Microware C Compiler User's Guide
for 0S-9

Microware C Compiler User's Guide: for OS-9
Copyright © 1983 Microware Systems Corporation.

All rights reserved.

Reproduction of this document, in part or whole, by any means, electrical or otherwise, is prohibited, except by written permission from
Microware Systems Corporation.

The information contained herein is believed to be accurate as of the date of publication, however, Microware will not be liable for any
damages, including indirect or consequential, from use of the OS-9 operating system or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

ACKNOWIEOGEMENTS ... i e e e e e e e e e e e et e e et e e e e aanaes Vil

Differences between Versions 1.1 @and 1.0ooviieiiiiiiiiieeiis et e s iX
1. The C ComMPiler SYSIEIM ..o e e e e e e e e e e et e e e e e eanees 1
IS 1 011 oo 1 1 o o [PP 1
1.2. The Language Implementationcoevuiiiiiiieii e e e e e e 1
1.3. Differences from the K & R Specificationccooeviiiiiiiiiiiiiie e, 1
1.4, Enhancements and EXIENSIONScouuuiiiiiiiieeiiiiii e et e et e e e e e e e e eeni e eeees 1
1.4.1. The “Direct” Storage ClasSuvviiuieiiii i e e 1
1.4.2. Embedded Assembly LanQUagEoovvueiiiieiiiieeieeee e e e e e 2
1.4.3. Control Character ESCape SEQUENCESuevvuneiiiieiiieeeiieeeieeea e et e e aaeeeens 2

1.5. Implementation-dependent CharaCteristiCSoevvueeiiiiiiiii i 3
1.5.1. Data Representation and Storage ReqUIremMentsooevvvvveiiieeeiiieeinernnnnens 3

1.5.2. Register VariableSu.ciiiiiiii e 3
1.5.3. Access To Command Line Parameterscoovvvvviiieviiiiiieiiiiineeeeiiin e 4

1.5.4. REfErences t0 drive NAMESuuiiiiiii i 4

1.6. System Calls and the Standard Librarycooooiiiiiiiiiiiii e 4
1.6.1. Operating System CallSuiiiiiiiiiii e 4
1.6.2. The Standard Libraryccccouiiiiiiiii i 4

1.7. Run-time Arithmetic Error Handlingcc.couiiiiii i 4
1.8. Achieving Maximum Program PerformanCec.oovevuieiiiieiiineeii e eeaieens 5
1.8.1. Programming ConSIAerationSccuueiiuiiiiiieiiiee it e e ee e e e e e eeaaneens 5
1.8.2. The OPtiMIZEr PaSS ... ccvuiiiiiieiiieei e e e e 5
1.8.3. The Profiler ..o e 5

1.9. C Compiler Component Filesand FIle USagecccvviiiieiiiiiiiie e 5
191 TeMPOrary FIlEScou i e eaas 6

1.10. RUNNINg the ComMPIlEriii e e e e 6
1.11. Compiler Option FIagScvvniiiici e e e 7
2. Characteristics of Compiled Programseiiiiiiiii e e e e e eens 9
2.1. The Object Code MOAUIEuiiiiieiie e e e e 9
211 MOCAUIE HEBAEY ... coeeiviiieeiii e e et e e 9
2.1.2. EXECULION OFFSEL ..ouvuiiiiiiii et 10
2.1.3. SIOTAJE SIZE .uniiii i 10
214, MOAUIE NAIMIEuiieiiii et e et eeeri e eees 10

P22 ST 1 10 010 1o o PSP 10
2.1.6. EXECULEDIE COUEuv ittt 10
2.1.7. SUING LITEralS covuiiii e 10
2.1.8. Initidizing Data and itS SIZEccvviiiii i 10
2.1.9. Data REFEIENCESuiieiieiiee et 10

2.2. MemMOry ManaQemeNtouiiuiiiii e e 11
2.2.1. Typical C Program Memory Mapcoceuuieiiiieeiieeiiiieciie e et ee e e eanes 11
2.2.2. Compile Time Memory AIlOCatioNcccuviiiiiieiiie e 12

3. € SYSEEM CallS ittt 15
N oo PP 15
ool PP PPTPPT 15
CNBIN < 16
CNIT e e 16
10X 01217o o [P SPPPPRN 17
L¢3 1,1 o PSR 17
L0 PP 18
L1 o PP 18
L= PPN 19
D o L= PP 20
5 11 L PO 20
T USRS 20
LT 1o Lo PR 21
LT - OSSP 21
LT (1o PR 22
1010 (07 o PPN 23

Microware C Compiler User's Guide

] PP 24
[P 24
1o o PP 25
/Kol | o= TR 26
Y00 T o PR 27
L] 7 0 PP 27
01 LN 28
(@S o] PP 29
PaISE ...ttt 30
< 1 30
REAO .. et 30
S o RSP 31
1 0 PPN 32
S (100 (ST PP 32
S 11T PR 32
S = | PP 33
S o] 7= N 33
= o G = TP 35
=N 35
LI5S == T 36
UNDNK o et aas 36
LAY 2 1 PPN 36
LAY (P 37
4, C Standard LiBraryooeuiiiiiii e 39
2 o 39
2 (o PP 40
Ol 0SB it 40
B0 et e 41
0 T0 PRSP 41
O B e 42
== o [T 43
S i 44
OBl e 45
LT PP 46
1= o] 1 7= PP 46
G (o] TSRS 47
[0 0T 1210 TP 48
= 1 o PPN 48
L= 11 T PN 49
L 1011 PP 49
PULC it e 51
PUES .ottt e e 51
L o] 1 PP PPRP 52
o= 0| PP 52
1o 11 TN 54
S = T 55
S | P 55
Y (= 1 SN 56
010] o S 57
L]0 . o PP 57
A, C REFEENCE MANUELiitiiiiii e e e e e e e e e eans 59
0 TR 1 g1 0o (8 Tex o o T 59
A2, LEXICal CONVENLIONSuiiiiiiiiiiieiee ettt e e e e e e e e e e e anees 59
ANt I O] 1 1017 1 £ PN 59
A.2.2. 1dentifiers (NBMES) ...ceuuiiiiieii e e e e e e eaa s 59
AL2.3. KEYWOISoviiciii et e e e e e e e e e 59
YN B o] 1 = 1 60

YN TS 1 1o = 61

Microware C Compiler User's Guide

A.2.6. Hardware CharaCteriStiCSovvvvunieiiiii e 61
PANRC ISV o1 = ' N o) - 1o o N 61
A4 WHEE'S 1N @ NEIME? ..eiieei e e e e e e e et e e e e aen s 61
A5, ObJECtS aN IVAIUESccvviiii e e 62
ALB. CONVEISIONS ..uuieiiiiniee ettt e e et e e e et e e e et e e et et s e e e e et e e e e tta e e e eat e eee et e eeeatnn s 62
A.6.1. Characters and INtEQEIScvvvniii e e e e e e 62
A.B.2. Float and DOUDIEccceviiiieiii e 63
A.6.3. Floating and Integralcocouuiiiiiiiii e 63
A.6.4. POINLErS aNd INTEJENS ..u.ivvnieiii e e e e e 63
F T U1 = T 1o 63
A.B.6. ArithmetiC CONVEISIONScccvunieiiiiiiiee e e s 63
A (o (=S Mo S 64
A.7.L Primary EXPreSSIONScccuuieiiieeiiiietiiie e e e e e e e e e et e e et e st ae s eeenes 64
AT.2. UNAY OPEIAIOIS ..eueiiiiiitiie ettt ans 65
A.7.3. MUItipliCatiVe OPEIAlOrSuuevitieieieeei e et e e e e e e e e e e e e e e eaanees 67
AT7.4. AdItiVE OPEIAtOrS .. .cvuciiii e e e e e 67
A.T.5. Shift OPEIEIOISuivi it e e e e e e e aaa e 67
A.7.6. REGONAl OPEIEIOIS ...uuiiiieiiie e e e e e e e e e e e e e e e e aaes 68
AT7.7. EQUAILY OPEIAIOrScvveiciiieeie e e e e e e e et e e e e e aeaas 68
A.7.8. BitWiSe AND OPEIGIOrcvvuiiiiieiiiieeie et e e e e e e e e e et e e et e e e eaneens 68
A.7.9. Bitwise EXCluSIVE OR OPEraOrcvvueiiiieiiiieeie e e e e e e e e e 68
A.7.10. Bitwise INClusiVe OR OPEratorcvvueiiiiieiiieeiiieeeie e e e e e e e e e 69
A.7.11. Logical AND OPEIAOr ... cceuuiiiiieeiee e et e e e e e e e e e et e e e eanes 69
A.7.12. LOGICAl OR OPEIGOrcvveeeiieeiieeeie e et e e e e et e e e e e et eeateeanneeeens 69
A.7.13. Conditional OPEratOrueveeieiiieeii e e e e 69
A.7.14. ASSIGNMENE OPEIIOIS ...u.evvueeeiiieiieeeee et e e e e e e e e e e e e et e e e eeaneens 69
AL7.15, COMMA OPEIAION ..iviitieieie it en 70
A8, DECIAIALIONS ..oevveieeeeii ettt e 70
A.8.1. Storage Class SPECITIErSueiuui e 71
A.B.2. TYPE SPECITIEIS . ceveiiiii e e e 71
ALB.3. DECIArAOrS ..evvi et 72
A.8.4. Meaning Of DECIAratOrSccvuuiiiiiiieii e ee e e e e e e e 72
A.8.5. Structure and Union Declarationsocovuviiieiiiiinieeiiinieeeein e 73
AB.B. INITTAIIZAIHON ... e 75
A8, TYPE NAIMES ..ot 77
ALB.8. TYPEUES .t 78
F e S = (< 011 1| £ PP 78
A.9. L. EXPression StAEMENT ... covuieii e e e e e e e e e e e e e e e eanas 78
A.9.2. Compound Statement or BIOCKcocviiiiiiiiiiiiciinee e, 78
A.9.3. Conditional SEEEEMENL ... ccevviiieeiiie e 79
A.9.4. WHhIle SEAEEMENT ...ceeeieieee e 79
ALO5. DO STBEMENT ... e e 79
ALO.6. FOr SEBIEMENT ...t e 79
A.9.7. SWILCh SEEEEIMENL ...uteiieiiii e eeaenns 80
F N R T == S - 1= 14 0| PP 80
A.9.9. COoNLINUE SEEEEIMENLiiiiiiieeeeii e e e e e e eeaens 81
A.9.10. REIUMN SEAEEMENT ... et r e e e 81
ALO9.11. GOLO SEEEEMENTeeeieeeee e e e e e e e e enaes 81
A.9.12. Labeled SEatemMENtiiiiiiieee e 81
AL9.13. NUIL SEAEEMENT ..eeveteeeei e e e es 81
A.10. EXternal DEfiNITIONSuuiiiiiiiieeeciis e e e e e e e et e e e eaen e eeees 82
A.10.1. External Function DefinitioNScoovuviiiiiiiiiiee e 82
A.10.2. External Data DefinitioNSovvviiiiiiiiiiiie e 83
ALL SCOPE RUIES ... e e 83
N I R I = o= oo = S 83
A.11.2. Scope Of EXIEMNAIS ...u.iiiicii e 84
A.12. Compiler CONtrol LiNESiiiuiiiiiieiii e e e e e 84
A.12.1. Token REPIACEMENTcvuiiiii i e e e e 84

Microware C Compiler User's Guide

A12.2. FE INCIUSION L. e e 85
A.12.3. Conditional CoOmMPIlationcocouuieiiiiiiiii i e 85
A12.4, LiNE CONLIOI ..vieiiiiiiie e 86
A.13. IMPIlICIt DECIAIAtONSiviiciii e e e e e e e aeas 86
N R Y o= oY1=] = o [P 86
A.14.1 StructureS and UNIONSoceueiiiiiiieeeiiiis et e s e et e e e 86
ALLA2, FUNCLIONS ..ttt et e e e e e e et e e et e e e eaen s 86
A.14.3. Arrays, Pointers, and SUDSCIIPLiNgcoovvivriiiieiiiieee e, 87
A.14.4. Explicit PoINter CONVEISIONSuueiviiieiiieeiiiieeiie e e e e e e e e e eanes 87
A.15. ConStant EXPrESSIONSuiuuuieiiieeiiiieeiiieeete e s e e e r e e e e eat e estee st eeataeeeanaasenaes 88
A.16. Portability CONSIAErationSccccuuiiiiiiiiiieee e e e e e e e eaen 89
N = g 0 TR0 PP 89
ALL8. SYNEAX SUMIMIY ..ottt et e e e e e et r e a e eanees 90
N Bt R o o= T U 90
A.LB.2. DECIArAtiONS ...cevvieeeii et 91
ALLB.3. SEAEMENLS ..ot e 93
A.18.4. External definitionSooeveeuiiieiiiiiiiei e 93
ALLB.S. PrEOIOCESSOr ..vviitiitiite ittt 94
B. Compiler Generated Error MESSAgESu.ivuueeiiieiiiieeiiie e eeeie e e e e e e e st e e et e e e eeanaens 95
C. Compiler Phase CommMand LiNESc.uuiiiiiieiiiieiie e e e e e e e e e e e e e eaens 99
C.1. CCL & CC2 (C EXECULIVES) ..vvuieeiineeiin et e eette e e e et s e et e e et e e e et e e ea e e st e e eaaeeannaees 99
(OBl o)1= o (O 117= o (oI 0/ (= o] {0]00=5 =]) IS 100
C.3. c.comp (ONe-pass COMPIIE)u.iirnieiiieii e e e eaes 100
C.4. c.pass (Pass One/Two of Two-pass COMPIlEr)ooevvieiiiieiiiiee e, 100
C.5. c.opt (Assembly code OPLtIMIZEN)covviiiiii e e 100
O Ao = 1 W AN = 101 o] = o) 100
(O A ol 1 o1 Qi (101 =) 101
D. Interfacing t0 BaSICOciiuiiiiiieiie e e e e e e e 103
D.1. Example 1 - Simple Integer AritmMeEtiC Casecevvieiiieiiiieiiiieece e e e 103
D.2. Example 2 - More Complex Integer Aritmetic Casecooevvvveviieiiineiiiieeiieeenn, 105
D.3. Example 3 - Simple String Manipulationcccoevuiieiiiiiiiiece e, 106
D.4. EXample 4 - QUICKSOIcciiiiiiiii i e e e 107
D.5. Example 5 - Floating POINtcc.ueiiiiiiiiiici e e 110
D.6. Example 6 - Matrix El6MENEScovviiiii e 113
E. Relocating Macro Assembler REFEIENCEuiiiiiiiii e 115
E.L SymBOoliC NAMES e e 115
E.2. Label FIEld oo 115
E.3. UNAEfiNEd NAMESciiiiiiiiiiii et et e et e e e eat e e e 115
S I E= v o N 0 2= 115
E.5. Section LOCAiON COUNTENSuuueiiiiiieeiii e e et et e e e et e e et eeeeaa s 116
E.B. SECHON DITECLIVES ...euviiiiiiiiii e e e e e et e e e e e eaenns 116
E.B.1. PSECT DITCHVE .. eiivtiieeiiii ettt e e e s 116
E.6.2. VSECT DIFECHIVE ...uieiiiiiiee ittt et e e e e eaaenns 117
E.6.3. CSECT DITECLIVE ...cevviiieeeiiii et e et e s 117
SN I A S VA S R - 1= 11 | PP 117

E.7. Comparison Between Assembly Programs for the Microware Interactive Assembler
and the Relocating Macro ASSEMDBIEScovuiiiiiiiie e 118
E.7.1. Macro Interactive ASSEmMbIEr SOUMCEvuvieiiieiieiiiie e 118
E.8. INtroduCtion t0 IMBCIOSuuiiiiiii ittt e e 119
e I @ 11 P 119
E.9.1. Macro DEfiNItiONuuviiiiiiiieeii e 119
E.9.2. Nested MaCro CallSccuuuiiiiiiiiiiii e 120
0.3, LabEIS .ot 121
E.9.4. Additiona Pseudo-INSrUCLIONSuveviiiiieiiiii e 121

Vi

Acknowledgements

The OS-9 C Compiler waswritten by James M cCosh with OS-9 implementation assistance from Terry
Crane and Kim Kempf. The Relocatable Assembler, Linker, and Profiler was edited by Wes Camden
and Ken Kaplan.

vii

viii

Differences between Versions 1.1 and

1.0

Important Notice - Please Read Car efully

This package contains the OS-9 C Compiler Version 1.1. Many improvements and bug fixes
have been incorporated sincethe V1.0 release. If you are upgrading from V1.0, be absol utely
sure toinstall all the files from the V1.1 disks. None of the compiler sections or the library
is compatible with V1.0 files. Any “.r" or “.&" files produced by the V1.0 compiler should
not be assembled or linked with any “.a” or “.r” files produced by the V1.1 compiler. To be
safe, recompile/reassemble all “.@’ and “.r" fileswith VV.1.1.

This update include appendices for the C Compiler User's Guide describing the compiler
error messages, compiler phase command lines, interfacing C functionsto BASIC09, and an
overview of the relocating macro assembler.

The remainder of this notice describes the changes made since V1.0.

General:

Executives (ccl and cc2):

Preprocessor (c.prep):

Compiler (c.comp, c.passl,
C.pass2):

Optimizer (c.opt):

Assembler (c.asm):

The compiler code generator and c.opt have been improved to
produce even smaller object code. This, and improved source
coding, has resulted in a 1 page decrease in the size of c.comp
and a 4 page decrease in c.passl.

-X appearing on the cc1l command line causes the compiler to
make the c.com command file but not execute it. -q on the cc2
command line causes the compiler to suppress filename and
compiler phase messages.

C.prep now printsafatal error if aline exceeds 255 bytes.

C.passl float/double conversion is now done properly rather
than reporting error 7.

Direct and static direct storage classes may now beinitialized.
Sizeof operator now reports an error when applied to an
undefined identifier. Sizeof now allows any expression inside

of parenthesis. Previoudly, only primaries were allowed.

Various code generation problems involving certain long and
floating operations have been fixed.

C.opt has been improved to use much less dynamic memory
while performing optimizations.

Some branches were erroneously converted to short branches
when they should have been long.

C.asm can now handle direct-page initialized data.
Some out-of-range short branches were not detected.

VSECT syntax changed to alow direct-page initiaizers. This
make V1.0 assembly file incompatible with V1.1.

Macro and repeat block facilities have been added.

Linker (c.link):

Library (clib.l):

C.link can now handle direct-page initialized data.

C.link will now report if the direct page all ocations exceeds 256
bytes.

C.link is about three times faster using the improved V1.1
standard library.

C.link can now output modules that can be entered by the
BASIC09 “RUN" command.

The standard library FILE structure has been changed to allow
specification of buffersizefor afile. InV1.0, the buffersizewas
fixed at 256 bytes. A new element of the FILE struct (_bufsiz)
contains the desired buffer size. This may be used asfollows:

mai n()

{
FILE *fp;

fp=fopen("file","r"),
fp->_bufsiz = 1024;

A few restrictions exist on the use of this parameter. Initialy
the bufsiz valueis 0. The library routines will assign a buffer
of 256 bytesto thefile uponinitial read or write. If thevalueis
non-zero and thefp has not previously been accessed, that value
is used as the buffersize. Note that due to the way the library
routines work, once a buffer of a given size is allocated to an
fp, alarger size cannot be used, even if thefileis closed. Note
that the buffers are allocated from the ibrk() so enough extra
memory must be allocated by the linker to handle the higger
buffers.

Sincethesizeof the_iobuf struct (FILE) in stdio.h haschanged,
al .r files must be re-compiled using the new header file.

Cstart.r can now handle direct page data initialization.

Fseek() now does not cause the buffer to bere-filled if the seek
destination is already in the buffer.

Getc() now does“I$READ” on unbuffered SCF devices rather
than “I$READLN".

Getc() performed on “stdin” flushes the “stdout” buffer.

Printf() has been changed to not flush the“ stdout” buffer before
returning.

Chown() has been fixed to not wipe out disks.
Toascii() has been added to stdio.h

Calls to scanf() now do not cause the linker to reports
unresolved references to toupper() and tolower().

Thefloating point routines now report errors 40, 41, and 42 for
floating point over/underflow, divide by zero, and float/long
conversion instead of error #007.

Xi

Xii

Chapter 1. The C Compiler System

1.1. Introduction

The“C” programming language is rapidly growing in popularity and seems destined to become one
of themost popular programming languages used for microcomputers. Therapid riseintheuseof Cis
not surprising. C isan incredibly versatile and efficient language that can handle tasks that previously
would have required complex assembly language programming.

C was originaly developed at Bell Telephone Laboratories as an implementation language for the
UNIX operating system by Brian Kernighan and Dennis Ritchie. They also wrote a book titled “ The
C Programming Language’ which is universally accepted as the standard for the language. It is an
interesting reflection on the language that although no formal industry-wide “standard” was ever
developed for C, programs written in C tend to be far more portable between radically different
computer systems as compared to so-called “standardized” languages such as BASIC, COBOL, and
PASCAL. The reason C is so portable is that the language is so inherently expandable that if some
special function isrequired, the user can create a portabl e extension to the language, as opposed to the
common practice of adding additional statementsto the language. For example, the number of special-
purpose BASIC dialects defies all reason. A lesser factor is the underlying UNIX operating system,
which is aso sufficiently versatile to discourage bastardization of the language. Indeed, standard C
compilers and Unix are intimately related.

Fortunately, the 6809 microprocessor, the OS-9 operating system, and the C language form an
outstanding combination. The 6809 was specifically designed to efficiently run high-level languages,
and its stack-oriented instruction set and versetile repertoire of addressing modes handle the C
language very well. As mentioned previously, UNIX and C are closely related, and because OS-9 is
derived from UNIX, it also supports C to the degree that almost any application written in C can be
transported from a UNIX system to an OS-9 system, recompiled, and correctly executed.

1.2. The Language Implementation

0S-9 C isimplemented almost exactly as described in 'The C Programming Language' by Kernighan
and Ritchie (hereafter referred to as K& R).

Allthough this version of C follows the specification faithfully, there are some differences. The
differences mostly reflect parts of C that are obsolete or the constraints imposed by memory size
limitations.

1.3. Differences from the K & R Specification

* Bit fields are not supported.

» Constant expressions for initializers may include arithmetic operators only if al the operands are
of type INT or CHAR.

» The older forms of assignment operators, '=+' or '=*', which are recognized by some C compilers,
are not supported. Y ou must use the newer forms '+='"*=' etc.

o “#ifdef (or #ifndef) ...[#else...] #endif” is supported but “#if <constant expression>" is not.

* Itisnot possible to extend macro definitions or strings over more than one line of source code.

» The escape sequence for new-line \n' refers to the ASCII carriage return character (used by OS-9
for end-of-line), not linefeed. (hex OA). Programs which use \n' for end-of-line (which includes al
programsin K & R), will still work properly.

1.4. Enhancements and Extensions

1.4.1. The “Direct” Storage Class

The 6809 microprocessor instructions for accessing memory viaan index register or the stack pointer
can be relatively short and fast when they are used in C programs to access “auto” (function local)

Embedded Assembly Language

variables or function arguments. The instructions for accessing global variables are normally not so
nice and must be four bytes long and correspondingly slow. However, the 6809 has a nice feature
which helps considerably. Memory, anywherein asingle page (256 byte block), may be accessed with
fast, two byte instructions. Thisis called the “ direct page’, and at any timeitslocation is specified by
the contents of the “direct page register” within the processor. The linkage editor sorts out where this
could be, and it need not concern the programmer, who only needs to specify for the compiler which
variables should be in the direct page to give the maximum benefit in code size and execution speed.

Tothisend, anew storage class specifier is recognized by the compiler. Inthe manner of K & R page
192, the sc-specifier list is extended as follows:

Sc-specifier: auto

static

extern

register

typedef

direct (extension)
extern direct (extension)
static direct (extension)

The new key word may be used in place of one of the other sc-specifiers, and its effect is that the
variablewill be placed in the direct page. “DIRECT” createsaglobal direct page variable. “EXTERN
DIRECT” references an EXTERNAL-type direct page variable; and “STATIC DIRECT” creates a
local direct page variable. These new classed may not be used to declare function arguments. “ Direct”
variables can be initialized but will, as with other variables not explicitly initialized, have the value
zero at the start of program execution. 255 bytes are available in the direct page (the linker requires
one byte). If al the direct variables occupy less than the full 255 bytes, the remaining global variables
will occupy the balance and memory above if necessary. If too many bytes or storage are requested
in the direct page, the linkage editor will report an error, and the programmer will have to reduce the
use of DIRECT-type variables to fit the 256 bytes addressable by the 6809.

It should be kept in mind that “ direct” isuniqueto this compiler, and it may not be possibleto transport
programs written using “direct” to other environments without modification.

1.4.2. Embedded Assembly Language

Asversatile as C is, occasionally there are some things that can only be done (or done at maximum
speed) in assembly language. The OS-9 C compiler permits user-supplied assembly-language
statements to be directly embedded in C source programs.

A line beginning with “#asm” switches the compiler into a mode which passes all subsequent lines
directly to the assembly-language output, until a line beginning with “#endasm” is encountered.
“#endasm” switches the mode back to normal. Care should be exercised when using this directive so
that the correct code section is adhered to. Normal code from the compiler is in the PSECT (code)
section. If your assembly code usesthe VSECT (variable) section, be sureto put aENDSECT directive
at the end to leave the state correct for following compiler generated code.

1.4.3. Control Character Escape Sequences

The escape sequences for non-printing charactersin character constants and strings (seeK & R page
181) are extended as follows:

linefeed (LF): \Il (lower case "ell")

Thisisto distinguish LF (hex 0A) from \n which on OS-9 isthe same as\r (hex OD).

Implementation-
dependent Characteristics

bit patterns: \NNN (octal constant)
\dNNN (deci mal constant)
\ XxNN (hexadeci mal constant)

For example, the following all have avalue of 255 (decimal):

\ 377 \ xff \ d255

1.5. Implementation-dependent Characteristics

K & R frequently refer to characteristics of the C language whose exact operations depend on
the architecture and instruction set of the computer actually used. This section contains specific
information regarding this version of C for the 6809 processor.

1.5.1. Data Representation and Storage Requirements

Each variable type requires a specific amount of memory for storage. The sizes of the basic typesin
bytes are as follows:

Data Type Size Internal Representation

CHAR 1 two's complement binary

INT 2 two's complement binary
UNSIGNED 2 unsigned binary

LONG 4 two's complement binary
FLOAT 4 binary floating point (see below)
DOUBLE 8 binary floating point (see below)

This compiler follows the PDP-11 implementation and format in that CHARs are converted to INTS
by sign extension, “SHORT” or “SHORT INT” meansINT, “LONG INT” meansLONG and “LONG
FLOAT” means DOUBLE. The format for DOUBLE valuesis asfollows:

(1 ow byte) (high byte)
S T +
Il seven byte I 1 byte !
Il nmant i ssa I exponent !
S T +
N sign bit

The form of the mantissais sign and magnitude with an implied “1” bit at the sign bit position. The
exponent is biased by 128. The format of aFLOAT isidentical, except that the mantissais only three
bytes long. Conversion from DOUBLE to FLOAT is carried out by truncating the least significant
(right-most) four bytes of the mantissa. The reverse conversion is done by padding the least significant
four mantissa bytes with zeros.

1.5.2. Register Variables

Oneregister variable may be declared in each function. The only types permitted for register variables
areint, unsigned and pointer. Invalid register variable declarations are ignored; i.e. the storage class
is made auto. For further details see K & R page 81.

A considerable saving in code size and speed can be made by judicious use of aregister variable. The
most efficient use is made of it for a pointer or a counter for aloop. However, if aregister variableis
used for a complex arithmetic expression, there is no saving. The “U” register is assigned to register
variables.

Access To Command
Line Parameters

1.5.3. Access To Command Line Parameters

The standard C arguments “argc” and “argv” are available to “main” asdescribed in K & R page 110.
The start-up routine for C programs ensures that the parameter string passed to it by the parent process
is converted into null-terminated strings as expected by the program. In addition, it will run together
as asingle argument any strings enclosed between single or double quotes (“™ or ™). If either is part
of the string required, then the other should be used as a delimiter.

1.5.4. References to drive names

There are hard references to /D1 in c.prep and ccl. You will have to do a couple of patches to get
the C compiler to work off a hard drive. You can use the modpatch command to do these patches.
The patches are as follows:

Load c.prep into memory and change the byte at offset $135C and $135D to the name of the drive
you want (e.g. set $135C=68 'h' and $135D=30 '0"). Then load ccl and do the same thing except at
the offsets $OEE5 and $0EESG. Be sure to verify and save the modules back to disk. Alternatively use
the command “verify u” to update the module CRC.

1.6. System Calls and the Standard Library
1.6.1. Operating System Calls

The system interface supports aimost all the system calls of both OS-9 and UNIX. In order to facilitate
the portability of programs from UNIX, some of the calls use UNIX names rather than OS-9 names
for the same function. There are afew UNIX calls that do not have exactly equivalent OS-9 cals. In
these cases, the library function simulates the function of the corresponding UNIX call. In caseswhere
there are OS-9 calls that do not have UNIX equivalents, the OS-9 names are used. Details of the calls
and a name cross-reference are provided in the “ C System Calls’ section of this manual.

1.6.2. The Standard Library

The C compiler includes avery complete library of standard functions. It is essential for any program
which uses functions from the standard library to have the statement:

#i ncl ude <stdio. h>

See the “C Standard Library” section of this manual for details on the standard library functions
provided.

IMPORTANT NOTE: If output via printf(), fprintf() or sprintf() of long integers is required, the
program MUST call “pflinit()” at some point; thisis necessary so that programsnot involving LONGS
do not have the extra LONGs output code appended. Similarly, if FLOATs or DOUBLEs are to
be printed, “pffinit()” MUST be called. These functions do nothing; existence of calls to themin a
program informs the linker that the relevant routines are also needed.

1.7. Run-time Arithmetic Error Handling

K & Rleavethetreatment of variousarithmetic errors open, merely saying that it ismachine dependent.
This implementation deal with a limited number of error conditions in a special way; it should be
assumed that the results of other possible errors are undefined.

Three new system error numbers are defined in <errno.h>:

#define EFPOVR 40 /* floating point overflow of underflow */
#defi ne EDI VERR 41 /* division by zero */

Achieving Maximum
Program Performance

#define EINTERR 42 /* overflow on conversion of floating point
to long integer */

If one of these conditions occur, the program will send asignal to itself with the value of one of these
errors. If not caught or ignored, thewill cause termination of program with an error return to the parent
process. However, the program can catch the interrupt using “signal()” or “intercept()” (see C System
Cadlls), and in this case the service routine has the error number as its argument.

1.8. Achieving Maximum Program Performance

1.8.1. Programming Considerations

Because the 6809 is an 8/16 bit microprocessor, the compiler can generate efficient code for 8 and
16 hit objects (CHARs, INTSs, etc.). However, code for 32 and 64 bit values (LONGs, FLOATS,
DOUBLES) can be at least four times longer and slower. Therefore don't use LONG, FLOAT, or
DOUBLE where INT or UNSIGNED will do.

The compiler can perform extensive evaluation of constant expressions provided they involve only
constants of type CHAR, INT, and UNSIGNED. There is no constant expression evaluation at
compile-time (except single constants and “casts’ of them) where there are constants of type LONG,
FLOAT, or DOUBLE, therefore, complex constant expressions involving these types are evaluated at
run time by the compiled program. Y ou should manually compute the value of constant expressions
of these types if speed is essential.

1.8.2. The Optimizer Pass

The optimizer pass automatically occurs after the compilation passes. It reads the assembler source
codetext and removes redundant code and searches for code sequencesthat can be replaced by shorter
and faster equivalents. The optimizer will shorten object code by about 11% with asignificant increase
in program execution speed. The optimizer is recommended for production versions of debugged
programs. Because this pass takes additional time, the “-O” compiler option can be used to inhibit it
during error-checking-only compilations.

1.8.3. The Profiler

The profiler is an optional method used to determine the frequency of execution of each functionin a
C program. It allowsyou to identify the most-frequently used functionswhere algorithmic or C source
code programming improvements will yield the greatest gains.

When the “-P" compiler option is selected, code is generated at the beginning of each function to
call the profiler module (called “_prof”), which counts invocations of each function during program
execution. When the program has terminated, the profiler automatically prints alist of all functions
and the number of times each was called. The profiler slightly reduces program execution speed. See
“prof.c” source for more information.

1.9. C Compiler Component Files and File Usage

Compilation of a C program by cc requires that the following files be present in the current execution
directory (CMDS).

Table1.1. OS9Level | Systems

ccl compiler executive program
c.prep Macro pre-processor
c.passl compiler pass 1

C.pass2 compiler pass 2

Temporary Files

c.opt assembly code optimizer
c.asm relocating assembler
clink linkage editor

Tablel1.2. OS9Leve Il Systems

cc2 compiler executive program
c.prep Macro pre-processor
c.comp compiler proper

c.opt assembly code optimizer
c.asm relocating assembler

clink linkage editor

In addition a file called “clib.l” contains the standard library, math functions, and systems library.
The file “cstart.r” is the setup code for compiled programs. Both of these files must be located in a
directory named “LIB” on the system's default mass storage device, which is specified in the OS-9
“INIT” module and is usually the disk drive the system is booted from.

If, when specifying “#include” files for the pre-processor to read in, the programmer uses angle
brackets, “<” and “>", instead of parentheses, the file will be sought starting at the “DEFS’ directory
on whichever drive is the default system drive for the system running.

1.9.1. Temporary Files

A number of temporary files are created in the current data directory during compilation, and it is
important to ensure that enough space is available on the disk drive. As arough guide, at least three
times the number of blocks in the largest source file (and its included files) should be free.

The identifiers “etext”, “edatd’, and “end” are predefined in the linkage editor and may be used
to establish the addresses of the end of executable text, initialized data, and uninitialized data
respectively.

1.10. Running the Compiler

Thearetwo commandswhich invoke distinct versions of the compiler. “ccl” isfor OS-9 Level | which
uses atwo pass compiler, and, “cc2” isfor Level 11 which causes asingle pass version. Both versions
of the compiler works identically, the main differenceis that ccl has been divided into two passesto
fit the smaller memory size of OS-9 Level | systems. In the following text, “cc” refersto either “ccl”
or “cc2” as appropriate for your system. The syntax of the command line which calls the compiler is:

cc [option-flags] fi | e...

One file at a time can be compiled, or a number of files may be compiled together. The compiler
manages the compilation up to four stages: pre-processor, compilation to assembler code, assembly
to relocatable code, and linking to binary executable code (in OS-9 memory module format).

The compiler accepts three types of source files, provided each hame on the command line has the
relevant postfix as shown below. Any of the above file types may be mixed on the command line.

Table 1.3. File Name Suffix Conventions

Suffix Usage

.C C sourcefile

a assembly language source file
I relocatable module

Compiler Option Flags

Suffix Usage
none executable binary (OS-9 memory module)

There are two modes of operation: multiple source file and single source file. The compiler selects
the mode by inspecting the command line. The usual modeis single source and is specified by having
only one source file name on the command line. Of course, more than one source file may be compiled
together by using the “#include” facility in the source code. In this mode, the compiler will use the
name obtained by removing the postfix from the name supplied on the command line, and the output
file (and the memory module produced) will have this name. For example:

cc prg.c
will leave an executablefile called “prg” in the current execution directory.

The multiple source mode is specified by having more than one source file name on the command
line. In this mode, the object code output file will have the name “output” in the current execution
directory, unless a name is given using the “-f=" option (see below). Also, in multiple source mode,
the relocatable modules generated as intermediate files will be left in the same directories as their
corresponding source files with the postfixes changed to “.r”. For example:

cc prgl.c /dO/fred/prg2.c

will leave an executablefile called “ output” in the current execution directory, onefile called “prgl.r”
in the current data directory, and “prg2.r” in “/d0/fred”.

1.11. Compiler Option Flags

The compiler recognizes several command-line option flags which modify the compilation process
where needed. All flags are recognized before compilation commences so the flags may be placed
anywhere on the command line. Flags may be ran together asin “-ro”, except where aflag isfollowed

- A suppresses assembly, leaving the output as assembler code in afile whose name is postfixed “.a".

- E=<number> Set the edition number constant byte to the number given. Thisisan OS-9 convention
for memory modules.

- O inhibits the assembly code optimizer pass. The optimizer will shorten object code by about
11% with a comparable increase in speed and is recommended for production versions of debugged
programs.

- P invokes the profiler to generate function frequency statistics after program execution.

- R suppresses linking library modules into an executable program. Outputs are left in files with
postfixes“.r".

- Me<memory size> will instruct the linker to allocate <memory size> for data, stack, and parameter
area. Memory size may be expressed in pages (an integer) or in kilobytes by appending “k” to an
integer. For more details of the use of this option, see the “Memory Management” section of this
manual.

- L=<filename> specifiesalibrary to be searched by the linker before the Standard Library and system
interface.

- F=<path> overrides the above output file naming. The output file will be left with <filename> as
its name. This flag does not make sense in multiple source mode, and either the -a or -r flag is also
present. The module will be called the last name in <path>.

Compiler Option Flags

- Cwill output the source code as comments with the assembler code.

- S stops the generation of stack-checking code. -S should only be used with great care when the
application is extremely time-critical and when the use of the stack by compiler generated code is
fully understood.

- D<identifier> is equivalent to “#define <identifier>" written in the source file. -D is useful where
different versions of a program are maintained in one source file and differentiated by means of the
“#ifdef” of “#ifndef” pre-processor directives. If the <identifier> is used as a macro for expansion by
the pre-processor, “1” (one) will be the expanded “value” unless the form “-d<identifier>=<string>"
isused in which case the expansion will be <string>.

Table 1.4. Command Line and Option Flag Examples

command line action output file(s)
ccC prg.c compile to an executable prg
program
ccprg.c-a compile to assembly prg.a
language source code
ccprg.c-r compile to relocatable prg.r
module

ccprgl.cprg2.cprg3.c compile to executable prgl.r, prg2.r, prg3r,
program output
ccprgl.cprg2.aprg3.r compile prgl.c, assemble prgl.r, prg2.r
prg2a and combine
al into and executable

program
ccprgl.cprg2.c-a compile to assembly prgl.a prg2.a
language source code

ccprgl.cprg2.c-f=prg compile to executable prg
program

Chapter 2. Characteristics of
Compiled Programs

2.1. The Object Code Module

The compiler produces position-independent, reentrant 6809 code in a standard OS-9 memory module
format. The format of an executable program module is shown below. Detailed descriptions of each
section of the module are given on following pages.

Modul e Section

O fset Si ze (bytes)
o m e e e e e e e eae oo +

$00 ! !
! Modul e Header ! 8
| |
e R T !

$09 ! Execution O f set bo---+ 2
e R T ! !

$0B ! Per manent Storage Size ! ! 2
e R T ! !

$0D ! Modul e Nane ! !
! . ! !
% VvV <--+

Execut abl e code

String Literals

N N
| o o o e o D f D e m D f D e e D e m e e D e e e e e oo - |
! Initializing Data Size ! 2
| o o o e o D f D e m D f D e e D e m e e D e e e e e oo - |
\Y; \Y;
Initializing Data
N N
R !
! Dat a-t ext Reference Count ! 2
| o o o e o D f D e m D f D e e D e m e e D e e e e e oo - |
\Y; \Y;
Dat a-text Reference O fsets
N N
| o o o e o D f D e m D f D e e D e m e e D e e e e e oo - |
! Dat a- dat a Ref erence Count ! 2
| o o o e o D f D e m D f D e e D e m e e D e e e e e oo - |
\Y; \Y;
Dat a- dat a Reference O fsets
N N
| o o o e o D f D e m D f D e e D e m e e D e e e e e oo - |
! CRC Check Val ue ! 3

2.1.1. Module Header

This is a standard module header with the type/language byte set to $11 (Program + 6809 Object
Code), and the attribute/revision byte set to $81 (Reentrant + 1).

Execution Offset

2.1.2. Execution Offset

Used by OS-9 to locate where to start execution of the program.

2.1.3. Storage Size

Storage size isthe initial default allocation of memory for data, stack, and parameter area. For a full
description of memory alocation, see the section entitled “Memory Management” located el sewhere
in this manual .

2.1.4. Module Name

Module name is used by OS-9 to enter the module in the module directory. The module name is
followed by the edition byte encoded in cstart. If this situation is not desired it may be overridden by
the -E= optionin cc.

2.1.5. Information

Any strings preceded by the directive “info” in an assembly codefile will be placed here. A major use
of this facility is to place in the module the version number and/or a copyright notice. Note that the
"#asm' pre-compiler instruction may be used in a C source file to enable the inclusion of this directive
in the compiler-generated assembly code file.

2.1.6. Executable Code

The machine code instructions of the program.

2.1.7. String Literals

Quoted string in the C source are placed here. They are in the null-terminated form expected by the
functions in the Standard Library. NOTE: the definition of the C language assumes that strings are
in the DATA area and are therefore subject to alteration without making the program non-reentrant.
However, in order to avoid the duplication of memory requirements which would be necessary if they
wereto beinthe dataarea, they are placed inthe TEXT (executable) section of the module. Putting the
strings in the executable section implies that no attempt should be made by a C programmer to alter
string literals. They should be copied out first. The exception that proves the ruleis the initiaization
of an array of type char like this:

char nessage[] = "Hello world\n";

The string will be found in the array 'message’ in the data area and can be atered.

2.1.8. Initializing Data and its Size

If a C program contains initializers, the data for the initial values of the variables is placed in this
section. The definition of C states that all uninitialized global and static variables have the value zero
when the program starts running, so the startup routine of each C program first copies the data from
the module into the data area and then clears the rest of the data memory to nulls.

2.1.9. Data References

No absolute addresses are known at compile time under OS-9, so where there are pointer values in
the initialization data, they must be adjusted at run time so that they reflect the absolute values at that
time. The startup routine uses the two data reference tables to locate the values that need alteration
and adjusts them by the absolute values of the bases of the executable code and data respectively.

For example, suppose there are the following statements in the program being compiled:

10

Memory Management

char *p = "lI'ma string!";
char **q = &p;

These declarations tell the compiler that there is to be a char pointer variable, 'p', whose initial value
is the address of the string and a pointer to a char pointer, 'q', whose initial value is the address of
'p". The variables must be in the DATA section of memory at run time because they are potentially
alterable, but absolute addresses are not known until run time, so the values that 'p' and '’ must have
are not known at compile time. The string will be placed by the compiler in the TEXT section and
will not be copied out to DATA memory by the startup routine. The initializing data section of the
program module will contain entries for 'p' and 'q'. They will have as values the offsets of the string
from the base of the TEXT section and the offset of the location of 'p' from the base of the DATA
section respectively.

The startup routine will first copy al the entriesin theinitializing data section into their allotted places
inthe DATA section. Then it will scan the data-text reference table for the offsets of values that need
to have the addresses of the base of the TEXT section added to them. Among these will be the “p”
which, after updating, will point to the string which isin the TEXT section. Similarly, after a scan of
the data-data references, “g” will point to (contain the absolute of) “p”.

2.2. Memory Management

The C compiler and its support programs have default conditions such that the average programmer
need not be concerned with details of memory management. However, there are situations where
advanced programmers may wish to tailor the storage allocation of a program for special situations.
The following information explainsin detail how a C program'’s data area is allocated and used.

2.2.1. Typical C Program Memory Map

A storage area is allocated by OS-9 when the C program is executed. The layout of this memory is

asfollows:
hi gh addresses

| | <- SBRK() adds nore

| | nmenory here

| |

R R PR I <- nmenend

! paraneters !

g |

! !
Current stack stack | <- sp register
reservation -> b !

| \V; |

! I <- standard I/O buffers

! free nmenory ! al | ocated here
Current top ! !
of data -> Lo, N I <- IBRK() changes this

menory bound upward

R I <-- end
I uninitialized !
! dat a !
R | <-- edata
! initialized !
! dat a !
R R !
n ! di rect page !

11

Compile Time Memory Allocation

dpsi z ! vari abl es !
v e eeiaaa + <-- y,dp registers
| ow addr esses

The overall size of this memory area is defined by the “storage size” value stored in the program's
module header. This can be overridden to assign the program additional memory if the OS-9 Shell
“#' command is used.

The parameter area is where the parameter string from the calling process (typically the OS-9 Shell)
is placed by the system. The initiaizing routine for C programs converts the parameters into null-
terminated strings and makes pointers to them available to 'main()' via'argc' and ‘argv'.

The stack area is the currently reserved memory for exclusive use of the stack. As each C function
is entered, aroutine in the system interface is called to reserve enough stack space for the use of the
function with an addition of 64 bytes. The 64 bytes are for the use of user-written assembly code
functions and/or the system interface and/or arithmetic routines. A record iskept of the lowest address
so far granted for the stack. If the area requested would not bring this lower then the C function is
allowed to proceed. If the new lower limit would mean that the stack areawould overlap the dataarea,
the program stops with the message:

*x%% STACK OVERFLOW ****

on the standard error output. Otherwise, the new lower limit is set, and the C function resumes as
before.

The direct page variables areais where variables reside that have been defined with the storage class
'direct’ in the C source code or in the 'direct' segment in assembly code source. Notice that the size of
thisareais aways at |east one byte (to ensure that no pointer to a variable can have the value NULL
or 0) and that it is not necessarily 256 bytes.

Theuninitialized dataareais where the remainder of the uninitialized program variablesreside. These
two areas are, in fact, cleared to all zeros by the program entry routine. The initialized data area is
where the initialized variables of the program reside. There are two globally defined values which
may be referred to: 'edata and 'end’, which are the addresses of one byte higher than the initialized
data and one byte higher than the uninitialized data respectively. Note that these are not variables; the
values are accessed in C by using the '&' operator asin:

hi gh = &end;
| ow = &edat a;

and in assembler:

| eax end, y
st X hi gh,y

TheY register points to the base of the data area and variables are addresses using Y -offset indexed
instructions.

When the program starts running, the remaining memory isassigned to the“free” area. A program may
call “ibrk()” to request additional working memory (initialized to zeros) from the free memory area.
Alternatively, more memory can be dynamically obtained using the* sbrk()” which requests additional
memory from the operating system and returns its lower bound. If this fails because OS-9 refuses to
grant more memory for any reason “sbrk()” will return -1.

2.2.2. Compile Time Memory Allocation

If not instructed otherwise, the linker will automatically allocate 1k bytes more than the total size of
the program'’s variables and strings. This size will normally be adequate to cover the parameter area,

12

Compile Time Memory Allocation

stack requirements, and Standard Library file buffers. The allocation size may be altered when using
the compiler by using the“-m” option on the command line. The memory requirements may be stated
in pages, for example,

cc prg.c -nme2

which allocates 512 bytes extra, or in kilobytes, for example:

cc prg.c -me1l0k
The linker will ignore the request if the size is less than 256 bytes.
The following rules can serve as a rough guide to estimate how much memory to specify:
1. The parameter area should be large enough for any anticipated command line string.

2. The stack should not be less than 128 bytes and should take into account the depth of function
calling chains and any recursion.

3. All function arguments and local variables occupy stack space and each function entered needs 4
bytes more for the return address and temporary storage of the calling function's register variable.

4. Free memory is requested by the Standard Library 1/0O functions for buffers at the rate of 256
bytes per accessed file. The does not apply to the lower level service request 1/0O functions such
as“open()”, “read()” or “write()” not to “stderr” which is always un-buffered, but it does apply to
both “stdin” and “stdout” (see the Standard Library documentation).

A good method for getting a feel for how much memory is needed by your program is to alow the
linker to set the memory sizeto itsusually conservative value. Then, if the program runswith avariety
of input satisfactorily but memory is limited on the system, try reducing the allocation at the next
compilation. If astack overflow occurs or an “ibrk()” cal returns -1, then try increasing the memory
next time. Y ou cannot damage the system by getting it wrong, but datamay be lost if the program runs
out of space at acrucial time. It paysto bein error on the generous side.

13

14

Chapter 3. C System Calls

Name

This section of the C compiler manual is a guide to the system calls available from C programs.

It is not intended as a definitive description of OS-9 service requests as these are described in the
0S9 System Programmer's Manual. However, for most calls, enough information is available here
to enabl e the programmer to write systems calls into programs without looking further.

The names used for the system calls are chosen so that programs transported from other machines
or operating systems should compile and run with as little modification as possible. However, care
should be taken as the parameters and returned values of some calls may not be compatible with those
on other systems. Programmers that are already familiar with OS-9 names and values should take
particular care. Some calls do not share the same names as the OS-9 assembly language equivalents.
The assembly language equivalent call is shown, where thereis one, on the relevant page of the C call
description, and a cross-reference list is provided for those already familiar with OS-9 calls.

The normal error indication on return from a system call is a returned value of -1. The relevant error
will be found in the predefined int “errno”. Errno always contains the error from the last erroneous
system call. Definitions for the errors for inclusion in the programs arein “<errno.h>".

In the “ See Also” sections on the following pages, unless otherwise stated, the references are to other
system calls.

Where “#include” files are shown, it is not mandatory to include them, but it might be convenient to
use the manifest constants defined in them rather than integers; it certainly makes for more readable
programs.

Abort — stop the program and produce a core dump

Synopsis

abort ();

Description

Name

This call causes amemory image to be written out to the file “core” in the current directory, and then
the program exits with a status of 1.

Access — givefile accessibility

Synopsis

access(fnanme, pernj;

char *fnane;
int perm

Description

Access returns 0 if the access modes specified in “perm” are correct for the user to access “f nane”.
-lisreturned if the file cannot be accessed.

Thevauefor “per n may be any legal OS-9 mode as used for “open()” or “creat()”, it may be zero,
which tests whether the file exists, or the path to it may be searched.

15

Caveats

NOTE that the “per ni' valueis not compatible with other systems.
Diagnostics
The appropiate error indication, if avalue of -1 isreturned, may be found in “errno”.

Name
Chain — load and execute a new program

Synopsis
chai n(modname, paransi ze, paranptr, type, |lang, datasize);
char *nodnane;
i nt paransize;
char *paranptr;
int type;

int lang;
i nt dat asi ze;

Assembler Equivalent

039 F$CHAIN

Description

The action of FSCHAIN is described fully in the OS-9 documentation. Chain implements the service
request as described with oneimportant exception: chain will NEVER returntothecaller. If thereisan
error, theprocesswill abort and returntoitsparent process. It might bewise, therefore, for the programs
to check the existence and access permissions of the module before calling chain. Permissions may
be checked by using “modlink()” or “modioad()” followed by an “munlink()”.

“Modnane” should point to the name of the desired module. “Par ansi ze” is the length of the
parameter string (which should normally be terminated with a “\n”), and “paramptr” points to the
parameter string. “Type” is the module type as found in the module header (normally 1: program),
and “l ang” should match the language nibble in the module header (C programs have 1 for 6809
machine code here). “Dat asi ze” may be zero, or it may contain the number of 256 byte pages to
give to the new process as initial allocation of data memory.

Name
Chdir, Chxdir — change directory

Synopsis
chdi r (di rnane) ;
char *dirnane;
chxdi r (di r name) ;
char *dirnane;
Assembler Equivalent

09 I$CHGDIR

16

Description

These calls change the current data directory and the current execution directory, respectively, for the
running task. “Di r nane” isapointer to astring that gives a pathname for a directory.

Diagnostics

Each call returns O after a successful call, or -1 if “di r name” is not a directory path name, or it is
not searchable.

See Also

0S-9 shell commands “chd” and “chx”.

Name
Chmod — change access permissions of afile

Synopsis
#include <modes.h>

chnod(f nane, pern;

char *fname;
int perm

Description

Chmod changes the permission bits associated with afile. “Fname” must be a pointer to afile name,
and “per ' should contain the desired bit pattern,

The allowable bit patterns are defined in the include file as follows:

/* perm ssions */

#define S IREAD 0x01 /* owner read */
#define S IWRITE 0x02 /* owner wite */
#define S IEXEC 0x04 /* owner execute */
#define S |IOREAD 0x08 /* public read */
#define S | OARITE 0x10 /* public wite */
#define S |ICEXEC 0x20 /* public execute */
#define S |ISHARE 0x40 /* sharable */
#define S IFDIR 0x80 /* directory */

Only the owner or the super user may change the permissions of afile.

Diagnostics

A successful call returns 0. A -1 is returned if the caller is not entitled to change permissions of
“f nane” cannot be found.

See Also

0OS-9 command “attr”

Name
Chown — change the ownership of afile

17

Synopsis
chown(f nanme, ownerid);

char *fname;
i nt owneri d;

Description

This call is available only to the super user. “Fnane” is a pointer to a file name, and “owneri d”
isthe new user-id.

Diagnostics
Zero isreturned from a successful call. -1 isreturned from on error.

Name
Close — close afile

Synopsis

close(pn);

int pn;
Assembler Equivalent

0s9 I$CLOSE

Description

Close takes a path number, “pn”, as returned from system calls “open()”, “creat()”, or “dup()”, and
closes the associated file.

Termination of atask always closesall open filesautomatically, but it is necessary to close fileswhere

multiple files are opened by the task, and it is desired to re-use path numbers to avoid going over the
system or process path number limit.

See Also

creat(), open(), dup()

Name
Crc — compute a cyclic redundancy count

Synopsis
crc(start, count, accuny;

char *start;
i nt count;
char accuni 3];

Assembler Equivalent

0s9 F$CRC

18

Description

Thiscall accumulatesacrcinto athreebytearray at “accuni for“count ” bytesstartingat“st art ”.
All three bytes of “accuni should be initialized to Oxff before the first call to “crc()”. However,
repeated calls can be subsequently made to cover an entire module. If the result is to be used as an
0OS-9 module crc, it should have its bytes complemented before insertion at the end of the module.

Name
Creat — create afile

Synopsis
#include <modes.h>

creat (fnane, perm;

char *fnane;
int perm

Assembler Equivalent

09 I$SCREATE

Description

Creat returns a path number to anew file available for writing, giving it the permissions specified in
“per i’ and making the task user the owner. If, however, “f nane” isthe name of an existing file,
the file is truncated to zero length, and the ownership and permissions remain unchanged. NOTE,
that unlike the OS-9 assembler service request, creat does not return an error if the file aready exists.
“Access()” should be used to establish the existence of afileif it isimportant that a file should not

be overwritten.

It is unnecessary to specify writing permissionsin “per ni' in order to write to the file in the current

task.

The permissions allowed are defined in the include file as follows:

#define S |IPRM
#define S | READ
#define S IWRITE
#define S | EXEC
#define S | OREAD
#define S IONRITE
#define S | CEXEC
#define S | SHARE

Oxf f
0x01
0x02
0x04
0x08
0x10
0x20
0x40

/*
/*
/*
/*
/*
/*
/*
/*

mask for perm ssion bits */
owner read */

owner wite */

owner execute */

public read */

public wite */

public execute */

sharabl e */

Directories may not be created with this call; use “mknod()” instead.

Diagnostics

Thiscall returns-1if there are too many files open. If the pathname cannot be searched, if permission
to write isdenied, or if the file exists and is a directory.

See Also

write(), close(), chmod()

19

Name
Defdrive — get default system drive

Synopsis

char *defdrive();

Description
A call to defdrive returns a pointer to a string containing the name of the default system drive. The

method used is to consult the “Init” module for the default directory name. The name is copied to a
static data area and a pointer to it is returned.

Diagnostics

-1lisreturned if the “Init” module cannot be linked to.

Name
Dup — duplicate an open path number

Synopsis

dup(pn);

int pn;
Assembler Equivalent

039 I$DUP
Description

Dup takes the path number, “pn”, as returned from “open()” or “creat()” and returns another path
number associated with the samefile.

Diagnostics

A -lisreturned isthe call fails because there are too many files open or the path nmber isinvalid.
See Also

open(), creat(), close()

Name
Exit, Exit — task termination

Synopsis
exit(status);
i nt status;
_exit(status);

i nt status;

20

Assembler Equivalent

0s9 F$EXIT

Description

Exit is the normal means of terminating a task. Exit does any cleaning up operations required before
terminating, such as flushing out any file buffers (see Standard i/0), but _exit does not.

A task finishing normally, that is returning from “main()”, is equivalent to acall - “exit(0)”.

The status passed to exit is available to the parent task if it is executing a“wait”.

See Also

wait()
Name

Getpid — get the task id
Synopsis

getpi d();

Assembler Equivalent

0s9 F$ID

Description

A number uniqueto the current running task is often useful in creating namesfor temporary files. This
call returnsthe task's system id (as returned to its parent by “os9fork™).

Description

os9fork(), Standard Library function mktemp().

Name
Getstat — get file status

Synopsis
#include <sgstat.h>
/* code 0 */
getstat(code, filenum buffer);
i nt code;
int filenum
char *buffer;
/* codes1and 6 */

getstat (code, filenunj;

i nt code;

21

int filenum
/* code 2 */

getstat(code, filenum size);

i nt code;
int filenum
| ong *size;
/* code5*/

getstat (code, filenum pos);

i nt code;
int filenum
| ong *pos;

Assembler Equivalent

09 I$GETSTT

Description

A full description of getstat can be found in the OS9 System Programmer's Manual.

“Code” must be the value of one of the standard codes for the getstat service request. “Fi | enunt
must be the path humber of an open file.

The form of the call depends on the value of “code”.

Code O: “Buf f er” must be the address of a 32 byte buffer
into which the relevant status packet is copied. The
header file has the definitions of the various file and
device structures for use by the program.

Code 1: Code 1 only applies to SCF devices and to test for
dataavailable. Thereturn valueiszeroif thereisdata
available. -1 isreturned if thereis no data

Code 2: “Si ze” should be the address of along integer into
which the current file sizeis placed. The return value
of the function is-1 on error and O on success.

Code5: “Pos” should be the address of a long integer into
which the current file position is placed. The return
value of the functionis-1 on error and 0 on success.

Code 6: Returns -1 on EOF and error and 0 on success.

NOTE that when one of the previous calls returns -1, then actual error isreturned in errno.

Name

Getuid — return user id
Synopsis

getuid();

Assembler Equivalent

0s9 F$ID

22

Description

Getuid returns the real user id of the current task (as maintained in the password file).

Name

Intercept — set function for interrupt processing

Synopsis
i ntercept ((* func));
int (* func) (int);
Assembler Equivalent

0s9 F$ICPT

Description

Intercept instructs OS-9 to pass control to the function “f unc” when an interrupt (signal) is received

by the current process.

If the interrupt processing function has an argument, it will contain the value of the signal received.
On return from “f unc”, the process resumes at the point in the program where it was interrupted by
the signal. “Interrupt()” is an aternative to the use of “signal()” to process interrupts.

Asan example, supposewewishto ensurethat apartially completed output fileisdeleted if aninterrupt
isreceived. The body of the program might include:

char *temp_file = "temp"; /*

i nt pn=0; /*
int intrupt(); /*
i ntercept (intrupt); /*

pn = creat(tenp_file,3); /*

write(pn,string,count); /*

cl ose(pn);
pn=0;

Theinterrupt routine might be coded:

intrupt(sig);
{

nane of tenporary file */
pat h nunmber */
predecl aration */

route interrupt processing */
make a new file */

wite string to tenp file */

if (pn){ /* only done if pn refers to an open file */

cl ose(pn);
unlink(tenp_file);

/* delete */

23

exit(sig);
}

Caveats

“Intercept()” and “signal()” are mutually incompatible so that callsto both must not appear in the same
program. Thelinker guardsagainst thisby giving an“entry nameclash-_sigint” error if it isattempted.

See Also
signal()

Name
Kill — send an interrupt to atask

Synopsis
#include <signal.h>
kill(tid, interrupt);

int tid;
int interrupt;

Description

Kill sendsthe interrupt type “i nt er r upt ” to the task withid “t i d”.
Both tasks, sender and receiver, must have the same user id unless the user is the super user.

Theinclude file contains definitions of the defined signals as follows:

/[* O5-9 signals */

#def i ne SIGILL 0O /* systemabort (cannot be caught or ignored)*/
#def i ne SI GMAKE 1 /* wake up */

#def i ne SIGUIT 2 /* keyboard abort */

#def i ne SIGNT 3 /* keyboard interrupt */

Other user-defined signals may, of course, be sent.
Diagnostics

Kill returns 0 from a successful call and -1 if the task does not exist, the effective user ids do not
match, or the user is not the system manager.

See Also

signal (), 0S-9 shell command "kill"

Name
Lseek — positionin file

Synopsis
| seek(pn, position, type);

int pn;
| ong position;

24

int type;

Assembler Equivalent

0s9 I$SEEK

Description

The read or write pointer for the open file with the path number, “pn”, is positioned by Iseek to the
specified place in the file. The “t ype” indicates from where “posi t i on” isto be measured: if O,
from the beginning of thefile, if 1, from the current location, or if 2, from the end of thefile.

Seeking to alocation beyond the end of afile open for writing and then writing to it, createsa“hole’
in the file which appears to be filled with zeros from the previous end to the position sought.

Thereturned valueisthe resulting position in thefile unlessthereis an error, so to find out the current
position use

Iseek(pn,0l,1);

Caveats

The argument “posi ti on” must be a long integer. Constants should be explicitly made long by
appending an “1”, as above, and other types should be converted using a cast:

e.g. Iseek(pn,(long)pos,1);

Notice also, that the return value from Iseek isitself along integer.

Diagnostics

-lisreturned if “pn” isabad path number, or attempting to seek to a position before the beginning
of afile.

See Also

Name

creat(), open(), Standard Library function "fseek"

Mknod — create a directory

Synopsis

#include <modes.h>
nknod(f name, desc);

char *fnane;
i nt desc;

Assembler Equivalent

09 ISMAKDIR

Description

This call may be used to create a new directory. “Fnanme” should point to a string containing the
desired name of the directory. “Desc” is a descriptor specifying the desired mode (file type) and
permissions of the new file.

25

Theinclude file defines the possible values for “desc” asfollows:

#define S IREAD 0x01 /* owner read */
#define S IWRITE 0x02 /* owner wite */
#define S IEXEC 0x04 /* owner execute */
#define S |IOREAD 0x08 /* public read */
#define S | OARITE 0x10 /* public wite */
#define S |ICEXEC 0x20 /* public execute */
#define S |ISHARE 0x40 /* sharable */
Diagnostics

Zero isreturned if the directory has been successfully made; -1 if the file already exists.

See Also

Name

0OS-9 command “makdir”

Modload — return a pointer to a module structure

Synopsis

#include <module.h>

nod_exec *nodl i nk(nobdnane, type, |anguage);
char *nodnane;

int type;

i nt | anguage;

nod_exec *nodl oad(fil enanme, type, |anguage);
char *fil enane;

int type;
i nt | anguage;

Assembler Equivalent

0s9 F$LINK
039 F$LOAD

Description

Each of these calls return a pointer to an OS-9 memory module.

Modlink will search the module directory for a module with the same name as “nmodnane” and, if
found, increment its link count.

Modload will open the file which hasthe path list specified by “f i | enane” and loads modules from
thefile adding them to the modul e directory. The returned valueisapointer to the first module loaded.

Above, each is shown as returning a pointer to an executable module, but it will return a pointer to
whatever type of moduleis found.

Diagnostics

-1isreturned on error.

26

See Also

munlink()

Name
Munlink — unlink a module

Synopsis
#include <module.h>
munl i nk(nod) ;
nod_exec *nod,
Assembler Equivalent

039 FSUNLINK

Description
This call informs the system that the module pointed to by “nod” isno longer required by the current

process. Its link count is decremented, and the module is removed from the module directory if the
link count reaches zero.

See Also

modlink(), modload()

Name
Open — open afile for read/write access

Synopsis
open(fname, node);

char *fname;
i nt node;

Assembler Equivalent

0s9 I$OPEN

Description

Thiscall opensan existing filefor readingif “nmode” is1, writing if “node” is2, or reading and writing
if “node” is 3. NOTE that these values are OS-9 specific and not compatible with other systems.
“Fnane” should point to a string representing the pathname of thefile.

Open returnsan integer as*“ path number” which should be used by i/o system callsreferring to thefile.

The position where reads or writes start is at the beginning of the file.
Diagnostics

-lisreturnedif thefile doesnot exist, if the pathname cannot be searched, if too many filesare aready
open, or if the file permissions deny the requested mode.

27

See Also

Name

creat(), read(), write(), dup(), close()

_0s9 — system call interface from C programs

Synopsis

#include <0s9.h>
_0s9(code, req);

char code;
struct registers *reg;

Description

_ 039 enablesaprogrammer to accessvirtualy any OS-9 system call directly from a C program without
having to resort to assembly language routines.

Code is one of the codes that are defines in 0s9.h. 0s9.h contains codes for the F$ and 1$ function/
service requests, and it also contains getstt, setstt, and error codes.

The input registers(reg) for the system calls are accessed by the following structure that is defined
in 0s9.h:

struct registers {
char rg_cc,rg_a,rg_b,rg _dp;
unsigned rg_x,rg_y,rg_u;

s

An example program that uses _0s9 is presented on the following page.

Diagnostics

-lisreturned if the OS-9 call failed. O isreturned on success.

Program Example

#i ncl ude <o0s9. h>
#i ncl ude <nodes. h>

/* this program does an | $GETSTT call to get file size */
mai n(argc, ar gv)

int argc;

char **argv;

{
struct registers reg;
i nt path;

/* tell linker we need |ongs */
pflinit();

/* low |l evel open(file nane is first command |ine param */
pat h=open(*++argv, S | READ) ;

28

/* set up regs for call to Gs-9 */
reg.rg_a=path;
reg.rg_b=SS Sl ZE;

i f(_os9(l_GETSTT, & eg) == 0)
printf("filesize = %x\n", /* success */
(long) (reg.rg_x << 16)+reg.rg_u);
else printf("0OS9 error #%\n",reg.rg_b & Oxff); /*fail ed*/

dunpregs(&eg); /* take a look at the registers */

}

dunpregs(r)

regi ster struct registers *r;

{
printf("cc=%02x\n",r->rg_cc & Oxff);
printf(" a=%2x\n",r->rg_a & Oxff);
printf(" b=9%02x\n",r->rg b & Oxff);
printf("dp=%02x\n",r->rg _dp & Oxff);
printf(" x=%04x\n",r->rg_x);
printf(" y=%04x\n",r->rg_vy);
printf(" u=%94x\n",r->rg_u);

}

Name
Os9fork — create a process

Synopsis
os9f or k(nrodnane, paransi ze, paranptr, type, |ang, datasize);

char *rnodnane;
i nt paransize;
char *paranptr;
int type;

int lang;

i nt dat asi ze;

Assembler Equivalent

0s9 F$FORK

Description

Theaction of F$FORK isdesribed fully inthe OS-9 System Programmer'sManual. OsSfork will create
a process that will run concurrently with the calling process. When the forked process terminates, it
will return to the calling process.

“Modnane” should point to the name of the desired module. “Par ansi ze” is the length of the
parameter string which should normally be terminated with a \n', and “par anpt r " points to the
parameter string. “ Ty pe” isthemodul etype asfound in the header(normally 1: program), and“l ang”
should match the language nibble in the module header (C programs have 1 for 6809 machine code
here). “Dat asi ze” may be zero, or it may contain the number of 256 byte pages to give to the new
process asinitia allocation of memory.

Diagnostics

-1 will be returned on error, or the ID number of the child process will be returned on success.

29

Name
Pause — halt and wait for interrupt

Synopsis

pause();

Assembler Equivalent

0s9 I$SLEEP (with avalue of 0)

Description
Pause may be used to halt atask until an interrupt is received from “kill”.

Pause always returns -1.

See Also

kill(), signal(), OS-9 shell command “kill”

Name
Prerr — print error message

Synopsis
prerr(filnum errcode);

int filnum
int errcode;

Assembler Equivalent

0s9 F$PERR

Description

PRERR prints an error message on the output path as specified by “f i | nunt which must be the path
number of an open file. The message dependson “er r code” whichwill normally be astandard OS-9
error code.

Name
Read, Readln — read from afile

Synopsis
read(pn, buffer, count);
int pn;
char *buffer;
i nt count;

readl n(pn, buffer, count);

int pn;
char *buffer;

30

i nt count;

Assembler Equivalent
039 ISREAD

09 ISREADLN

Description

The path number, “pn” isan integer which is one of the standard path numbers 0, 1, or 2, or the path
number should have been returned by a successful call to “open”, “creat”, or “dup”. “Buf f er " isa
pointer to spacewith at least “count ” bytes of memory into which read will put the datafrom thefile.

It is guaranteed that at most “count ” bytes will be read, but often less will be, either because, for
r eadl n, the file represents a terminal and input stops at the end of a line, or for both, end-of-file
has been reached.

ReadIn causes*line-editing” such asechoing to take placeand returns oncethefirst “\n” isencountered
in the input or the number of bytes requested has been read. Readln is the preferred call for reading
from the user's terminal.

Read does not cause any such editing. See the OS-9 manual for a fuller description of the actions of
these cdlls.

Diagnostics

Read and readin return the number of bytes actually read (0 at end-of-file) or -1 for physical i/o errors,
abad path number, or aridicolous“count .

NOTE that end-of-file is not considered an error, and no error indication is returned. Zero is returned
on EOF.

See Also

open(), creat(), dup()

Name
Sbrk, Ibrk — request additional working memory

Synopsis
char *sbrk(increase);
int increase;
char *ibrk(increase);

i nt increase;

Description
Shrk requests an allocation from free memory and returns a pointer to its base.
“Shrk()” requests the system to allocate “new” memory from outside the initial allocation.

Users should read the Memory Management section of this manual for a fuller explanation of the
arrangement.

Ibrk requests memory from inside the initial memory allocation.

31

Diagnostics

Shrk and ibrk return -1 if the requested amount of contiguous memory is unavailable.

Name
Setpr — set process priority
Synopsis
setpr(pid, priority);
int pid;
int priority;

Assembler Equivalent
0s9 F$SPRIOR
Description

SETPR sets the process identified by “pi d” (process id) to have a priority of “pri ority”. The
lowest level is 0 and the highest is 255.

Diagnostics
The call will return -1 if the process does not have the same user id as the caller.

Name
Setime, Getime — set and get system time

Synopsis

#include <time.h>

setime(buffer);

struct sgtbuf *buffer;

getine(buffer);

struct sgthbuf *buffer;
Assembler Equivalent

09 F$STIME

039 F$GTIME
Description

GETIME returns system time in buffer. SETIME sets system time from buffer.

Name
Setuid — set user id

Synopsis

setui d(uid);

32

int uid;

Assembler Equivalent

0s9 F$SUSER

Description

This call may be used to set the user id for the current task. Setuid only worksiif the caller isthe super
user (user id 0).

Diagnostics

Zeroisreturned from a successful call, and -1 is returned on error.

See Also

Name

getuid()

Setstat — set file status

Synopsis

#include <sgstat.h>
/* code 0 */
setstat (code, filenum buffer);

i nt code;

int filenum
char *buffer;
/* code2*/

setstat (code, filenum size);
i nt code;

int filenum
| ong si ze;

Assembler Equivalent

0s9 F$SETSTT

Description

Name

For a detailed explanation of this call, see the 0OS9 System Programmer's Manual.

“Fi | enum’ must be the path number of acurrently openfile. The only valuesfor code at thistimeare
Oand 2. When “code” is0, “buf f er ” should be the address of a 32 byte structure which iswritten
to the option section of the path descriptor of the file. The header file contains definitions of various
structures maintained by OS-9 for use by the programmer. When codeis 2, “si ze” should be along
integer specifying the new file size.

Signal — catch or ignore interrupts

33

Synopsis
#include <signal.h> typedef int (*sighandler_t)(int);
si ghandl er _t signal (i nterrupt, address);

int interrupt;
si ghandl er _t address;

Description

Thiscall isacomprehensive method of catching or ignoring signals sent to the current process. Notice
that “kill()” doesthe sending of signals, and “signal()” does the catching.

Normally, a signal sent to a process causes it to terminate with the status of the signal. If, in advance
of the anticipated signal, this system call is used, the program has the choice of ignoring the signal
or designating a function to be executed when it is received. Different functions may be designated
for different signals.

Thevaluesfor “addr ess” have the following meanings:

0 reset to the default i.e. abort when received.
1 ignore; thiswill apply until reset to another value.

Otherwise taken to be the address of a C function whichisto be
executed on receipt of the signal.

If the latter caseis chosen, when the signal isreceived by the processthe“addr ess” isreset to O, the
default, before the function is executed. This means that if the next signal received should be caught
then another call to “signal()” should be made immediately. Thisis normally the first action taken by
the“i nt er r upt ” function. The function may access the signal number which caused its execution
by looking at its argument. On completion of this function the program resumes at the point at which
iswas “interrupted” by the signal.

An example should help to clarify al this. Suppose a program needs to create atemporary file which
should be deleted before exiting. The body of the program might contain fragments like this:

pn = creat("tenmp", 3); /* create a tenporary file */
signal (2,intrupt); [* ensure tidying up */
signal (3,intrupt);

write(pn,string,count);

cl ose(pn); /* finished witing */
unlink("tenp"); /* delete it */
exit(0); /* normal exit */

The call to "signal()" will ensure that if a keyboard or quit signal is received then the function
"intrupt()" will be executed and this might be written:

intrupt(sig)

{

cl ose(pn); /* close it if open */
unlink("tenp"); /* delete it */

exit(sig); /* received signal er exit status */

In this case, as the function will be exiting before another signal isreceived, it is unnecessary to call
“signal()” againto reset itspointer. Note that either the function “intrupt()” should appear in the source
code before the call to “signal()”, or it should be pre-declared.

The signals used by OS-9 are defined in the header file as follows:

/* 059 signals */

#def i ne SIGKILL O /* systemabort (cannot be caught or ignored)*/
#def i ne SI GMWAKE 1 /* wake up */

#def i ne SIGRUIT 2 /* keyboard abort */

#def i ne SIGANT 3 /* keyboard interrupt */

/* special addresses */

#def i ne SIGDFL 0 /* reset to default */

#defi ne SIGIGN 1 /* ignore */

Please note that there is another method of trapping signals, namely “intercept()” (g.v.). However,
since“signal()” and “intercept()” are mutually incompatible, callsto both of them must not appear in
the same program. The link-loader will preven the creation of an executable program in which both
are called by aborting with an “entry name clash” error for “_sigint”.

See Also

intercept(), OS-9 shell command “kill”, kill()

Name
Stacksize, Freemem — obtain stack reservation size

Synopsis

st acksi ze();

freemem();

Description

For a description of the meaning and use of this call, the user is referred to the Memory Management
section of this manual.

If the stack check codeisin effect, acall to stacksize will return the maximum number of bytes of stack
used at the time of the call. This call can be used to determine the stack size required by a program.

Freemem() will return the number of bytes of the stack that has not been used.

See Also

ibrk(), sbrk(), Global variable “memend” and value “end”.

Name
Strass — byte by byte copy

Synopsis
_strass(sl, s2, count);
char *sl1,;

char *s2;
int count;

35

Description

Until such time as the compiler can deal with structure assignment, this function is useful for copying
one structure to another.

“Count ” bytes are copied from memory location at “s2” to memory as “s1” regardless of the
contents.

Name
Tsleep — put process to sleep

Synopsis
tsl eep(ticks);
int ticks;
Assembler Equivalent
0s9 F$SLEEP

Description

Tdleep deactivates the calling process for a specified number of system “t i cks” or indefinitely if
“ticks” iszero. A tick is system dependent but is usually 100ms.

For afuller description of this call, see the OS9 System Programmer's Manual.

Name
Unlink — remove directory entry

Synopsis
unl i nk(fnane);
char *fnane;
Assembler Equivalent
039 I$DELETE
Description
Unlink deletesthe directory entry whose nameis pointed to by “f nane”. If the entry wasthe last link

to thefile, thefileitself is deleted and the disc space occupied made available for re-use. If, however
thefileis open, in any active task, the deletion of the actual file is delayed until thefileis closed.

Diagnostics

Zero is returned from a successful call, -1 if the file does not exist, if its directory is write-protected,
or cannot be searched, if the fileis anon-empty directory or adevice.

See Also

0OS-9 command “del”

Name
Wait — wait for task termination

36

Synopsis
wai t (st atus);
int *status;
wai t (0);
0;
Assembler Equivalent

0s9 F$WAIT

Description

Wait is used to halt the current task until a child task has terminated.

The call returns the task id of the terminating task and places the status of that task in the integer
pointedto by “st at us” unless”st at us” is0. A wait must be executed for each child task spawned.

The status will contain the argument of the “exit” or “_exit” call in the child task of the signal number
if it wasinterrupted. A normally terminating C program with no call to “exit” or “_exit” hasanimplied
call of “exit(0)”.

Caveats

NOTE that the status is the OS-9 status code and is not compatible with codes on other systems.
Diagnostics

-1 isreturned if thereis no child to be waited for.
See Also

os9fork(), signal (), exit(),_exit()

Name
Write, Writeln — write to afile or device

Synopsis
wite(pn, buffer, count);
int pn;
char *buffer;
i nt count;
witeln(pn, buffer, count);
int pn;

char *buffer;
int count;

Assembler Equivalent
0s9 ISWRITE

09 ISWRITLN

37

Description

“Pn” must be avalue returned by “open”, “creat” or “dup” or should be a 0 (stdin), 1 (stdout), or 2
(stderr).

“Buf f er” should point to an area of memory from which “count ” bytes are to be written. Write
returnsthe actual number of byteswritten, and if thisisdifferent from“count ”, an error has occurred.

Writes in multiples of 256 bytes to file offset boundaries of 256 bytes are the most efficient.

Write causes no “line-editing” to occur on output. Writeln causes line-editing and only writes up to
the first “\n” in the buffer if thisis found before “count ” is exhausted. For a full description of the
actions of these calls the reader is referred to the OS-9 documentation.

Diagnostics
-lisreturned if “pn” isabad path number, or “count ” isridiculous or on physical i/o error.

See Also

creat(), open()

38

Chapter 4. C Standard Library

The Standard Library contains functions which fall into two classes: high-level 1/0 and convenience.

The high-level 1/0 functions provide facilities that are normally considered part of the definition of
other languages; for example, the FORMAT “statement” of Fortran. In addition, automatic buffering
of 1/0 channels improves the speed of file access because fewer system calls are necessary.

The high-level 1/0O functions should not be confused with the low-level system calls with similar
names. Nor should “file pointers’ be confused with “path numbers’. The standard library functions
maintain a structure for each file open that holds status information and a pointer into the files buffer,
A user program uses a pointer to this structure as the “identity” of the file (which is provided by
“fopen()”), and passesit to the various 1/O functions. The I/O functionswill make thelow-level system
calls when necessary.

Using afile pointer ina systemcall, or a path number ina Sandard Library call, isacommon mistake
among beginnersto C and, if made, will be sure to crash your program.

The convenience functions include facilities for copying, comparing, and concatenating strings,
converting numbers to strings, and doing the extrawork in accessing system information such as the
time.

In the page which follow, the functions available are described in terms of what they do and the
parameters they expect. The “USAGE” section shows the name of the function and the type returned
(if not int). The declaration of arguments are shown as they would be written in the function definition
to indicate the types expected by the function. If it is necessary to include a file before the function
can be used, it is shown in the “USAGE” section by “#include <filename>".

Most of the header files that are required to be included, must reside in the “DEFS”’ directory on the
default system drive. If thefileisincluded in the source program using angle bracket delimitersinstead
of the usua double quotes, the compiler will append this path name to the file name. For example,
“#include <stdio.h>" is equivalent to “#include </d0/defg/stdio.h>", if “/d0” is the path name of the
default system drive.

Please note that if the type of the value returned by a function is not INT, you should make a pre-
declaration in your program before calling it. For example, if you wish to use “atof()”, you should
pre-declare by having “ double atof();” somewhere in your program before acall to it. Some functions
which have associated header filesin the DEFS directory that should be included, will be pre-declared
for you in the header. An example of thisis “ftell()” which is pre-declared in “stdio.h”. If you arein
any doubt, read the header file.

Name
Abs — Absolute value

Synopsis

abs(i);

int i;
Description

ABS returns absolute value of itsinteger operand.
Caveats

Y ou get what the hardware gives on the largest negative number.

39

Name
Atof, Atoi, Atol — ASCII to number conversions

Synopsis
doubl e atof (ptr);
char *ptr;
long atol (ptr);
char *ptr;
int atoi(ptr);

char *ptr;
Description

Conversions of the string pointed to by “pt r ” to the relevant number type are carried out by these
functions. They cease to convert a number when the first unrecognized character is encountered.

Each skips |eading spaces and tab characters. Atof() recognizes an optional sign followed by a digit

string that could possibly contain a decimal point, then an optional “€” or “E”, and optional sign and
adigit string. Atol() and atoi() recognize an optional sign and adigit string.

Caveats

Overflow causes unpredictable results. There are no error indications.

Name
Fclose, Fflush — flush or close afile

Synopsis
#include <stdio.h>
fcl ose(fp);
FILE *fp;
fflush(fp);

FI LE *fp;
Description

Fflush causes a buffer associated with the file pointer “f p” to be cleared by writing out to the file; of
course, only if the file was opened for write or update. It is not normally necessary to call fflush, but
it can be useful when, for example, normal output isto “stdout”, and it iswished to send something to
“stderr” which isunbuffered. If fflush were not used and “ stdout” referred to the terminal, the “ stderr”
message will appear before large chunks of the “stdout” message even though the latter was written
first.

Fclose calls fflush to clear out the buffer associated with “f p”, closes the file, and frees the buffer
for use by another fopen call.

Theexit() system call and normal termination of aprogram causesfcloseto becalled for each openfile.

40

See Also
System call close(), fopen(), setbuf().
Diagnostics
EOF isreturned if “f p” does not refer to an output file or thereis an error writing to thefile.

Name
Feof, Ferror, Clearerr, Fileno — return status information of files

Synopsis

#include <stdio.h>
feof (fp);
FILE *fp;
ferror(fp);
FI LE *fp;
clearerr(fp);
FI LE *fp;
fileno(fp);
FI LE *fp;

Description

Feof returns non-zero if the file associated with “f p” has reached its end. Zero isreturned on error.

Ferror returns non-zero if an error condition occurs on access to the file “f p”; zero is returned
otherwise. The error condition persists, preventing further accessto the file by other Standard Library
functions, until thefileisclosed, or it is cleared by clearerr.

Clearerr resets the error condition on the file “f p”. This does NOT “fix” thefile or prevent the error
from occurring again; it merely allows Standard Library functions at least to try.

Caveats

These functions are actually macros that are defined in “<stdio.h>" so their names cannot be
redeclared.

See Also
System call open(), fopen().

Name
Findstr, Findnstr — string search

Synopsis
findstr(pos, string, pattern);

i nt pos;
char *string;

41

char *pattern;

findnstr(pos, string, pattern, size);
i nt pos;

char *string;

char *pattern;
int size;

Description
These functions search the string pointed to by “st ri ng” for thefirst instance of the pattern pointed

toby “pat t er n” starting at position “pos” (where the first position is 1 not 0). The returned value
isthe position of the first matched character of the pattern in the string or zero if amatch is not found.

Findstr stops searching the string when anull byteisfoundin“stri ng”.
Findnstr only stops searching at position “pos” + “si ze” so it may continue past null bytes.
Caveats

The current implementation does not use the most efficient algorithm for pattern matching so that use
on very long stringsis likely to be somewhat slower than it might be.

See Also

index(), rindex()

Name

Fopen — open afile and return afile pointer
Synopsis

#include <stdio.h>

FI LE *fopen(fil enane, action);

char *fil ename;
char *acti on;

FI LE *freopen(fil enane, action, streak);

char *fil enamne;
char *action;
FI LE *streak;

FI LE *fdopen(fil edes, action);

FILE *fil edes;
char *action;

Description

Fopen returns a pointer to a file structure (file pointer) if the file name in the string pointed to by
“fil ename” can bevalidly opened with the action in the string pointed to by “act i on”.

The valid actions are:

r open for reading

“w create for writing

42

append(write) at end of file, or create for writing
“r+” open for update

“w+" create for update

“at” create or open for update at end of file

“d” directory read

Any action may have an “x” after theinitial letter which indicates to “fopen()” that it should look in
the current execution directory if afull path is not given, and the x also specifies that the file should
have execute permission.

E.g. f = fopen("fred","wx");

Opening for write will perform a*“creat()”. If afile with the same name exists when thefile is opened
for write, it will be truncated to zero length. Append means open for write and position to the end
of the file. Writes to the file via “putc()” etc. will extend the file. Only if the file does not already
exist will it be created.

NOTE that the type of afile structure is pre-defined in “stdio.h” as FILE, so that a user program may
decale or define afile pointer by, for example, FILE *f;

Three file pointers are available and can be considered open the moment the program runs:

stdin the standard input - equivalent to path number O
stdout the standard output - equivalent to path number 1
stderr the standard error output - equivalent to path number 2

All files are automatically buffered except stderr, unless afile is made unbuffered by acall to setbuf()
(q.v.).

Freopen isusually used to attach stdin, stdout, and stderr to specified files. Freopen substitutesthe file
passed to it instead of the open stream. The original stream is closed. NOTE that the original stream
will be closed even if the open does not succeed.

Fdopen associates a stream with a file descriptor. The streams type(r,w,a) must be the same as the
mode of the open file.

Caveats

The “act i on” passed as an argument to fopen must be a pointer to a string, not a character. For
example

fp = fopen("fred","r"); is correct but
fp = fopen("fred",'r"); is not.

Diagnostics

Fopen returns NULL (0) if the call was unsuccessful.

See Also

Name

System call open(), fclose()

Fread, Fwrite — read/write binary data

Synopsis

#include <stdio.h>

fread(ptr, size, nunber, fp);
char *ptr;

int size;

i nt numnber;

FI LE *fp;

fwite(ptr, size, nunber, fp);
char *ptr;

int size;

i nt nunber;

FI LE *fp;

Description

Fread readsfromthefile pointedto by “f p”. “Nunber " isthe number of itemsof size“si ze” that are
to beread starting at “pt r ”. The best way to passthe argument “si ze” to fread is by using “sizeof”.
Fread returns the number of items actually read.

Fwrite writesto thefile pointed to by “f p”. “Numnber ” isthe number of itemsof size“si ze” reading
the from memory starting at “pt r ”.

Diagnostics
Both functions return O (NULL) at the end of file or error.

See Also
System calls read(), write(). Fopen(), getc(), putc(), printf().

Name
Fseek, Rewind, Ftell — position in afile or report current position

Synopsis
#include <stdio.h>
fseek(fp, offset, place);

FILE *fp;
| ong of fset;
i nt place;

rewi nd(fp);
FI LE *fp;
long ftell (fp);

FI LE *fp;
Description

Fseek repositions the next character position of afile for either read or write. The new position is a
“of f set " bytes from the beginning of thefileif “pl ace” is0, the current position is 1, or the end
if 2. Fseek sorts out the special problems of buffering.

NOTE that using “Iseek()” on abuffered file will produce unpredictable results.

Rewind is equivalent to “fseek(fp,0L,0)".

Ftell returnsthe current position, measured in bytes, from the beginning of thefile pointed to by “f p”.

Diagnostics

Fseek returns -1 if the call isinvalid.

See Also

Name

System call Iseek().

Fgetc, Getc, Getchar, Getw — return next character to be read from afile

Synopsis

#include <stdio.h>

int fgetc(fp);
FI LE *fp;

int getc(fp);

FI LE *fp;

int getchar();

int getw(fp);
FI LE *fp;

Description

Getc returns the next character from the file pointed to by “f p”. Fgetc is a synonym for getc defined
as a preproccessor substitution.

Getchar is equivalent to “getc(stdin)”.
Getw returns the next two bytes from the file as an integer.

Under OS-9 there is a choice of service requests to use when reading from afile. “Read()” will get
characters up to a specified number in “raw” modei.e. no editing will take place on the input stream
and the characters will appear to the program exactly asin thefile. “Readin()”, on the other hand, will
honor the various mappings of characters associated with a Serial Character device such as aterminal
and in any case will return to the caller as soon as a carriage return is seen on the input.

In the vast majority of cases, it is preferable to use “readin()” for accessing Serial Character devices
and “read()” for any other fileinput. “ Getc()” usesthisstrategy and, asall fileinput using the Standard
Library functions is routed through “getc()”, so do al the other input functions. The choice is made
when the first call to “getc()” is made after the file has been opened. The system is consulted for the
status of the fileand aflag bit is set in the file structure accordingly. The choice may be forced by the
programmer by setting the relevant bit beforeacall to “getc()”. Theflag bitsare defined in “ <stdio.h>"
and “_SCF” and “_RBF” and the method is as follows: assuming that the file pointer for the file, as
returned by “fopen()” isf ,

f-> flag | = _SCF;

will force the use of “readin()” on input and

f-> flag | = _RBF;

will force the use of “read()”. Thistrick may be played on the standard streams “stdin”, “stdout” and
“stderr” without the need for calling “fopen()” but before any input is requested from the stream.

Diagnostics
EOF(-1) isreturned for end of file or error.

See Also

Putc(), fread(), fopen(), gets(), ungetc()

Name

Gets, Fgets— input a string
Synopsis

#include <stdio.h>

char *gets(s);

char *s;

char *fgets(s, n, fp);
char *s;

int n;
FI LE *fp;

Description
Fgets reads characters from the file “f p” and places them in the buffer pointed to by “s” up to a
carriage return (\n") but not more than “n” - 1 characters. A null character is appended to the end of
the string.

Getsissimilar to fgets, but getsisapplied to “stdin” and no maximum is stipulated and \n' is replaced
by anull.

Both functions return their first arguments.
Caveats

The different treatment of the “\n” by these functions is retained here for portability reasons.
Diagnostics

Both functions return NULL on end-of-file or error.
See Also

puts(), getc(), scanf(), fread()

Name
Isalpha, Isupper, Islower, Isdigit, Isalnum, Isspace, Ispunct, Isprint, Iscntrl, Isascii — character
classification

46

Synopsis

#include <ctype.h>

i sal pha(c);

int c;

Description

These functions use table look-up to classify characters according to their ascii value. The header
file defines them as macros which means that they are implemented as fast, inline code rather than

subroutines.

Each resultsin non-zero for true or zero for false.

The correct value is guaranteed for all integer values in isascii, but the result is unpredictable in the
othersif the argument is outside the range -1 to 127.

The truth tested by each function is afollows:

isalpha
isdigit

isupper
islower

isalnum
isspace

iscntrl
ispunct
isprint
isascii

Name

cisaletter

cisadigit

cisan upper case letter
cisalower case letter
cisaletter or adigit

cisaspace, tab character, newline, carriage return or
formfeed

cisacontrol character (0to 32) or DEL (127)
cisneither countrol nor alpha-numeric
cisprintable (32 to 126)
cisintherange-1to 127

L 3tol, Ltol3 — convert between long integers and 3-byte integers

Synopsis

[3tol (Ip,
l ong *Ip;
char *cp;
int n;

I tol 3(cp,
char *cp;
long *Ip;

int n;

Description

cp,

n);

Certain system values, such as disc addresses, are maintained in three-byte form rather than four-byte;
these functions enabl e arithmetic to be used on them.

47

Name

L 3tol converts avector on “n” three-byte integers pointed to by “cp”, into a vector of long integers
starting at “I p”.

Ltol3 does the opposite.

Longjmp, Setjmp — jump to another function

Synopsis

#include <setjmp.h>

setj np(env);

j mp_buf env;

| ongj np(env, val);

j mp_buf env;
int val;

Description

Name

These functions allow the return of program control directly to ahigher level function. They are most
useful when dealing with errors and interrupts encountered in alow level routine.

“Goto” in C has scope only in the function in which it is used; i.e. the label which is the object of
a “goto” may only be in the same function. Control can only be transferred elsewhere by means of
the function call, which, of course returns to the caller. In certain abnormal situations a programmer
would prefer to be able to start some section of code again, but thiswould mean returning up aladder
of function callswith error indications all the way.

Setjmp is used to “mark” a point in the program where a subsegquent longjmp can reach. It placesin
the buffer, defined in the header file, enough information for longjmp to restore the environment to
that existing at the relevant call to setjmp.

Longjmp is called with the environment buffer as an argument and also, a value which can be used
by the caller of setjmp as, perhaps, an error status.

To set the system up, afunction will call setjmp to set up the buffer, and if the returned value is zero,
the program will know that the call was the “first time through”. If, however, the returned value is
non-zero, it must be alongjmp returning from some deeper level of the program.

NOTE that the function calling setjmp must not have returned at the time of calling longjmp, and the
environment buffer must be declared globally.

Malloc, Free, Calloc — memory allocation

Synopsis

char *mal | oc(size);
unsi gned si ze;
free(ptr);

char *ptr;

char *call oc(nel, elsize);

48

unsi gnednel ;
unsi gnedel si ze;

Description
Malloc returns a pointer to ablock of at least “si ze” free bytes.

Free requires a pointer to a block that has been allocated by malloc; it frees the space to be allocated
again.

Calloc alocates space for an array. Nél is the number of elementsin the arrary, and elsize isthe size
of each element. Calloc initializes the space to zero.

Diagnostics

Malloc, free, and calloc return NULL(0) if no free memory can be found or if there was an error.

Name
Mktemp — create unique temporary file name

Synopsis
char *nktenp(nane);

char *nane;

Description

Mktemp may be used to ensure that the name of a temporary file is unique in the system and does
not clash with any other file name.

“Name” must point to a string whose last five characters are “X”; the Xs will be replaced with the
ascii representation of the task id.

For example, if “name” points to “foo.XXXXX", and the task id is 351, the returned value points at
the same place, but it now holds “fo0.351".

See Also
System call getpid()

Name
Printf, Fprintf, Sprintf — formatted output

Synopsis
#include <stdio.h>

printf(control,);

char *control;

fprintf(fp, control,);

FILE *fp;
char *control;

49

sprintf(string, control,);

char *string;
char *control;

Description

Thesethreefunctions are used to place numbers and strings on the output in formatted, human readable
form.

Fprintf placesits output onthefile“f p”, printf on the standard output, and sprintf in the buffer pointed
toby “stri ng”. NOTE that it is the user's responsibility to ensure that this buffer is large enough.

The“cont r ol ” string determines the format, type, and number of the following arguments expected
by the function. If the control does not match the arguments correctly, the results are unpredictable.

The control may contain characters to be copied directly to the output and/or format specifications.
Each format specification causes the function to take the next successive argument for output.

A format specification consists of a“%" character followed by (in this order):

* Anoptional minussign (“-”) that means left justification in the field.

» An optional string of digits indication the field width required. The field will be at least this wide
and may be wider if the conversion requiresit. Thefield will be padded on the left unless the above
minus sign is present, in which case it will be padded on the right. The padding character is, by
default, a space, but if the digit string starts with azero (“0”), it will be“0".

» Anoptiona dot (“.”) and adigit string, the precision, which for floating point arguments indicates
the number of digits to follow the decimal point on conversion, and for strings, the maximum
number of characters from the string argument are to be printed.

» An optiona character “I” indicates that the following “d”,“x”, or “0” is the specification of along
integer argument. NOTE that in order for the printing of long integers to take place, the source
code must have in it somewhere the statement pflinit(), which causes routines to be linked from
the library.

» A conversion character which shows the type of the argument and the desired conversion. The
recognized conversion characters are:

d,0,x,X The argument is an integer and the conversion is
to decimal, octal, or hexadecimal, respectively. “X”
prints hex and aphain upper case.

u Theargument isan integer and the conversionistoan
unsigned decimal in the range 0 to 65535.

f The argument is a double, and the form of the
conversion is“[-]Jnnn.nnn”. Where the digits after the
decimal point are specified as above. If not specified,
the precision defaults to six digits. If the precision is
0, no decimal point or following digits are printed.

eE The argument is a double and the form of the
conversion is “[-]n.nnne(+or-)nn”; one digit before
the decimal point, and the precision controls the
number following. “E” printsthe “€” in upper case.

0,G The argument is a double, and either the “f” format
or the“e” format is chosen, whichever isthe shortest.
If the “G” format is used, the “€” is printed in upper
case.

NOTE in each of the above double conversions, the last digit is rounded.

50

ALSO NOTE that in order for the printing of floats or doubles to take place, the source program
must have the statement pffinit() somewhere.

c The argument as a character.

S The argument isa pointer to astring. Charactersfrom
the string are printed up to a null character, or until
the number of characters indicated by the precision
have been printed. If the precision is 0 or missing, the
characters are not counted.

% No argument corresponding; “%" is printed.

See Also
Kernighan & Ritchie pages 145-147. putc(), scanf()

Name
Putc, Putchar, Putw — put character or word in afile

Synopsis
#include <stdio.h>
putc(ch, fp);

char ch;
FI LE *fp;

put char (ch);
char ch;
putw(n, fp);

int n;
FI LE *fp;

Description

Putc adds the character “ch” tothefile“f p” at the current writing position and advances the position
pointer.

Putchar isimplemented as a macro (defined in the header file) and is equivalent to “ putc(ch,stdout)” .
Putw adds the (two byte) machine word “n” to thefile “f p” in the manner of putc.

Output via putc is normally buffered except; (a) when the buffering is disabled by “setbuf()”, and (b)
the standard error output is aways unbuffered.

Diagnostics

Putc and putchar return the character argument from a successful call, and EOF on end-of-file or error.
See Also

fopen(), fclose(), fflush(), getc(), puts(), printf(), fread()

Name
Puts, Fputs — put astring on afile

51

Synopsis

#include <stdio.h>
puts(s);
char *s;
fputs(s, fp);

char *s;
FI LE *fp;

Description

Fputs copies the (null-terminated) string pointed to by “s” onto the file “f p”.
Puts copies the string “s™ onto the standard output and appends “\n”.

The terminating null is not copied by either function.

Caveats

Name

Theinconsistency of the new-line being appended by puts and not by fputs is dictated by history and
the desire for compatibility.

Qsort — quick sort

Synopsis

gsort (base, n, size, (* conmpfunc));

char *base;

int n;

int size;

int (* compfunc) (void *, void *);

Description

Name

Qsort implements the quick-sort algoritm for sortig an arbitrary array of items.

“Base” is the address of the array of “n” items of size “si ze”. “Conpf unc” is a pointer to a
comparison routine supplied by the user. It will be called by gsort with two pointers to items in the
array for comparison and should return an integer which islessthan, equal to, or greater than O where,
respectively, the first item isless than, equal to, or greater than the second.

Scanf, Fscanf, Sscanf — input string interpretation

Synopsis

#include <stdio.h>
fscanf(fp, control, pointer...);

FI LE *fp;
char *control;
char *pointer...;

52

scanf (control, pointer...);

char *control;
char *pointer...;

sscanf (string, control, pointer...);

char *string;
char *control;
char *pointer...;

Description
These functions perform the complement to “printf()” etc.

Fscanf performs conversions from the file “f p”, scanf from the standard input, and sscanf from the
string pointed to by “st ri ng”.

Each function expects a control string containing conversion specifications, and zero or more pointers
to objects into which the converted values are stored.

The control string may contain three types of fields:

a. Space, tab characters, or “\n” which match any of the three in the input.

b. Characters not among the above and not “ %" which must match characters in the input.

c. A “%" followed by an optional “*” indicates suppression of assignment, an optional field width
maximum and a conversion character indicating the type expected.

A conversion character controls the conversion to be applied to the next field and indicates the type
of the corresponding pointer argument. A field consists of consecutive non-space characters and ends
at either a character inappropiate for the conversion or when a specified field is exhausted. When one
field isfinished, white-space characters are passed over until the next field is found.

d A decimal string isto be converted to an integer.

0 An octal string; the coresponding argument should point to an
integer.

X A hexadecimal string for conversion to an integer.

s A string of non-space charactersis expected and will be copied

to the buffer pointed to by the corresponding argument and a
null (“\0") appended. The user must ensure that the buffer is
large enough. The input string is considered terminated by a
space, tab of (“\n").

c A character isexpected and iscopied into the byte pointed to by
the argument. The white-space skipping is suppressed for this
conversion. If afield width is given, the argument is assumed
to point to a character array and the number of characters
indicated is copied to it. NOTE to ensure that the next non-
white-space character is read use “%1s’ and that TWO bytes
are pointed to by the argument.

ef A floating point representation is expected on the input and the
argument must be a pointer to a float. Any of the usua ways
of writing floating point numbers are recognized.

[This denotesthe start of aset of match characters; theinclusion
or exclusion of which delimitsthe input field. The white-space
skipping issuppressed. The corresponding argument should be
apointer to acharacter array. If thefirst character in the match
string is not “/”, characters are copied from the input as long

53

as they can be found in the match string. If the first character
isthe“~", copying continues while characters cannot be found
in the match string. The match string is delimited by a“]”.

D,0,X Similar to d,0,x above, but the corresponding argument is
considered to point to along integer.

E,F Similar to e,f above, but the corresponding should point to a
double.

% A match for “%” is sought; no conversion takes place.

Each of the functions returns a count of the number of fields successfully matched and assigned.

Caveats

The returned count of matches/assigments does not include character matches and assigments
suppressed by “*”. The arguments must ALL be pointers. It isacommon error to call scanf with the
value of an item rather than a pointer to it.

Diagnostics

These functions return EOF on end of input or error and a count which is shorter than expected for
unexpected or unmatched items.

See Also

Atoi(), atof(), getc(), printf() Kernighan and Ritchie pp 147-150

Name
Setbuf — fix file buffer

Synopsis
#include <stdio.h>

set buf (fp, buffer);

FI LE *fp;
char *buffer;

Description

When the first character iswritten to or read from afile after it has been opened by “fopen()”, abuffer
is obtained from the system if required and assigned to it. Setbuf may be used to forestall this by
assigning a user buffer to the file.

Setbuf must be used after the file has been opened and before any 1/0 has taken place.

The buffer must be of sufficient size and a value for a manifest constant, BUFSIZ, is defined in the
header file for use in declarations.

If the“buf f er ” argumentisNULL (0), thefile becomes unbuffered and charactersare read or written
singly.

NOTE that the standard error output is unbuffered and the standard output is buffered.
See Also

fopen(), getc(), putc()

Name
Sleep — stop execution for atime

Synopsis
sl eep(seconds);
i nt seconds;
Description

The current task is stopped for the specified time.

If “seconds’ is zero, the task will sleep for onetick.

Name Streat, Strncat, Stremp, Strnecmp, Strepy, Strhepy, Strnepy, Strien, Index, Rindex — string functions
Synopsis

char *strcat(sl, s2);

char *sl1,;

char *s2;

char *strncat(sl, s2, n);

char *sl1;
char *s2;
int n;

int strcnp(sl, s2);

char *sl1;
char *s2;

char *strhcpy(sl, s2);

char *sl1;
char *s2;

int strncnmp(sl, s2, n);
char *sl1;

char *s2;

int n;

char *strcpy(sl, s2);

char *sl1;
char *s2;

char *strncpy(sl, s2, n);
char *sl1;
char *s2;

int n;

int strlen(s);

55

char *s;
char *index(s, ch);

char *s;
char ch;

char *rindex(s, ch);

char *s;
char ch;

Description
All strings passed to these functions are assumed null-terminated.

Strcat appends a copy of the string pointed to by “s2” to the end of the string pointed to by “s1”.
Strncat copiesat most “n” characters. Both return the first argument.

Stremp compares strings“s1” and “s2” for lexicographic order and returns an integer lessthan, equal
to or greater than O where, respectively, “s1” is less than, equal to or greater than “s2”. Strncmp

compares at most “n” characters.

Strcpy copies characters from “s2” to the space pointed to by “s1” up to and including the null byte.
Strncpy copiesexactly “n” characters. If thestring “s2” istoo short, the“s 1” will be padded with null
bytesto make up the difference. If “s2” istoolong, “s1” may not be null-terminated. Both functions
return the first argument.

Strhcpy copies string with sign bit terminator.

Strlen returns the number of non-null charactersin“s”.

Index returns a pointer to the first occurrence of “ch” in“s” or NULL if not found.

Rindex returns a pointer to the last occurrence of “ch” in“s’ or NULL if not found.

Caveats

Strcat and strcpy have no means of checking that the space provided is large enough. It is the user's
responsibility to ensure that string space does not overflow.

See Also

findstr().

Name
System — shell command interpreter

Synopsis
system(string);
char *string;
Description
System passes its argument to “shell” which executes it as a command line. The task is suspended

until the shell command is completed and system returns the shell's exit status. The maximum length
of string is 80 characters. If alonger string is needed, use os9fork.

56

See Also
System calls os9fork(), wait().

Name
Toupper, Tolower — character translation

Synopsis
#include <ctype.h>
t oupper (c);
int c;
t ol ower (c);
int c;
_toupper(c);
int c;
_tol ower(c);
int c;
Description

The functions toupper and tolower have as their domain the integers in the range -1 to 255. Toupper
convertslower-caseto upper-case, and tolower converts upper-caseto lower-case. All other arguments
are returned unchanged.

The macros _toupper and _tolower do the same things as the corresponding functions, but they have
restricted domains and they arefaster. Theargument to _toupper must be lower-case, and the argument
to _tolower must be upper-case. Arguments that are outside each macros domain, such as passing a
lower-case to _tolower, yield garbage results.

Name

Ungetc — put character back on input
Synopsis

#include <stdio.h>

ungetc(ch, fp);

char ch;
FILE *fp;

Description

Thisfunction alters the state of the input file buffer such that the next call of “getc()” returns“ch”.

Only one character may be pushed back, and at least on character must have been read from the file
before a call to ungetc.

“Fseek()” erases any pushback.

57

Diagnostics
Ungetc returnsits character argument unless no pushback could occur, in which case EOF is returned.
See Also

getc(), fseek()

58

Appendix A. C Reference Manual

A.l. Introduction

This manual describes the C language on the DEC PDP-11%, the DEC VAX-11, and the 6809°.
Where differences exist, it concentrates on the VAX, but tries to point out implementation-dependent
details. With few exceptions, these dependenciesfollow directly from the underlying properties of the
hardware; the various compilers are generally quite compatible.

A.2. Lexical Conventions

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, newlines, and comments (collectively, “white space”) as described below are
ignored except as they serve to separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

A.2.1. Comments

The characters/ * introduce a comment which terminates with the characters */ . Comments do not
nest.

A.2.2. Identifiers (Names)

Anidentifier isasegquence of lettersand digits. The first character must be aletter. The underscore ()
countsasaletter. Uppercase and lowercase letters are different. Although thereisno limit onthelength
of aname, only initial characters are significant: at least eight characters of a non-external name, and
perhaps fewer for external names. Moreover, some implementations may collapse case distinctions
for external names. The external name sizes include:

PDP-11 7 characters, 2 cases
VAX-11 >100 characters, 2 cases
Motorola 6809 8 characters, 2 cases

A.2.3. Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

int extern ese
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break entry

! DEC PDP-11, and DEC VAX-11 are trademarks of Digital Equipment Corporation.
26809 is atrademark of Motorola.

59

Constants

unsigned continue register
auto if

Some implementations also reserve thewordsdi r ect , f ort ran andasm

A.2.4. Constants

A24.1.

There are several kinds of constants. Each has atype; an introduction to typesis given in Section A .4,
“What's in a name?’. Hardware characteristics that affect sizes are summarized in “Hardware
Characteristics” under Section A.2, “Lexical Conventions”.

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with O (digit
zero). An octal constant consists of the digits 0 through 7 only. A sequence of digits preceded by 0x
or 0X (digit zero) istaken to be ahexadecimal integer. The hexadecimal digitsinclude a or A through
f or F with values 10 through 15. Otherwise, the integer constant is taken to be decimal. A decimal
constant whose val ue exceeds the largest signed machine integer istaken to bel ong; an octal or hex
constant which exceeds the largest unsigned machine integer is likewise taken to bel ong.

A.2.4.2. Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by | (letter ell) or L isalong
constant. As discussed below, on some machinesinteger and long values may be considered identical.

A.2.4.3. Character Constants

A character constant isacharacter enclosed in single quotes, asin 'x'. Thevalue of acharacter constant
isthe numerical value of the character in the machine's character set.

Certain nongraphic characters, the single quote (') and the backslash (\), may be represented
according to the following table of escape sequences:

newline NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backdash \ \\
single quote ' \'

bit pattern ddd \ddd

The escape \ddd consists of the backdlash followed by 1, 2, or 3 octal digits which are taken to specify
the value of the desired character. A special case of this constructionis\ 0 (not followed by a digit),
which indicates the character NUL. If the character following a backslash is not one of those specified,
the behavior isundefined. A new-linecharacter isillegal in acharacter constant. Thetype of acharacter
constant isi nt .

A.2.4.4. Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. Theinteger and fraction parts both consist of a sequence of digits.
Either theinteger part or the fraction part (not both) may be missing. Either the decimal point or thee
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

60

Strings

A.2.5. Strings

A string isasequence of characters surrounded by double quotes, asin™ . . . " . A string hastype“array
of char” and storage class st at i ¢ (see Section A.4, “What's in aname?’) and is initialized with
the given characters. The compiler places a null byte (\ 0) at the end of each string so that programs
which scan the string can find its end. In a string, the double quote character (") must be preceded by
a\ ; in addition, the same escapes as described for character constants may be used.

A\ and the immediately following newline are ignored. All strings, even when written identically,
are distinct.

A.2.6. Hardware Characteristics

The following figure summarize certain hardware properties that vary from machine to machine.

Table A.1. DEC PDP-11 Hardwar e Char acteristics

DEC PDP-11 DEC VAX-11 6809
(ASCII) (ASCII) (ASCII)
char 8 hits 8 hits 8 hits
int 16 32 16
short 16 16 16
long 32 32 32
float 32 32 32
double 64 64 64
float range +10°%8 +10°%8 +10°%8
double range +10°% +10*% +10°%®

A.3. Syntax Notation

Syntactic categories are indicated by italic type and literal words and characters in bol d type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal symbol is
indicated by the subscript “opt,” so that

{ expressiong }

indicates an optional expression enclosed in braces. The syntax is summarized in Section A.18,
“Syntax Summary”.

A.4. What's in a name?

C basestheinterpretation of an identifier upon two attributes of the identifier: its storage class and its
type. The storage class determinesthe location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier's storage.

There are four declarable storage classes. automatic, static, external, and register. Automatic variables
are local to each invocation of a block (see Section A.9.2, “Compound Statement or Block™”) and are
discarded upon exit from the block. Static variables are local to a block but retain their values upon
reentry to ablock even after control has left the block. External variables exist and retain their values
throughout the execution of the entire program and may be used for communi cation between functions,
even separately compiled functions. Register variables are (if possible) stored in the fast registers of
the machine; like automatic variables, they arelocal to each block and disappear on exit from the block.

61

Objects and lvalues

C supports several fundamental types of objects:

Objects declared as characters (char) are large enough to store any member of the implementation's
character set, and if agenuine character from that character setisstoredinachar variable, itsvaueis
equivalent to theinteger codefor that character. Other quantitiesmay be stored into character variables,
but the implementation is machine dependent.

Up to three sizes of integer, declared short int,int,and| ong int, areavailable. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers or long integers, or both, equivalent to plain integers. “Plain” integers have the natural size
suggested by the host machine architecture. The other sizes are provided to meet special needs.

Unsigned integers, declared unsi gned, obey the laws of arithmetic modulo 2" where n isthe number
of bitsin the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (f | oat) and double precision floating point (doubl €) may be
Ssynonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Typeschar andi nt of all sizeswill collectively be called integral types.
f | oat and doubl e typeswill collectively be called floating types.

Besides the fundamental arithmetic types, there is a conceptualy infinite class of derived types
constructed from the fundamental types in the following ways:

* arraysof objects of most types

« functions which return objects of agiven type

* pointersto objects of agiven type

* structures containing a sequence of objects of various types

* unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

A.5. Objects and lvalues

An object is a manipulatable region of storage. An lvalue is an expression referring to an object. An
obvious example of an lvalue expression is an identifier. There are operators which yield Ivalues: for
example, if Eisan expression of pointer type, then * Eisan lvalue expression referring to the object to
which E points. The name“lvalue” comes from the assignment expression E1 = E2 inwhich theleft
operand E1 must be an Ivalue expression. The discussion of each operator bel ow indicates whether it
expects lvalue operands and whether it yields an Ivalue.

A.6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an operand
from one type to another. This part explains the result to be expected from such conversions. The
conversions demanded by most ordinary operators are summarized under “Arithmetic Conversions.”
The summary will be supplemented as required by the discussion of each operator.

A.6.1. Characters and Integers

A character or a short integer may be used wherever an integer may be used. In al cases the value
is converted to an integer. Conversion of a shorter integer to alonger preserves sign. Whether or not
sign-extension occurs for characters is machine dependent, but it is guaranteed that a member of the

62

Float and Double

standard character set is non-negative. Of the machines treated here, only the PDP-11 and VAX-11
sign-extend. On these machines, char variables range in value from -128 to 127. The more explicit
typeunsi gned char forcesthe values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are al non-negative.
However, a character constant specified with an octal escape suffers sign extension and may appear
negative; for example, ' \ 377" hasthevaue- 1.

When alonger integer is converted to ashorter integer or to achar , it istruncated on the left. Excess
bits are simply discarded.

A.6.2. Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a f | oat appears in an
expression it is lengthened to doubl e by zero padding its fraction. When a doubl e must be
converted to f | oat , for example by an assignment, the doubl e is rounded before truncation to
f | oat length. Thisresultisundefined if it cannot berepresented asafloat. Onthe VAX, the compiler
can be directed to use single precision for expressions containing only float and integer operands.

A.6.3. Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular, the
direction of truncation of negative numbersvaries. The result isundefined if it will not fit in the space
provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occursif the
destination lacks sufficient bits.

A.6.4. Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such acase, thefirstis
converted as specified in the discussion of the addition operator. Two pointers to objects of the same
type may be subtracted; in this case, the result is converted to an integer as specified in the discussion
of the subtraction operator.

A.6.5. Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to
unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2"°%%8) |n a2's complement representation, this conversion is conceptual; and there
isno actual change in the bit pattern.

Whenanunsignedshor t integerisconvertedtol ong, thevalue of theresult isthe same numericaly
as that of the unsigned integer. Thus the conversion amounts to padding with zeros on the lft.

A.6.6. Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This pattern will
be called the “usual arithmetic conversions.”

a. First, any operands of type char or short are converted to i nt, and any operands of type
unsi gned char orunsi gned short areconvertedtounsi gned int.

b. Then, if either operand is doubl e, the other is converted to doubl e and that is the type of the
result.

c. Otherwise, if either operand isunsi gned | ong, the other is converted to unsi gned | ong
and that is the type of the result.

63

Expressions

d. Otherwise, if either operand is | ong, the other is converted to | ong and that is the type of the
result.

e. Otherwise, if one operand is| ong, and the other isunsi gned i nt, they are both converted to
unsi gned | ong and that isthe type of the result.

f. Otherwise, if either operand isunsi gned, the other is converted to unsi gned and that is the
type of the result.

g. Otherwise, both operands must be i nt , and that is the type of the result.

A.7. Expressions

The precedence of expression operatorsisthe same asthe order of themajor subsectionsof thissection,
highest precedence first. Thus, for example, the expressions referred to as the operands of + (see
Section A.7.4, “Additive Operators’) are those expressions defined under Section A.7.1, “Primary
Expressions’, Section A.7.2, “Unary Operators’, and Section A.7.3, “Multiplicative Operators’.
Within each subpart, the operators have the same precedence. Left- or right-associativity is specified
in each subsection for the operators discussed therein. The precedence and associativity of all the
expression operators are summarized in the grammar of Section A.18, “ Syntax Summary”.

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler considers
itself free to compute subexpressionsin the order it believes most efficient even if the subexpressions
involve side effects. The order in which subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator (*, +, &, | , *) may be rearranged
arbitrarily even in the presence of parentheses; to force a particular order of evaluation, an explicit
temporary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by alibrary function.

A.7.1. Primary Expressions

Primary expressionsinvolving . , - >, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(‘expression)
primary-expression [expression]
primary-expression (expression-listop)
primary-expression . identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below. Its
type is specified by its declaration. If the type of the identifier is “array of ...”, then the value of
the identifier expression is a pointer to the first object in the array; and the type of the expression
is “pointer to ..."”. Moreover, an array identifier is not an Ivalue expression. Likewise, an identifier
which is declared “function returning ..."”, when used except in the function-name position of a call,
is converted to “pointer to function returning ...".

Unary Operators

A constant is a primary expression. Itstype may bei nt, | ong, or doubl e depending on its form.
Character constants have typei nt and floating constants have type doubl e.

A string is aprimary expression. Itstype is originally “array of char ”, but following the same rule
given above for identifiers, thisis modified to “pointer to char ” and the result is a pointer to the first
character inthe string. (Thereisan exceptionin certaininitializers; see Section A.8.6, “Initialization”.)

A parenthesized expression isa primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expressionisan Ivalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type “pointer to ...”, the
subscript expression isi nt , and the type of the result is “...”. The expression E1[E2] isidentical
(by definition) to * ((E1) +E2)) . All the clues needed to understand this notation are contained in
this subpart together with the discussions in Section A.7.2, “Unary Operators’ and Section A.7.4,
“Additive Operators’ on identifiers, * and + respectively. The implications are summarized under
“Arrays, Pointers, and Subscripting” under Section A.14, “Types Revisited”.

A function call isaprimary expression followed by parentheses containing a possibly empty, comma-
separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type“function returning ...,” and theresult of thefunction call isof type“...”. As
indicated below, ahitherto unseen identifier followed immediately by aleft parenthesisis contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type f | oat are converted to doubl e before the call. Any of type char
or short are converted to i nt . Array names are converted to pointers. No other conversions are
performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see Section A.7.2, “Unary
Operators’ and Section A.8.7, “Type Names”.

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argument
passing in C is strictly by value. A function may change the values of its formal parameters, but
these changes cannot affect the values of the actual parameters. It is possible to pass a pointer on the
understanding that the function may change the value of the object to which the pointer points. An
array nameisapointer expression. The order of evaluation of argumentsisundefined by the language;
take note that the various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by adot followed by anidentifier isan expression. Thefirst expression
must be a structure or a union, and the identifier must name a member of the structure or union. The
value is the named member of the structure or union, and it is an Ivalue if the first expression is an
Ivalue.

A primary expression followed by an arrow (built from - and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must
name a member of that structure or union. The result is an lvalue referring to the named member of
the structure or union to which the pointer expression points. Thus the expression E1- >MOS is the
same as (* E1) . MOS. Structures and unions are discussed in Section A.8.5, “ Structure and Union
Declarations’ under Section A.8, “Declarations’.

A.7.2. Unary Operators

Expressions with unary operators group right to left.

unary-expression;
* expression
& Ivalue
- expression

65

Unary Operators

| expression

~ expression

++ Ivalue

--lvalue

Ivalue ++

Ivalue --

(type-name) expression
sizeof expression

sizeof (type-name)

Theunary * operator means indirection ; the expression must be a pointer, and the result isan Ivalue
referring to the object to which the expression points. If the type of the expression is “pointer to ...,”
the type of theresult is“...”.

Theresult of the unary & operator is a pointer to the object referred to by the lvalue. If the type of the
Ivalueis“...”, the type of theresult is“pointer to ...".

The result of the unary - operator isthe negative of its operand. The usua arithmetic conversions are

performed. The negative of an unsigned quantity is computed by subtracting its value from 2" where
n is the number of bitsin the corresponding signed type. Thereis no unary + operator.

Theresult of the logical negation operator ! isoneif the value of its operand is zero, zero if the value
of its operand is nonzero. The type of the result isi nt . It is applicable to any arithmetic type or to
pointers.

The ~ operator yields the one's complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

The object referred to by the Ivalue operand of prefix ++ isincremented. The value is the new value
of the operand but is not an lvalue. The expression ++x is equivalent to x=x+1. See the discussions
Section A.7.4, “ Additive Operators’ and Section A.7.14, “ Assignment Operators’ for information on
conversions.

The lvalue operand of prefix - - is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an Ivalue, the result is the value of the object referred to by the Ivalue.
After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the Ivalue expression.

When postfix - - is applied to an Ivalue, the result is the value of the object referred to by the Ivalue.
After the result is noted, the object is decremented in the manner as for the prefix - - operator. The
type of the result isthe same as the type of the Ivalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in
Section A.8.7, “Type Names'.

The si zeof operator yields the size in bytes of its operand. (A byte is undefined by the language
except interms of thevalue of si zeof . However, in all existing implementations, abyteisthe space
required to hold a char .) When applied to an array, the result is the total number of bytes in the
array. The size is determined from the declarations of the objects in the expression. Thisexpression is
semantically an unsi gned constant and may be used anywhere a constant is required. Its major use
isin communication with routines like storage allocators and 1/0 systems.

Thesi zeof operator may aso be applied to a parenthesized type name. In that caseit yieldsthe size
in bytes of an object of the indicated type.

The construction si zeof (type) is taken to be a unit, so the expression si zeof (type) - 2 is the
sameas(si zeof (type)) - 2.

66

Multiplicative Operators

A.7.3. Multiplicative Operators

The multiplicative operators *, / , and %group left to right. The usual arithmetic conversions are
performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative, and expressions with
several multiplications at the same level may be rearranged by the compiler. The binary / operator
indicates division.

The binary %operator yields the remainder from the division of the first expression by the second.
The operands must be integral.

When positive integers are divided, truncation is toward O; but the form of truncation is machine-
dependent if either operand is negative. On all machines covered by this manual, the remainder has
the same sign asthe dividend. It isalwaystruethat (a/ b) *b + a%b isequal toa (if b isnot 0).

A.7.4. Additive Operators

The additive operators + and - group left to right. The usual arithmetic conversions are performed.
There are some additional type possibilities for each operator.

additive-expression:
EXpression + expression
expression - expression

Theresult of the + operator isthe sum of the operands. A pointer to an object in an array and avalue of
any integral type may be added. Thelatter isin all cases converted to an address offset by multiplying
it by the length of the object to which the pointer points. The result is a pointer of the same type asthe
original pointer which pointsto another object in the same array, appropriately offset from the original
object. Thusif P isapointer to an object in an array, the expression P+1 isapointer to the next object
inthe array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the - operator is the difference of the operands. The usua arithmetic conversions are
performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the
same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to ani nt representing the number of objects separating the pointed-to objects.
Thisconversionwill in general give unexpected results unless the pointers point to objectsin the same
array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object length.

A.7.5. Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic conversions on
their operands, each of which must beintegral. Then theright operandisconvertedtoi nt ; thetype of
the result is that of the left operand. The result is undefined if the right operand is negative or greater
than or equal to the length of the object in bits. On the VAX a negative right operand is interpreted
as reversing the direction of the shift.

67

Relational Operators

shift-expression:
expression << expression
expression >> expression

Thevaueof E1<<E2 isEL (interpreted as a hit pattern) left-shifted E2 bits. Vacated bitsare O filled.
The value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical
(Ofill) if E1 isunsi gned; otherwise, it may be arithmetic.

A.7.6. Relational Operators

Therelational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (lessthan), > (greater than), <= (less than or equal to), and >= (greater than or equal
to) all yield 0 if the specified relation is false and 1 if it is true. The type of the result isi nt . The
usual arithmetic conversions are performed. Two pointers may be compared; the result depends on the
relative locations in the address space of the pointed-to objects. Pointer comparison is portable only
when the pointers point to objects in the same array.

A.7.7. Equality Operators

equality-expression:
ExXpression == expression
expression != expression

The == (equal to) and the! = (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thusa<b == c<d is 1 whenever a<b and c<d have the same
truth value).

A pointer may be compared to an integer only if the integer isthe constant 0. A pointer to which O has
been assigned is guaranteed not to point to any object and will appear to be equal to 0. In conventional
usage, such apointer is considered to be null.

A.7.8. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual arithmetic
conversions are performed. The result is the bitwise AND function of the operands. The operator
applies only to integral operands.

A.7.9. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ~ expression

The” operator is associative, and expressions involving * may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of the operands. The
operator applies only to integral operands.

68

Bitwise Inclusive OR Operator

A.7.10.

A.7.11.

A.7.12.

A.7.13.

A.7.14.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The usual arithmetic
conversionsare performed; the result isthe bitwiseinclusive OR function of its operands. The operator
applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression & & expression

The && operator groups left to right. It returns 1 if both its operands eval uate to nonzero, O otherwise.
Unlike &, && guarantees | eft to right evaluation; moreover, the second operand is not evaluated if the
first operandisO.

The operands need not have the same type, but each must have one of the fundamental types or be
apointer. Theresultisalwaysi nt .

Logical OR Operator

logical-or-expression:
expression || expression

The | | operator groups left to right. It returns 1 if either of its operands evaluates to nonzero, 0
otherwise. Unlike | , | | guarantees left to right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the fundamental types or be
apointer. Theresult isalwaysi nt .

Conditional Operator

conditional -expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is nonzero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type.
If both are structures or unions of the same type, the result has the type of the structure or union. If
both pointers are of the same type, the result has the common type. Otherwise, one must be a pointer
and the other the constant O, and the result has the type of the pointer. Only one of the second and
third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an lvalue as
their left operand, and the type of an assignment expression isthat of itsleft operand. Thevalueisthe
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

69

Comma Operator

A.7.15.

assignment-expression:

Ivalue = expression
Ivalue += expression
Ivalue -= expression
Ivalue *= expression
Ivalue /= expression
Ivalue %= expression
Ivalue >>= expression
Ivalue <<= expression
Ivalue &= expression
Ivalue "= expression
Ivalue |= expression

In the simple assignment with =, the value of the expression replaces that of the object referred to by
the Ivalue. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. Second, both operands may be structures or unions of the same type.
Finally, if the left operand is apointer, the right operand must in general be apointer of the sametype.
However, the constant 0 may be assigned to a pointer; it is guaranteed that this value will produce a
null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as equivalent
to E1 = E1 op (E2); however, E1 is evaluated only once. In += and - =, the left operand may
be a pointer; in which case, the (integral) right operand is converted as explained in Section A.7.4,
“Additive Operators’. All right operands and all nonpointer left operands must have arithmetic type.

Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right operand.
This operator groups left to right. In contexts where commais given a special meaning, e.g., in lists
of actual arguments to functions (see Section A.7.1, “Primary Expressions’) and lists of initializers
(see Section A.8.6, “Initialization”), the comma operator as described in this subpart can only appear
in parentheses. For example,

f(a, (t=3, t+2), ¢)

has three arguments, the second of which has the value 5.

A.8. Declarations

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listop ;

The declaratorsin the declarator-list contain the identifiers being declared. The decl-specifiers consist
of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiersop
sc-specifier decl-specifiersop

70

Storage Class Specifiers

Thelist must be self-consistent in away described below.

A.8.1. Storage Class Specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
t ypedef

The t ypedef specifier does not reserve storage and is called a “storage class specifier” only for
syntactic convenience. See Section A.8.8, “Typedef” for more information. The meanings of the
various storage classes were discussed in Section A.4, “What'sin aname?’.

The aut o, static, and regi st er declarations also serve as definitions in that they cause an
appropriate amount of storageto bereserved. Intheext er n case, there must be an external definition
(see Section A.10, “External Definitions”) for the given identifiers somewhere outside the function
in which they are declared.

A regi ster declaration is best thought of as an aut o declaration, together with a hint to the
compiler that the variables declared will be heavily used. Only the first few such declarationsin each
function are effective. Moreover, only variables of certain types will be stored in registers; on the
PDP-11, they are i nt or pointer. One other restriction applies to register variables: the address-of
operator & cannot be applied to them. Smaller, faster programs can be expected if register declarations
are used appropriately, but future improvements in code generation may render them unnecessary.

At most, one sc-specifier may begivenin adeclaration. If the sc-specifier ismissing from adeclaration,
it istaken to be aut o inside afunction, ext er n outside. Exception: functions are never automatic.

A.8.2. Type Specifiers

The type-specifiersare

type-specifier:

char

short

i nt

| ong

unsi gned

fl oat

doubl e
struct-or-union-specifier
typedef-name

At most one of thewords| ong or shor t may be specified in conjunction with i nt ; the meaningis
thesameasifi nt werenot mentioned. Theword| ong may be specifiedin conjunctionwithf | oat ;
the meaning isthe sameasdoubl e. Theword unsi gned may be specified alone, or in conjunction
withi nt or any of its short or long varieties, or with char .

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival use of
| ong,short,orunsi gned isnot permitted witht ypedef names. If the type-specifier ismissing
from a declaration, it istaken to bei nt .

Specifiers for structures and unions are discussed in Section A.8.5, “Structure and Union
Declarations’. Declarations with t ypedef names are discussed in Section A.8.8, “ Typedef”.

71

Declarators

A.8.3. Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of
which may have aninitializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer gpt

Initializers are discussed in Section A.8.6, “Initialization”. The specifiers in the declaration indicate
the type and storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressiongy |

The grouping is the same as in expressions.

A.8.4. Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declarator
appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an unadorned
identifier appears asadeclarator, then it hasthetypeindicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

T D1

where T isatype-specifier (likei nt , etc.) and D1 isadeclarator. Suppose this declaration makes the
identifier havetype“... T ,” wherethe“...” isempty if D1 isjust aplain identifier (so that the type of
xin“int x”isjusti nt). Thenif D1 hastheform

*D

the type of the contained identifier is“... pointerto T &.”

If D1 has the form

()
then the contained identifier hasthe type “... function returning T.” If D1 has the form

D] constant-expression]

72

Structure and Union Declarations

or

O]

then the contained identifier has type “... array of T.” In the first case, the constant expression is
an expression whose value is determinable at compile time , whose type is i nt , and whose value
is positive. (Constant expressions are defined precisely in Section A.15, “Constant Expressions’)
When several “array of” specifications are adjacent, a multidimensional array is created; the constant
expressions which specify the bounds of the arrays may be missing only for the first member of the
seguence. This elision is useful when the array is external and the actual definition, which allocates
storage, is given elsewhere. The first constant expression may also be omitted when the declarator
is followed by initialization. In this case the size is calculated from the number of initial elements
supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays or functions athough they may return pointers; there are no
arrays of functions athough there may be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, £(), *fip(), (*pfi)();

declares an integer i , a pointer i p to an integer, a function f returning an integer, a function fi p
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is
especially useful to compare the last two. The binding of *fi p() is*(fi p()) . The declaration
suggests, and the same construction in an expression requires, the calling of a function f i p. Using
indirection through the (pointer) result to yield an integer. In the declarator (* pfi) (), the extra
parentheses are necessary, as they are aso in an expression, to indicate that indirection through a
pointer to afunction yields a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of f | oat numbersand an array of pointersto f | oat numbers. Finaly,

static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank 3x5x7. In complete detail, x3d isan array
of threeitems; eachitemisan array of five arrays, each of thelatter arraysisan array of seven integers.
Any of the expressionsx3d, x3d[i],x3d[i][j],x3d[i][]j]][k] may reasonably appear in an
expression. Thefirst three have type “array” and the last hastypei nt .

A.8.5. Structure and Union Declarations

A structure is an object consisting of a sequence of hamed members. Each member may have any
type. A union is an object which may, at a given time, contain any one of several members. Structure
and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }

73

Structure and Union Declarations

struct-or-union identifier

struct-or-union:
struct
uni on

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

Intheusual case, astruct-declarator isjust adeclarator for amember of astructure or union. A structure
member may also consist of a specified number of bits. Such a member is aso called a field ; its
length, a non-negative constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are read
left to right. Each nonfield member of a structure begins on an addressing boundary appropriate to its
type; therefore, there may be unnamed holes in a structure. Field members are packed into machine
integers; they do not straddle words. A field which does not fit into the space remaining in aword is
put into the next word. No field may be wider than aword.

Fields are assigned right to left on the PDP-11 and VAX-11, left to right on the 3B 20.

A struct-declarator with no declarator, only a colon and awidth, indicates an unnamed field useful for
padding to conform to externally-imposed layouts. Asaspecia case, afield with awidth of 0 specifies
alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even i nt fields may be considered to be
unsigned. On the PDP-11, fields are not signed and have only integer values; on the VAX-11, fields
declared withi nt aretreated as containing asign. For these reasons, it is strongly recommended that
fieldsbe declared asunsi gned. Inall implementations, there are no arrays of fields, and the address-
of operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure al of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most, one of the members can be stored in a union at
any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
uni on identifier { struct-decl-list }

74

Initialization

declares the identifier to be the structuretag (or union tag) of the structure specified by the list. A
subsequent declaration may then use the third form of specifier, one of

struct identifier
uni on identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long part of
the declaration to be given onceand used several times. Itisillegal to declareastructure or unionwhich
contains an instance of itself, but a structure or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration which gives the
compl ete specification of the structure or union in situationsin which the size of the structure or union
is unnecessary. The size is unnecessary in two situations: when a pointer to a structure or union is
being declared and when at ypedef nameisdeclared to be asynonym for a structure or union. This,
for example, allows the declaration of a pair of structures which contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary variables. A particular
name may not be used twice in the same structure, but the same name may be used in several different
structures in the same scope.

A simple but important example of a structure declaration is the following binary tree structure:

struct tnode

{
char tword[20];
i nt count;
struct tnode *left;
struct tnode *right;
b

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort.
With these declarations, the expression

sp- >count

refersto the count field of the structure to which sp points;

s.left

refersto the left subtree pointer of the structure s; and

s. right->tword[O0]
refersto thefirst character of thet wor d member of the right subtree of s.
A.8.6. Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is preceded
by = and consists of an expression or alist of values nested in braces.

75

Initialization

initializer:
= expression
= {initializer-list }
= {initializer-list, }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All theexpressionsin aninitiaizer for astatic or external variable must be constant expressions, which
aredescribed in Section A.15, “ Constant Expressions”, or expressionswhich reduceto the address of a
previously declared variable, possibly offset by a constant expression. Automatic or register variables
may beinitialized by arbitrary expressions involving constants and previously declared variables and
functions.

Static and external variables that are not initialized are guaranteed to start off as zero. Automatic and
register variables that are not initialized are guaranteed to start off as garbage.

When aninitializer appliestoa scalar (apointer or an object of arithmetic type), it consistsof asingle
expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a brace-
enclosed, comma-separated list of initializers for the members of the aggregate written in increasing
subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to
the members of the aggregate. If there are fewer initiaizersin the list than there are members of the
aggregate, then the aggregate is padded with zeros. It is not permitted to initialize unions or automatic

aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializersinitializesthe members of the aggregate; it iserroneousfor thereto
bemoreinitializersthan members. If, however, theinitializer doesnot begin with aleft brace, then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members areleft toinitialize the next member of the aggregate of which the current aggregateisapart.

A final abbreviationallowsachar array to beinitialized by astring. In this case successive characters
of the string initialize the members of the array.

For example,

int x[] ={ 1, 3, 51};

declares and initializes x as a one-dimensional array which has three members, since no size was
specified and there are three initializers.

float y[4][3] =
{

11
21
3

a1~ w
~N O Ol

latn Nate Nate)
(SN

b

is acompletely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0] , namely
y[O0][O],y[O][1],andy[O] [2] . Likewise, the next two linesinitializey[1] andy[2] . The

76

Type Names

initializer ends early and therefore y[3] isinitialized with 0. Precisely, the same effect could have
been achieved by

float y[4][3] =
{
1

Theinitiaizer for y beginswith aleft brace but that for y[0] does not; therefore, three elements from
thelist are used. Likewise, the next three are taken successively for y[1] andy[2] . Also,

1, 3, 5, 2, 4, 6, 3, 5 7

float y[4][3] =

{
{1} {2} {3} {4}
b
initializes the first column of y (regarded as atwo-dimensional array) and leaves the rest O.
Finally,
char nmsg[] = "Syntax error on line %\n";

shows a character array whose members are initialized with a string.

A.8.7. Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument of
si zeof), it isdesired to supply the name of a data type. Thisis accomplished using a“type name”,
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressiongy |

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction
were a declarator in a declaration. The named type is then the same as the type of the hypothetical
identifier. For example,

i nt

int *

int *[3]
int (*)[3]

77

Typedef

name respectively the types “integer,” “pointer to integer,” “array of three pointers to integers,”
“pointer to an array of three integers,” “function returning pointer to integer,” “pointer to function
returning an integer,” and “array of three pointers to functions returning an integer.”

A.8.8. Typedef

Declarations whose “storage class’ ist ypedef do not define storage but instead define identifiers
which can be used later asif they were type keywords naming fundamental or derived types.

typedef-name:
identifier
Within the scope of a declaration involving t ypedef , each identifier appearing as part of any

declarator therein becomes syntactically equivalent to the type keyword naming the type associated
with theidentifier in theway described in Section A.8.4, “Meaning of Declarators’. For example, after

typedef int MLES, *KLICKSP;

typedef struct { double re, im } conplex;
the constructions

M LES di st ance;

extern KLICKSP netricp;

conplex z, *zp;

are al legal declarations; thetype of di st ance isi nt ,that of met ri cp is“pointertoi nt,” and
that of z isthe specified structure. The zp isa pointer to such a structure.

Thet ypedef doesnot introduce brand-new types, only synonymsfor typeswhich could be specified
in another way. Thus in the example above di st ance is considered to have exactly the same type
asany other i nt object.

A.9. Statements

Except asindicated, statements are executed in sequence.

A.9.1. Expression Statement

Most statements are expression statements, which have the form

expression ;
Usually expression statements are assignments or function calls.
A.9.2. Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also, and
equivalently, called “block™) is provided:

78

Conditional Statement

compound-statement:
{ declaration-listyy statement-listop: }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of theidentifiersin the declaration-list were previously declared, the outer declaration is pushed
down for the duration of the block, after which it resumesitsforce.

Any initializations of aut o or r egi st er variables are performed each time the block is entered at
thetop. Itiscurrently possible (but abad practice) to transfer into ablock; in that casetheinitializations
are not performed. Initializations of st at i ¢ variables are performed only once when the program

begins execution. Inside a block, ext er n declarations do not reserve storage so initialization is not
permitted.

A.9.3. Conditional Statement

The two forms of the conditional statement are
i f (expression) statement
i f (expression) statement el se statement

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed. In
the second case, the second substatement is executed if the expression is 0. The “else” ambiguity is
resolved by connecting an el se with the last encountered el se-lessi f .

A.9.4. While Statement

Thewhi | e statement has the form

whi | e (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains nonzero. The
test takes place before each execution of the statement.

A.9.5. Do Statement

The do statement has the form

do statement whi | e (expression) ;

The substatement is executed repeatedly until the value of the expression becomes 0. The test takes
place after each execution of the statement.

A.9.6. For Statement

Thef or statement has the form:

79

Switch Statement

for (exp-Lopt; €XP-2opt ; €XP-3opt) Statement

Except for the behavior of cont i nue, this statement is equivalent to

exp-1;
whi | e (exp-2)
{
Statement
exp-3;
}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before
each iteration, such that the loop is exited when the expression becomes 0. The third expression often
specifies an incrementing that is performed after each iteration.

Any or al of the expressions may be dropped. A missing exp-2 makes the implied whi | e clause
equivalent towhi | e(1) ; other missing expressions are simply dropped from the expansion above.

A.9.7. Switch Statement

Theswi t ch statement causes control to be transferred to one of several statements depending on the
value of an expression. It has the form

swi t ch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be i nt . The
statement istypically compound. Any statement within the statement may be labeled with one or more
case prefixes as follows:

case constant-expression :

where the constant expression must bei nt . No two of the case constantsin the same switch may have
the same value. Constant expressions are precisely defined in Section A.15, “ Constant Expressions”.

There may also be at most one statement prefix of the form

defaul t

When the swi t ch statement is executed, its expression is evaluated and compared with each case
constant. If one of the case constants is equal to the value of the expression, control is passed to the
statement following the matched case prefix. If no case constant matches the expression and if there
isadef aul t, prefix, control passes to the prefixed statement. If no case matches and if thereis no
def aul t, then none of the statements in the switch is executed.

The prefixescase anddef aul t do not alter the flow of control, which continues unimpeded across
such prefixes. To exit from a switch, see Section A.9.8, “Break Statement”.

Usually, the statement that isthe subject of aswitch iscompound. Declarations may appear at the head
of this statement, but initializations of automatic or register variables are ineffective.

A.9.8. Break Statement

The statement

break ;

80

Continue Statement

A.9.9.

A.9.10

A.9.11.

A.9.12.

A.9.13.

causes termination of the smallest enclosingwhi | e, do, f or, or swi t ch statement; control passes
to the statement following the terminated statement.

Continue Statement

The statement

conti nue ;

causes control to pass to the loop-continuation portion of the smallest enclosing whi | e, do, or f or
statement; that is to the end of the loop. More precisely, in each of the statements

while(...) { do{ for (...) {
Statement ; Statement ; Statement ;
contin: ; contin: ; contin: ;

} } while (...); }

aconti nue isequivaent to got o conti n. (Following the cont i n: isanull statement, see
Section A.9.13, “Null Statement”.)

. Return Statement

A function returns to its caller by means of ther et ur n statement which has one of the forms

return ;
return expression;

In the first case, the returned value is undefined. In the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted, as if by assignment, to

the type of function in which it appears. Flowing off the end of a function is eguivalent to a return
with no returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the statement

got o identifier ;
Theidentifier must bealabel (see Section A.9.12, “ L abeled Statement”) located in the current function.
Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier :
which serve to declare the identifier as alabel. The only use of alabel is as atarget of agot o. The

scope of alabel isthe current function, excluding any subblocks in which the sameidentifier has been
redeclared. See Section A.11, “ Scope Rules’

Null Statement

The null statement has the form

81

Externa Definitions

A.10.

A.10.1.

A null statement is useful to carry alabd just before the} of a compound statement or to supply a
null body to alooping statement such aswhi | e.

External Definitions

A C program consists of asequence of external definitions. An external definition declaresanidentifier
to have storage class ext er n (by default) or perhaps st ati ¢, and a specified type. The type-
specifier (see Section A.8.2, “Type Specifiers’) may also be empty, in which case the type is taken
tobei nt . The scope of external definitions persists to the end of the file in which they are declared
just asthe effect of declarations persiststo the end of ablock. The syntax of external definitionsisthe
same as that of all declarations except that only at thislevel may the code for functions be given.

External Function Definitions

Function definitions have the form

function-definition:
decl-specifier sy function-declarator function-body

Theonly sc-specifiersallowed among the decl-specifiersareext er norst at i ¢; seeSectionA.11.2,
“Scope of Externals’ for the distinction between them. A function declarator is similar to a declarator
for a“function returning ...” except that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-listyy)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-listop: compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration
list. Any identifiers whose type is not given are taken to be i nt . The only storage class which may
be specified isr egi st er; if it is specified, the corresponding actual parameter will be copied, if
possible, into aregister at the outset of the function.

A simple example of a complete function definitionis

int max(a, b, c)
int a, b, c;

{
int m
m=(a >Db) ? a: b;
return((m>c) ? m: c);
}
Herei nt isthetype-specifier; max(a, b, c) isthefunction-declarator;i nt a, b, c; isthe
declaration-list for the formal parameters;{ ... } istheblock giving the code for the statement.

82

Externa Data Definitions

The C program converts all f | oat actual parameters to doubl e, so formal parameters declared
f | oat have their declaration adjusted to read doubl e. All char and short formal parameter
declarations are similarly adjusted to read i nt . Also, since a reference to an array in any context
(in particular as an actual parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared “array of ...” are adjusted to read “pointer to”

A.10.2. External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be ext er n (which is the default) or st at i ¢ but not aut o or
register.

A.11. Scope Rules

A C program need not all be compiled at the same time. The source text of the program may be kept
in severa files, and precompiled routines may be loaded from libraries. Communication among the
functions of a program may be carried out both through explicit calls and through manipulation of
external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
“undefined identifier” diagnostics; and second, the scope associated with external identifiers, which
is characterized by the rule that references to the same external identifier are references to the same
object.

A.11.1. Lexical Scope

Thelexical scope of identifiers declared in external definitions persistsfrom the definition through the
end of the sourcefilein which they appear. Thelexical scopeof identifierswhich areformal parameters
persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of a block persists until the end of the block. The lexical scope of labels is the whole of
the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end
of the block.

Remember also (see Section A.8.5, “Structure and Union Declarations’) that identifiers associated
with ordinary variables, and those associated with structure and union members form two disjoint
classes which do not conflict. Members and tags follow the same scope rules as other identifiers.
t ypedef namesareinthe sameclassasordinary identifiers. They may be redeclared ininner blocks,
but an explicit type must be given in the inner declaration:

typedef float distance;

auto int distance;

}

Thei nt must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type di st ance.

83

Scope of Externals

A.11.2.

A.l12.

A.12.1.

Scope of Externals

If afunctionrefersto anidentifier declaredto beext er n, then somewhere among thefilesor libraries
constituting the compl ete program there must be at least one external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same object, so
care must be taken that the type and size specified in the definition are compatible with those specified
by each function which references the data.

Itisillegal to explicitly initialize any external identifier more than oncein the set of filesand libraries
comprising amulti-file program. It islegal to have more than one data definition for any external non-
function identifier; explicit use of ext er n does not change the meaning of an external declaration.

In restricted environments, the use of the ext er n storage class takes on an additional meaning. In
these environments, the explicit appearance of the ext er n keyword in external data declarations
of identities without initialization indicates that the storage for the identifiersis allocated elsewhere,
either in this file or another file. It is required that there be exactly one definition of each external
identifier (without ext er n) in the set of files and libraries comprising a mult-file program.

Identifiers declared st ati ¢ at the top level in external definitions are not visible in other files.
Functions may be declared st at i c.

Compiler Control Lines

The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and
inclusion of named files. Lines beginning with # communicate with this preprocessor. There may be
any number of blanks and horizontal tabs between the # and the directive. These lines have syntax
independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form

#def i ne identifier token-stringop

causesthe preprocessor to replace subsequent instances of theidentifier with the given string of tokens.
Semicolonsin or at the end of the token-string are part of that string. A line of the form

#def i ne identifier (identifier, ...) token-stringopt

where there is no space between the first identifier and the (, is a macro definition with arguments.
There may be zero or more formal parameters. Subsequent instances of the first identifier followed
by a (, a sequence of tokens delimited by commas, and a) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal parameter list of the definition is
replaced by the corresponding token string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted strings or protected by parentheses do
not separate arguments. The number of formal and actual parameters must be the same. Strings and
character constants in the token-string are scanned for formal parameters, but strings and character
constantsin the rest of the program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing\ at the end of the line to be continued.

Thisfacility is most valuable for definition of “manifest constants,” asin

#def i ne TABSI ZE 100

File Inclusion

A.12.2.

A.12.3.

i nt tabl e[TABSI ZE] ;

A control line of the form

#undef identifier
causes the identifier's preprocessor definition (if any) to be forgotten.

If a#def i nedidentifier isthe subject of a subsequent #def i ne with nointervening#undef , then
the two token-strings are compared textually. If the two token-strings are not identical (all white space
is considered as equivalent), then the identifier is considered to be redefined.

File Inclusion

A compiler control line of the form

#i ncl ude "fi | enane”

causes the replacement of that line by the entire contents of the filef i | ename. The named file is
searched for first in the directory of the file containing the #i ncl ude, and then in a sequence of
specified or standard places. Alternatively, a control line of the form

#i ncl ude <fi | enanme>

searches only the specified or standard placesand not the directory of the#i ncl ude. (How the places
are specified is not part of the language.)

#i ncl udes may be nested.
Conditional Compilation

A compiler control line of the form

#i f constant-expression
checks whether the constant expression evaluates to nonzero. (Constant expressions are discussed in
Section A.15, “Constant Expressions’. A control line of the form

#i f def identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the
subject of a#def i ne control line. Itisequivalent to #i f def (identifier) . A control line of theform

#i f ndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to

#i f ! defined(identifier) .

All three forms are followed by an arbitrary number of lines, possibly containing a control line

#el se

85

Line Control

and then by acontrol line

#endi f

If the checked condition is true, then any lines between #el se and #endi f are ignored. If the
checked condition is false, then any lines between the test and a #el se or, lacking a #el se, the
#endi f areignored.

These constructions may be nested.

A.12.4. Line Control

A.13.

For the benefit of other preprocessors which generate C programs, aline of the form

#| i ne constant identifier

causesthe compiler to believe, for purposes of error diagnostics, that theline number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent, the remembered file name does not change.

Implicit Declarations

It is not always necessary to specify both the storage class and the type of identifiersin a declaration.
The storage class is supplied by the context in external definitions and in declarations of formal
parameters and structure members. In a declaration inside a function, if a storage class but no typeis
given, theidentifier is assumed to be i nt ; if atype but no storage classisindicated, the identifier is
assumed to be aut 0. An exception to the latter rule is made for functions because aut o functions do
not exist. If the type of an identifier is“function returning ...,” itisimplicitly declared to be ext er n.

In an expression, an identifier followed by (and not already declared is contextually declared to be
“function returningi nt .”

A.14. Types Revisited

This part summarizes the operations which can be performed on objects of certain types.

A.14.1. Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by functions.
Other plausible operators, such as equality comparison and structure casts, are not implemented.

In areference to a structure or union member, the name on the right of the - > or the. must specify
amember of the aggregate named or pointed to by the expression on the left. In general, a member
of a union may not be inspected unless the value of the union has been assigned using that same
member. However, one special guarantee is made by the language in order to simplify the use of
unions: if a union contains several structures that share a common initial sequence and if the union
currently contains one of these structures, it is permitted to inspect the common initial part of any of
the contained structures.

A.14.2. Functions

There are only two thingsthat can be done with afunction m call it or takeits address. If the name of a
function appears in an expression not in the function-name position of acall, apointer to the function
is generated. Thus, to pass one function to ancther, one might say

int f();

86

Arrays, Pointers, and Subscripting

A.14.3.

A.14.4.

a(f);
Then the definition of g might read

g(funcp)
int (*funcp)();
{

(*funcp) ();
}

Notice that f must be declared explicitly in the calling routine since its appearancein g(f) was not
followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appearsin an expression, it is converted into apointer to the first
member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript
operator [] isinterpreted in such away that E1[E2] isidentical to* ((E1l) +E2)) . Because of the
conversion rules which apply to +, if E1 isan array and E2 an integer, then E1[E2] refersto the
E2- t h member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional array
of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an (n-1)-dimensional
array with rank jx...xk. If the * operator, either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result isthe pointed-to (n-1)-dimensional array, which itself isimmediately
converted into a pointer.

For example, consider

int x[3][5];

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to
(thefirst of three) 5-membered arrays of integers. Inthe expression x[i] , whichisequivalentto* (x
+i), x isfirst converted to apointer as described; theni isconverted to the type of x, which involves
multiplyingi by thelength the object to which the pointer points, namely 5-integer objects. Theresults
are added and indirection applied to yield an array (of five integers) which in turn is converted to a
pointer to the first of the integers. If there is another subscript, the same argument applies again; this
time the result is an integer.

Arraysin C are stored row-wise (last subscript varies fastest) and the first subscript in the declaration
helps determine the amount of storage consumed by an array. Arrays play no other part in subscript
calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent aspects.
They are all specified by means of an explicit type-conversion operator, see Section A.7.2, “Unary
Operators’ and Section A.8.7, “Type Names’.

A pointer may be converted to any of the integral types large enough to hold it. Whether an i nt
or | ong isrequired is machine dependent. The mapping function is also machine dependent but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

87

Constant Expressions

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may cause
addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of asmaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return achar pointer; it might be used in this way.

extern char *alloc();
doubl e *dp;

dp = (double *) all oc(sizeof (double));
*dp = 22.0/ 7.0;

Theal | oc must ensure (in amachine-dependent way) that its return valueis suitable for conversion
to apointer to doubl e; thenthe use of thefunctionis portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes. The
char 's have no alignment requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on a
boundary equal to their length, except that doubl e quantities need be aligned only on even 4-byte
boundaries. Aggregates are aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned on
4-byte boundaries. short s are aligned in al cases on 2-byte boundaries. Arrays of characters, al
structures, i nt's, | ongs, fl oat's, and doubl es are aligned on 4-byte boundries; but structure
members may be packed tighter.

A.15. Constant Expressions

In several places C requires expressions which evaluate to a constant: after case, as array bounds,
and ininitializers. In the first two cases, the expression can involve only integer constants, character
constants, and si zeof expressions, possibly connected by the binary operators

+ -] %&| N << > == 1= <> <= >= && ||

or by the unary operators

or by the ternary operator

?:
Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one can
also use floating constants and arbitrary casts and can also apply the unary & operator to external or
static objects and to external or static arrays subscripted with a constant expression. The unary & can
also be applied implicitly by appearance of unsubscripted arrays and functions. The basic rule is that
initializers must evaluate either to a constant or to the address of a previously declared external or
static object plus or minus a constant.

88

Portability Considerations

A.16. Portability Considerations

Certain parts of C are inherently machine dependent. The following list of potential trouble spotsis
not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer
division have proven in practice to be not much of a problem. Other facets of the hardware are
reflected in differing implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are placed in a word, are
nuisances that must be carefully watched. Most of the others are only minor problems.

The number of r egi st er variables that can actually be placed in registers varies from machine to
machine as does the set of valid types. Nonethel ess, the compilers all do things properly for their own
machine; excessor invalid r egi st er declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in which
side effects take placeis also unspecified.

Since character constants are really objects of type i nt, multicharacter character constants may
be permitted. The specific implementation is very machine dependent because the order in which
characters are assigned to aword varies from one machine to another.

Fields are assigned to words and charactersto integers right to left on some machines and left to right
on other machines. These differences are invisible to isolated programs that do not indulge in type
punning (e.g., by converting ani nt pointer to achar pointer and inspecting the pointed-to storage)
but must be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
PDP-11 compiler will not initialize structures containing bitfields, and does not accept a few
assignment operators in certain contexts where the value of the assignment is used.

A.17. Anachronisms

Since C is an evolving language, certain obsolete constructions may be found in older programs.
Although most versions of the compiler support such anachronisms, ultimately they will disappear,
leaving only a portability problem behind.

Earlier versions of C used the form =op instead of op= for assignment operators. This leads to
ambiguities, typified by:
x=-1

which actually decrements x since the = and the - are adjacent, but which might easily be intended
to assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces and initializer was
not present, so instead of

int x = 1;

one used

int x 1;

89

Syntax Summary

The change was made because the initialization

int f (1+2)

resembles a function declaration closely enough to confuse the compilers.

A.18. Syntax Summary

This summary of C syntax is intended more for aiding comprehension than as an exact statement of
the language.

A.18.1. Expressions

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
| expression
~ expression
++ Ivalue
--lvalue
Ivalue ++
Ivalue --
si zeof expression
si zeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(‘expression)
primary (expression-listyy)
primary [expression]
primary . identifier
primary - identifier

Ivalue:
identifier
primary [expression]
Ivalue . identifier
primary - identifier
* expression
(lvalue)

The primary-expression operators

90

Declarations

0f.-<

have highest priority and group left to right. The unary operators

* & -1 ~ ++--sizeof (type-name)

have priority below the primary operators but higher than any binary operator and group right to | eft.

Binary operators group left to right; they have priority decreasing asindicated below.

binop:
* |l %
+ -
>> <<

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
= 4= -= *= [= Op= >>= <<= &= = |:

The comma operator has the lowest priority and groups l€eft to right.

A.18.2. Declarations

declaration:
decl-specifiersinit-declarator-listopy ;

decl-specifiers:
type-specifier decl-specifiersop
sc-specifier decl-specifiersop

sc-specifier:
auto
static
extern
register
t ypedef

type-specifier:
char
short
i nt
| ong
unsi gned
fl oat

91

Declarations

doubl e
struct-or-union-specifier
typedef-name

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer op

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressiongy |

struct-or-union-specifier:
st ruct { struct-decl-list}
st ruct identifier { struct-decl-list }
struct identifier
uni on { struct-decl-list}
uni on identifier { struct-decl-list }
uni on identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

initializer:
= expression
= {initializer-list }
= {initializer-list , }

initializer-list:
expression
initializer-list , initializer-list

92

Statements

{initializer-list }
{initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressiongp; |

typedef-name:
identifier

A.18.3. Statements

compound-statement:
{ declaration-listyy statement-listop: }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

Statement:

compound-statement
expression ;
i f (expression) statement
i f (expression) statement el se statement
whi | e (expression) statement
do statement whi | e (expression) ;
for (expopt'; €XPopt’; EXPopt’) Statement
swi t ch (expression) statement
case constant-expression : statement
def aul t : statement
break ;

conti nue ;

return ;

return expression;
got o identifier ;
identifier : statement

A.18.4. External definitions

program

93

Preprocessor

external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifier oy function-declarator function-body

function-declarator:
declarator (parameter-listop)

parameter-list:
identifier
identifier , parameter-list

function-body:
declaration-listo, compound-statement

data-definition:
ext er n declaration ;
st ati c declaration ;

A.18.5. Preprocessor

#define identifier token-stringept
#define identifier(identifier,...)token-stringgp
#undef identifier

#i nclude "fil enanme"

#i ncl ude <fil enanme>

#i f constant - expression

#i fdef identifier

#i fndef identifier

#el se

#endi f

#l i neconstant identifier

94

Appendix B. Compiler Generated
Error Messages

Below isalist of the error messages that the C compiler generates, and, if applicable, probable causes
and theK & R Appendix A section number (in parenthesis) to see for more specific information.

already alocal variable

argument : <text>

argument error

argument storage

bad character

both must be integral

break error

can't take address

cannot cast

cannot evaluate size

cannot initialize

compiler trouble

condition needed

constant expression required

constant overflow

Variable has aready been declared at the current block level.
(Section A.8.1, “Storage Class Specifiers’, Section A.9.2,
“Compound Statement or Block™)

Error from preprocessor. Self-explanatory. Most common
cause of this error is not being able to find an includefile.

Function argument declared as type struct, union or function.
Pointers to such types, however are allowed. (Section A.10.1,
“External Function Definitions”)

Function arguments may only be declared as storage class
register. (Section A.10.1, “Externa Function Definitions”)

A character not in the C character set (probably a control char)
was encountered in the sourcefile. (2)

>> and << operands cannot be FLOAT or DOUBLE.
(Section A.7.5, “ Shift Operators”)

The break statement is allowed only inside a while, do, for or
switch block. (Section A.9.8, “Break Statement”)

& operator not allowed in a register variable. Operand must
otherwise be an lvalue. (Section A.7.2, “Unary Operators”)

Type result of cast cannot be FUNCTION or ARRAY.
(Section A.7.2, “Unary Operators’, Section A.8.7, “Type
Names”)

Could not determine size from declaration or initializer.
(Section A.8.6, “Initialization”, Section A.14.3, “Arrays,
Pointers, and Subscripting”)

Storage class or type does not alow variable to be initialized.
(Section A.8.6, “Initialization™)

Compiler detected something it couldn't handle. Try compiling
the program again. If thiserror still occurs, contact Microware.

While, do, for, switch and if statements require a condition
expression. (Section A.9.3, “Conditional Statement”)

Initializer expressions for static or external variables cannot
reference variables. They may, however, refer to the address
of a previously declared variable. This installation alows no
initializer expressions unless all operands are of type INT or
CHAR (Section A.8.6, “Initialization”)

Input numeric constant was too large for theimplied or explicit
type. (Section A.2.6, “Hardware Characteristics’, [PDP-11])

95

constant required

continue error

declaration mismatch

divide by zero

? expected

expression missing

function header missing

function type error

function unfinished

identifier missing

illegal declaration

label required

|abel undefined

Ivalue required

multiple defaults

multiple definition

must be integral

name clash

namein cast

Variables are not alowed for array dimensions or cases.
(Section A.8.3, “Declarators’, Section A.8.7, “Type Names’,
Section A.9.7, “ Switch Statement”)

The continue statement is allowed only inside a while, do, or
for block. (Section A.9.9, “ Continue Statement”)

This declaration conflicts with aprevious one. Thisistypically
caused by declaring a function to return a non-integer type
after a reference has been made to the function. Depending
on the line structure of the declaration block, this error may
be reported on the line following the erroneous declaration.
(Section A.11, “Scope Rules’, Section A.11.1, “Lexical
Scope”, Section A.11.2, “ Scope of Externals’)

Divideby zero occurred when eval uating aconstant expression.

?is any character that was expected to appear here. Missing
semicolons or braces cause this error.

An expression is required here.

Statement or expression encountered outside a function.
Typically causes by mismatched braces. (Section A.10.1,
“External Function Definitions”)

A function cannot be declared as returning an array, function,
struct, or union. (Section A.8.4, “Meaning of Declarators’,
Section A.10.1, “External Function Definitions”)

End-of-file encountered before the end of function definition.
(Section A.10.1, “External Function Definitions”)

Identifier name required here but none was found.

Declarations are allowed only at the beginning of a block.
(Section A.9.2, “Compound Statement or Block™)

Label name required on goto statement. (Section A.9.1,
“Expression Statement” 1)

Goto to label not defined in the current function.
(Section A.9.12, “Labeled Statement”)

Left side of assignment must be able to be "stored into". Array
names, functions, structs, etc. are not Ivalues. (Section A.7.1,
“Primary Expressions’)

Only one default statement is allowed in a switch block.
(Section A.9.7, “Switch Statement”)

Identifier name was declared more than once in the same
block level (Section A.9.2, “Compound Statement or Block”,
Section A.11.1, “Lexical Scope”)

Type of object required here must be type int, char or pointer.

Struct-union member and tag names must be mutually distinct.
(Section A.8.5, “ Structure and Union Declarations”)

Identifier name found in a cast. Only types are alowed.
(Section A.7.2, “Unary Operators’, Section A.8.7, “Type
Names”)

96

named twice

no 'if' for 'else’

no switch statement

not a function

not an argument

operand expected

out of memory

pointer mismatch

pointer or integer required

pointer required

primary expected

should be NULL

*xx%x STACK OVERFLOW ****

storage error

struct member mismatch

Names in a function parameter list may appear only once.
(Section A.10.1, “External Function Definitions")

Else statement found with no matching if. This is typically
caused by extra or missing braces and/or semicolons.
(Section A.9.3, “Conditional Statement”)

Case statements can only appear within a switch block.
(Section A.9.7, “Switch Statement”)

Primary in expression is not type "function returning...". If
thisis really a function call, the function name was declared
differently elsewhere. (Section A.7.1, “Primary Expressions”)

Name does not appear in the function parameter list.
(Section A.10.1, “External Function Definitions”)

Unary operators require one operand, binary operators two.
This is typically caused by misplaced parenthesis, casts or
operators. (Section A.7.1, “Primary Expressions’)

Compiler dynamic memory overflow. The compiler requires
dynamic memory for symbol table entries, block level
declarations and code generation. Three mgjor factors affect
this memory usage. Permanent declarations (those appearing
ontheouter block level (usedinincludefiles)) must bereserved
from the dynamic memory for the duration of the compilation
of the file. Each { causes the compiler to perform a block-
level recursion which may involve "pushing down" previous
declarations which consume memory. Auto class initializers
require saving expression trees until past the declarations
which may be very memory-expensive if may exist. Avoiding
excessive declarations, both permanent and inside compound
statement blocks conserve memory. If this error occurs on an
auto initializer, try initializing the value in the code body.

Pointers refer to different types. Use a case if required.
(Section A.7.1, “Primary Expressions’)

A pointer (of any type) or integer is required to the left of the
'->' operator. (Section A.7.1, “Primary Expressions”)

Pointer operand required with unary * operator. (Section A.7.1,
“Primary Expressions”)

Primary expression required here. (Section A.7.1, “Primary
Expressions’)

Second and third expression of ?: conditional operator cannot
be pointersto different types. If both are pointers, they must be
of the sametype or one of thetwo must be null. (Section A.7.13,
“Conditional Operator”)

Compiler stack has overflowed. Most likely causeis very deep
lock-level nesting or hundreds of switch cases.

Reg and auto storage classesmey only be used within functions.
(Section A.8.1, “ Storage Class Specifiers’)

Identical member names in two different structures must have
the same type and offset in both. (Section A.8.5, “ Structure and
Union Declarations”)

97

struct member required

struct syntax

struct or union inappropiate

syntax error

third expression missing

too long

too many brackets

too many elements

type error
type mismatch

typedef - not avariable

undeclared variable

undefined structure

unions not allowed

unterminated character constant

unterminated string

while expected

Identifier used with . and -> operators must be a structure
member name. (Section A.7.1, “Primary Expressions”)

Brace, comma, etc. is missing in a struct declaration.
(Section A.8.5, “ Structure and Union Declarations”)

Struct or union cannot be used in the context.
Expression, declaration or statement isincorrectly formed.

? must be followed by a : with expression. This error may
be causes by unmatched parenthesis or other errors in the
expression. (Section A.7.13, “Conditional Operator”)

Too many charactersprovided in astringinitializing acharacter
array. (Section A.8.6, “Initialization”)

Unmatched or unexpected brackets encountered processiong
aninitializer. (Section A.8.6, “Initialization”)

More data items supplied for aggregate level in initializer than
members of the aggregate. (Section A.8.6, “Initialization”)

Compiler type matching error. Should never happen.
Types and/or operators in expression do not correspond. (6)

Typedef type name cannot be used in this manner.
(Section A.8.8, “Typedef”)

no declaration exists at any block level for this identifier.

Union or struct declaration refers to an undefined structure
name. (Section A.8.5, “ Structure and Union Declarations”)

Cannot initiadlize union members. (Section A.8.6,
“Initialization”)

Unmatched ' character delimiters. (Section A.2.4.3, “ Character
Constants”)

Unmatched " string delimiters. (Section A.2.5, “ Strings”)

No while found for do statement. (Section A.9.5, “Do
Statement”)

98

Appendix C. Compiler Phase
Command Lines

Thisappendix describesthe command lines and optionsfor theindividual compiler phases. Each phase
of the compiler may be executed separately. The following information describesthe options available

to each phase.

C.1. ccl & cc2 (C executives)

cc [optiong] fi | e... [options]

Recognized file suffixes:

.a
I

C sourcefile
Assembly language source file
Relocatable module format file

Recognized options: (UPPER and lower caseis equiv.)

-a
-e=n

-0
-p
-r
-nEsi ze
-l =pat h
-f=path
-C

-S
- dNAME

- N=nane

CClonly:
- X

CC2only:

-q

Suppress assembly. Leave output in ".a" file.

Edition number (n) is supplied to c.prep for inclusion
in module psect and/or to c.link for inclusion as the
edition number of the linked module.

Inhibits assembly code optimizer pass.
Invoke compiler function profiler.
Suppress link step. Leave output in".r" file.

Size in pages (in kbytes if followed by a K) of
additional memory thelinker should all ocate to object
module.

Library file for linker to search before the standard
library.

Override other output naming. Module name (in
object module) isthelast namein the pathlist. -f isnot
allowed with -aor -r.

Output comments in assembly language code.
Suppress generation of stack-checking code.

I's equivalent to #define NAVE 1 in the preprocessor.
-dNAVE=STRI NG is equivalent to #define NAVE
STRI NG

output module name. narne is used to override the -
f default output name.

Create, but do not execute c.com command file.

Quiet mode. Suppress echo of file names.

99

c.prep (C macro preprocessor)

C.2. c.prep (C macro preprocessor)

c. pr ep [options] pat h [options]

pat h isread as input. C.prep causes c.comp to generate psect directive with last element of pathlist
and_casthepsect name. If pat h is/d0/myprog.c, psect nameismyprog_c. Output isalwaysto stdout.

Recognized options:

- Cause c.comp to copy source linesto assembly output

as comments.
- E=n
-e=n Usen as psect edition number.
- DNAVE Same as described above for ccl/cc2.

C.3. c.comp (One-pass compiler)

c. conp [optiong] [f i | e] [options]

Iffil eisnotpresent, c.compwill read stdin. Input text need not be c.prep output, but no preprocessor
directivesare recognized (#include, #define, macros etc.). Output assembly codeisnormally to stdout.
Error message output is always written to stdout.

Recognized options:
-s Suppress generation of stack checking code.

-p Generate profile code.
-o=pat h Write assembly output to pat h.

C.4. c.pass (Pass One/Two of Two-pass Compiler)

c. passl [optiong] [fi |] [options]
c. pass2 [options] [fi | e] [options]

Command line and options are the same as c.comp. If the options given to c.passl are not given to

c.pass2 also, c.pass2 will not be able to read the c.passl output. Both c.passl and c.pass2 read stdin
and write stdout normally.

C.5. c.opt (Assembly code optimizer)

c. opt [i npat h] [out pat h]

C.opt reads stdin and writes stdout. i npat h must be present if out pat h is given. Since c.opt
rearranges and changes code, comments and assembler directives may be rearranged.

C.6. c.asm (Assembler)

c.asmfi | e [options]

C.asmreadsf i | e asassembly language input. Errors are written to stderr. Options are turned on with
one -' and negated with '--". To turn listing on use -1. To turn listing off use --l. To turn conditionals
off use --c.

Recognized options:

-o=pat h Write rel ocatable output to path. Must be adisk file.

100

c.link (Linker)

-1 Write listing to stdout. (default off)

-C List conditional assembly lines. (default on)
-f Formfeed for top of form. (default off)

-g List all code bytes generated. (default off)

- X Suppress macro expansion listing. (default on)
-e Print errors. (default on)

-s Print symbol table. (default off)

-dn Set lines per page to n. (default 66).

-wWn Set line width to n. (default 80).

C.7. c.link (Linker)

c. | i nk [options] mai nl i ne subn... [optiong]

C.link turns c.asm output into executable form. All input files must contain relocatable object format
(ROF) files. mai nl i ne specifies the base module from which to resolve external references. A
mainline moduleisindicated by setting the type/lang valuein the psect directive to non-zero. No other
ROF can contain amainline psect. The mainline and all subroutine fileswill appear in the final linked
object module whether actually referenced or not.

For the C Compiler, cstart.r is the mainline module. It is the mainline modul€'s job to perform the
initialization of data and the relocation of any data-text and data-data references within theinitialized
data using the information in the object module supplied be c.link.

Recognized options:

-o=pat h Linker object output file. Must be adisk file. The last
element in pat h is used as the module name unless
overridden by -n.

- n=nane Use nane as object file name.

-1 =path Usepat h aslibrary file. A library file consists of one
or more merged assembly ROF files. Each psect in
thefileis checked to seeif it resolves any unresolved
references. If so, the module is included on the final
output module, otherwise it is skipped. No mainline
psects are alowed in alibrary file. Library files are
searched on the order given on the command line.

- E=n

-e=n n is used for the edition number in the fina output
module. 1 isused is-eis not present.

- Mesi ze si ze indicates the number of pages (kbytes if size
isfollowed by aK) of additional memory, c.link will
alocate to the data area of the final object module.
If no additional memory is given, c.link add up the
total data stack requirementsfound in the psect of the
modules in the input modules.

-m Prints linkage map indicating base addresses of the
psectsin the final object module.

-s Prints final addresses assigned to symbolsin thefinal
object module.

- b=ept Link C functions to be callable by BASIC09. ept is

the name of the function to be transferred to when
BASIC09 executes the RUN command.

101

c.link (Linker)

Allows static data to appear in a BASICO9 callable
module. It is assumed the C function called and
the caling BASIC09 program have provided a
sufficiently large static storage data area pointed to by
theY register.

102

Appendix D. Interfacing to Basic09

The object code generated by the Microware C Compiler can be made callable from the BASIC09
“RUN” statement. Certain portions of aBASIC09 program written in C can have a dramatic effect on
execution speed. To effectively utilize this feature, one must be familiar with both C and BASIC09

internal data representation and procedure calling protocol.

C type “int” and BASICQ9 type “INTEGER” are identical; both are two byte two's complement
integers. C type “char” and BASICO09 type “BYTE” and “BOOLEAN" are also identical. Keep in

mind that C will sign-extend characters for comparisons yielding the range -128 to 127.

BASICO09 strings are terminated by Oxff (255). C strings are terminated by 0x00 (0). If the BASIC09
string is of maximum length, theterminator isnot present. Therefore, string length aswell asterminator

checks must be performed on BASIC09 strings when processing them with C functions.

Thefloating point format used by C and BASICO09 are not directly compatible. Since both use abinary

floating point format it is possible to convert BASICO9 reals to C doubles and vice-versa.

Multi-dimensional arrays are stored by BASICO9 in a different manner than C. Multi-dimensional
arrays are stored by BASICQ09 in a column-wise manner; C stores them row-wise. Consider the

following example:

BASIC09 matrix: DI M array(5, 3) : | NTEGER

The elements in consecutive memory locations (read |eft to right, line by line) are stored as:

(1,1),(2,1),(3,1),(4,1),(5,1)
(1,2),(2,2),(3,2),(4,2),(5,2)
(1,3),(2,3),(3,3),(4,3),(5,3)

Cmatrix:int array[5][3];

(1,1),(1,2),(1,3)
(2,1),(2,2),(2,3)
(3,1),(3,2),(3,3)
(4,1),(4,2),(4,3)
(5,1),(5,2),(5,3)

Therefore to access BASIC09 matrix elements in C, the subscripts must be transposed. To access

element array(4,2) in BASIC09 use array[2][4] in C.

The details on interfacing BASIC09 to C are best described by example. The remainder of this
appendix isamini tutorial demonstrating the process starting with simple examples and working up

to more complex ones.

D.1. Example 1 - Simple Integer Aritmetic Case

Thisfirst exampleillustrates asimple case. Write a C function to add an integer value to three integer

variables.

build btl.c

? addi nts(cnt, val ue, s1,argl, s2,arg2, s2, arg3, s4)
? int *val ue, *argl, *arg2, *arg3;

? {

? *argl += *val ue;

? *arg2 += *val ue;

? *arg3 += *val ue;

103

Example 1 - Simple
Integer Aritmetic Case

?}

?

That's the C function. The name of the function is “addints’. The name is information for C and
c.link; BASICO09 will not know anything about the name. Page 9-13 of the BAS C09 Reference manual
describes how BASIC09 passes parameters to machine language modules. Since BASIC09 and C
pass parametersin asimilar fashion, it is easy to access BASICO09 values. The first parameter on the
BASICO09 stack is a two-byte count of the number of following parameter pairs. Each pair consists
of an address and size of value. For most C functions, the parameter count and pair size is not used.
The address, however, isthe useful piece of information. The addressis declared in the C function to
always be a “pointer to...” type. BASIC09 always passes addresses to procedures, even for constant
values. The argumentscnt , s1,s2,s3 and s4 are just place holders to indicate the presence of the
parameter count and argument sizes on the stack. These can be used to check validity of the passed
argumentsif desired.

Theline“i nt *val ue, *ar g1, *ar g2, *ar g3” declaresthe parameters (inthiscaseall “pointers
to int”), so the compiler will generate the correct code to access the BASIC09 values. The remaining
lines increment each arg by the passed value. Notice that a simple arithmetic operation is performed
here (addition), so C will not have to call alibrary function to do the operation.

To compile this function, the following C compiler command lineis used:

cc2 btl.c -rs

Cc2 uses the Level-Two compiler. Replace cc2 with ccl if you are using the Level-One compiler.
The - r option causes the compiler to leave bt 1. r as output, ready to be linked. The - s option
suppresses the call to the stack-checking function. Since we will be making a module for BASIC09,
cstart.r will not beused. Therefore, no initialized data, static data, or stack checking is allowed.
More on this later.

The bt 1. r file must now be converted to a loadable module that BASIC09 can link to by using a
specid linking technique as follows:

c.link btl.r -b=addints -o=addints

Thiscommand tellsthe linker to read bt 1. r asinput. The option “- b=addi nt s” tellsthe linker to
make the output file a module that BASIC09 can link to and that the function “addints’ is to be the
entrypoint in the module. Y ou may give many input filesto c.link inthis mode. It resolves references
in the normal fashion. The name given to the “- b=" option indicates which of the functionsis to be
entered directly by the BASIC09 RUN command. The option “- o=addi nt s” says what the name
of the output fileisto be, in this case “addints’. This name should be the name used in the BASIC09
RUN command to call the C procedure. The namegivenin“- o=" option isthe name of the procedure
to RUN. The “- b=" option is merely information to the linker so it can fill in the correct module
entrypoint offset.

Enter the following BASICQ9 program:

PROCEDURE bt est
DIMi,j,k: I NTEGER
i=1

j =132

k=-1033

RUN addi nts(4,i,j, k)
PRINT i,j,k

END

When this procedure is RUN, it should print:

104

Example 2 - More Complex
Integer Aritmetic Case

5 136 -1029

indicating that our C function worked!

D.2. Example 2 - More Complex Integer Aritmetic Case

The next example shows how static memeory can be used. Take the C function from the previous
example and modify it to add the number of times it has been entered to the increment:

build bt2.c
static int entcnt;

addi nts(cnt, cnrem cnensi z, val ue, sl1, argl, s2, arg2, s2, ar g3, s4)
char *cnem
i nt *val ue, *argl, *arg2, *arg3;
{
#asm
Idy 6,s base of static area
#endasm
int j = *value + entcnt ++;

rargl +=
rarg2 +=
rarg3 +=

B I B B B R S B e R S B SRS BN)

This example differs from the first in anumber of ways. Theline“st ati ¢ i nt entcnt” defines
aninteger value nameent cnt global to bt 2. c. The parameter cremand theline“char *crent
indicate acharacter array. The array will be used in the C function for global/static storage. C accesses
non-auto and non-register variables indexed off the Y register. cst art . r normally takes care of
setting thisup. Sincecst ar t . r will not be used for thisBA SIC09-callable function, we have to take
measures to make surethe Y register pointsto avalid and sufficiently large area of memory. Theline
“I dy 6, s” isassembly language code embedded in C source that loadsthe Y register with the first
parameter passed by BASICO09. If the first parameter in the BASIC09 RUN statement is an array, and
the“l dy 6, s” isplaced immediately after the “{” opening the function body, the offset will aways
be “6, s”. Note the line beginning “int j = ...”. Thisline uses an initializer which, in this
case, is allowed because | is of class “auto”. No classes but “auto” and “register” can be initialized
in BASIC09-callable C functions.

To compile this function, the following C compiler command lineis used:

cc2 bt2.c -rs
Again, the- r optionleavesbt 2. r asoutput and the - s option suppresses stack checking.

Normally, thelinker considersit to be an error if the“- b=" option appearsand thefinal linked module
requires adata memory allocation. In our case here, we require a data memory allocation and we will
provide the code to make sure everything is set up correctly. The“- t ” linker option causes the linker
to print the total data memory requirement so we can alow for it rather than complaining about it.
Our linker command lineis:

c.link bt2.r -o=addints -b=addints -r

The linker will respond with “BASICO9 static datasize is 2 bytes’. We must make sure c mempoints
to at least 2 bytes of memory. The memory should be zeroed to conform to C specifications.

Enter the following BASICQ9 program:

105

Example 3 - Simple
String Manipulation

PROCEDURE bt est
DIMi,j,k,n; | NTEGER
DI M crmen(10) : | NTEGER
FOR i=1 TO 10

cmen(i) =0

NEXT i
FOR n=1 TO 5

i=1

j =132

k=- 1033

RUN addi nts(cmem4,i,j, k)
PRINT i,j,k

NEXT n
END

This program is similar to the previous example. Our area for data memory is a 10-integer array (20
bytes) which is way more than the 2 bytes for this example. It is better to err on the generous side.
Cmem isaninteger array for convenienceininitializing it to zero (per C datamemory specifications).
When the program is run, it calls addints 5 times with the same data values. Because addints add the
number of timesit was called to the value, thei,j,k values should be 4+number of times called. When
run, the program prints:

5 136 -1029

6 137 -1028

7 138 -1027

8 139 -1026

9 140 -1025
Works again!

D.3. Example 3 - Simple String Manipulation

This example shows how to access BASICO09 strings through C functions. For this example, write the
C version of SUBSTR.

b
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

uild bt3.c

/* Find substring from BASI C09 string:
RUN fi ndstr (A$, B$, findpos)

returns in fndpos the position in A$ that B$ was found or
0 if not found. A$ and B$ nust be strings, fndpos nust be
| NTEGER.

*/

findstr(cnt,string,strcnt,srchstr,srchent,result);

char *string, *srchstr;

int strcnt, srchent, *result;

{
}

*result = finder(string,strcnt,srchstr,srchecnt);

static finder(str,strlen,pat, patl en)
char *str, *pat;
int strlen,patlen;
{ . .
int i;
for(i=1;strlen-- > 0 && *str!=0xff; ++i)
i f(smatch(str++, pat, patl en))

106

Example 4 - Quicksort

return i;

}

static smatch(str, pat, patl en)
regi ster char *str, *pat;
int patlen;
{

while(patlen-- > 0 & *pat != Oxff)

if(*str++ 1= *pat ++)
return O;
return 1,

NN)))))))))))

Compile this program:

cc2 bt3.c -rs
And link it:

c.link bt3.r -o=findstr -b=findstr

The BASICO09 test program is:

PROCEDURE bt est

DI M a, b: STRI NF 20]

DI M mat chpos: | NTEGER

LOOP

INPUT "String ", a

INPUT "Match ",b

RUN fi ndstr(a, b, mat chpos)

PRI NT "Matched at position ", mat chpos
ENDL OCP

When thisprogramisrun, it should print the position where the matched string wasfound in the source
string.

D.4. Example 4 - Quicksort

The next example programs demonstrate how one might implement a quicksort written in C to sort
some BASICO09 data.

C integer quicksort program:

#define swap(a,b) { int t; t=a; a=b; b=t; }

/* gsort to be called by BASI C09:
di m d(100): I NTEGER any size | NTEGER array
run cqsort(d, 100) calling gsort.

*/

gsort(argcnt,iarray,iasize,icount,icsiz)

int argcnt, /* BASI C09 argunment count */
iarrary[], /* Pointer to BASIC09 integer array */
i asi ze, /* and it's size */
j count, / Pointer to BASIC09 (sort count) */
i csiz; /* Size of integer */

107

Example 4 - Quicksort

{
}

sort(iarray,0,*icount); /* initial gsort partition */

/* standard qui cksort algorithmfrom Horow t z- Sahni */
static sort(a, mn)
register int *a, mn;

{
register i,j,Xx;
if(m< n) {
i =m
j =n+ 1
x = a[n;
for(;;) {
doi +=1; while(a[i] < x); [* left partition */
doj -=1; while(a[j] > x); [* right partition */
if(i <j)
swap(al[i],a[j]) [* swap */
el se break;
}
swap(a[n,a[j]);
sort(a,mj-1); /* sort left */
sort(a,j+1,n); /* sort right */
}
}

The BASICQ9 programiis:

PROCEDURE sorter
DIMi,n,d(1000): | NTEGER
n=1000

i =RND(- (PI'))
FORi=1ton

d(i):=I NT(RND(1000))
NEXT i

PRI NT "Before:"

RUN prin(1,n,d)

RUN gsortb(d, n)

PRINT "After:"
RUN prin(1,n,d)
END

PROCEDURE prin

PARAM n, m d(1000) : | NTEGER
DI Mi: | NTEGER

FOR i=n TO m

PRI NT d(i);

NEXT i

PRI NT

END

C string quicksort program:
/* gsort to be called by BASI C09:

di m cnenory: STRING 10] This should be at |east as large as
the Iinker says the data size should

108

Example 4 - Quicksort

be.
di m d(100) : | NTERGER Any size | NTEGER arr ay.

run cqsort(cnenory, d, 100) calling gsort. Note that the pro-
cedure name run in the |inked CS-9
subrouti ne nodul e. The npdul e nane
need not be the nanme of the C func-

tion.

*/
int maxstr; [* string maxi mum | ength */
static strbcnp(stril,str?2) /* basic09 string conpare */
regi ster char *strl,*str2
{

i nt max| en;

for (maxlen = maxstr; *strl == *str2 ;++strl)

if (maxlen-- >0 || *str2++ == Oxff)
return O;

return (*strl - *str2);

}

cssort(argent, stor,storsiz,iaarray,iasize, el emen,elsiz,
i count,icsiz)

int argent; /* BASI C09 argunment count */
char *stor; /* Pointer to string (C data storage) */
char iarray[]; /* Pointer to BASIC09 integer array */
int iasize, /[* and it's size */
el em en, / Pointer integer value (string length) */
el siz, /* Size of integer */
i count, / Pointer to integer (sort count) */
i csiz; /* Size of integer */
{

/* The follow ng assenbly code loads Y with the first
arg provided by BASI C09. This code MJST be the first code
in the function after the declarations. This code assunes the
address of the data area is the first paraneter in the BASI C09
RUN comand. */

#asm

Idy 6,s get addr for C storage
#endasm

/* Use the Clibrary gsort function to do the sort. Qur
own BASI C09 string conpare function will conpare the strings.

*/
gsort(iarray, *i count, maxstr=*el em en, strbcnp);
}
/* define stuff cstart.r normally defines */
#asm
_stkcheck:

rts dummy stack check function

vsect
errno: rmb 2 C function system error numnber
_flacc: rmb 8 Clibrary float/long accumnul at or

109

Example 5 - Floating Point

endsect
#endasm

The BASICO09 calling programs:. (words file contains strings to sort)

PROCEDURE ssorter

DI M a(200) : STRI NG 20]

DI M cnenory: STRI NJ 20]
DI Mi, n: | NTEGER

DI M pat h: | NTEGER

OPEN #pat h, "wor ds": READ

n=100

FORi=1to n

I NPUT #pat h, a(i)

NEXT

CLOSE #path

RUN prin(a, n)

RUN cssort (cnenory, a, 20, n)
RUN prin(a, n)

END

PROCEDURE prin

PARAM a(100) : STRINF 20] ; n: | NTEGER
DI M i : | NTEGER

FOR i=1 TOn

PRINT i; " "; a(i)

NEXT i

PRI NT i

END

D.5. Example 5 - Floating Point

The next example shows how to access BASICO9 reals from C functions:

flmult(cnt, cnmenory, cnensi z, real arg, real si ze)

int cnt; /* nunber of argunents */
char *cnenory; /* pointer to sone nenory for C use */
doubl e *real arg; /* pointer to real */
{
#asm
Idy 6,s get static nenory address
#endasm
doubl e nunber;
get br eal (& unber, real arg); /* get the BASIC09 real */
nunber *= 2.; /* nunber tinmes two*/
put br eal (real ar g, &unber); /* give back to BASI C09 */
}

/* getreal (creal, breal)
get a 5-byte real fromBASIC09 format to C format */

get breal (creal, breal)
doubl e *creal, *breal;

110

Example 5 - Floating Point

{
regi ster char *cr, *br; /* setup sone char pointers */
cr = creal;
br = breal

#asm

* At this point Ureg contains address of C double

* 0,s contains address of BASICO9 rea

ldx 0,s get address of B rea

clra clear the C double
clrb
std O,
std 2,
std 4,
stb 6,
| dd O,
beq g3 BASIC09 real is zero

X cccc

ldd 1,x get hi B mantissa
and a #$7f clear place for sign
std O,u put hi C matissa
ldd 3,x get lo B mantissa
andb #$fe mask off sign
std 2,u put 1o C manti ssa
Ida 4,x get B sign byte
I sra shift out sign
bcc gl
Ida O,u get C sign byte
ora #$80 turn on sign
sta O,u put C sign byte
gl lda 0,x get B exponent
suba #128 excess 128
sta 7,u put C exponent
g3 clra clear carry
#endasm

}

/* putbreal (breal,creal)
put C format double into a 5-byte real from BASIC09 */

put breal (breal, creal)
doubl e *breal, *creal

{
regi ster char *cr, *br; /* setup sone pointers */
cr = creal;
br = breal

#asm

* At this point Ureg contains address of C double

* 0,s contains address of BASIC09 rea

ldx 0,s get address of B rea

Ida 7,u get C exponent
bne p0 not zero?

clra clear the BASI C09
clrb real

111

Example 5 - Floating Point

std 0, x
std 2, x
std 4, x
bra p3 and exit

pO Idd O,u get hi C mantissa
ora #$80 this bit always on for normalized rea
std 1,x put hi B mantissa
ldd 2,u get lo C manti ssa
std 3,x put 1o B manti ssa
incb round nmantissa
bne pl
inc 3,Xx
bne pl
inc 2,Xx
bne pl
inc 1,x
pl andb #$fe turn off sign
stb 4,x put B sign byte
Ida O,u get C sign byte
I sla shift out sign
bcc p2 bra if positive
orb #$01 turn on sign
stb 4,x put B sign byte
p2 lda 7,u get C exponent
adda #128 | ess 128
sta 0, x put B exponent
p3 clra clear carry
#endasm

}

/* replace cstart.r definitions for BASIC09 */
#asm
_stkcheck:
_stkchec:
rts

vsect
_flacc: rnb 8
errno: rnb 2

endsect
#endasm

BASICO09 calling program:

PROCEDURE bt est

DI M a: REAL

DI M i : | NTEGCER

DI M cnenory: STRI NF 32]

a=1.

FOR i =1 TO 10
RUN fl mult(crmenory, a)
PRI NT a

NEXT

END

112

Example 6 - Matrix Elements

D.6. Example 6 - Matrix Elements

Thelast program is an example of accessing BASIC09 matrix elements. The C program:

mat mul t (cnt, cnenory, cnensi z, mat xaddr, mat xsi ze, scal ar, scal si ze)

char *cnenory; /* pointer to sone nenory for C use */
int matxaddr[5][3]; [/* pointer a double diminteger array */
int *scal ar; /* pointer to integer */
{
#asm
Idy 6,s get static nenory address
#endasm
int i,j;

for(i=0; i<5; ++i)
for(j=1; j<3; ++j)
mat xaddr[j][i] *= *scalar; /* multiply by value */

}
#asm
_stkcheck:
_stkchec:

rts

vsect
_flacc: rnmb 8
errno: rmb 2

endsect
#endasm

BASICO09 calling program:

PROCEDURE bt est
DI M i m(5, 3): | NTEGER

DIMi,j:|NTEGER
DI M crrem STRI NF 32]
FOR i=1 TO 5

FOR j=1 TO 3

READ im(i,j)

NEXT j
NEXT i
DATA 11,13,7,3,4,0,5,7,2,8,15,0,0, 14,4
FOR i=1 TO 5

PRINT in(i,1),imi,2),inmi,3)
NEXT i
PRI NT
RUN mat nul t (cnmem i m 64)
FOR i=1 TO 5

PRINT in(i,1),imi,2),inmi,3)
NEXT i
END

113

114

Appendix E. Relocating Macro
Assembler Reference

This appendix gives a summary of the operation of the “Relocating Macro Assembler” (named c.asm
as distributed with the C Compiler). This appendix and the example assembly source files supplied
with the C compiler should provide the basic information on how to use the “Relocating Macro
Assembler” to create relocatable-object format files (ROF). It isfurther assumed that you are familiar
with the 6809 instruction set and mnemonics. See the Microware Relocating Assembler Manual for
amore detailed description. The main function of this appendix is to enable the reader to understand
the output produced by c.asm. The Relocating Macro Assembler allows programs to be compiled
separately and then linked together, and it also allows macros to be defined within programs.

Differences between the Relocating Macro Assembler (RMA) and the Microware Interactive
Assembler (MIA):

RMA does not have an interactive mode. Only adisk fileis allowed as input.

RMA output isan ROF file. The ROF file must be processed by thelinker to produce
an executable OS9 memory module. The layout of the ROF fileis described later.

RMA has a number of new directives to control the placement of code and datain
the executable module. Since RMA does not produce memory modules, the MIA
directives “mod” and “emod” are not present. Instead, new directives PSECT and
VSECT control the allocation of code and data areas by the linker.

RMA has no equivalent to the MIA “setdp” directive. Data (and DP) allocation is
handled by the linker.

E.1. Symbolic Names

A symbolic nameisvalidif it consists of from oneto nine uppercase or lowercase characters, decimal
digits or the characters“$”, “_", “.” or “@". RMA does not fold lowercase |etters to uppercase. The

names “Hi.you” and “HI.YOU” are distinct names.

E.2. Label field

If asymbolic name in the label field of a source statement isfollowed by a“:” (colon), the name will
be known globally (by all moduleslinked together). If no colon appears, the name will be known only
in the PSECT in which it was defined. PSECT will be described later.

E.3. Undefined names

If asymbolic nameisused inan expression and hasn't been defined, RM A assumesthenameisexternal
to the PSECT. RMA will record information about the reference so the linker can adjust the operand
accordingly. External names cannot appear in operand expressions for assembler directives.

E.4. Listing format

00098 0032 59 + rol b
00117 0045=17ff b8 | abel | bsr _dnove Conmrent
N N NN N N N N N

| | | || | | Start of comment

115

Section Location Counters

|
| | Start of menonic
| Start of I abel

| |
| |
| |
| |
| [] expansi on.

| | Start of object code bytes.
|

| external reference.

Location counter val ue

Li ne nunber.

E.5. Section Location Counters

Each section contains the following location counters:

initialized direct page location counter
non-initialized direct page location counter
initialized data location counter
non-initialized data location counter

PSECT instruction location counter
VSECT
CSECT base offset counter

E.6. Section Directives

RMA contains 3 section directives. PSECT indicates to the linker the beginning of a relocatable-
object-format file (ROF) and initializes the instruction and datalocation counters and assembles code
into the ROF object code area. VSECT causes RMA to change to the datalocation counters and place
any generated code into the appropiate ROF data area. CSECT initializes a base value for assigning

| | Start of operand

A "+" indicates a line generated by a macro

An "=" here indicates that the operand contains an

offsets to symbols. The end of these sectionsisindicated by the ENDSECT directive.

The source statements placed in a particular section cause the linker to perform a function appropiate

for the statement. Therefore, the mnemonics allowed within a section are restricted as follows:

» The mnemonics are alowed inside or outside any section: nam, opt, ttl, pag, spc, use, fail, rept,

endr, ifeq, ifne, iflt, ifle, ifge, ifgt, ifpl, endc, else, equ, set, macro, endm, csect, and endsect.

* WithinaCSECT: rmb

* WithinaPSECT: any 6809 instruction mnemonic, fcc, fdb,fcs, fcb, rzb, vsect, endsect, 0s9 and end.

* WithinaVSECT: rmb, fcc, fdb, fcs, fcb, rzb and endsect.

E.6.1. PSECT Directive

Themain difference between PSECT and MOD isthat MOD setsup information for OS-9 and PSECT

sets up information for the linker (c.link in the C compiler).

PSECT { name,typelang,attrrev,edition,stacksi ze, entrypoint}

name

Up to 20 bytes (any printable character except space or
comma) for a name to be used by the linker to identify
this PSECT. This name need not be distinct from all other
PSECTs linked together, but it helpsto identify PSECTs
the linker has a problem with if the names are different.

116

V SECT Directive

typelang byte expression for the executable modul e type/language
byte. If thisPSECT isnot a“mainline” (amodulethat has
been designed to be forked to) module this byte must be

Zero.

attrrev byte expression for executable module attribute/revision
byte.

edition byte expression for executable module edition byte.

stacksize word expression estimating the amount of stack storage
required by this psect. The linker totals this value in all
PSECTSs to appear in the executable module and adds
this value to any data storage requirement for the entire
program.

entrypoint word expression entrypoint offset for this PSECT. If the
PSECT is not a mainline module, this should be set to
Zero.

PSECT must have either no operand list or an operand list containing a name and five expressions. If
no operand list is provided, the PSECT name defaults to “program” and all other expressions to zero.
The can only be one PSECT per assembly languagefile.

ThePSECT directiveinitializesall counter orgsand marksthe start of the program module. No VSECT
data reservations or object code may appear before or after the PSECT/ENDSECT block.

Example:

psect myprog, PrgrmtQoj ct, Reent +1, Edi t, O, pr ogent
psect anot her _prog,0,0,0,0,0

E.6.2. VSECT Directive

VSECT {DPF}

TheV SECT directive causes RMA to changeto the datalocation counters. If DP appearsafter VSECT,
the direct page counters are used, otherwise the non-direct page datais used. The RMB directivewithin
this section reserves the specified number of bytes in the appropiate uninitialized data section. The
fcc, fdb, fcs, fch and rzb (reserve zeroed bytes) directives place datainto the appropiate initialized data
section. If an operand for fdb or fcb contains an external reference, this information is placed in the
external reference part of the ROF to be adjusted at link or executiontime. ENDSECT marksthe end of
the VSECT block. Any number of VSECT blocks can appear within aPSECT. Note, however, that the
data location counters maintain their values between one VSECT block and the next. Since the linker
handles the actual data allocation, thereis no facility provided to adjust the data location counters.

E.6.3. CSECT Directive
CSECT { expression}

The CSECT directive provides a means for assigning consecutive offsets to labels without resorting
to EQUSs. If the expression is present, the CSECT base counter is set to that value, otherwise it is set
to zero.

E.6.4. RZB statement

RZB <expression>

Thereserve zeroed bytes pseudo-instructi on generates sequences of zero bytesinthe codeor initialized
data sections, the number of which is specified by the expression.

117

Comparison Between Assembly
Programs for the Microware
Interactive Assembler and the

Macro Assembler

The following two program examples simply fork a BASIC09. The purpose of the examples are to
show some of the differencesin the new relocating assembler. The differences are apparent.

* this programforks a basic09
ifpl
use/defs/os9defs. a
endc

PRGRM equ $10
OBJCT equ $01

stk equ 200
psect rmatest, $11, $81, 0, stk, entry

name fcs /basi c09/
prm fcb $D
prmsi ze equ *-prm

entry | eax nane, pcr
| eau prm pcr
| dy #prnsize
| da #PRGRM+OBJCT
clrb
0s9 F$FORK
0s9 F$WAI T
0s9 F$EXI T
endsect

E.7.1. Macro Interactive Assembler Source

i fpl
use defsfile
endc

nod si z, prnamtype, revs, start, si ze

pr nam fcs /testshell/
type set prgmrobj ct
revs set reent+1
rmb 250
rmb 200
name fcs /basi c09/
prm fcb $D
prnsi ze equ *-prm
si ze equ .
start equ *

| eax nane, pcr

| eau prm pcr

| dy #prnsize

| da #PRGRM+OBJCT

118

Introduction to Macros

clrb
0s9 F$FORK
0s9 FSWAIT
0s9 FSEXIT
enod

siz equ

E.8. Introduction to Macros

In programming applications it is frequently necessary to use a repeated sequence or pattern of
instructions in many different places in a program. For example, suppose a group of program
statements creates a file a number of times throughout the program. The code might look like the
following statements:

| eax nane, pcr
| da $02
| db $03
0s9 | $CREATE

The sequence must be replicated each time that anew fileiscreated. A macro assembler eliminatesthe
need for coding duplicate statement patterns by allowing the programmer to define macro instructions
that are equivalent to longer code sequences.

When amacro iscalled, it isthe same as calling a subrouting to perform a defined function. A macro
produces in-line code that isinserted into the normal flow of the program beginning at the location of
the macro call. The statements that may be generated by a macro are generally unrestricted, and the
statements may contain substitutable arguments.

E.9. Operations

E.9.1. Macro Definition

A macro definition consists of three sections:

<Label > MACRO /* macro header */
/* <Label> is the nane of the namcro */

body /* nmacro body */

ENDM /* macro term nator */

1. The macro header - assighs a name to the macro
2. The body - contains the macro statements
3. Theterminator - indicates the end of the macro

A macro can have up to nine arguments (\1 to \9) in the operand fields. The arguments are used to
refer to symbols, registers, etc.

The following macro below could represent the file creation pattern:

CREATE MACRO
| eax \1, pcr
| da $\2
[db $\3

119

Nested Macro Calls

0s9 | $CREATE
ENDM

Calls can be made to create files with different names, access modes, and attributes as follows:

CREATE nane2, 02, 03
CREATE nane3, 01, 02

The above macro calls will produce the following in-line code:

| eax nane2, pcr
| da $02

I db $03

0s9 | $CREATE

| eax nane3, pcr
| da $01

I db $02

0s9 | $CREATE

If an argument has multiple parts, for exampleif d1,d2 isto be passed to the macro called frud, it must
be passed in double quotes. For example:

frud "O, S||,||2, Sn

If frud looks like the following macro:

frud MACRO

\@ leau\l
ldd \2
beq \@
ENDM

The previous call to frud would expand the macro as follows:

@xx leau O,s
ldd 2,s
beq @xx

Where “\@” isalabel, and “xxx" would be replaced by athree digit number.

An argument may be declared null by leaving it blank in the macro call. For example, if the macro
instruction was “ldd \122\2", then the call to the macro with arguments AA,BB would expand the
instruction to “ldd AAZZBB”, and the call with argument ,BB will expand it to “I1dd ZZBB".

E.9.2. Nested Macro Calls

Macro calls may be nested, that is, the body of amacro definition may contain acall to another macro.
For example, the macro prepw could be defined as follows:

pr epw MACRO
lda \1
getw
ENDM

120

Labels

Getw isamacro call. The codeto getw is substituted in-line at expansion time. However, the definition
of anew macro within another is not permitted. Macro calls may be nested up to eight deep.

E.Q.3. Labels

Sometimes it is necessary to use labels within a macro. Labels are specified by “\@". Each time
the macro is caled, a unique label will be generated to avoid multiple definition errors. Within the
expanded code “\@" will take on the form “@xxx”, where xxx will be a decimal humber between
000 to 999.

Morethan onelabel may be specified in a macro by the addition of an extra character(s). For example,
if two different labels are required in a macro, they can be specified by “\@A” and “\@B”. In the
first expansion of te macro, the labelswould be “* @001A” and “ @001B”, and in the second expansion
they would be “ @002A” and “ @002B”. The extra characters may be appended before the “\” or after
the*@".

E.9.4. Additional Pseudo-Instructions

\n will return the number of arguments passed to the macro.
\L<num> will return the length of the ith argument that is specified by <num>.
FAIL Causes an error to be generated.

REPT <num> will repeat an instruction or group of instructions <num> times. ENDR terminates
REPT.

121

122

Colophon

This book is scanned from an OS-9 C-compiler + manual for the Dragon 64. The book was published by Dragon
DataLtd., and distributed by H. C. Andersen Computer A/S in Copenhagen.

As sold, the manual wasin the form of a spiral-bound A5 book with a grey cover. The typeface was a monotype
serif font as was common on typewriters in those days.

The manual has many references to Appendix A (The C reference) of the Kernighan & Ritchie C Programming
Language book. Since there has been an evolution of the C language since 1983 and the original edition of K &
R is very difficult to find, | have downloaded the C reference from Dennis Ritchie's website and included it as
appendix A in this manual.

123

124

	Microware C Compiler User's Guide
	Table of Contents
	Acknowledgements
	Differences between Versions 1.1 and 1.0
	Chapter 1. The C Compiler System
	1.1. Introduction
	1.2. The Language Implementation
	1.3. Differences from the K & R Specification
	1.4. Enhancements and Extensions
	1.4.1. The “Direct” Storage Class
	1.4.2. Embedded Assembly Language
	1.4.3. Control Character Escape Sequences

	1.5. Implementation-dependent Characteristics
	1.5.1. Data Representation and Storage Requirements
	1.5.2. Register Variables
	1.5.3. Access To Command Line Parameters
	1.5.4. References to drive names

	1.6. System Calls and the Standard Library
	1.6.1. Operating System Calls
	1.6.2. The Standard Library

	1.7. Run-time Arithmetic Error Handling
	1.8. Achieving Maximum Program Performance
	1.8.1. Programming Considerations
	1.8.2. The Optimizer Pass
	1.8.3. The Profiler

	1.9. C Compiler Component Files and File Usage
	1.9.1. Temporary Files

	1.10. Running the Compiler
	1.11. Compiler Option Flags

	Chapter 2. Characteristics of Compiled Programs
	2.1. The Object Code Module
	2.1.1. Module Header
	2.1.2. Execution Offset
	2.1.3. Storage Size
	2.1.4. Module Name
	2.1.5. Information
	2.1.6. Executable Code
	2.1.7. String Literals
	2.1.8. Initializing Data and its Size
	2.1.9. Data References

	2.2. Memory Management
	2.2.1. Typical C Program Memory Map
	2.2.2. Compile Time Memory Allocation

	Chapter 3. C System Calls
	Abort
	Access
	Chain
	Chdir
	Chmod
	Chown
	Close
	Crc
	Creat
	Defdrive
	Dup
	Exit
	Getpid
	Getstat
	Getuid
	Intercept
	Kill
	Lseek
	Mknod
	Modload
	Munlink
	Open
	_os9
	Os9fork
	Pause
	Prerr
	Read
	Sbrk
	Setpr
	Setime
	Setuid
	Setstat
	Signal
	Stacksize
	Strass
	Tsleep
	Unlink
	Wait
	Write

	Chapter 4. C Standard Library
	Abs
	Atof
	Fclose
	Feof
	Findstr
	Fopen
	Fread
	Fseek
	Fgetc
	Gets
	Isalpha
	L3tol
	Longjmp
	Malloc
	Mktemp
	Printf
	Putc
	Puts
	Qsort
	Scanf
	Setbuf
	Sleep
	Strcat
	System
	Toupper
	Ungetc

	Appendix A. C Reference Manual
	A.1. Introduction
	A.2. Lexical Conventions
	A.2.1. Comments
	A.2.2. Identifiers (Names)
	A.2.3. Keywords
	A.2.4. Constants
	A.2.4.1. Integer Constants
	A.2.4.2. Explicit Long Constants
	A.2.4.3. Character Constants
	A.2.4.4. Floating Constants

	A.2.5. Strings
	A.2.6. Hardware Characteristics

	A.3. Syntax Notation
	A.4. What's in a name?
	A.5. Objects and lvalues
	A.6. Conversions
	A.6.1. Characters and Integers
	A.6.2. Float and Double
	A.6.3. Floating and Integral
	A.6.4. Pointers and Integers
	A.6.5. Unsigned
	A.6.6. Arithmetic Conversions

	A.7. Expressions
	A.7.1. Primary Expressions
	A.7.2. Unary Operators
	A.7.3. Multiplicative Operators
	A.7.4. Additive Operators
	A.7.5. Shift Operators
	A.7.6. Relational Operators
	A.7.7. Equality Operators
	A.7.8. Bitwise AND Operator
	A.7.9. Bitwise Exclusive OR Operator
	A.7.10. Bitwise Inclusive OR Operator
	A.7.11. Logical AND Operator
	A.7.12. Logical OR Operator
	A.7.13. Conditional Operator
	A.7.14. Assignment Operators
	A.7.15. Comma Operator

	A.8. Declarations
	A.8.1. Storage Class Specifiers
	A.8.2. Type Specifiers
	A.8.3. Declarators
	A.8.4. Meaning of Declarators
	A.8.5. Structure and Union Declarations
	A.8.6. Initialization
	A.8.7. Type Names
	A.8.8. Typedef

	A.9. Statements
	A.9.1. Expression Statement
	A.9.2. Compound Statement or Block
	A.9.3. Conditional Statement
	A.9.4. While Statement
	A.9.5. Do Statement
	A.9.6. For Statement
	A.9.7. Switch Statement
	A.9.8. Break Statement
	A.9.9. Continue Statement
	A.9.10. Return Statement
	A.9.11. Goto Statement
	A.9.12. Labeled Statement
	A.9.13. Null Statement

	A.10. External Definitions
	A.10.1. External Function Definitions
	A.10.2. External Data Definitions

	A.11. Scope Rules
	A.11.1. Lexical Scope
	A.11.2. Scope of Externals

	A.12. Compiler Control Lines
	A.12.1. Token Replacement
	A.12.2. File Inclusion
	A.12.3. Conditional Compilation
	A.12.4. Line Control

	A.13. Implicit Declarations
	A.14. Types Revisited
	A.14.1. Structures and Unions
	A.14.2. Functions
	A.14.3. Arrays, Pointers, and Subscripting
	A.14.4. Explicit Pointer Conversions

	A.15. Constant Expressions
	A.16. Portability Considerations
	A.17. Anachronisms
	A.18. Syntax Summary
	A.18.1. Expressions
	A.18.2. Declarations
	A.18.3. Statements
	A.18.4. External definitions
	A.18.5. Preprocessor

	Appendix B. Compiler Generated Error Messages
	Appendix C. Compiler Phase Command Lines
	C.1. cc1 & cc2 (C executives)
	C.2. c.prep (C macro preprocessor)
	C.3. c.comp (One-pass compiler)
	C.4. c.pass (Pass One/Two of Two-pass Compiler)
	C.5. c.opt (Assembly code optimizer)
	C.6. c.asm (Assembler)
	C.7. c.link (Linker)

	Appendix D. Interfacing to Basic09
	D.1. Example 1 - Simple Integer Aritmetic Case
	D.2. Example 2 - More Complex Integer Aritmetic Case
	D.3. Example 3 - Simple String Manipulation
	D.4. Example 4 - Quicksort
	D.5. Example 5 - Floating Point
	D.6. Example 6 - Matrix Elements

	Appendix E. Relocating Macro Assembler Reference
	E.1. Symbolic Names
	E.2. Label field
	E.3. Undefined names
	E.4. Listing format
	E.5. Section Location Counters
	E.6. Section Directives
	E.6.1. PSECT Directive
	E.6.2. VSECT Directive
	E.6.3. CSECT Directive
	E.6.4. RZB statement

	E.7. Comparison Between Assembly Programs for the Microware Interactive Assembler and the Relocating Macro Assembler
	E.7.1. Macro Interactive Assembler Source

	E.8. Introduction to Macros
	E.9. Operations
	E.9.1. Macro Definition
	E.9.2. Nested Macro Calls
	E.9.3. Labels
	E.9.4. Additional Pseudo-Instructions

