less

than 0.

Example: LIST
0010 LET A»-3
0020 PRINT SSNCA)

*RUN
-1

END AT 0020
*

4-6

INT(X) lET(expr)

F K,

eayp; a numeric expression

Purpose: To return the value of the nearest integer not
greater than expr.

Examples; 1. *LIST
0010 PRINT INTC15.8)

RUN
15

END AT 0010

2. *LIST
0010 PRINT INTC-15.8)

RUN
-16

END AT 0010
*

3- *LIST
0010 PRINT INT< 15.84..5)

RUN
16

END AT 0010

4-7

ABS(X) ABS (exp?)

expr: a numeric expression,

Purpose: To return the absolute (positive) value of expr.

Example:
LIST
0010 PRINT ABSC-30)

RUN
30

END AT 0010

4-8

SQR(X) SQR(expr)

expr: a positive numeric
expression.

Purpose: To compute the square root of expr.

Examples: LIST
0010 LET A=»5

0020 PRINT SQR<At2+75>

*RUN
10

END AT. 0020

4-9

BXPfX) EXP (expr)

expr: a numeric expression
(-178 £ expr <_ 175) .

Purpose: To calculate the value of e (2.71828) to the
power of expr.

Example: *LIST
0010 REM- CALCULATE VALUE OF EU.5
0020 PRINT EXPC 1.5)

RUN
4.48169

END AT 0020

4-10

LOG(X) LOG(expr)

s__
:

ZE

expr: a numeric expression,

Purpose To calculate the natural logarithm of expr,

Example
LIST
0010 REM-CALCULATE THE LOG OF 959
0020 PRINT L0GC959)

RUN
6.86589

END AT 0020

4-11

TRIGONOMETRIC
FUNCTIONS

SIN(X)

c

F /

sin (expr)

eocpr: a numeric expression
specified in radians,

Purpose: To calculate the sine of an angle which is

expressed in radians.

Example
LIST
0010 REM-PRINT SINE. OF 30 DEGREES
0020 PRINT SIN<30*SYS(15>/180>

*RUN
.5

B*D AT 0020

4-12

cos(x;

mm

cos (expr)

eccpr: a numeric expression
specified in radians,

Purpose; To calculate the cosine of an angle which is

expressed in radians.

Example; LIST
0010 REM-PRINT COSINE OF 30 DEGREES
0020 LET P*SYS< 15)/180
0030 PRINT COSC30*P>

RUN
.866025

END AT 0030

4-13

TANfX) tpj$ (expr)

F

expr: a numeric expression
specified in radians.

Purpose: To calculate the tangent of an angle which is

expressed in radians.

Example: LIST
0010 REMrPRINT TANGENT OF X DEGREES
0020 INPUT "X DEGREES M,X
0030 LET P*3«I4i59/I80
0040 PRINT TAN<X*P>

*RUN
X DEGREES 45
.999999

END AT 0040
*

4-14

ATN { X) RTMlexp'T*'}

F v

expr: a numeric expression.

Purpose: To calculate the angle (in radians) whose
tangent is expr. (-it/2 <_ ATN (expr) <_ ir/2)

Example: LIST .

0010 REM-CALCULATE ANGLE WHOSE TAN* 2
0020 PRINT ATNC2>

RUN
J. 10715

END AT 0020

4-15

SYSTEM
FUNCTIONS

SYS(X)

.'

c

F J

SYS (exrpr)

expr: a numeric value or

expression

.

Purpose: To return system information based on the value
of expr which is evaluated to an integer
(0 to 16) .

SYS(O)

SYS(l)

SYS (2)

SYS (3)

SYS (4)

SYS (5)

SYS (6)

SYS(7)

SYS (8) =

SYS{9) =

SYS (10) =

SYS (11) =

SYS(12) =

SYS(13) =

SYSC14) *

SYS{15) =

SYS (16) =

= the time of day (seconds past midnight)
= the day of the month (1 to 31) \

= the month of the year (1 to 12) I current
= the year in four digits (date

(e.g., 1975))

= the terminal port number (-1 if opera-
tor's console)

= CPU time used in seconds to the nearest
tenth

= I/O usage (numbers of file I/O state-
ments executed)

= the error code of the last run-time
error
the file number of the file most recent-

ly referenced in a file I/O statement
page size

tab size
hours \

minutes \ current time of day
seconds)

seconds remaining before expiration
of timed input
PI (3.14159)

e (2.71828)

4-16

USER DEFINED
FUNCTIONS

DEF DEF FBa(d) = expr

.: >

c

,F

a',

d:

expr:

FNa(d)

a single letter A to Z,

dummy arithmetic variable
that may appear in expr.
an arithmetic expression
which may contain variable d.

s

c

F J

Purpose: To permit the user to define as many as 26

different functions which can be repeatedly
referenced throughout a program. Each function
returns a numeric value.

Remarks: The dummy variable named in the DEF state-
ment are not related to any variables in

the program having the same name; the DEF
statement simply defines the function and
does not cause any calculation to be carried
out.

In the function definition, the expr can be
any legal arithmetic expression and may
include other user-defined functions. Func-

tions may be nested to a depth specified by
your system manager.

Function definition is limited to a single
line DEF statement. Complex functions
which require more than one program state-
ment should be constructed as subroutines.

4-17

DEF
FSa(d)

(Continued)

Examples:

0030 PHI NT T

RON
36

©D AT 8030

In line 10 the FNE function is defined.
In line 20 the FNE function is referenced
and evaluated with numeric argument 5.

LIST
0005 TAB »U
0010 LET P«3i14159
0020 DEF FNRCXJ«X*P/t80 .

0030 DEF FN5CX)»5iNCFNRCX)>
0040 DEF FNCCX>»COSCFNR<X>)
ms§ FOE X*0 TO 45 STEP 5

006 § PRINT X#FNSCX>*FNCCX>
0070 MBCT X

•RUN
a !

5 8.71557E-02 .996195
if .173648 .984808
15 .258819 •965926
20 .34202 .939693
25 .422618 •906308
30 • 5 .866026
35 #573570 .819152
40 .642787 •766045
45 #707106 .707107

END m 0070
*

This example Illustrates the nesting of

user defined functions.

4-18

chapter 5

string information

STRING
CONVENTIONS

String A string is a sequence of characters which may
Literals include letters , digits, spaces and special char-

acters. A string literal (constant) is a string
enclosed within quotation marks. String literals
are often used in PRINT and INPUT statements as
described in Chapter 3.

*10Q PRINT "THIS IS A STRING LITERAL"
*200 INPUT "X=",X

The enclosing quotation marks are not printed
when the string is output to a terminal, non-
printing and special characters may be included
in string literals by enclosing the numeric
equivalent of the character within angle brackets
{< >) . See Appendix E for the decimal equiva-
lents of ASCII character codes.

*10 print "use decimal 34 to print <34> in strings"
* run)
use decimal 34 to print " in strings

5-1

String
Variables

Extencled BASIC permits the use of strvna var%-
„ T^r] rjr„ as well as string literals. A string var-

name consists of a letter, or a letter and

3. QXCI.,t, followed by a dOXxB..r SiCfH \ yj *

L» ^al String Variables _1_. *_'. Coring Variables

A$ AA$

A2$ 2$

D6$ 3C$

String values are assigned to string variables

by the use of LET, INPUT and READ statements.

Dimensioning
String
Variables

Unless a string variable is declared in a DIM
statement, extended BASIC assumes a maximum

string length of 10 characters or less. There-

fore, undimensioned string variables longer than

10 characters which are used in LET, READ and

INPUT statements are truncated to 10 characters.

Good programming practice would suggest that all

string variables be dimensioned, regardless of

size

.

*10 DIM A$ (25), B3$ (200)

There is no limitation on string variable size
other than available memory limitations. In the
DIM statement above, A$ has a maximum string
length of 25 and B3$ has a maximum string length
of 200.

LIST
0010 DIM A2SC 151

0020 LET A2$=* ,,PRINT A2S IS THIRTY CHARACTERS"
0030 PRINT A2S

RUN
PRINT A2$ IS TH

END AT 0030
*

5-2

Substrings Program statements which use string variables may
also use portions of strings (substrings) by sub-
scripting the string variables. Subscripted
string variables are of the general form;

svar 5y%}]

svar: string variable name.
x: xth through last character

of svar.
y,z: yth through zth characters

inclusive of svar.

For example:

A$ References the entire string.
A$(2) References the second character

through the last character in the
string inclusive.

A$(I) References position I through the
last character in the string
inclusive.

A${3,7) References characters occupying
positions 3 through 7 inclusive.

A$(I / J) References characters occupying
positions I through J inclusive,
where I and J are evaluated to

character positions in the string
and I <_ J.

A$(l,l) References only the first character
in the string.

LIST
0005 DIM Ai$C283
0010 LET A1SC 1,33 -"SUB"
0020 LET A1SC4* 10J»"STRING "

0030 LET AiSC 11, 173="EXAMPLE"
0040 PRINT A1S

RUN
SUBSTRING EXAMPLE

END AT 0040

5-3

Substrings String variable assignments may be changed during
(Continued) a program. For example:

*LIST
0010 LET AS" -ABCDEF"
0820 PRINT AS
0030 LET B$a-1-
0040 LET ASC3>33 = B$
0050 PRINT A$
0060 LET A$C43«B$
0070 PRINT A$

*RUN
ABCDEF
AB1DEF
ABii

END AT 0070
*

5-4

Assigning Values To
String Variables

A string variable can be assigned a string value
by the use of READ and DATA statements. When
string data is included in a DATA list, the
string elements must always be enclosed in quot-
ation marks

.

*L1SX
8005 DIM A!$C203,BSC 103#D$C51
0810 READ A#A1$,B$*C#D$
0015 PRINT A* CDS
0028 DATA 5,"ABCDM #

M EFGH M
, 10#"IJKL'

*RUN
5 10 IJKL

END AT 0020

As indicated by this example, string data and
numeric data may be intermixed in a DATA list.
However, the variables in the READ statement must
match (numeric or string) the elements of the
DATA list or an error message will be output.

String data may also be input to a program by the
use of INPUT statements. When responding to the
INPUT statement question mark (?) , the use of
quotation marks to enclose the string is optional.
If data for more than one string variable is re-
quested by the INPUT statement, the string data
elements entered must be separated by a comma or
a carriage return. Commas may be included in a

string by enclosing the entire string in quota-
tion marks. Quotation marks may be included by
enclosing the value 34 in angle brackets. Cau-
tion must be exercised when NUL or CR characters
are included since they are record delimiters.

*10 INPUT A$, B$, C, D, E$

RUN)

?ABCD, EF,GH, 2, 4, "SIX")

5-5

Strings in As mentioned in Chapter 3 (IF - THEN statement)
IF - THEN strings may also be used in the relational expres-

Statements sion of an IF - THEN statement. In this case,
the strings are compared character by character
on the basis of the ASCII character value (see

:..:y. nil.:-: _ ;:;:.". i :. i '. ; .:: .

* c . i :- .'".;.•'..:.. '.':
:,

character in a given position in one string has
a higher ASCII code than the character in that
position in the other string, the first string
is greater. If the characters in the same posi-
tions are identical but one string has more char-
acters than the other, the longer string is the
greater of the two.

*200 LET A$ = "ABCDEF"
*300 LET B$ = "25 ABCDEFG"

*310 IF A$>B$ GOTO 500 «-True. Transfer occurs.
*320 IF A$>B$(4) GOTO 500 ^False. No transfer.
*330 IF A$(1,4)=B$(4,7) GOTO 500 ^True.

Transfer occurs

5-6

String String variables and string literals may be concat-
Concatenation enated on the right hand side of LET statements,

using a comma (,) as the concatenation operator.
For example:

*100 DIM A$ (50) , B$ (50)

*110 LET A$="@$2.50 EACH, THE PROFIT MARGIN IS 15.8%"
*120 LET B$=A$ (1,4), "25", A$ (7,35), "1.2%"
*130 PRINT B$
* run)

@$2.25 each, the profit margin is 11.2%.

5-7

STRING
FUNCTIONS

A number of string functions are implemented in

extended BASIC which increase string handling
capabilities. The string functions are;

LEN (X$)

POS (X$,Y$,Z)

STR$ (X)

VAL (X$)

LEN (X$) LEN (svar)

s

c

F /

svar: string variable

Purpose: To return a value equal to the number of charac-

ters currently assigned to string variable svar.

Remarks: The LEN (X$) function may be used with any pro-

gram statement which has an expression (expr)

argument.

Example:
0005 DIM ASC803#B1SC803
0010 INPUT AS, BIS
0020 LET B«LEN(AS)
0040 IF B>LEN(B1S)
0050 GOTO 0100
0060 PRINT "LENGTH
007 PRINT "LENGTH
0080 PHI NT "AS>BlS ,f

0090 GOTO 0110
0100 PRINT ,,B1S>AS"
01 10 END

THEN GOTO 0060

OF
OF

AS^JLENCAS)
B1$» M1LENCB1S>

*RUN
? CHEESE

LENGTH OF
LENGTH
AS>BiS

OF

? CAKE
AS= 6

Bl$» 4

END AT 0110

5~{

POS <X$,Y$,Z) POS (

fc

var 1

'string lit 1 »)> \„
t

var 2

trina lit 2i-
expr)

F

svar:

:

string lit;

expr:

string variable,
string literal,
numeric expression.

Purpose: To determine the location in a string (svarl or
String lit!) of the first character of the first
occurrence of a substring (svar2 or string lit2)
beginning at or after position expr.

Remarks: The POS function returns a value equal to the
first position of the substring in the string.
If the substring cannot be found in the string,
the POS function returns a value of zero. If
the value of the starting position from expr is
less than zero, an error message is output.

Example LIST
0005 DIM ASC303
0010 LET A$* MABCDEF6HIJKLMN0PQRSTUVWXYZ M

0020 LET A=*P0SCA$, MMN0P",6)
0030 PRINT A

RUN
13

END AT 0030
*

In this example, a search is made for "MNOP"
starting from the sixth character (N) in string
A$. A match is found which begins at the 13th
character in string A$. Therefore, the POS func-
tion returns a value of 13 which is assigned to
variable A.

5-9

STR$(X) str$ (expr)

-"

F /

expr: a numeric expression.

Purpose: To convert a numeric expression to a string
which is its decimal representation.

Remarks

;

Converting numerics to strings permits string
manipulation by other string handling functions
and statements

.

Example: LIST
0010 READ A
0015 IF A»0 THEN STOP
0020 LET AS«STR$(A>
0030 IF A$C4,6]="222 ,f THEN GOTO 0050
0040 GOTO 0070
0050 PRINT A; M -THIS IS MODEL 222 FRAMI SHAM"
0060 GOTO 0010
0070 PRINT A!" -THIS ISN'T OUR FRAMISHAM"
0080 DATA 111222*212222* 123456*0
0090 GOTO 0010

*RUN
111222
212222
123456

-THIS IS MODEL 222 FRAMISHAM
-THIS IS MODEL 222 FRAMISHAM
-THIS ISN'T OUR FRAMISHAM

STOP AT 0015
*

5-10

VAL (X$) VAL (

V'

var
'string lit>

svar:

string lit:

a string variable
comprised of numbers.

a string literal

comprised of numbers

Purpose: To return the decimal representation of a string

variable or string literal.

Remarks: The string variable or string literal argument

to the VAL function must consist entirely of

numbers or an error message will be output. The

value returned by the VAL function may be used

in numeric arithmetic expressions.

Example:
LIST
0010 LET AS» ,M2345<
§020 LET B« 54321
0030 LET OVAL<A$>
0040 LET D«B*C
0050 PRINT D

*RUN
66666

END AT 0050

5-11

STRING
ARITHMETIC

Arithmetic operations may be performed on string
variables and string literals. The arithmetic
operation will be executed provided the strings,
or substrings which begin at the first character
of the strings, have legal numeric values. Any
alphanumerics which follow the numeric substring
are ignored. If the substring is not a legal
number, an error message is output.

1_L-
'"

-

--- : "--:: Invalid String

"123"

"123.*'

"-123."

"-123.E5"
"-123.E-5FRED"

"FRED"
"12 3.E+FRED"
"-+123"

Notice that decimal points, signs, and exponen-
tial format are permitted in the substring so

long as they conform to the numeric representa-
tion described in Chapter 2.

The operators +, -, *, and / may be used to link
strings and create an expression to be evaluated
numerically. The concatenation character (,)

may not be used in a string arithmetic expression,

*LIST
0010 LET AS--1234 GEARS"
0020 LET B$»"5678 GEARS"
0030 PRINT AS+BS+"10"

•RUN
6922.

EMD AT 0030

Eighteen digits of precision are returned when
string arithmetic calculations are made. If any
precision is lost, an error message is output.

For example:

PRINT "123E27" + "5.793E-4"

This statement would cause an error message since

the decimal point location for the two strings
causes the number of significant digits to be

greater than 18.

5-12

CHAPTER b

fiATRIX

DIMENSIONING
MATRICES

Matrices can be dimensioned by an of three
methods:

1. Using a DIM statement to declare the
number of rows and columns in the matrix.
2. Including the matrix dimensions in a

matrix statement,
3. Allowing a default size of 10 rows and
10 columns by not specifying dimensions in
a DIM or matrix statement.

It should be noted that matrices do not have row
or column 0, and as In all BASIC arrays, matrix

elements are stored by row in ascending locations
in memory.

A number of matrix statements allow dimensioning
and redimensioning so long as the new dimensions
do not exceed the size of the matrix declared In

a DIM or Initialization statement. For example:

*20 DIM A(
*40 MAT A=
*60 .MAI A= ,10)

«-210 elements in matrix A
*-140 elements
«-100 elements

Statements 40 and 60, above, redimension matrix
A as well as perform matrix operations described
later in this chapter. The user's attention is

also directed to matrix file statements in

Chapter 1 , File Input and Output.

6-1

.MATRIX

MANIPULATION
STATEMENTS

The following statements are used to copy or

initialize a matrix.

Matrix Assignment

s

c

F

J

J

MAT mvarl = mvarl

mvar: matrix variable name.

Purpose: To copy the elements of matrix mvar2 into
matrix mvarl.

Remarks: This is the matrix assignment statement. Matrix
mvarl will assume the identical dimensions and

values of matrix mvar

2

.

Example
LIST
0010 DIM AC2*23
0020 LET AC 1* M-5
0030 LET AC 1*23=10
0035 MAT PRINT A
0040 MAT B«A
0050 MAT PRINT B

RUN

5

5

END AT 0050

10

10

^-Matrix A

^-Matrix B

Line 40 will assign matrix B the same dimensions

as matrix A and will also assign any element val-

ues in matrix A to the corresponding elements in
matrix B. Therefore, B(l,l) = 5 and B(l,2) = 10

6-2

Zero Matrix
(ZER)

MAT rrjar = ZE-. ['-- .', --
'

j

mvar: matrix variable name.
row: number of rows in matrix,
col: number of columns in

matrix.

Purpose: To set the value of each element in a matrix
to zero. *

Remarks: The form MAT mvar = ZER is used for previous-
ly dimensioned matrices.
The form MAT mvar = ZER {row3 col) is used if
the matrix was not previously dimensioned or
if the matrix is to be redimensioned.
The matrix elements are set to zero regard-
less of any previously assigned values.

Example: *LI57
0005 TAB *5
0010 DIM AC 3*43
0020 LET AC!*23*6
0030 LET At3,43»I0
0040 MAT PRINT A
0050 MAT A-ZERC3,33
0060 MAT PRINT A

*RUN

6

10

i
e ^Matrix A after

line 50.

END AT 0060
*

6-3

Zero Matrix
(ZER)

Example: In line 50, matrix A is redimensioned and all

(Continued) elements are assigned a value of zero.

6-4

Unit Matrix
(CON)

S
F

.

mat mvar = co:; ['•••
*_, .• -

' •"!

mvar: matrix variable name.
row: number of rows in matrix.
go I: number of columns in

matrix.

Purpose: To set the value of each element in a matrix
to one

.

Remarks: 1. The form MAT mvar = CON is used for previ-
ously dimensioned matrices.

2. The form mat mvar = CON (roWjOol) is used if
the matrix was not previously dimensioned or
if the matrix is to be redimensioned.

3. The matrix elements are set to ones regard-
less of any previously assigned values.

Example; LIST
0005 TAB «5
0010 DIM At2,53
0020 READ At 1, 13,AC1,23,AU,53
0030 DATA 8,9, 10,11, 12
0040 HAT PRINT A
0050 MAT A»C0NC2,41
0060 MAT PRINT A

RUN

8 9 10

1

I

I

1

1

1

1

1

^Matrix A after
line 50.

END AT 006C1

In line 50, matrix A is redimensioned and all el-

ements of the matrix are assigned a value of one

6-5

Identity Matrix
(IDN)

MAT mvar = IDN [(row3 <

"";]

£ I. —

mvar: matrix variable name,

rog number of rows in matrix,

col: number of columns in

matrix.

Purpose: To set the elements of the major diagonal of

the matrix to ones and the remaining elements

of the matrix to zeros.

Remarks: 1. The major diagonal is defined as the diago-
nal that starts at the last element of the

array and runs diagonally upward until the

first row or first column is encountered.
2. The form MAT mvar = IDN is used for previ-

ously dimensioned matrices.
3. The form MAT mvar = IDN {row3 col) is used if

the matrix was not previously dimensioned or

if the matrix is to be redimensioned.

Examples: 1- *LIST
0025 TAB =5
0050 DIM AC4#41
0100 MAT A* IDN
0150 MAT PRINT A

RUN

1

1

1

1

END AT 0150

6-6

Identity Matrix
(IDN)

Examples:
(Continued)

2. LIST
0005 TAB »5
0010 DIM
00 J 5 MAT
0020 MAT
0025 MAT

BC4* 31
PRINT B
B«IDNC2,31
PRINT B

RUN

^Matrix B after
line 20.

END AT 0025

6-7

MATRIX I/O
STATEMENTS

In addition to the matrix READ, INPUT and PRINT
statements described in this section, there are

several matrix file input/output statements which
are described in Chapter 7.

MAT READ mat read nvar { (ro w, ooV)] l 3 morl{r,ow3 col)]] . .

s

rruccr: matrix variable name.

tow: number of rows in matrix,

col: number of columns in

matrix.

Purpose: To read values from the data list and assign them
to the elements of the matrix or matrices listed

In the MAT READ statement.

Remarks: If a matrix was not previously dimensioned, it

may be dimensioned in the MAT READ statement.

Example: *L1ST
0005 TAB »6
0010 MAT REAP M£5#63
§020 DATA 0,2,4#6#8* 10,-9, -8#-7,-6*-5
0030 DATA -4#-3#-2,-l,0# 1,3*5* 7*9, II
§§40 DATA . l*0#.5#7*-8#25#-15*35#41*13* 18
§§S§ MAT PEiMT H

RUN

2 4 6 8 10
-9 _g -7 -6 *5 -4
-3 -2 .$ 3 i 3
5 ? § ii .1 i
• 5 ? -s 15 *1S 38

mm at ms$
*

Values from the data list are read into the

30-element matrix dimensioned as 5 x 6 in the

MAT READ statement,

6-8

MAT INPUT mat input mar [{row, col)} [3 mar [(row3 oc t }]]...[;]

|y

invar: matrix "variable name.
row: number of rows in matrix,
cot: number of columns in

matrix.

Purpose: To read values from the keyboard and assign the
values to elements of a matrix or list of mat-
rices when the program is run.

Remarks; A matrix not previously dimensioned may be
dimensioned in the MAT INPUT statement.

Data values, separated by either a comma or a

carriage return, are entered for each element
of the matrix. The list is terminated by a
carriage return.

If the user does not supply enough data to fill
the matrix before typing the carriage return, the
program will continue to request data until each
element of the matrix has been filled.

The data list may be terminated by a semi-colon,
which leaves the cursor following the last input
data item.

Example: LIST
0005 TAB = 10
0010 MAT INPUT XC2, 33
0015 PRINT
0020 MAT PRINT X

RUN
? 2,4#6? 77#7#9

2 4 6
77 7 9

END AT 0020
*

6-9

MAI PRINT MAT PRINT mi [;]

•ix variable name

Purpose: To output the values of the elements of a matrix
or list of matrices to the user's terminal.

Remarks

:

A matrix must be dimensioned by a DIM or other
matrix statement before its use in the MAT PRINT
statement.

If a semi-colon is used after a matrix variable
in a MAI PRINT statement rather than a comma or
carriage return it Indicates that the matrix
which immediately precedes the semi-colon is

printed in compact format rather than zone format.

Example: *LI5T
80§S TAB =10
0010 DIM AC 10* 10]
0020 HEAD N
em§ MAT A»C0NCN#NJ
§050 FOR 1=1 TO N
8060 FOR J«l TO N
007 0' LET ACX#J3*l/<H-J-l>
808 NEXT J
0§90 NEXT 1

0130 MAT PRINT A
0190 DATA 4

i

.5

.333333

.25

.5

.333333
• 25
.2

•333333
.25
.2
. 166687

.25

.2
» 166667
. 142857

END AT 8190

6-10

MATRIX CALCULATION
STATEMENTS

Addition and

Subtraction
{-}

MAT mvarl = mvar>2 {^_\ rmvarl

mvar: matrix variable name.

Purpose: To perform the scalar addition or subtraction
of two matrices.

Remarks

;

1. Matrices mvar2 and mvar3 must have the same
dimensions.

2. Matrix mvarl may appear on both sides of the
equal sign.

3. Arithmetic is performed on an element-by-
element basis of moor 2 and mvar 3 with the
result assigned to the element of mvarl.

Example: (Continued on next page)

6-11

Addition and
Subtraction

Example;
(Continued)

LIST
0005 TAB
0010
00*0
0050
0060
0878
0080
8090

DIM
MAT
MAT
DATA
MAT
HAT
MAT

• 10
At3,21,BC3,23,CC3,25
HEAD B,C
A*B+C
-2,-5* 3,4, .5, . 1, 6,4, -2# S5# S*S«4

PRINT
PRINT
PRINT

B
C

A

*FUN

-2 •5
3 4
.5 • 1

6 4
-2 15
1.5 4

4 -1

! 19

2 4.1

END AT 0890
*

6-12

Multiplication MAT mvarl = j-f
1^2"2 V * mvar3

\ (expr)j

s

,.£,

/

/

expr: any numeric expression
enclosed in parentheses.

moav: matrix variable names.

Purpose: To perform multiplication of a matrix by a

numeric expression or another matrix.

Remarks: 1. Matrix mvarl and mvar3 may represent the
same matrix.

2. If two matrices {mvarl and iwar3) are multi-
plied, the number of columns of moav 2 must
equal the number of rows of mvar3 . The
resultant matrix (mvarl) will have the same
number of columns as mi)ar3.

3. If a matrix is multiplied by a numeric
expression, a scalar multiplication is per-
formed on each element of the matrix.

4. To obtain the product of two matrices (mvar2
* rm)ar3) , each row of rrroarl is multiplied by
each column of moor 3. Each row/column set
is added together to provide the resultant
value of the matrix element in mvarl.

Examples: (Continued on next page)

6-13

Multiplication

Examples:

(Continued]

LIST
0001 RE* - SCALAR MATH1X MULTIPLICATION
MBS ~A9 * 12

mi§ SI y &C2*2~*3Z*,21
§f2€ HA? -=E4r B
0030 MAT A=C5)*B
§040 DATA -»5«*3j 1«5*-1
0050 MAT PRINT B
0060 MAT PHI NT A

RUN

-.5 .8
1.5 -1

-2 #5 4
7«5 -5

END AT 0060
*

*L1ST
0001 REM - PRODUCT OF TVO MATRICES
0005 TAB = 10

0010 DIM AC 3* 21 #BC3 #21 ^CC2#21
0020 MAT READ B#C
0030 MAT PRINT B
0040 MAT PRINT C
0050 MAT A^B*C
0068 MAT PRINT A
0070 DATA 2#3j> i# 5# 0*4* - 1# -2# 7#8

RUN

2 3

1 5
4

-1 -2
7 8

19 20
34 38
28 32

END AT 0070

6-14

Multiplication

Examples: Matrix A is calculated as follows:
(Continued)

[B(1,1)*C(1,1)+B(1,2)*C(2,1)] [B(1,1)*C(1,2)+B(1,2)*C(2,2)3

[B(2,1)*C(1,1)+B(2,2)*C<2,1)] [B(2, 1) *C (1, 2)+B (2,2) *C(2, 2)

]

[B(3,1)*C(1,1)+B(3,2)*C(2,1)] [B(3, 1) *C(1, 2) +B(3, 2) *C(2,2)

]

[2*(-l)+3*7] [2*(-2)+3*8] 19 20

= [l*(-l)+5*7] [l*(-2)+5*8] = 34 38

[0*(-l)+4*7] [0*(-2)+4*8] 28 32

6-15

Inverse Matrix
(INV)

MAT mvarl = INV {mvarl)

,

z V

F 1

mvar: matrix variable name,

Purpose: To provide a matrix inversion of mvar2 and assign
the resultant matrix element value to mvarl.

Remarks: 1. An inverse matrix is defined such that the

product of a matrix and the inverse of the

matrix is the identity matrix.
2. Matrix mvar2 must be a square matrix (at

least 2x2).
3. Matrices may be inverted into themselves

(i.e., mvarl = mvar2 in the matrix INV

statement)

.

4. The arithmetic of matrix inversion requires
a knowledge of matrix determinants and of

matrix cofactors. Determinants and cofac-

tors for 2x2 matrices will be described
here. For larger matrices, consult a math-
ematics text.

Matrix Determinants

Typically, the determinant of a 2 x 2 matrix can
be obtained by multiplying along the diagonals
and subtracting the second diagonal from the
major diagonal.

1 2

3 4

1 5

3 20

= (1*4) - (2*3) -2

(1*20) - (5*3) = 5

6-16

Inverse Matrix
(INV)

Remarks :

(Continued)

Matrix Cofactors

Cofactors of matrix elements for a 2 x 2 matrix
are obtained by;

1. Reversing the elements along the major
diagonal

.

2. Changing the signs of the elements along
the other diagonal.

1 2

3 4

4 -2

-3 1

= matrix A

cofactors of matrix A

Example

Calculation of an Inverse Matrix

To obtain an inverse matrix, scalar multiply the
cofactors of the matrix by the fraction (i/matrix
determinant)

.

*LIST
0005 TAB a j

0010 DIM AC2,23
0015 MAT READ A
0020 DATA 1,2,3,4
0030 MAT A»INVCA)
0040 MAT PRINT A

RUN

-2

1.5
1

-.5

END AT 0040

6-17

Inverse Matrix
(INV)

Example:

(Continued)
This example may be analyzed as follows:

1 2

3 4
= matrix A

then:

4 -2

-3 1

1 2

3 4

= cofactors of matrix A

(1*4) - (2*3) = -2 = determinant

of matrix A

INV (A) = (1/-2) (4 1)

-2

1.5

6-18

Matrix Determinant
(DET)

Purpose:

var = DET (X)

van numeric variable
X: dummy argument.

To obtain the determinant of the last matrix
inverted by an INV statement.

Remarks: The value of the determinant calculated for
the matrix is assigned to numeric variable var,

Example:

LIST
0010 TAB »10
0020 DIM AC 2, 23
0030 MAT READ A
0040 DATA 1,2*3,4
0050 HAT PRINT A
0080 MAT A»INV(A)
0090 MAT PRINT A
0100 LET B*DET<X>
0220 PRINT
0130 PRINT "DETERMINANT

RUN

1 2
3 4

-2
1

1.5 -.5

'IB

DETERM INANT=*-2

END AT 0130
*

6-19

Matrix Transposition
(TRN)

MAT mvarl = TRN (mar2)

rwar: matrix variable name.

;' '

C ^

F

Purpose: To transpose matrix mvarl and assign the result-

ant element values to mvarl.

Remarks: 1.

2.

3.

A matrix is transposed by reversing the row

and column assignments of the matrix ele-

ments.
A matrix cannot be transposed into itself.

The resultant matrix, mvarl, is redimensioned

to the reversed row and column dimensions.

Example: (Continued on next page)

6-20

Matrix Transposition
(TRN)

Example

;

(Continued)

*L1ST
0010 TAB » 10
0020 DIM Bt3,43
0030 MAT HEAD B
0040 DATA 4,5,7,9,0,0,0,0, 1,3,5,7
0050 MAT PRINT B
0060 PRINT
0070 PRINT
0080 MAT A*TRNCB)
0090 MAT PRINT A

RUN

4 5 7 9

1 3 5 7

4
5

7

9

1

3

5
7

END AT 009

Notice that B(l,2) is equal to A(2,i;

6-21

FILE CONCEPTS

CHAPTER 7

FILE INPUT AMD OUTPUT

Definition of a File The user files referred to in this manual are
those which have been created on an RDOS system.
A user "filename" is specifically defined as
follows:

[primary part.:] [secondary part.:] [sub-dir. :]f ile name [.ex]

For example:

DPI: MYDIR: FILE1.LS
< 4

extension
file name

secondary partition
primary partition

Briefly, a file is a collection of information
that is known by, and accessible by, a "filename'
which may be a reserved device (e.g., $CDR) or a
file stored on disk.

In BASIC, a random access file is one in which
individual records in the file can be accessed
for reading, or writing. A BASIC random access
file should not be confused with a randomly
organized RDOS file. BASIC random access files
may be RDOS random, sequential or contiguous
files.

File Name and
Extension

"Filenames" may be written as string literals or
as string variables in BASIC.

7-1

File Name and

Extension
(Continued) The name of the file in the "filename" must con-

form to RDGS requirements for extended file

names. Therefore, a file name may consist of as

many as ten characters (26 alphabetic, 10 numeric,

and the dollar sign ($) character) plus an option-

al two character alphanumeric extension, separated

from this file name by a period (.)•

For example:

TEST.SR

TEST. CI

TEST.LS

is a meaningful way to signify a

source file.

could signify the core image file

obtained by SAVEing TEST.SR.

could be a listing file output

from the program.

Unlike RDOS utility programs such as MAC and

RLDR, BASIC does not recognize any special

extensions such .SR, .SV, .LS, etc. Extensions

may be constructed to suit the programmer's needs

Reserved File
Names

Unit record devices and magnetic tape devices are

given special names and do not have extensions.

Devices with reserved names are listed below:

$CDR and $CDRl
CTn
$LPT and $LPT1

MTn
$PLT and $PLT1

$PTP and $PTP1

$PTR and $PTR1

Punched card readers

Cassette units (0<n.<17)

Line printers
Magnetic tape units (0<n<17)

Incremental plotters (access

via assembly language subrou-

tines)

Paper tape punches
Paper tape readers

File Attributes A number of file attributes may be specified which

permit such features as file sharing, read and

write protection, etc. The file attributes are

changed, added or removed by use of the CHATR com-

mand described in Chapter 8.

7-2

FILE STATEMENTS

OPEN FILE OPEN FILE (fi le3 mode

)

3 fi l&
"I j record size)

v

filename:

record size,

file

file: a numeric expression which
evaluates to a file number
in the range to 7. The
file number is associated
with filename and is used
for further references in

other file I/O statements.
mode: a numeric expression which

evaluates to a number in
the range to 6 and is

used to specify the manner
in which a file is to be
accessed. The modes are
described under Remarks,
a string literal or string
variable constructed in a

manner previously described
in this chapter which eval-
uates to the name of a file,
an optional numeric expres-
sion which evaluates to the
fixed length (in bytes) of
each record in a random or
contiguously organized file
and is applicable to modes

and 4 through 6 only.
Record size may be any val-
ue from 1 to 32768 and if
not specified, a default
value of 128 bytes per re-
cord is assigned,

size: an optional numeric expres-
sion which evaluates to the
number of records when cre-
ating a contiguously organ-
ized file and thereby es-
tablishes a limit for its
size

.

7-3

OPEN FILE
{Continued;

Purpose; To link a filename or system device with a file

number for further referencing in file I/O state-

ments.

Remarks

:

For maximum efficiency it is recommended

that fixed length record modes of operation

be used whenever possible (modes and 4

through 6) . Record lengths should be speci-

fied as closely as possible to the length of

data actually written or read from the file.

Record length may be calculated as follows:

•Numeric Data
Single Precision - 4 bytes per data item
Double Precision - 8 bytes per data item

•String Data
one byte per character in string +1

(for null character)

^Arrays
(No. of rows) * (No. of columns) *

(precision (4 or 8))

2. Modes to 6 are described as follows:

Mode - Random access file (for input and/

or output) . Only disk files may be opened

in random mode for reading and writing.

Record length is fixed by record size or by
the default value. if no disk file having

the filename specified in the OPEN FILE

statement is found in the user's directory,

a new disk file is created and an entry is

made for filename in the directory.

Mode 1 - Output (write to a new file)

.

Either a disk file or an appropriate output
device can be opened in this mode. Records

may be variable in length. Only writes are
permitted to the file. If a file of this

name already exists in the user's directory,

7-4

OPEN FILE

Remarks:

(Continued)

the previous copy is first deleted from the
disk. In either case, a new file is created
(initialized with length),

Mode 2 - Output (append to an existing file)
Any appropriate file may be opened in append
mode. When opened, the file pointer is po-
sitioned to the end of the file so that sub-
sequent data written to the file will extend
it. If the file does not exist in the user's
directory, an entry for the file name will
be made in the directory and a new file is
created. Records may be variable in length.

Mode 3 - Input (for reading only)
Either a disk file or appropriate input
device can be opened in this mode. If a
disk file is opened in this mode, the file
must already exist. Only reads are permitted
for a file opened in Mode 3. If the file is
not found in the user's directory, a search
for the file is made in the public directory.
Records may be variable in length.

Modes 4,5,6 - Correspond to Modes 1, 2 and 3,
respectively, in function but contain fixed
length records rather than variable length
records. Modes 4, 5 and 6 always read/write
a fixed number of bytes equivalent -to the
record size specified in the most recent
OPEN statement for the file. When the
read/write is complete, the file pointer
will automatically be moved ahead to the
beginning of the next record if the number
of bytes read/written is less than the
record size.

Files that are created using Modes 0, 4, 5

and 8 may later be read/written. For exam-
ple a file created in Mode 4 may be later
opened in Mode 0, 5 or 6.

7-5

OPEN FILE

Remarks

:

(Continued)
3. The following table summarizes the various

combinations of arguments to the OPEN FILE

statement and shows the resultant files

created. Existing RDOS files may be OPENed

in any BASIC mode.

IF | THEN

BASIC
FILE
TYPE

BASIC
MODE

FILE
EXIST?

FILE-
|

SIZE
SPECI-

DELETE
OLD
FILE

CREATE
SEQ.
FILE

CREATE
RAND.
FILE

CREATE
CONT.
FILE

FIED?

BASIC YES YES NO NO NO NO

RANDOMLY
ACCESSED YES NO NO NO NO NO

FILE
{ INPUT/ NO YES NO NO NO YES

OUTPUT)
NO NO NO NO YES NO

BASIC 1, 4 YES YES YES NO NO YES

SEQUEN-
TIALLY 1, 4 YES NO YES YES NO NO

ACCESSED
FILE 1, 4 NO YES NO NO NO YES

(OUTPUT)

1, 4 NO NO NO YES NO NO

BASIC 2, 5 YES YES NO NO NO NO

SEQUEN-
TIALLY 2, 5 YES NO NO NO NO NO

ACCESSED
FILE 2, 5 NO YES NO NO NO YES

(APPEND)

2, 5 NO NO NO YES NO NO

BASIC 3, 6 YES YES NO NO NO NO

SEQUEN-
TIALLY 3, 6 YES NO NO NO NO NO

ACCESSED
FILE 3, 6 NO YES ERROR ERROR ERROR ERROR

(INPUT)

3, 6 NO NO ERROR ERROR ERROR ERROR
J

NOTE: CREATE 1

S above refer to

RDOS organization types.

7-6

OPEN FILE

Examples: *100 OPEN FILE (1, 4)
, "NETSAK. JR" , 256,128

(Continued)

This statement opens file 1, named NETSAK, JR, as
a contiguously organized output file with a
record size of 258 bytes per record and a file
size of 128 records,

* 100 OPEN FILE (2,0), ,,RESSEHC.TO", 20

This statement opens the file named RESSEHC.TO as
file number 2 for random access of its records
which are 20 bytes long.

7-7

CLOSE FILE close [file {file)]

ft le

:

a numeric expression which
evaluates to a file number
previously associated with

a filename in an OPEN FILE

statement.

Purpose: To disassociate a filename and a file number so

that the file can no longer be referenced.

Remarks: 1.

2.

The CLOSE FILE statement may be used to

close a file so that it may be reopened by

an OPEN FILE with a new mode argument.

The CLOSE form of the statement closes all

open files.

Examples: *100 CLOSE FILE (1)

*200 CLOSE FILE (X+3)

*300 CLOSE

7-8

WRITE FILE WRITE FILE
file
file, record

F

• expr

\
var
)svar

"string lit")

expr
var
s var
"string lit"}

file: a numeric expression which
evaluates to the number of
a file opened in Mode for
random access, or Mode 1,

2, 4 or 5 for sequential
access

.

record: a numeric expression which
evaluates to the number of
a record in a file opened
for random access (Mode 0)

.

expr3 var j, svar3 and string lit:

a list of one or more nu-
meric expressions, numeric
variables, string variables,
and literals whose values
are written into a sequen-
tial access file or a record
in a random access file.

Purpose To write data in binary format into a sequential
access file or a record in a random access file.

Remarks The number of the first record in a random
access file is zero (0)

.

Example: (Continued on next page)

7-9

WRITE FILE

Example:
(Continued) LISTi

mm REM-FILE WRITE
§005 TAB *10
§010 DIM AC3#43
0020 FOR !! TO 3

0030 FOR J-l TO 4
0040 LET ACI#J3«CCI-1>*44-J>*3
0050 NEXT J
0060 NEXT I

0070 MAT PRINT A
0080 PRINT
0090 OPEN FILECU03#»TESTFILE"#20
0100 FOR 1 1-1 TO 3
0110 LET 1*4-11
0120 FOR Jl«l TO 4
0130 LET J*5-J1
0140 LET R«(3-I>*4+C5-J>
0150 WRITE FILEE1#R3,ACI,J3
0160 PRINT ACI*J3#
0170 NEXT Jl
0180 PRINT
0190 NEXT I 1

0200 CLOSE

RUN

3 6 9 12

15 18 21 24
27 30 33 36

36 33 30 27
24 21 18 15
12 9 6 3

END AT 0200
*

7-10

READ FILE READ FILE U

ia-JL

.reoc

file:

record:

var and svar:

a numeric expression which
evaluates to the number of
a file opened In Mode for
random access, or Mode 3 or
6 for sequential access,
a numeric expression which
evaluates to the number of
a record in a file opened
for random access (Mode 0)

.

a list of one or more numer-
ic variables and string var-
iables which are assigned
values read sequentially
from a randomly accessed
record (Mode 0) or sequen-
tially from a file (Mode
3 or 6)

.

Purpose

:

To read data in binary format from a sequentially
accessed file or from the records of a randomly
accessed file,

Remarks Each numeric variable or string variable in
the READ FILE variable list must correspond
In data type to the corresponding data item
being read from the file or record within
the file.

The number of the first record in a random
access file is zero (0)

.

In random access files, records which have
not been written into will contain all zeros
when read.

The EOF function may be used to detect an
end-of-file on the file which is being read.

Example (Continued on next page)

7-11

READ FILE

Example

:

(Continued)
LIST
0001 REM -READ FILE
0005 TAB »10
8010 DIM BC3#41
0020 OPEN FILEC 1 # 01,"TESTFIL£*,#20
0030 FOE 1*1 TO 12

§040 LET II-INT<(I-I)/4>*1
mm let ji»i-c4*cu-i>>
0060 READ FILEC 1*I3*BCX l#J13
0070 NEXT I

§080 MAT PRINT B
0090 CLOSE

RUN

36
24
12

33
2!
9

30
18
6

27
15
3

WD AT 0090
*

Note ; This program uses the file TESTFILE which

is created in the program example provided with

the WRITE FILE statement.

7-12

PRINT FILE PRINT FILE
expr

(file))var

wv-ar

"string lit"

I

ft le

:

ing tit")

a numeric expression which
evaluates to the number of
a file opened in Mode 1 or
2 for sequential output.

exprj var3 svar and string lit:
a list of one or more numer-
ic expressions, numeric var-
iables, string variables,
and string literals whose
values are written into a
sequential access file.

Purpose: To write data in ASCII into a sequential access
file.

Remarks: 1.

2.

This statement is intended for outputting to
an ASCII device such as a line printer, or
to a disk file for later off-line printing.
Each item in the expression list must be
separated from the next by a comma, semi-
colon, or carriage return. Output formatting
is identical to that discussed in Remarks
for the PRINT statement.

Example

:

* 10 OPEN FILE (3,1)," $LPT"
*100 PRINT FILE (3)

,

nOUT6"
*200 PRINT FILE (3) , "X=

M ;X, "XSQFf"; X+2, "XCUBE" ;X+3

7-13

jvar) f" (var)

input file (file) \svarf L \svarfINPUT FILE

F 1

file: a numeric expression which

evaluates to the number of

a file opened in Mode 3 for

sequential access.

var and svar: a list of one or more nu-

meric variables and string

variables whose values are

read from a sequential

access file.

Purpose : To read data in ASCII from a sequential access

file.

Remarks: 1- Each numeric variable or string variable in

the INPUT FILE variable list must correspond

in data type to the corresponding data item

being read from the file.

2. The data file must be formatted such that

commas or carriage returns are used to sep-

arate data items

.

Example: *40 OPEN FILE (1,3), "$PTR"

*70 INPUT FILE (1), Z,Y X,A$,B$

7-14

MAT WRITE FILE MAI WRITE FILE
(' tl

s
1

/

f^Le •* a numeric expression which
evaluates to the number of
a file opened in Mode for
random access, or Mode 1,

2, 4 or 5 for sequential
access

.

reaord: a numeric expression which
evaluates to the number of
a record In a file opened
for random access (Mode 0)

,

moar: a list of one or more mat-'
rices whose values are
written into a record (Mode
0) or a file (Mode 1, 2, 4

or 5) .

Purpose To write matrix data in binary format into a
sequential access file or a record in a random
access file.

Remarks

2.

3.

Matrix arrays listed in the MAT WRITE FILE
statement must be previously dimensioned.
The number of the first record in a random
access file is zero (0)

.

Matrices written in Modes 4 and 5 must fit
into a record whose length is specified in
the OPEN statement for the corresponding
file.

Example *50 OPEN FILE (0,1), "AAA"
*80 MAT WRITE FILE (0),B,C,X

7-15

MAT READ FILE MAT READ FILE

T'

file \\ r
1

fi le 3 reeorcu 3 nyjar 3 mvarj , , ,

file; a numeric expression which
evaluates to the number of

a file opened in Mode for

random access, or Mode 3 or

6 for sequential access

.

record: a numeric expression which

evaluates to the number of

a record in a file opened

for random access (Mode 0)

.

rnvar: a list of one or more mat-

rices which are assigned
values read sequentially

from a randomly accessed

record (Mode 0) or sequen-

tially from a file (Mode 3

or 6) .

Purpose: To read data in binary format, for the elements

of matrix arrays, from a sequentially accessed

file or from the records of a randomly accessed

file created by MAT WRITE FILE statements.

Remarks: 1- Previously dimensioned matrix arrays may be

listed in the statement by name only. Mat-

rix arrays which have not been dimensioned

must be dimensioned in the MAT READ FILE

statement.

2. In random access files, records which have

not been written into will contain all zeros

when read

.

3. Data items are read from the file, or record,

sequentially and are assigned to the array

elements by row.

4. The number of the first record in a random

access file is zero (0)

.

5. The EOF function may be used to detect an

end-of-file on the file which is being read.

6. The amount of data to be read must not ex-

ceed the record size specification for files

OPENed in Modes or 8.

7-16

MAT READ FILE
(Continued)

Examples: *10 DIM A (7, 3) , B(12,7)
*30 OPEN FILE (1, 3)

, "MATRIXA"
*40 MAT READ FILE (1), A,B,C (3, 4) , D(5)

7-17

MAT PRINT FILE MAT PRINT F

rxces i

writtei

access

^e values are

> a sequential

Purpose: To write matrix data in ASCII into a sequential

access file,

Remarks

:

1.

3.

This statement is in -

an ASCII device such
to a disk file for o:

The MAI INPUT FILE S'

iputting to
»nter f or
rag.

>t be used

to input data which was output by MAT PRINT

FILE because the MAT PRINT FILE statement

does not output delimiters between matrix

elements,
If a semi-colon is us- -er a matrix vari-

able in the MAT PRINT FILE statement rather

than a comma or carriage return it indicates

that the matrix which immediately precedes

the semi-colon is printed in compact format

rather than zone format.

Example: *5 DIM B{20,20)
*10 OPEN FILE {0

*20 MAT PRINT FI

7-18

MAT INPUT FILE MAT INPUT FILE (file) 3 rwor [3 twjcw] . . ,

file: a numeric expression which
evaluates to the number of
a file opened in Mode 3 for
sequential access.

mar: a list of one or matrix
arrays whose values are
read from a sequential ac-
cess file.

Purpose: To read matrix data in ASCII from a sequential
access file.

Remarks:

3.

Previously dimensioned matrix arrays may
be listed in the statement by name only.
Matrix arrays which have not been dimensioned
must be dimensioned in the MAT INPUT FILE
statement.
Data items are read from the file sequential-
ly and are assigned to the array elements by
row.

The EOF function may be used to detect an
end-of-file on the file which is being read.

Example: * 5 DIM Y(7,6) ,Z(13,2)
*10 OPEN FILE (2,3), "XX. AA"
*50 MAT INPUT FILE (2

)

,

X

(5 , 5) , Y,

Z

7-19

EOF (X) EOF (file)

file: a numeric expression which
evaluates to the number of

a file opened for reading
in Mode 0, 3 or 6,

Purpose: To detect the end of data when transferring data

from a file.

Remarks: 1. The EOF function returns an integer indicat-

ing whether or not the last READ from file

included an end-of-file delimiter.

2. If an end-of-file was detected, the function

returns a value of +1; otherwise the function

returns a 0.

3. When the EOF function is used in conjunction

with the IF-THEN statement, a conditional

transfer can be made if an end-of-file is

detected.

4. Random files (Mode 0) return an EOF if the
user attempts to read a record number
larger than the last written in the file.

The file must be closed and reopened to

continue.

Example: *100 OPEN FILE (1,3), "$PTR"

*110 READ FILE (1), A,B,C,D,E
*120 PRINT A,B,C,D,E
*130 IF EOF (1) GOTO 200

*140 GOTO 110
*200 CLOSE FILE (1)

7-20

INTRODUCTION

CHAPTER ?,

INTERACTIVE SYSTEM COMMANDS

The preceding chapters have described the state™
merits and functions used for writing programs in
the BASIC language. However, Extended BASIC may
also be used interactively to perform the follow-
ing functions:

* Maintain BASIC source programs
* Maintain disk directories
* Dynamically debug programs
* Perform desk calculator functions
* Communicate with the system operator and
other users.

The commands necessary to perform these functions
are described in this chapter.

8-1

PROGRAM
DEVELOPMENT
AND EXECUTION
COMMANDS

NEW NEW

!

Purpose' To delete the currently stored program statements
and variables, and to close any open files.

Remarks; 1. The programmer's storage area must be clear-
ed with a NEW command (or statement) before
entering a new program to- avoid lines from
previous programs being executed along with
the new program.

2. The NEW statement can be the last executable
statement within a program thereby clearing
the program from memory after program exec-
ution is completed,

3. When used with the ON ESC or ON ERR state-
ments, the NEW statement can be used to pre-
vent unauthorized access to a program.

Example: *L1ST
0100 READ A#B#C# D
0110 LET E»A#23
8115 LET P=»C*A
0120 PHI MI EfP
§130 NEV
0135 DATH 1,2>3* 4

RUN
23 3

LIST ,

ERROR 13 - LIME N
*

5-2

ERASE erase line nl, line nl

line nl and line n2: line numbers in a program.

W-

Purpose: To remove statements from a program.

Remarks: l. This command may be used to remove line nl
through line nl , inclusively, in the user's
program. This command simplifies the edito-
rial process of deleting only one line at a
time

.

2. Typically, this command might be used to
clear an area in a program to permit a sub-
sequent ENTER of a program whose lines are
in the same range as those deleted.

3. If no lines exist in the user's program in
the range line nl to line nl, then an error
message is output to the user's terminal.

Example: ERASE 1500, 1900 J ^Delete lines 1500 through
1900 inclusive.

i-3

LIST LIST
line nl

TO line n2

I i
T
°l f

J line nl\ , / ivne n 2 1

_

[fi lencme]

i_

line nl: first statement to be listed,

line n2: last statement to be listed.

filename: a device or disk file

expressed as a string

literal

.

Purpose: To output part or all of the current program in

ASCII to the device specified by filename or to

the terminal if filename is not specified.

Remarks: 1- The variations of the LIST command are

described as follows:

LIST)
- List the entire program

starting at the lowest

numbered statement.

LIST nl) - List only the single
~~

statement at line number
nl.

LIST TO n2 j - List from the lowest num-

bered line through line

number nl, inclusive.

LIST nl) , jn2j - List from line numbers nl

through line number n2

,

Inclusive.

2. When the filename argument is included, the

LIST command causes the specified lines to

be written to a file called filename, or to

the device called filename.

3. The file created by the LIST command can be

read back into the program storage area by
the ENTER command. If statements are listed

to a disk file, filename is entered in the

programmer's directory, replacing any pre-

vious file of the same name.

8-4

LIST

(Continued)

Examples: *LIST 700,9999)

*LIST "$LPT"J

*LIST 20 J

*L1ST "TEST.SR"

)

Line numbers 700 through
9999 are listed at the
terminal.
The entire program is out-
put to the line printer.
List line number 20 at the
terminal

.

The current program is out-
put to the programmer's
directory in ASCII with the
filename TEST.SR and re-
places any previous file
with that name

.

1-5

PUNCH PUNCH
line nl

TO line n2

_ line nl\,
J
Line

C v

F

line nl: first statement to be punched,

line n2: last statement to be punched.

Purpose: To output part or all of the current program in

ASCII to the terminal punch.

Remarks: 1- A leader of null characters precedes the

punched listing and a trailer of null char-

acters follows the listing.

2. The number of null characters punched as

leader and trailer is equivalent to the

number of characters defined as the page

width (see PAGE command) . This represents

13.2 inches of leader for a 132 character

line

.

3. The PUNCH command does not turn on the ter-

minal punch. The following procedure is

required:

a. Type the desired PUNCH command followed

by a carriage return and immediately

press the ON button on the terminal

punch

.

b. A null leader will be punched, followed

by a listing of the desired lines of the

current program, followed by a null

trailer.

c. When punching is completed, press the

OFF button on the punch.

4. The variations of the PUNCH command are

described as follows:

PUNCH j - Punch the entire program
starting at the lowest

numbered statement.

8-6

PUNCH

Remarks

:

(Continued)

PUNCH nl)

PUNCH TO H2)

(to)

PUNCH nl\ f]ra)

Punch only the single
statement at line number
nl.

Punch from the lowest
numbered line to line
number n2 , inclusive.

Punch from line number
nl through line number
n2 , inclusive.

Example: *PUNCH 200 TO 500) Punch line numbers 200
through 500 of the current
program.

8-7

save SAVE filename

L. — «

filename: The name of a disk file or

a device,

Purpose: To write the current program in binary format to

the device or disk file named by filename.

Remarks: 1. If filename is a disk file, then filename is

entered into the programmer's directory,

replacing any file of the same name.

2. A SAVEd program can be LOADed, CHAINed, or

RUN.

3. A SAVEd program which is LOADed can then be

LISTed in ASCII format.

4. SAVEing a program in binary format is more

efficient than LISTing in ASCII when storing

a program.
5. A SAVEd program may not run under all

configurations of BASIC. In particular,

if the precision of the floating point
representation in the RUN environment is

different from that of the SAVE environ-

ment, the program will not even be load-

able.

Example: *SAVE "FA.BC") \

* SAVE "$PTP"J > Commands
* SAVE S$ (1,7) J

)

*10 SAVE"OURSHIP" \

*20 SAVE B$ f Statements

load load filename

I -

filename: the name of a binary file
created by a previous SAVE
command.

Purpose: To load a previously SAVEd program in binary for-
mat into the program storage area.

Remarks: 1. The LOAD command executes an implicit NEW
command (clearing the storage area) and then
reads filename into core.

2. Filename may be on disk or may be on a
binary input device such as the paper tape
reader.

3. If filename is a disk file, a search is made
for filename in the programmer's directory
first. If not found, a search is made in
the library directory for filename.

4. When a filename is LOADed, it can be LISTed,
modified, or RUN.

Example: *LOAD "$PTR"J
*LOAD "MATH3"
*LOAD "MT0:1"

8-9

ENTER

w

ENTER filename

filename: a device or disk file,

Purpose: To merge the BASIC statement lines from the

device or disk file named by filename into the

programmer's current program storage area.

Remarks; When statement lines from an ENTERed filename

have the same statement numbers as lines in the

current program, the current program statement

lines are replaced.

Example; *NEW)

0*ENTER "TEST1.SR
*ENTER "TEST2.SR")

*LIST "FINAL. SR"J~

The programmer's storage area is cleared and

source programs TEST1.SR and TEST2.SR are merged

with the resultant program stored in the program-

mer's directory as FINAL. SR.

8-10

IIRUN RUN)
-4

line no,: the line in the current
>

j

'< program from which execu-

uliiJ tion is to begin,

LelLJ filename: the name of a disk file
or device.

Purpose : To execute a program either from the first line
number in the program or from a specified line
number in the program.

Remarks

:

The variations of the RUN command are described
as follows:

RUN J Clear all variables, undi-
mension all arrays and
strings, do a RESTORE, ini-
tialize the random number
generator,, and then run the
current program from the
first line number.

RUN n; All existing information
(variable values, dimension-
ing, etc.) resulting from
a previous execution of the
current program are retain-
ed and the current program
is run starting at the line
numbered n_. This form of
the RUN command allows re-
sumption of program execu-
tion retaining current val-
ues of all variables and
parameters. It may be used
after a STOP or after an
error and will incorporate
any alterations to the pro-
gram that may have been
made after the STOP or er-
ror occurred.

8-11

RUN

Remarks:

(Continued]
RUN "filename" If the file is on disk, the

system follows the search
procedure outlined in the
LOAD command . When f£ te

-

name is found, the command
executes a NEW, clearing
the current program area,
executes a LOAD, and then
executes the new current
program.

Examples; *run)
* RUN "$PTR'Q
*RUN 2 50 J
*RUN "MATH3")
*RUN "MT1:0")

J-12

RENUMBER RE

line nl: the initial line number for
the current program,

tine n2: the increment between line
numbers for the current
program.

Purpose: To renumber the statements in the current program,

Remarks: The variations of the RENUMBER command are
described as follows:

RENUMBER

RENUMBER nl>

RENUMBER STEP w2.

RENUMBER nl STEP n2

)

Renumber the current pro-
gram starting with default
line number 0010 with a de-
fault increment of 10 be-
tween line numbers.
Renumber the current program
starting with line number
mi and incrementing by nl
between line numbers.
Renumber the current pro-
gram starting with default
line number 0010 and incre-
menting by nl between line
numbers

.

Renumber the current program
starting with line number
nl and incrementing by u2
between line numbers.

Line numbers are limited to a four-dip.' ':,

number. If a RENUMBER command causes a
line number to be greater than 9999, the
command is re-executed as:

RENUMBER 1 STEP 1

1-13

RENUMBER

Remarks:
(Continued)

3. The RENUMBER command also modifies the line
numbers in IF-THEN, GOTO, and GOSUB state-
ments to agree with the new line numbers
assigned to the current program.

4. Line numbers which cannot be resolved are
changed to 0000 and an error message is

issued.

Example: •LIST
§005 TAB «5
0010 DIM AC3#41
§020 LET AC !#23**6
0030 LET AE3#43*!0
0040 MAT PRINT A
§§5§ MAT A«ZERC3#33
006 MAT PRINT A

EEtftfMBER 10 STEP 5

*UST
00 3 TAB *5
0015 DIM AC3#43
§02§ LET AC 1,23=6
0§2$ LET At3#43«10
0030 MAT PRINT A
§§35 MAT A=«ZERC3#33
0040 MAT PRINT A

J-14

CON CON

§0

Purpose To continue the execution of a program after a
STOP statement in the program has been executed,
the ESCape key has been pressed, or an error has
occurred.

Remarks' 1. The CON command is equivalent to a RUN line
no. command where line no, is equal to the
statement directly following the statement
at which the program stopped.
If a run-time error is encountered within
the program, the user may correct the error
and issue the CON command to begin execution
from the statement where the error occurred.

Example: (Continued on next page)

8-15

CON
(Continued)

Example: *LI 5^

m^5 PRINT -PRINCIPAL lMTCf> w i

302? PRINT •'TERMCYRS) TOTAL"
0030 READ P, 1#T
§§35 IF T«0 THEM GOTO 0080
8040 LET A*P*C!+X/100>fT
0058 PRINT P$ TAB<12)JIJ TAB<21>JTJ TABC32>JA
006i GOTO 0030
0070 DATA 1000* 5* 10*0*0,0
0080 PRINT
i09i PRIMT "CHANGE DATA AT LIME 70"

0100 STOP
0110 SOTO 0010

RUN
PRINCIPAL INTC%> TERMCYRS) TOTAL
1000 5 10 1628.9

CHANQE DATA AT LINE 70

STOP AT 0100
*70 DATA 2500*3* 10* 1450*6* 12,0,0,0
*CON
PRINCIPAL INTCX) TERMCYRS) TOTAL
2500 3 10 3359.79
1450 6 12 2917.7

CKAffiE DATA AT LINE 70

STOP AT 0100

8-16

SIZE

Purpose: To pr int the number of bytes used by the program
and the total number of bytes that are still
available.

Example

:

SIZE J

USED: 9329 BYTES
LEFT: 8077 BYTES

Out of a total of 17,406 bytes of memory avail-
able for program and data storage, 9329 are oc-
cupied and 8077 remain.

8-17

BYE BYE

Purpose: To sign-off the system and make the terminal

available to others.

Remarks : 1.

2.

3.

4.

BYE may be used as a keyboard command or as

a program statement to automatically log the

user off the system.

A display of accounting information precedes

the sign-off.
Telephone connections are severed.

The ESC key will not be recognized once the

BYE command is begun.

Example' *BYE
01/02/74 10106 SIGN OFF/
01/02/74 10106 CPU USED,
01/02/74 10106 I/O USED,

04 (terminal no.)

206 (time in seconds)

11 (number of I/O's made)

DGC READY

8-18

PAGE PAGE=eapr

E

expr: an arithmetic expression
in the range

:

1 < n < 132.

Purpose: To set the right margin of the terminal.

Remarks : A default value of 72 is used as the maximum
line width.

Example: LIST
0010 PAGE *30
0020 FOR I«! TO 25
0030 PRINT II
0040 NEXT I

1 2 3 4 5 6 7 8 9
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25
EHD AT 0040
*

10

8-19

TAB TAB=expr

expr: an arithmetic expression
in the range:
1 1. n 1. Page width given
by PAGE command.

Purpose; To set the zone spacing between the data output
by PRINT statements.

Remarks

:

1. The default zone spacing is 14 columns.
This spacing allows five zones of output
data per 72 character teletypewriter line.

2. Since the maximum range of zone spacing
depends upon the PAGE command setting, it is

good practice to set the page width first
and then the zone spacing.

Example :

LIST
0010 PAGE « 50
0020 TAB -10
0030 FOR I»i TO
0040 PRINT I,
0050 NEXT I

25

RUN
I

d

16
21

2

7

12
17
22

3

8

13
18

23

4
9

14
19

24

5
10

15
20
25

END AT 0050

8-20

msg [bus eriDtmessage]

i

o •/

userID: identification of receiving
user.

message: text of message.

Purpose: To transmit a message from the programmer's ter-
minal to any other programmer or to the operator.

Remarks: 1. The operators ID is:
i

OPER

2. If a receiving programmer has set the message
lockout command (NOMSG) or is not on line,

then the transmission will not be successful
and an error message will be printed at the

sender's terminal.
3. If the transmission is successful, then the

following is printed at the receiving program-

mer's terminal:

from senders ID: message

where senaersID is the identification
of the programmer that sent the message.

4. Message length is limited to one line.
5. Quotation marks are not necessary for message.
6. A blank Is necessary between MSG, userID

and message.
1. When used without operands, the MSG command

resets the action of a NOMSG command to
enable the reception of messages.

8-21

MSG
(Continued) (Continued)

Example: MSGAOPERAMOUNT MY CASSETTE-THANKS

)

At master console:

FROM JACK: MOUNT MY CASSETTE-THANKS

5-22

NOMSG NOMSG

Purpose To prevent reception of messages from other
programmers

.

Remarks: 1.

2.

3.

The system operator may override the NOMSG
command for important messages.
The user can cancel the NOMSG command by
using the MSG command with no operands.
NOMSG does not affect the programmer's
ability to transmit messages.

Example; *NOMSG)

* RUN "PROG.

3

")

END AT 300
*msg)

8-23

NOESC

s /

Purpose: To disable ESC key operation.

Remarks: 1. The NOESC statement, or command, can be used
to prevent the interruption of a program
which occurs when the ESC key is pressed.

2. If a programmer's log-on identification
includes a log-on program which is executed,

then a NOESC condition is invoked by default,

The programmer can circumvent the NOESC con-
dition by either including an ESC statement
as the last statement in the log-on program
or by typing an ESC command after log-on.

3. No action is taken if subsequent NOESC com-

mands or statements are encountered without
intervening ESC commands.

Examples: *NOESC/ -^-command

*10 NOESC ^-statement

8-24

EC

ESC

Purpose To re-enable ESC key operation.

Remarks; 1. The ESC key can be disabled by a NOESC or iiy

default at log-on if a log-on file is
executed.

2. No action is taken if subsequent ESC com-
mands or statements are encountered with-
out intervening NOESC commands.

3. See NOESC for additional remarks.

Example; fESC. ^-command

*10 ESC ^-statement

8-25

NOECHO NOECHO

s >

c /

F

Purpose: To inhibit the echoing of input at the programmer's

terminal.

Remarks: 1. NOECHO does not affect program execution or

printed output.

2. NOECHO can be useful when entering sensitive

data such as passwords.

3. NOECHO can be cancelled by ECHO.

4. No action is taken if subsequent NOECHO com-

mands or statements are encountered without

intervening ECHO commands.

Example: 'NOECHO) -^command

*10 NOECHO ^-statement

8-26

ECHO ECHO

Purpose: To re-enable echoing of input at the programmer's
terminal.

Remarks: 1.

2.

3.

ECHO cancels a NOECHO command or statement.
BASIC takes no action if subsequent ECHO
commands or statements are encountered with-
out intervening NOECHO commands.
See NOECHO for additional remarks.

Example; *ECHOJ

*10 ECHO

•^-command

^-statement

8-27

DISK DIRECTORY
MAINTENANCE
COMMANDS

FILES FILES

s

c /

F

Purpose: To print all file names in the programmer's
directory.

Remarks: One file name is printed per print zone.

Example; FILES
157. 134. G0SUB1.SR
STOP.SR 121. NEW.
ON.ES READ.SR 116.
TIME. F0R1.SR F0R2.SR
MORSE. 110. SR F0R4.SR
113. TAB.SR 132A.
COM. CM CON. 110.
TAB. SUBSTRINGS* CONCAT.
115. GOTO. 111A.
PAGE. HELLO. S^ PRINT1.SR
PRINT2. SR 109B. PRINT3.SR
PRINT4. SR 92. INPUT2.SR
107. 117. IF3.

8-28

LIBRARY

Purpose: To print all file names in the library directory

Remarks; One file name is printed per print zone.

Example:

*L1BRARY
AU
BACKGAMMON .SR
CASIMO.SR
COMPILER, SR
BANK.SR
KILLER. MS
SHOOPY.SR
TEST 1 •

BATNUM«SR
FISCAL. SR
Ff SCAL.BT

SHOT.SH
SUPERGOESS.5R
SVAP.SU
FCOM.CM
FOOTBALL. SR
K8.
8UESS»SR
HORSERACE, SR
HWMm.SU
HELLO. SR

SQR?*3R
STOCKS. SH
SNOOP*
BLACKJACK. SR
BILLBOARD. SI
MA*»SH
0UEEH.5B
LUNAR. SI
SHCTS,SR
HELLO. SV

8-29

WHATS

J-l

whats filename

fi lename

:

the name of a file in the

programmer's directory or

in the library directory.

Purpose

:

To print information pertaining to filename at

the terminal

.

Remarks

:

First filename is searched for in the programmer '

s

directory and, if not found, is then searched for

in the library directory.

Example: *WHATS "ABC'O

ABC D 2039 06/14/73 09:15 (07/21/73) 00

filename
attributes

byte length
date created

in use count
date last used

time created

8-30

DISK DISK

C v

Purpose: To obtain a count of the number of 256-word
blocks still available in the programmer's
directory.

Example

:

disk)

USED:

LEFT:
332

193

This message indicates that 193 out of 525
blocks are still available for use.

8-31

DELETE

pf ,

c •

F

delete filename

fi lencone

:

a file in the programmer's
directory which is not
protected (see CHATR)

.

Purpose ; To remove a file from the programmer's directory

Remarks : This command searches the programmer's
directory for the file named filename.
If found, all references to filename are

deleted.

An error message is returned if the file

cannot be found, is delete-protected, or

if any attempt is made to delete files

in other directories.

Example : DELETE "TEST.SR")

The file TEST.SR is removed from the directory
and the disk blocks which it formerly occupied
are free for use.

8-32

rename oldfilename, newfilename

oldfilename:

ne wfilename

:

a disk file in the program-
mer's directory,
a new filename.

Purpose: To search the programmer's directory for oldfile-
name and, if found, rename it to newfilename.

Remarks: An error message will be printed at the pro-
grammer's terminal if:

a. oldfilename does not exist.
b. newfilename already exists.
c. oldfilename is attribute protected.

Example: * RENAME "TEST.SR", "A.SR'O

File TEST.SR is renamed as A.SR for future
referencing.

8-33

Chatr CHATR filename 3 attributes

. •

c •

F —

_

filename: a disk file in the pro-
grammer's directory, ex-

pressed as a string literal

or string variable.

attributes: file attributes described
under remarks.

To change, add or remove the resolution file
Purpose:

attributes assigned to a file which already

exists in the programmer's directory.

Remarks: !• The CHATR command will not affect RDOS

attributes which are not implemented under

the BASIC CHATR command.

2. File attributes may be strung together in

the attributes argument without the use of

delimiting spaces or punctuation and may be

expressed as a string literal or string

variable.

3. The attributes listed in the BASIC CHATR

command replace existing attributes, unless

otherwise specified.

4. The attributes which may be used in the

BASIC CHATR command are:

p - Permanent file. The file filename

cannot be deleted or renamed once

this attribute has been assigned.

r - Read protected. The file filename

cannot be accessed for reading.

W - Write protected. The file filename

cannot be altered.

H - Sharable. The file filename may be

accessed by other users so long as

they know the directory and file

name. The file is permanent (P)

and write protected (W)

.

- Sharable. The file filename may be

accessed by other users so long as

they know the directory and file

name. The file is not permanent (P)

8-34

CHATR

Remarks:

(Continued)

E -

-

or write protected (w) and, there-
fore, may be deleted, written into,
or renamed by other users.
Execute only. Other users may
execute the BASIC program contained
in filename, but are prevented from
examining the program source state-
ments. Commands such as LIST or
SAVE result in an error message.
Zero. Removes current file attri-
butes except those which are set by
an RDOS CHATR command and are not
included as attributes under the
BASIC CHATR command. When is
listed with other attributes in a
CHATR command, only the attributes
listed are removed.
Asterisk. Preserve current file
attributes and add those specified.
The asterisk (*) may only be used
in conjunction with other attributes
in the argument.

Example

:

WHATS "TESTFILE"
TESTFILE. D
CHATR •*T£STFXLE*% WWPM
*VHATS "TESTFILE"
TESTFILE. VPD
*

260

260

8-35

COMMANDS
DERIVED FROM
BASIC
STATEMENTS

Any BASIC statement that can meaningfully be

written as a keyboard command can be used in

that mode. Certain statements have meaning only

within the context of a program and cannot be

used as keyboard commands. These commands are

CHAIN, DATA, DEF , END, FOR, GOSUB , GOTO, NEXT,

ON, REM, RETURN, and STOP. All other BASIC

statements are implemented as keyboard commands

which may be used to:

Perform file I/O

Perform desk calculation functions

Dynamically debug programs

Perform File I/O The opening and closing of files and the input/

output of programs and data from files and

devices can be handled by keyboard commands

derived from the file I/O statements described

in Chapter 7.

OPEN FILE (1,3) , "$PTR")

READ FILE (1) A, B, C, D, E, F, G (5))

Desk Calculator The PRINT command can be used to obtain immediate

results of arithmetic computations.

;EXP (SIN (3.4/8))

)

1.51032

LET A = EXP (SIN (3. 4/8))

; USING " +####. ##tW, A; +1510.32E-03

Notice that the resultant value is printed

on the same line.

Desk Calculator -

Using Program
Values

The programmer can interrupt a running program and

use the assigned values of program variables for

making calculations.

0010 DIM ft$ = (10), B$ (10)

0020 LET A$ = "IOU $10.50"

0030 B$ = "XRAY"

run)
(ESC)

;B$(4);A$(2,3)J YOU

Press ESC key

8-36

Dynamic
Program
Debugging

A running program can be interrupted {using ESC
or by programmed STOP statements) at a number of
different program points. The current values of
the variables can then be checked at those points
and corrections made in the program, either to
statements or variables, as necessary. The pro-
grammer can then use the RUN line no. command to
restart the interrupted program without losing
either the values of the variables at the point
of interruption or the newly inserted values and
statements.

(ESC)

STOP AT 1100
IF A< >B THEN PRINT B,a)
.025 .5

Press ESC key.

Command condition-
ally provides for
examination of A
and B.

2.33333
5.41234
8.99999

(ESC)

STOP AT 0570
READ XI, X2, X3 j

RUN 570;

(ESC)

STOP AT 1100
;a)

= -1)

% OF LOSS"
bU^J

results of a ser-
ies of program
calculations be-
ing printed.
Press ESC key.

Space over the
next 3 values in
the data block.
Resume program
execution at the
point it was
interrupted.
Press ESC key.

Check value of
variable A.

Change the value
of arithmetic var-
iable A and string
variable C$. Re-
sume running at
statement 505.

8-37

Dynamic
Program
Debugging

(Continued)

20 DIM A [4,4]

(ESC)
•*- Press ESC key,

STOP AT 500

DIM A [3,5] J •*- Redimension
array A.

8-38

CHAPTER 9

ADVANCED BASIC STATEMENTS AND COMMANDS

INTRODUCTION The items described in this chapter provide the
experienced programmer with the facility for:

• Error handling

• Formatted output

• Chaining

• Subroutine calls, and

• Timed input.

9-1

ON-ERR ON ERR THEN statement

_J-J—

.

statement: any BASIC statement except

FOR, NEXT, DEF, END, DATA

and REM.

Purpose: To direct the program to an error handling routine

other than normal BASIC system error handling.

Remarks: 1. This statement is placed in the program

prior to any statements with which the pro-

grammer's error handling routine deals. If

placed at the beginning of a program, state-

ment is executed for all program errors.

If placed anywhere else in the program,

statement Is only executed for errors which

occur after the ON ERR statement is encoun-

tered.

2

.

The ON ERR THEN STOP statement is used to

restore system error handling and can be

effectively used with ON ERR THEN statement

to provide special error handling for select-

ed portions of a program.

3. If statement Is a GOSUB, then when the

subroutine RETURNS, control is passed to

the statement following the statement on

which the error occurred. A RETRY state-

ment should not be used in the body of

the subroutine

.

Example: 10 ON ERR THEN GOTO 1000

20 OPEN FILE (0,0) f "X"

30 ON ERR THEN STOP

1000 OPEN FILE (0,0), "Y"

1010 GOTO 30

9-2

RETRY

Purpose: To repeat the statement which caused an error,

Remarks: This statement can be used in conjunction with
the ON ERR statement to cause program execution
to return to the statement which caused the error
and attempt to re-execute that statement.

Examples; * 5

*10
ON ERR THEN 100
OPEN FILE (0,2)

,

*1Q0 RETRY

"TESTING" <- If state-
ment 10 causes an

error then RETRY
directs the program
to repeat the state-

ment.

Note: In this example, if statement 10
causes an error then statements 5

and 100 would cause the program to
loop indefinately. The program
should, therefore, include some pro-
vision for exiting from RETRY such
as exiting after a certain number of
failures.

9-3

DELAY DELAY expr

irni

F

exor: a numeric expression which

evaluates to an integer and

represents time in seconds.

Purpose: To delay program execution for a specified amount

of time

.

Remarks: 1- The DELAY statement resets the SYS (14)

function to a value of zero.

2. When used in conjunction with RETRY, pro-

gram execution can be postponed on an error

condition before a RETRY is attempted.

Example; 5 ON ERR THEN 100

10 OPEN FILE (0,2), "THISFILE"

100 IF SYS (7)<>10 THEN 200

105 1=1+1
110 IF I

>

10 THEN GOTO 200

120 DELAY=1

125 RETRY

200 STOP

<- Is another user

using this file?

+ 10 RETRY attempts

allowed.
^ One second delay

before RETRY.
^-Returns to state-

ment which caused

error.

9-4

ON esc then statement

statement: any BASIC statement except
FOR, NEXT, DEF # END, DATA
and REM.

Purpose: To direct the program to a user handling routine
when the ESC key is pressed.

Remarks:

2.

3.

Normally, when the ESC key is pressed any
operation in progress is interrupted and the
terminal is ready for input. When ON ESC
THEN statement is executed pressing the ESC
key will cause the statement argument from
ON ESC THEN statement to be executed.
The normal handling of ESCape can be restored
by the ON ESC THEN STOP statement.
If statement is a GOSUB, then when the sub-
routine RETURNS, control is passed to the
statement following the statement on which
the error occurred. A RETRY should not be
used in the body of the subroutine.

Examples; (Continued on next page)

9-5

ON-ESC

Examples:

(Continued)

1. 100 ON ESC THEN PRINT X,Y,Z

140
141

PRINT X

Y=Z

In this example, when the user presses the

key during program execution, control passes

to the statement on line 100 and the values

of X, Y and Z are printed. After line 100

is executed, the program continues as if line

100 were not included in the program and exe-

cutes the next line after the last completed

before the ESC key was pressed. Therefore,

if line 140 had been completed when ESC was

pressed, line 100 would be executed followed

by line 141.

10 ON ESC THEN GOSUB 500

20 DIM X(2500)

21 A =

22 B =

23 C =

30 FOR I = 1 TO 2 500
40 X(i; = A*If2+B*I+C
50 NEXT I

60 STOP
500 PRINT I, X(I)

510 INPUT "CONTINUE (0) OR NEW INPUTS (1)" ,D

520 IF D = THEN RETURN
5 30 INPUT "NEW VALUES FOR A,B,C", A,B,C
540 RETURN

In this example, a RETURN from line number
520 or 540 is not to line 20 but to the line
after the last executed when the ESC key was
pressed.

9-6

PRINT USING PRINT USING format, expr [3 expr]

format: a string literal or string
variable which specifies
the format (see Remarks) for
printing the items in the
expr list.

expr: a list of one or more expres-
sions which may include nu-
meric variables, subscripted
variables, string literals
and string variables.

Purpose: To output the values of expressions in the PRINT
USING statement list using the format specified.

Remarks; 1. All normal PRINT formatting conventions
(e.g., TAB, comma, semicolon) are ignored
in a PRINT USING statement.

2. The format expression may have more than one
format field and may include string literals
as well as the following special characters
which are used for formatting numeric output,

#

, (comma)

i

Digit Representation (#)

For each # in the format field, a digit
(0 to 9) is substituted from the expr
argument.

format expr

25 AAA25

Repre-
sentation Remarks

Right justify digits
in field with leading
blanks.

9-7

PRINT USING

Remarks

:

(Continued)
esentation {#) (Continued)

format exar

-30

#####

#####

1.95

Repre-
sentation Remarks

AAA30

M112

538745 *****

Signs and other non-

digits are Ignored.

Only integers are rep-

resented; the number

is rounded to an inte-

ger.

If the number in expr
has more digits than

specified by format3

then all asterisks are

output.

Decimal Point (.)

The decimal character (.) places a decimal

point within the string of digits in the

fixed position in which it appears in

format. Digit {#) positions which follow

the decimal point are filled; no blank

spaces are left in these digit positions.

When expr contains more fractional digits

than format allows, the fraction will be

rounded to the limits of format. When expr

contains less fractional digits than speci-

fied by format 3 zeroes are output to fill

the positions.

format expr

#####.## 20

Repre-
sentation Remarks

MA20.00 Fractional posi-
tions are filled
with zeroes.

#####.## 29.347 MI29.35 Rounding occurs
on fractions.

9-1

PRINT USING

Remarks

:

(Continued)
b. Decimal Point { (Continued)

format expr

#####.## 789012.34

Repre-
sentation Remarks

******** When expr has too
many significant
digits to the left
of a decimal point,
a field of all
asterisks, includ-
ing the decimal
point, is output.

c. Fixed Sign {+ or -)

A fixed sign character appears as a single
plus (+) sign or minus (-) sign in either
the first character position in the format
field or in the last character position in
the format field.

A fixed plus (+) sign prints the sign (+ or
-) of expr in the position in which the fixed
plus (+) sign is placed in format.

A fixed minus (-) sign prints a minus {-)

sign for negative values of expr or a blank
space for positive values of expr in the
position in which the fixed minus (-) sign
is placed in format.

When a fixed sign is used, any leading zeroes
appearing in expr will be replaced by blanks,
except for a single leading zero preceding a
decimal point.

format expr

+##.## 20.5 +20.50

Repre-
sentation Remarks

9-g

PRINT USING

Remarks

:

(Continued)
Fixed Sign (+ or -) (Continued)

Repre-

format expr sentation Remarks

+##.## 1.01 +11.01 Blanks precede the

number.

+##.## -1.236 -11.24

+##.## -234.0 ******

###.##- 20.5 120.501

###,##_ 000.01 110.011 One leading zero be-
fore the decimal point
is printed.

###.##- -1.236 111.24-

###.##- -234.0 234.00-

d. Floating Sign (++ or —

)

A floating sign appears as two or more plus

(++) or minus {—) signs at the beginning of

the format field. Use of the floating plus

(++) sign outputs a plus or minus sign imme-

diately before the value of expr with no

separating blank spaces as would occur with

Fixed signs. A floating minus (--) outputs

either a minus or blank (for plus) immediate-

ly preceding the value.

Positions occupied in format by the second

sign and any additional signs can be used

for numeric positions in the value of expr.

9-10

PRINT USING

Remarks;

(Continued)
d

. Floatin -- :i p '— -r —) (Con

t

inue

d

)

Repre-
fovmat exur sentation Remarks

.## -20 -20.00 Second and third minus
signs are treated as #

on output.

.## -200 ****** Too many digits to left
of decimal point.

— .## 2 112.00

Note; A format may include a floating sign (plus
or minus) or a floating $ sign (described
in paragraph f .) , but not both.

e. Fixed Dollar Sign ($)

A fixed $ sign appears as either the first
or second character in the format field,
causing a dollar sign ($) to appear in that
position. If the dollar sign ($) is in the
second position, it must be preceded by a

Fixed Sign (+ or -) . A fixed dollar ($)

sign causes leading zeroes in the value of
expr to be replaced by blanks.

Repre-
fcrmciZ excv sentation Remarks

-$###.## 30.512 i$I30.51

$###.##+ -30.512 $130.51-

9-11

PRINT USING

Remarks:

(Continued)
Floating Dollar Sign {$$)

A floating dollar sign appears as two or

more dollar ($$) signs beginning at either

the first or second character in the format
field. If the dollar signs ($$) start in

the second position, they must be preceded

by a fixed sign {+ or -)

.

A floating dollar sign ($$) causes a dollar

sign to be placed irnmedlately before the

first digit of the expr value.

Note: A format may include a floating dollar

($$) sign or a floating sign (plus or

minus) , as described in preceding par-

agraph d, but may not include both.

format expr
Repre-
sentation Remarks

+$$$#.## 13.20 +M$13.20 Extra $ signs may be

replaced by digits as

with floating + and -

signs.

$$##.## -1.0 A$01.00- Leading zeroes are not

surpressed in the #

part of the field

.

Separator (,)

A comma {,) separator places a comma in the

fixed position in which it appears in a

string of digits (#) in the format field.

If a comma would be output in a field of sur-

pressed leading zeroes (blanks) , then a blank

space is output in the position for the comma

9-12

PRINT USING

Remarks:
(Continued)

g. Separator (,

)

(Continued)

Repre-
format expr sentation Remarks

+$#,###.## 30.6 +$AM30.60 Space printed for
comma .

+$#,###.## 2000 +$2,000.00

++##,### 00033 A+OO f 033 Comma is printed
when leading
zeroes are not
surpressed.

h. Exponent Indicator (t)

Four consecutive up-arrows (+) are used to
indicate an exponent field in format. The
four up-arrows will be output as E+nn, where
each n is a digit.

If the exponent field in format does not
have exactly four up-arrows, then a run-time
error will result.

format expr
Repre-
sentation Remarks

+##.##t-H+ 170.35 +17.03E+01

+##.##tt+t -.2 -20.00E-02

++##.## AA tt 6002.35 +600.24E+01

9-13

PRINT USING

Remarks:

(Continued)
3, As previously indicated, a format expression

may include more than one format field and

may include string literals in addition to

the special formatting characters. Values

. of the exDT argument list are sequentially

assigned to format fields.

• BASIC differentiates format fields from

string literals by the characters that appear

in format fields.

For example:

"TWO FOR $1.25"

"TWO FOR $$$.##"

"ANSWER IS -85"

"ANSWER IS -###"

$1.25 is part of the

string literal.

$$$.## is a format field

in the foimiat expression.

-85 are characters of the

string literal.

-### is a format field in

the format expression.

A format expression maybe specified by ref-

erencing a previously defined string vari-

able; for example:

5 DIM S$(10)

10 LET S$="##.##"
20 PRINT USING S$, 1.5, 2

Format fields in a format expression are

delimited by the use of a non-special for-

matting character before or after the format

field.

9-14

PRINT USING

Remarks :

(Continued)

field d-ll... _- „• -"-._- '
-; ;.- limiter

"#####lFORl$ $###.##»

format string format
field literal field

6. String literals may appear in the exor
argument list of the PRINT USING statement
and will be superimposed on a format field
in the following manner :

a. Each character of the string literal
replaces a single format field char-
acter, which may be any of the special
format characters ($,#,+, and comma).

b. Strings are left justified in the format
field, and filled with spaces, if neces-
sary,

c. If the number of characters in the string
Is greater than the number of characters
in the formav field, then the string will
be truncated to fit the field.

5 PPINT USING "###, ###.##% ,'TEST /

,, CHARACTER«' ? "SEVENTY-FIVE"
RUN J

IESlMMMCHARACTERlSEvHSNTY-FI

When there are more items in the exor argu-
ment list than format fields In the formav
expression then the formao fields will be
used repetitively.

"####il$###.##iPERi###"

The first, fourth, seventh, etc., items in
the expr argument list will be formatted us-
ing the format field ####.

The second, fifth, eighth, etc., items in
the expr argument list will be formatted us-
ing the format field $###.##.

9-15

PRINT USING

Remarks

:

(Continued)
The third, sixth, ninth, etc., items in the ex:

argument list will be formatted using the foroc

field ###.

The embedded blank spaces, @ sign, and PER are

string literals and delimit the format fields.

100 PRINT USING "A (#) A=A## .
#" , I , A(I)

RUN)

A(l) A=A17.9 +~ Possible output
includes two for-

mat fields and

two string liter-

als.

100 PRINT USING "### . ##A" , I , A,B

RUN)

Ail.00iil7.90ii25.77i ^ Possible output

with format ex-

pression repeated

for each item in

argument list.

9-16

~

RJNT FILE print FILE (file), USING format, expr

f%le: a numeric expression which
evaluates to the number of
a file opened in Mode 1, 2,

4 or 5 for sequential out-
___ put,

format: a string literal or string
variable which specifies
the format (see Remarks)
for outputting the items in
the expr list.

expT: a list of one or more numer-
ic expressions, numeric var-
iables, string variables,
and string literals whose
values are written into a

sequential access file.

Purpose ; To output the values of the expressions in the
PRINT FILE USING statement to a previously opened
file using the format specified.

Remarks: The remarks for the PRINT FILE statement described
in Chapter 7 and the PRINT USING statement de-
scribed in this chapter are all applicable to the
PRINT FILE USING statement.

9-17

chain chain filename [then goto Ivne no,]

s »

eI—

filename: a string variable or string

literal evaluating to a

device or a disk file.

line no. : a line number in program

fi lenarne

,

Purpose : To run the program named in the CHAIN statement

when encountered in the user's program.

Remarks: 1. When a CHAIN statement is encountered in a

program, it stops execution of that program,

retrieves the program named in the CHAIN

statement from the specified device and file,

and begins execution of the CHAINed program.

2. If the program is on disk, the system searches

the programmer's directory for filename; if

not found, the system will search the library

disk directory.

3. If filename is found, the programmer's cur-

rently running program is cleared from mem-

ory and filename is loaded into memory. If

filename is not found, the current program

remains in memory.

4. The newly loaded program is run, by default,

from the lowest number statement in the pro-

gram unless the THEN GOTO line no. argument

is given in the CHAIN statement to specify

another line number from which execution is

to begin.

5. A program must be in SAVE file format before

it can be CHAINed.

6. Typically, the CHAIN statement can be used.

for dividing a large program, into smaller

programs or for running independant programs

from a main program based on conditional

transfer statements.

9-18

CHAIN

Example:

(Continued)
10 READ A
2 IF A > 5 THEN 60
30 IF A = 5 THEN 70
40 DATA 4,1,6,3,5
50 GOTO 10
60 CHAIN "SERVICE"
70 CHAIN "SUBR" THEN GOTO 50

9-19

CALL

Q.mX

CALL sucr [9 expr] .,

suIp:

expr>:

a positive integer repre-

senting an assembly lan-

guage subroutine number,

as many as eight optional
arguments to be passed to

the subroutine . Arguments

may be arithmetic or string

variables or expressions.

Purpose : To call a subroutine written in assembly language

from an Extended BASIC program.

Remarks: 1. Dimensioned numeric variables which are used

as arguments to the CALL statement must

include subscripts.

2. Details for creating assembly language sub-

routines which may be CALLed from Extended

BASIC programs are provided in Appendix B.

Example 5 LET A = 12

10 LET B = A * 2

15 CALL 33, A,

B

CALL subroutine
33 and use the

values of A and

B as arguments
for the subroutine

9-20

TIME time = expr

/*
1

>

c V

p

eocpr: a numeric expression which
evaluates to an integer and
represents time in seconds.

Purpose To establish the time limit for timed input
(TINPUT) operation.

Remarks: 1. Assigning a value to TIME sets the SYS (14)
function to the value of expr.

2. The value of SYS (14) is decremented at the
RDOS clock tick rate (1/10 of a second per
tick) from the time a TINPUT statement is
executed.

3. Decrementing of SYS (14) stops when the pro-
grammer responds to the TINPUT prompt.
Decrementing of SYS (14) is resumed when the
next TINPUT is executed.

4. If the programmer does not respond to the
TINPUT prompt before the SYS (14) function
has decremented to zero, then an error mes-
sage is printed at the terminal and the pro-
gram stops, unless an ON ERR THEN statement
is used.

5. TIME may be reset to another value and may
appear as often as required by the program
logic.

Example: (Continued on next page)

9-21

TIME

Example;
(Continued) 0010

0020
0030
0040
§85§
0060
0070
008
009
0100
0130
0140
0150
0160
0170
018
0190
0200
0210
0220
0230

PRINT "IE"'£ T:ST YOUR RECALL SPEED 1

S YOUR SOCIAL SECURITY NO.? M
* A$

TINPUT "WHAT COLOR IS YOUR MOTHER'S EYES? ,f#A$

i-y^:2 ?. ; 4?
TINPUT "WHAT
GOSUB 0140
TINPUT "HOW OLD IS YOUR FATHER? M *A$

GOSUB 0140
GOTO 0190
LET I»I«-1

LET ACI3»< ii-SYSC t4>>
PRINT "TIME USED- M

; AC 13 J" SECONDS"
TIME -10
RETURN .

FOR J«i TO I

LET B=B+ACJ1
NEXT J
LET C-B/I
PRINT "AVERAGE RESPONSE TIME- "l CJ M SECONDS-

RUN
LET'S TEST YOUR RECALL SPEED

WHAT COLOR IS YOUR MOTHER f S EYES? 8R0VN
TIME USED- 6 SECONDS
WHAT'S ^YOUR SOCIAL SECURITY WO«? 1 18234567
TIME USED- 10 SECONDS
HOW OLD IS YOUR FATHER? 63
TIME USED- 4 SECONDS
AVERAGE RESPONSE TIME- 6*66667 SECONDS

END AT 0230

9-22

TINPUT TINPUT

[

"s iring lit'', I
*):. ^...[;

var and svar: a list of variables sepa-
rated by commas or carriage
returns

.

"string lit": a message or prompt.

Purpose

:

To assign the values supplied by input from the
terminal to a list of variables, within a pre-
scribed time.

Remarks

:

1. INPUT statement remarks (Chapter 3) are
applicable to TINPUT.

2. The TINPUT statement is used in conjunction
with the TIME= statement and the SYS (14)

function.
3. The TIME= statement sets SYS (14) to the

value, in seconds, allowed for the program-
mers respond to the TINPUT prompt.

4. The value of SYS (14) is decremented at the
RDOS clock tick rate (1/10 of second per
tick) from the time a TINPUT statement is

executed.
5. If the programmer does not respond to the

TINPUT prompt, before the SYS (14) function
has decremented to zero, then an error
message is printed at the programmer's
terminal and the program stops, unless an
ON ERR THEN statement was previously
executed.

6. Decrementing of SYS (14) stops when the pro-
grammer responds to the TINPUT prompt.

7. A DELAY statement upon completion clears
the value of the SYS (14) function to zero.

Example: See TIME for an example of TINPUT usage.

9-23

APPENDIX A

ERROR MESSAGES

Extended BASIC error messages are printed as two digit codes, followed by a

brief explanatory message. There are three categories of errors which may

occur when operating Extended BASIC under RDOS.

1. Errors recognized by BASIC during program input.

If an error is detected in a statement input from a

terminal, the error message refers to the last state-

ment typed.

If the statement in error was input from a file or

other input device, BASIC prints the incorrect state-

ment followed by the error message.

All syntax errors are recognized during program input.

The form of the error message is:

ERROR xx text

xx: a two-digit decimal error code.

text: a brief description of the error.

2. Run-time errors (except file I/O)

.

BASIC system run-time errors cause printout of an

error message in the following form:

error xx at yyyy text

xx: a two-digit decimal error code.

yyyy: the line number at which the error

was detected.
text: a brief description of the error.

A-l

ERROR MESSAGES
(Continued)

3. File I/O errors

Error messages related to file I/O are formatted as
follows;

I/O ERROR XX) text

xx : a two-digit decimal error code

,

Z/// : the line number at which the file I/O
error was detected,

text: a brief description of the error.

The following table itemizes the Extended BASIC error codes and their
explanations

.

A-2

BASIC Error Messages

. ASCII character or
:ted character

1 n va 1 id argument type

$100

READ/DATA READ specifies different
TYPES data type than DATA state-

20 IF SIN{A$)=0,

DIM A$ (10)

READ A$
DATA 12

hardware or software
malfunction

, .—_____

mt number not in the 0010 GOTO 81373
1 < n < 3999

— _ _ . _p
tempt to declare more than
6 variables

ipt to execute a command
a file (and not in

mode)

——-———————_i

. to access via MAT

.imension list.

?ER "ABC" and file

I contains a LIST
mtand

DIM A (10)

A-

3

»•——*———-"

:

Meaning .

:' •:

3_ ____

another user has control of

the specified I/O device
User A:

ENTER "$PIR"

User B:

ENTER "$PTR"

11 PARENTHESES parentheses in an expression

are not paired

A =
({ B-C)

12 COMMAND keyword unrecognizable 10 LETT A = 10

13 LINE NUMBER attempt to delete or list an

unknown line; attempt to

transfer to an unknown line

100)

10 GOTO 100

RUN

14 PGM
OVERFLOW

not enough storage to ENTER

source program

ENTER "ABC"

|

15 END OF DATA not enough DATA arguments to

satisfy READ

10 READ A,B,C
20 DATA 91,21
RUN

16 ARITHMETIC value too large or too
small to evaluate or a

divide by

A = 1234E + 66
;A + 20

;l/o

17 (NOT USED)

18 GOSUB
NESTING

more nested GOSUB ' s than
specified at SYSGEN

19 RETURN - NO

GOSUB

RETURN statement encountered
without a corresponding
GOSUB

10 RETURN
RUN

A-

4

BASIC Error Messages (Continued)

Text Meaning Examples

NESTING more nested FOR's than
specified at SYSGEN

f-——
I

FOR - NO
1

NEXT
unexecutable FOR-NEXT loop;

FOR without a NEXT
FOR I = 1 TO STEP 1

22 NEXT - NO NEXT statement encountered
without a corresponding FOR

10 NEXT I

RUN

2 3 DATA
OVERFLOW

not enough storage left to

assign space for variables
10 DIM A (300000)

24 NO channel limit specified at

AVAILABLE SYSGEN time has been
CHANNELS reached

10 OPENFILE(0,3) , "T"

2 5 OPTION feature specified not
] available (SYSGEN)

MAT PRINT A

26
J

PGM/DATA
OVERFLOW

I

attempt to LOAD or RUN a

SAVEd file which is too

large for available storage

LOAD "ABC"

X

27 ILE NUMBER invalid file designation in

an I/O statement
)PEN FILE (9,0), "TEST'

]RFLOW

in array or string exceeds
_ts initial dimensions

DIM A(2, 2)

MAT A = ZER(5,5)

29 :iok an expression is too complex

for evaluation

(((A+l) + ((A-7+3)
* 3) + RND (0)

)

A-

5

BASIC Error Messages (Continued)

Code > Meaning

r——-

—

:

I

Examples

1

'mode invalid mode designation in

an I/O statement

J

—

-

"

jOPEN FILE (0,12)

,

I

1

"TEST"

31

1

1

1

subscript exceeds array's
dimension

1

12 DIM A (2)

?A (1,30)
RUN

1

J

32
I

1

10 A = FNA(B)

33

1

[the nesting of too many
1
defined functions

34 FUNCTION
ARGUMENT

argument range exceeded A = 12 34

;Af34652
PAGE = 200
DELAY = -1

TIME = -1000

35 ILLEGAL
MASK

PRINT USING statement is

illegal
; USING "A",

A

36 STRING SIZE the size of the string
exceeds PAGE specification

PAGE =10
; "AAAAAAAAAAA"

37 USER ROUTINE CALL statement specifies a

user routine not in storage
10 CALL 2

RUN

|

38
i

(NOT USED)

A-

6

BASIC Error Messages (Conti

JXt Meaning

L

]
-j e matrix appears on both

les of a MAT multiply or
transpose statement,

MAT A = A * A 1

40 MATRICES
SIZES

matrices have different 10 DIM A (10, 10)
sizes 20 DIM B (20,20)

i;;^ MAT A = B

I

41 UNDIMEN-
SIONED
VARIABLE

!

_
1

attempt to use an A =
j

undimensioned matrix MAI PRINT A |

I 1

42 FILE ALREADY
OPEN

two OPEN statements without
an Intervening CLOSE

OPEN FILE (0,2) ,"$LPT"

JOPEN FILE (0,2) ,"$LPT"
j

I 11— _____—_____ ___~_.__._J

43 MATRIX NOT
SQUARE

attempt to invert a non-
square matrix

1 j

10 DIM A (20 ,30) j

20 FAT B = INV(A)

RUN |

44 FILE NOT
OPEN

an attempt to read/write a
file which has never been
opened

DIM A$(10)
j

WRITE FILE (0) ,A$

INPUT FILE(0) ,A
J

45 nzvT^A !> t xj^pr^T logical record length limit
exceeded

DIM A$(300)
OPEN FILE (0,1) "ABC"
WRITE FILE(0) ,A$

f

46 INPUT

J

too many responses to [MAT]

INPUT

i

in: '<t a ? 1,2,

3

47 MODE input file opened for
writing or output file
opened for reading

OPEN FILE (0,1), "TEST"
READ FILE(0) ,A

i

A-

7

:ated

Examples

)AD "TEST.SR"

50

51

52

53

)R cannot find 256 words in

: RECTORY user program storage to

read disk directory

i DIM A (8000)

RUN
FILES

IVALID
'ERATOR

JMMAND

Attempt to execute a

privileged command
(see System
Manager ' s Guide

)

J

;er not on

rSTEM

attempt to send message to

an inactive or non-existant

user.

|msga#$$#ahello

;ER IN smpt to send message to

)MSG STATE user whose terminal is in

NOMSG state

RENUMBER

?ATEMENT

TNGTH

. incorrect line number is

.countered during executic

a RENUMBER command

>re than 132 characters ii

.ther internal or ASCII
irmat due to expansion

10 GOTO 100

RENUMBER

10 ON A GOTO 1,1,

Ilist

20 5""

55 EXECUTE-ONLY attempt to examine a program
originating from a file with

the execute-only attribute

ENTER "FRED: TEST"

LIST

A-i

BASIC Error Messages (Continued)

Text Meaning Examples

58 RANGE attempt to reference a

random record beyond
JS2144

5

10

20

N = 300000
OPEN FILE (0,0) , "T'j

READ FILE(0,N) ,A

57 (NOT USED)

58 INCOMPATIBLE
CORE IMAGE
FILE

attempt to LOAD a core image
file SAVEd under a different
floating point precision

LOAD "TEST. CI"

59 ZERO STEP FOR-NEXT with STEP 10

20

RUN

FOR *=0TO50 STEP

NEXT I •

I

TIME-OUT timed input decremented to

zero
10

20

TIME = 30

INPUT A

61 INVALID
DECIMAL
STRING

attempt to perform string
arithmetic with non-numeric
characters

10 DIM A$(80) ,B$(80)

C$(80)
20 INPUT A$,B$
30 C$ = A$ * B$

RUN
?ABC?5430

t

f,9 PRECISION
OVERFLOW

the result of string
arithmetic requires more than
18 digits for precision
representation

l

83

r "

MAX
SHARED
DIRECTORIES

number of sharable directo-
ries in use exceeds the
number specified at SYSGEN

ENTER "FRED: A"

64 1

J

(see System Manager's Guide)

A-9

File I/O Error Messages

03 ILLEGAL COMMAND FOR DEVICE
j

INIT "SPTR", WRITE to $CDR

06 END OF FILE Attempt to read beyond EOF marker.

07
1

READ PROTECTED FILE Attempt
f 1 1 p

to read from a read protected

08 WRITE PROTECTED FILE Attempt
file

.

to write to a write protected

09 FILE ALREADY EXISTS 1

1

Attempt to create an existent file.

10 "ALE NOT FOUND Attempt
f "i

"^ e

to reference a non-existent

11 PERMANENT FILE Attempt to alter a permanent file.

12
]

ATTRIBUTE PROTECTED Illegal
butes.

attempt to change file attri-

13 FILE NOT OPENED
I

Attempt to reference an unopened file.

17 UFT IN USE System error.

18 LINE LIMIT Line limit exceeded on read or write

20 PARITY Parity error on read line.

23 C TEE SPACE Out of disk space. Delete files to

make more room.

24 AIAI ERROR File re ad error.

25 SELECT STATUS Unit not ready or is write protected.

29 7A7F7ERENT DIRECTORIES Files specified on different directo-

ories

.

30 ILLEGAL DEVICE CODE Device
device

not In system or Illegal

code

.

A-10

File 1/0 Error Messages (Continued)

44

INSUFFICIENT CONTIGUOUS
BLOCKS

MO MORE DOB'S

ILLEGAL DIR SPECIFIER

UNKNOWN DIR SPECIFIER

DIR TOO SMALL

DIR DEPTH

DIR IN USE

LINK DEPTH

FILE IN USE

FILE POSITION

DIR NOT INITIALIZED

Meaning

Insufficient number of free contiguous

disk blocks. Reorganize partition.

Attempt to open more devices or directo-

ries than are configured in the operat-

ing system.

Illegal directory specifier.

Directory specifier unknown.

Directory is too small (Operator only)

,

Directory depth exceeded (Operator only)

Released directory in use by other

program.

Link depth exceeded.

Contact System Operator if file is In

your directory.

Directory/device not initialized.

A-ll

APPENDIX B

CALLING AN ASSFL'PLV LANGUAGE SUBROUTINE FROM EXTENDED BASIC

It is possible to call a subroutine written in assembly language from an
Extended BASIC program, The format of the BASIC call is:

where: sub# is a numeric expression evaluating to a positive
integer (in the range to 32767) representing the
subroutine number.

A1# ...,A
n

are optional arguments to be passed to the
subroutine (n must be in the range 1 to 8) and may be
arithmetic variables or expressions, or string vari-
ables or expressions- Dimensioned numeric variable
names should not appear alone, i.e., without subscripts
(Statement numbers are not permitted as arguments.)

Character String Storage and Definitions

The assembly language programmer should be aware of the following inform-
ation if he wishes to handle character strings in a CALLed subroutine.
BASIC keeps a count of the number of characters currently defined in each
string variable (referred to as the current length of the string variable)
A current length is stored as part of a header immediately preceding the
contents of each string variable. (See illustration on next page) The
current length must be updated each time characters are added to or taken
away from the string variable.

B-l

Character Str: finitions (Continued)

Current lengtl

Characters

Increasing memory
addresses

String Variable Storage

In the following examples, assume that A$ is dimensioned to 10, and A$ -

"ABCDE". The current length of A$ is 5.

A substring is defined as any contiguous part of a string variable. For

example

:

AS (2, 4) and A$ are substrings of A$

The current length of a substring is defined as the number of defined

characters within" the substring."
-
For example, the current length of A$(4,7;

is 2, if only A$(4,4) and A$(5,5) are defined.

The maximum length of a substring is defined as the number of character

positions within"the substring. "For example, the maximum length of

substring A$(4,7) is 4.

Linking the Assembly Language Subroutine

Assembly language subroutines must be submitted to the System Manager at

system load time. The subroutines are input to the relocatable loader when

the BASIC system save file is created. The user must include a subroutine

table with his subroutines. The table must have the entry point SBRTB.

Improper use of assembly language subroutines, system calls, or task calls

can crash the system.

The subroutine table Is a list of all assembly language subroutines avail-

able to a BASIC program. For each assembly language subroutine a four-word

list is required in the table containing the following:

B-2

Linking the Assembly Language Subroutine (Continued)

subroutine number
subroutine entry point
number of arguments
argument control word

The table is terminated by using a subroutine number of -1.

The argument control word is used by BASIC to give run-time error checking
on the types of arguments. The argument control word is divided into eight
two-bit fields for the eight possible arguments Aj...A 8 . The value of the
two bit field determines the allowable argument.

OCT

OlJ

10
\

11'

argument may be any string expression
argument must be a string variable
argument may be any numeric expression
argument must be a numeric variable

The argument control word is written in an assembly language program such
that the arguments are connected by a plus (+) sign and are described as
shown in the following example.

argument A-,

octal value
of bit field

(3=numeric
variable)

argument A
?

argument A,

BASIC calls the assembly language subroutines by the sequence;

LDA
JMP

ADLST

2 ,.+2 ; AC2 POINTS TO TOP OF ADDRESS LIST
<SUB> ; JMP TO ASSEMBLY LANGUAGE SUBROUTINE

ADLST; <arg Al>
<arg A2>

<arg An>
-JMP BASIC »• RETURN TO BASIC INTERPRETER

B-3

Linking the Assembly Language Subroutine (Continued)

If A is a substring of a string variable, the address list contains the

address of the string descriptor words, which contain the following Inform-

ation:

word 1

word 2

word 3

word 4

byte address of the first character of the substring
current length of the substring
maximum length of the substring
word address of the current length of the string
variable

If An is a string expression, the address list contains the address of the

string descriptor words, which contain the following information:

word 1: byte address of the first character of the string
word 2: length of the string

If A is a numeric variable, the address list contains the storage address
n

of the variable. (All numeric variables are represented in standard float-

ing point format.)

If A is a numeric expression, the address list contains the storage address

of the value of the expression.

The following Is an example of a subroutine, and its subroutine table. The

argument list in a BASIC call to this subroutine must match the argument

control word specified in the subroutine table.

CALL 1,B,C «- legal
CALL 1,A,B *- legal

CALL 1,B*2,C + not legal (arg Al must be a numeric
variable)

CALL 2,A,B -<- not legal (there is no subroutine
no. 2)

B-4

Linking the Assembly Language Subroutine {Continued)

.TITLE

. ENT

. NREL

SBRTB
S3RTB

BASIC ASSEMBLY LANGUAGE SUBROUTINES
ENTRY POINT ; SBRTB
NORMAL RELOCATABLE CODE

; SUBROUTINE TABLE

SBRTB: 1

SUB1
2

3B1 + 3B3

-1

SUBROUTINE #

SUBROUTINE ENTRY POINT
NUMBER OF ARGUMENTS
ARGUMENT CONTROL WORD, BOTH ARCS ARE
NUMERIC VARIABLES
END OF TABLE

SUB1:

CALLING SEQUENCE: CALL 1,A,B

THIS ROUTINE IS THE EQUIVALENT OF LET B = A.

THIS ROUTINE IS NOT REENTRANT

RET:

STA 2, RET
LDA 3,0,2
LDA 3,0,3
LDA 2,1,2
STA 3,0,2
LDA 2, RET
LDA 3,0,2
LDA 3,1,3
LDA 2,1,2
STA 3,1,2
LDA 3, RET
JMP 2,3
.BLK 1

.END

SAVE ADDRESS LIST
ADDRESS OF ARG 1

WORD 1 OF ARG 1

ADDRESS OF ARG 2

WORD 1 OF ARG 1 TO WORD 1 OF ARG 2

ADDRESS LIST
ADDRESS OF ARG 1

WORD 2 OF ARG 1

ADDRESS OF ARG 2

WORD 2 OF ARG 1 TO WORD 2 OF ARG 2

ADDRESS LIST = RETURN ADDRESS -2

RETURN TO BASIC (2 = NO. OF ARGS)

An illegal CALL, causing error 17, will result from an attempt to pass a

variable in the CALL that does not have a previously assigned value. All

variables passed in the CALL must have been previously assigned values even

if their current value is not to be used in the CALLed subroutine.

Several subroutines are available in BASIC to help the user in manipulating

numbers and character strings. The pointers to the routines are in page
zero and should be declared as displacement externals.

B-5

Linking the Assembly language Subroutine (Continued)

Routines RESULT*

FIX Converts floating point number in AC0-AC1 to an
integer in AC0-AC1. If there is overflow, the
largest possible integer is returned in AC0-AC1.
Bit of ACO is the sign of the number. Bit
of AC1 is a significant bit. There are two re-
turns from .FIX

return 1:

return 2:

overflow
OK

,FLOT

ADDF F0+F1
SUBF F0-F1
.MPYF F0*F1
DIVF F0/F1

Converts an integer in AC0-AC1 to floating
point format in AC0-AC1.

Arithmetic routines to perform floating point
add, subtract, multiply, divide. In each rou-
tine, AC0-AC1 initially contains the floating
point value of Fl and AC2 contains the address
of the value of FO . The result is returned in
AC0-AC1.

Underflow returns a zero result; overflow
results in error number 16.

,MPY A1*A2+A0,A1
MPYA A0+A1*A2->A0,A1

In the integer multiply routines, AC1 contains
the unsigned integer multiplicand and AC2 con-
tains the unsigned integer multiplier. The
result is a double length product with high-
order bits in ACO and low-order bits in ACl.
Contents of AC2 are unchanged. The difference
between the routines is that .MPYA adds the
result of the multiplication to the contents
of ACO.

DVD (A0,A1)/A2^A1,A0
DVDI A1/A2->A1,A0

In the integer divide routines the dividend is
in AC! (single-length) or In ACO and ACl (dou-

ble-length with high order bits In ACO) . The
divisor is in AC2 and the result is left with
the quotient in ACl and the remainder in ACO.

Contents of AC2 are unchanged.

*In systems having floating point hardware, the floating point number is

stored and returned in the Floating Point Accumulator (FPAC) rather than in
AC0-AC1.

B-6

Linking the Assembly Language Subroutines (Continued)

Routine Result

.MOST Moves the character string described by the
string descriptor words in AGO, AC1 to the
substring described by the string descriptor
words in the page zero memory locations labeled
TR3, TR4 # TR5, TR6

.

Before a JSR to MOST, these accumulators and
memory locations should be loaded as follows:

AGO - byte address of the first character of
the source string

AC1 - length of the source string
TR3 - byte address of the first character of

the destination string
TR4 - current length of the destination

substring
TR5 - maximum length of the destination

substring
TR6 - word address of the current length of

the destination string variable,

TR3, TR4, TR5 and TR6 should be declared as displacement externals in the
assembly language subroutine. MOST automatically updates the current length
of the destination string variable. Subroutine MOST has two returns,
Return at CALL + 1 means the character string move was terminated by the
source string becoming empty.

Return at CALL + 2 means the move was terminated by the destination substring
becoming full.

B-7

APPEI

DGRAfflING ON DS

Source programs may be written on Data General's Extended BASIC mark-sense

programming cards for Input to the mark sense card reader, The Data General

Extended BASIC mark-sense programming cc L i- e "--zilximn card as shown

below.

•H FORMULA

U OTIEIBT P ma
%l «rf %l

ill 0I0M6OSUB READ

Fn «n

» * "i -* lj

"
' r c k ?•* r ?* £ p»- * •- :'

f; * * 1
1(

i*ili«i«nnnnnnfifinf,ini*ifini*ififli'

-. > ^, -: * - -* :? >, * C « i 3 5 ~ *' ;
, j

2J] 2J] 2|} 2p
*" =;.jT]

3
n

3
n

3n in ^|j1^j||^^

4
D

4 4
fl

4
D

fisiiTn

50
5fl 8fl

I]}

i 1 8
D «D

J:

!?;:,
:

:

:

ii n isiAiin she |*|

||*| ||*1 §|1 ||1 Ititl 1 1 hum 1 1 IKtlll 1 1 1

n i*! pi -Pi L

n n

III

n
Oifl I ~

n
u

f!
*i

OH
i n n n n -

-if
_

^
11

-,

:1 n n i

III

t
in T' n . 11

n
ii

n f* i i i

in

•0 . ;
." ':

; ! \ \K ; j L'lDiDiDiDiDiDifliDil

. .. . L; V IJ"!J »* t :
,. t 1 / '.- \ I

I
> f

s ! s £ I 1 ! I 1 I 1 ! f ! I * :
' i

Such card decks

command
tem Manager foi

The mark-sense
to be read. II

and punched cai

both markings <

>e read as a file and requires an EOF card

a single column in which all rows are mark-

jobs may be entered from the card reader.

;he Batch job control formats. Keyboard

in Batch mode only. Consult with the Sys-

rocessing information.

ion that permits either markings or punches

;ion may punch mark-sense cards. Marked

ced in a deck and a single card may contain

C-l

statement.

A single Extended BASIC stati

marJo
for example, the statement 41

int may be written on a
le appropriate column;
-5 would appear as:

3*-

I

y y i "J * - - «. •
"-

ft - .- f
•* - 1 ^ .v. * \ jS

. , ^ ...

= -
t

; ; ! -,-

u m

: 1

Dli Z«

n

n

' §i
j i M . . IMiQifliOv

i §

Part of a statement may be written on one card and continued on the next by
marking the CONT box in the upper righthand corner of the first card and
continuing the statement on the card following beginning with the FORMULA
section.

When writing an IF or an ON statement, the programmer writes one card con-
taining the IF or ON expression and marks the THEN box in the upper right-
hand corner of card. The programmer continues the THEN clause on the next
card beginning in the FORMULA section.

The FORMULA section of each card must he filled out in I

Appendix D) , and programmers familiar with punched cardi
ilty with the format. To assist any programmers \

with punched cards, each card contains a key indicating
be mart* r each character. For each character, a boj

irith code (see

.1 have no

.re not familiar"

lines that must
the horizontal

C-2

line on which the character appears must be marked. In addition,

horizontal lines immediately below the character, a line must be marked xf

a square appears on the lefthand side. If we use punched card notation,, the

top line is designated 12, the second from the top

other lines are numbered from through 9. To indicate 4, put a mark on

line 4; to indicate *, put marks on lines 11-4-8; to indicate #, put marks

on lines 3-8, etc,

To further illustrate the use of mark-sense cards, the following source code

is shown on cards

:

5 FOR X = .1 TO .005 STEP -0.01

15 X = X * LOG{X)
25 NEXT X

SffiTEJIHfT 1

o sTAirai kiNhHj io »5

1

'Z
s
o «s m f i s

;;

i

~~
%

FORMULA

r r^3
U

0i 1 pan

IIE~

(TURN

(read

lOfflA

EM

2 2 2
D

IhlhhO

D <0 «Q '0

5
Q »Q 5

I

D «D
6
D

6
D

'0 '0 <G

«D »D
8
fl

'D »D
!D

f l

i 4 ¥ f 'S tf f f - I t

u o :n : o \) i :
•

o *a
:

: w i o
;."

: : i
:1

1 c n;; i

s s

Iieit 11 psEJl itfK
r

! ! 3
U U 1.1 u u

niiuip bwE^sn^ •' r
r

U I
l.i - , ^ j u u u

... -

Ijl

n n
u u

n n
U U u

„ - t

|n qHfO 5 L-iGG I '0 ': I

iiirooioQio: •:SlOPy& ;]
w

D

^tlklEil'QOO jOOOQiOD

II

nn

ii n n

n n
I

ft ft

wm^UiUU I C =J

:

.iu u u u-u

k : » :•^ o»gogocoo "

o

"»[

1 :
:

' i f :
'

i i i j s ; i ' * i

11 nlQlQl|lOl|

Ij IJ ij ij i

5FORX=. 1TO. 005STEP-0

C-3

M

15 X=X*LOG(X)

25 NEXTX

C-4

I ncOHT

nil

lj™lj™lj*lj*lj '

IM

OS

fek

1 I

Foilowii card show I \ i" a state

10 OPEN FILE , "FNAME"

IJ STIIilBT P_
I"! P.UM8S f^-j

fS3 '

| 1
:

"

[

zo an ?r
:w_; wffc^T

*

: '

]"l 1

'0 <0 4

f

~^
"

D ^0 *0 5

ill ill a'1 fl #ms
r -€•

"
'*:-

V w
i

1 f 4
:-"--

i*i n n RF- rt L_. ft l_

'O
i

u
,

l
,i
J mz_m :™

n 2p 2n 211 srnu u u u u

D
3 3

Q
3
Q p*0M

tm m i%

i] ol Pi

ill ill ill

ill 111

IWEj I SAVE
J

13
J -

III

'U «. 4 V y

QsH 8!'^^*3 MV ^ n
J u w

Q tQ-tQ tQ br
T f .

I

:'' MO I

I

CMT

IB

ii n n n

A v

nw-l^
1

*
:r

« , I I iD

1 1 1 1 i i* ', i 1 I 1
s

1 1 ! I I I •

Difl I

I : a

inn»nnnnriri _fi n n n n
. J. . ; . ^ : , : I

I

- ' f

l[|
• ~ f * ;>' :'

n

i d . : x :
-

e o e o-3 o d

i f
; * - gig n r n l n*

g

iiDiflifliDiQiDiDiDiDiDiDiO I
,. r j.

r n -

3

^r 1 3j

11 3 a 2 !

-*
'J

:o ui
I

«*i rt 1

II
y u

,. . » ,. r
V • V V » J)«. v.

i ' • = I 1 1
f

1 1 1 1 112!

Followinc file card wil ai. 1 marked.

sr
-• >~~:*

;

1 mimm

P'^:^muu
,n i * r;

11
n n

1 £**

•I «g ^ «1

i| ii] iii «o

2
1

2
D 4 *Q

3
1

3
D

3 3

I *Q *D *D

4 «0 5 §
D

•IW

•I
8
G »D

8

•I «D «G
3

1111

goto;; a^l pn "* "-* ~,
:' f C s* i* su ?* C ?' " '

z". h * f -J, Cl H 1 F
•"!

'•",'*-
• « - i * r, n i ii n n

«-• .._-., v... , ,, »,, «, ,,, „, »,, ,,, m , ,,, t., , \ ,*£,—;••>.. ,,)
^ : |> ;

j ; ;, : ; f c f 4 I ' -" # » S -• ' ^' S ;' * i *'. i 4 £ 5 S S

« p
t«4

:

: frf r
^

-in r.

'

:
^ r

: n n »-
r

- -
,& n

;
•,

si ^
^

.i i-n

IW!

nan i*i

Btm 111

jlEIT
[J

KLKE|J ptt
I

^; *1|

III

III

n n
* v v -J ,

,- j^ p. ,^ j*

J U J I
s V

•ji n n n n

?@p r r r

III

f
:

ii ill]

wa

D
4
D <1

IDEF

•11

iff

n pi- n
UpfEU

Ufc IJ
ill

lit*
i 1 M f I : i f f f 1

i n n

Oil D I

: * * i

n _n t%

:
i

•;
.j :v ; ;

!

; :! M 1

DiQiQiDiQiDiOiQiDiDiDiDi

i : £
* f f r / I* I

t I

u u

n n

^ m
•- ::<

Q m
i

i °*
5? <* i—
: <
S Q

11
y

1 1 l I

C-5

APPENDIX D

HOLLERITH CHARACTER SET

Character Lines

- -

1 1 - -

2 2 - -

3 3 - -

4 4 - -

5 5 - -

6 6 - -

7 7 - -

8 8 - -

9 9 - -

A 12 1 -

B 12 2 -

C 12 3 -

D 12 4 -

E 12 5 -

F 12 6 -

G 12 7 -

H 12 8 -

I 12 9 _

Character Lines

J 11 1 -

K 11 2 -

L 11 3 -

M 11 4 -

N 11 5 -

11 6 -

P 11 7 -

Q 11 8 -

R 11 9 -

S 2 -

T 3 -

U 4 -

V 5 -

w 6 -

X 7 -

Y 8 -

z 9 -

[12 2 8

12 3
.-"

D-l

HOLLERITH CHARACTER SET (Continued)

Character Lines

< 12 4 8

(12 5 8

+ 12 6 8

12 7 8

] 11 2 8

$ 11 3 8

* 11 4 8

) 11 5 8

t 11 6 8

+ 11 7 8

\ 2 8

, (comma) 3 8

% 4 8

•fr 5 8

> 6 8

? 7 8

: 2 8 -

3 8 -

@ 4 8|-

Character Lines

i 5 8 -

= 6 8 -

ii

7 8 -

& 12 - -

- (minus) 11
1

- -

D-2

APPENDIX E

ASCII CHARACTER SET

CHARACTER

NULL

+A

+B

+C

+E

+F

+G

+H

TAB(fl)

LINE FEED(+J)

VERT. TAB{+K)

FORM FEED(fL)

CARRIAGE
RETURN (+M)

+o

tp

OCTAL 1 DECIMAL

000

001

002

003

004

005

006

007

010

Oil

012

013

014

015

016

017

020

021

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

CHARACTER OCTAL DECIMAL 1

tR 022 18

ts 023 19

+T 024 20

+u 025 21

+V 026 22

iW 027 23

+X 030 24

+Y 031 25

+ Z 032 26

ESC or ALT MODE
or

CTRL-SHIFT-K 033 27

CTRL-SHIFT-L 034 28

CTRL-SHIFT-M 035 29

CTRL-SHIFT-N 036 30

CTRL-SHIFT-0 037 31

SPACE 040 32

i 041 33

ii 042 34

043 35

E-l

ASCII CHARACTER SET (Continued;

CHARACTER 1 CS
i(^ rP'AJ t

T ocST
r""™- " '"" "" -""""

1 I

$ 044 36 < 074

% 045 37 j

_ 075
1

1
61

& 046 38 > 076 62
1

' (apostrophe) 047 39 ? 077 : 3

(50 40 @ 100 64

) 051 41 A 101 65

* 052 42 B 102 66

+ 053 43 C 103 67

, (comma) 054 44 D 104 68

- (minus) 055 45 E 105 69

• 056 46 F 106 70

/ 057 47 G 107 71

060 48 H 110 72

1 061 49 I 111 73

2 062 50 J 112 74

3 063 51 K 113 75

4 064 52 L 114 76

5 065 53 M 115 77

6 066 54 N 116 78

7 067 55 117 79

8 070 56 P 120 80

9 071 57 Q 121 81

: 072 58 R 122 82

'' 073 59 s 123 83

E-2

CHARACTER :.:r.v_ liicSEl

T 124

^|

U 1 85]

V 1 86

w 127 87

X 130 88
1

Y 131 89

z 132 90

[133 91

\ (SHIFT-L) 134 92

] 135 93

t 136 94

<- or 137 95

i 140 96

a 141
1

97

b 142 98

c 143 99

d 144 100

e 145 101

f 146 102

g 147 103

h 150 104

i 151 105

J 152 106

- (tilde)

RUBOUT
or

DELETE 177

154 108

155 109

156 110

157 111

160 112

161 113

162 114

163 115

164 116

165 117

166 118

167 119

170 120

171 121

172 122

173 123

174 124

175 125

176 126

127

E-3

APPENDIX F

STATEMENT, COMMAND AND FUNCTION SUMMARY

F.l COMMONLY USED BASIC STATEMENTS

Formats and Descriptions

DATA
fval)

f"J
f val V"

V' string lit"([^"string lif'/J ...

DEF

isvar(m) \

array (m) I

array (row, col)}

Defines data to be used

by READ and MAT READ.

Used with FNa(d) function to

define a user function.

r, svar (m)

, array (m)

', array (row, col))_

END

Specifies the size of string
variables and numeric arrays.

Stops program execution.

FOR control var = exprl TO expr2 [STEP expr3]

GOSUB line no.

Begins a FOR-NEXT loop and

defines the number of times

the loop is executed.

Transfers program control to the

first statement of a subroutine.

Page
Ref

.

3-8

4-17

3-19

3-2

3-21

3-27

F-l

F.l COMMONLY USED BASIC STATEMENTS (Continued)

'

.

" ::.._;..

GOTO line no. Transfers program execution to a

specified line.

Jrel-expri

fexpr
|
THEN statement

Executes a statement based on
whether an expression Is true
or false.

jva

INPUT ["string lit" ,] (sva

r) n.var)1

arj L(rsvar/J . . . [;

jvar)

.LiET] (mvarf = expr

NEXT control var

User inputs data for variables
from terminal.

Assigns values or solutions to
formulas to a variable.

Last statement in a FOR-NEXT
loop and changes the value of
the control variable.

| GOTO)

ON expr (GOSUB) line no. [,line]...

Transfers program control to
a line number whose position In
the argument list Is computed
from an expression.

3-5

3-4

3-21

•35

F-2

F.l COMMONLY USED BASIC STATEMENTS (Continued)

,.„ -...

Formats and Descriptions IS C—-r—*"

(PRINT;

(expr
|

< "string lit"/

(svar /

j ,) lexpr
|(;/<"string lit")

(svar 1

HW

RANDOMIZE

j var) / , var \

READ^svarj i svar
j

REM [message]

RESTORE [line no.]

RETURN

STOP

Prints specified data.

Reseeds the random number
generator.

Reads data from DATA
statements.

Inserts explanatory comments
within a program.

Moves the data element pointer
to the beginning of a data list
or DATA statement line.

Last statement of a subroutine
and returns program control to
statement following last GOSUB
statement executed.

Stops program execution

J x^

3-1

F-3

F.2 ARITHMETIC AND SYSTEM FUNCTIONS

I I I

.•-•..-• :

'. -••;• -:.
:.

•

'

! !
T I

ABS(expr)

ATN(expr)

COS(expr)

EXP(expr)

FNa(d)

INT(expr)

LOG(expr)

RND(expr)

SGN(expr)

SIN(expr)

SQR(expr)

The absolute value of an

expression.

The arctangent of an angle.

Result expressed in radians

The cosine of an angle. Angle
expressed in radians.

The value of e to the power
of an expression.

A user function which is defined

in a DEF statement and returns a

numeric value.

The integer value of an expressioi

The natural logarithm of an

expression.

Random number between and 1.

The algebraic sign of an

expression.

The sine of an angle. Angle
expressed in radians

.

The square root of an expression.

4-13

4-iO

4-17

4-'

4-11

4-3

4-6

4-12

4-9

F-4

F.2 ARITHMETIC AND SYSTEM FUNCTIONS (Continued)

~

Formats and Descriptions

SYS(O)

SYS(l)

SYS (2)

SYS (3)

(4)

SYS (5).

SYS (6)

SYS (7)

•S(8)

SYS (9)

(10)

SYS(ll)

;ys(12)

The time of day (seconds past
midnight)

.

The day of the month.

The month of the year.

The year.

The terminal port number (-1 if

operator's console).

CPU time used in seconds.

The number of file I/O state-
ments executed.

The error code of the last
run-time error.

The number of the file
most recently opened.

Page size.

Tab size

Hour of the day

Minutes past last hour,

fat 1

1

'

4-16

1-16

;-i6

4-16

1-16

4-16

4-16

4-16

4-16

4-16

4-16

F-5

F.2 ARITHMETIC AND SYSTEM FUNCTIONS (Continued)

Page
Formats and Descriptions S C F Ref

.

SYS{13) Seconds past last minute, V 4-16

SYS (14) Seconds remaining on timed input. /
V 4-18

SYSU5) The constant PI (3.14159). / 4-16

SYS (16) The constant e (2.71828). / 4-16

TAB(expr) Function used with PRINT for
tabulating to a column. / 3-17

TAN(expr) The tangent of an angle. Angle
expressed in radians. / 4-14

F-6

F.3 STRING FUNCTIONS

Formats and De scriptio:

LEN(svar; Returns the number of characters
currently assigned to a string
variable.

POS
nsvarl 'I j"svar2) \

^("string lit 1"/, ("string lit 2") ,expr/

STR$ (expr)

VAL Vi" string lit"|»

Locates the position of a

substring in a string.

Converts a numeric expression
to its string representation.

Returns decimal representation
of a string.

F-7

F.4 MATRIX MANIPULATION

Formats and Descriptions

MAT invar1 = mvar2 Assigns the dimensions and values
of mvar2 to mvarl

.

AT mvarl = mvar2 \±\ mvar3 Performs matrix addition or

subtraction.

jmvar2

1

MAT mvarl = 1 (expr)j *mvar3 Multiplies a matrix by a numeric
expression or another matrix.

MAT mvar = CON [(row, col)] Sets the value of each matrix
element to one.

MAT mvar = IDN [{row, col)] Sets the elements of the major
diagonal of a matrix to ones and
all other elements to zeros.

MAT mvarl = INV (mvar 2) Performs matrix inversion.

MAT mvarl = TRN (mvar 2) Transposes matrix mvar2.

MAT mvar = ZER (row, col) Sets the value of each matrix
element to zero.

MAT INPUT mvar [(row, col)] [, mvar [(row, col)]] . .
. [;

]

Specifies matrices for which the

programmer enters data from the
terminal when the statement is

executed.

i-3

i-9

F-8

F.4 MATRIX MANIPULATION (Continued)

Formats and Descriptions

MAT PRINT mva:
l\;f mvarj . . . [;

Prints the contents of the
specified matrices.

MAT READ mvar [(row, col)] [,mvar [(row, col)]

]

var = DET(X)

Reads data into the specified
matrices from the data list
defined by a DATA statement (s)

Produces the determinant of
the last matrix inverted by
the INV statement.

J—L

Page
Ref

,

6-10

6-8

6-19

F-9

F.5 FILE INPUT AND OUTPUT

Formats and Descriptions ^ C F

Page
Re f

CLOSE [FILE (file)] Closes an open file or files. , 7-8

EOF (file) Returns a +1 if an end of file

is detected. Y

I

|var) r |var V]

INPUT FILE (file)|svarf [,
|svar£| . . .

Reads data in ASCII from a

sequential access file. / / 7-14

MAT INPUT FILE (file) ,mvar [,mvar] . .

.

Reads matrix data in ASCII from

a sequential access file. / / 7-19

MAT PRINT FILE (file),mvar \;jmvarj ... [;]

Outputs matrix file data to an

ASCII device. • / 7-18

Affile)\

MAT READ FILE Ufile, record
)J

,mvar [,mvar] ..

.

Reads matrix data in binary for-

mat from a file. / / 7-16

/(file A
MAT WRITE FILE Uf ile, record

)

J

,mvar [,mvar] . .

.

Writes matrix data in binary
format to a file. / / 7-15

F-10

F.5 FILE INPUT AND OUTPUT (Continued)

- :

--*"• I-.' i.- .' '..'
: _r :

• "
i v.'

.-

OPEN FILE (file, mode), filename [, record size [, filesize]

]

Opens a file which can then be
referenced by other file I/O
statements

.

expr
PRINT FILE (file) \var

svar
"string lit")

'M
expr
var
svar
"string lit"/

••R:}]

Outputs data to an ASCII device,

(if±le)\ jvar) |" fvar n
READ FILE \\f ile , recordj/ ,\ svar/

[_,
|svar

(J
. . .

file
WRITE FILE Wf ile, record

Reads data in binary format
from a file.

expr

|
var
'svar

"string lit"/

expr
|
var

| svar
"string lit"/

Writes data in binary format
to a file.

/ /

/ /

'-3

7-13

7-11

7-9

F-ll

F.6 INTERACTIVE SYSTEM COMMANDS

C;
:

Formats and Descriptions s C F

BYE Sign-off command. / /

CHAIR filename, attributes Changes file attributes. / V 8-34

CON Continues execution of a STOPped

program. V 8-15

DELETE filename Deletes a file from the

programmer's directory. /
V

i

V 8-32

DISK Prints the number of blocks used

and available in the programmer's
directory. V 8-31

ECHO Enables echoing of characters
at the terminal. V V 8-27

ENTER filename Merges the program named into

the current program. V
/
V 8-10

ERASE line nl, line n2 Deletes statements from a

program. V V 8-3

ESC Enables use of ESC key at the

terminal. V V 8-25

FILES Prints the filenames in the

programmer's directory. V 8-28

LIBRARY Prints the filenames in the

library directory. /
V 8-23

F-12

(Continued)

r ormatj .ptions

I il

aqe

1—f—

f

L.-ine
JTO)

nli (: JJ

Outputs part or all of the cur-
rent program to the terminal or
other ASCII device. y 5-4

)AD filename Loads a previously SAVEd program
into the program storage area. 5-9

MSG [AuserlDAroessage] Transmits messages to other users
or the operator or cancels NOMSG. 8-21

NEW Clears the programmer's storage
area. R-2

NOECHO Inhibits echoing at the program-
mer's terminal. 8-26

NOESC Disables ESCape key operation. 8-24

NOMSG Prevents the reception of mes-
sages from other programmers.

PPiGE=expr Sets the right margin of the
terminal

.

$-19

F-13

F.6 INTERACTIVE SYSTEM COMMANDS (Continued)

!line nl

To line n2

M i

,_ line nl(, J line n2L

Formats and Descriptions

Outputs part or all of the current

program to the terminal punch.

RENAME oldfilename, newfilename

Renames files.

RENUMBER
"(line nl

<STEP line n2

_(line nl STEP line n2

RUN
(line no.)!

(f ilenamefj

SAVE filename

SIZE

ThB=expr

WHATS filename

Renumbers statements in the

current program.

Executes the current program

or another program named by
filename.

Writes the current program into

the programmer's directory or to

a device in binary format.

Provides program and data storage

usage information.

Sets the zone spacing for PRINT

statements.

Prints attributes and other infor-

mation relating to a file.

1-33

8-13

1-11

s-1?

1-20

8-30

F-14

F.7 ADVANCED BASIC STATEMENTS AND COMMANDS

Formats and Descriptions

CALL subr [,expr] ,. Calls an assembly language
subroutine

.

:HAIN filename [THEN GOTO line no.]

DELAY=expr

ON ERR THEN statement

ON ESC THEN statement

Transfers control to the program
named in the statement.

Delays program execution for a

specified amount of time.

Directs the program to an error
handling routine when an error
occurs.

Directs the program to a user
handling routine when ESCape
is pressed.

PRINT FILE (file), USING format, expr [,expr]...

Formats output to files.

PRINT USING format, expr [,expr]...

Formats printed output.

1 9-4

M J 9-5

9-17

RETRY Repeats the statement which caused
caused an error.

TTME=expr Establishes the time limit for
timed input operation.

F-15

F.7 ADVANCED BASIC STATEMENTS AND COMMANDS (Continued)

Formats and Descriptions

Page
Ref

.

ivar)

tinput ["s tring lit"3] \ s var)

-l 3 var \l

\ 3 svarfj ... [;]

Used in conjunction with TIME to

set a limit for programmer

response. 9-23

F-16

DataGeneral "

* --'O c- ' > _\ \ : \ :ing doc la * zv : x
-

; *j \-

REMARKS FORM

Document Ti IDoci

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:
lame

Company Name

Address (No. & Street)

^m^^Tn-TTTJoT-^

Tit'A Date

City State Zip Code

FOLD DOWN FIRST FOLD DOWN

BUSINESS REPLY MAIL

Postage will be paid by;

Data General Corporation
Southboro, Massachusetts 01 772

ATTENTION: Programming Documentation

FIRST

CLASS
PERMIT
No. 26

Southboro

Mass. 01 772

FOLD UP SECOND FOLD UP

STAPLE

