
LEVEL II COBOL
T

•

USER'S GUIDE

sea.
THE SANTA CRUZ OPERATION

500 CHESTNUT STREET, P.O. BOX 1900, SANTA CRUZ, CA 95061 • (408) 425-7222 • TWX: 910-598-4510 sca SACZ

LEVEL II COBOL

Version 2.0

Installation Guide

UNIX Operating System Implementation

Document Release 1.0

May 29, 1984

Date of Printing: June 1, 1984

This document has been prepared for the exclusive use of the client.
None of the material herein may be reproduced, copied or distributed in
any manner, including electronically, without prior written approval of
The Santa Cruz Operation, Inc.

Copyright (c) 1982, 1984 The Santa Cruz Operation, Inc.

NOTICE

PREFACE

1. INSTALLATION

Instructions

Contents

Example

TABLE OF CONTENTS

2. INSTALLING IN AN ALTERNATE DIRECTORY

3. INCORPORATING USER SUBROUTINES .

Instructions·

Summary

Example

i

ii

1-1

1-1

.1-3

1-5

2-1

3-1

3-1

3-2

3-3

NOTICE

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group of
organizations.

No warranty, express&d or implied, is made by any contributor or
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by the
committee, in connection herewith.

The authors and copyright holders of the copyrighted material used
herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation)
Programming for the Univac I an-d,II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM
Commercial Translator Form No. F28-8Q13, copyright@d 1959 by
IBM; FACT, DS127A5260-2760, copyrighted 1960 by Minneapolis
Honeywell.

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Note that the following are registered trademarks:

LEVEL II (L/II) COBOL is a trademark of Micro Focus Ltd.
FORMS-2 is a trademark of Micro Focus Ltd.
CIS COBOL is a trademark of Micro Focus Ltd.
UNIX is a trademark of Bell Laboratories.
DEC is a trademark of Digital Equipment Corporation.
ADM-3A is a trademark of Lear Siegler, Inc.
DPPX is a trademark of IBM Corporation.

-i-

PREFACE

This manual describes the procedures for installing the LEVEL II

COBOL Version 2.0 Compiler and Run Time System.

Audience

This manual is intended for UNIX system administrators responsible

for installing LEVEL II COBOL on their systems. Familiarity with

UNIX is assumed.

Contents

This manual contains the following sections and appendices:

Chapter.1. flINSTALLATION", which describes the basic installation

procedure.

Chapter 2. "INSTALLATION IN AN ALTERNATE DIRECTORY", which

describes how to install the LEVEL II COBOL system in an area

other than /usr/lib/cobol.

Chapter

SYSTEM",

3. "INCORPORATING USER ROUTINES INTO THE RUN TIME

which describes how user-written routines (written in C

or some other langurge) can be incorporated into the Run Time

System so that they can be called from a LEVEL II COBOL program.

-ii-

CHAPTER 1. INSTALLATION

A. Instructions

Set umask to "0" by t~rping "umask 0". Then, extract the contents

of the issue tape or disk into a working directory using the UNIX

"cpio" or "tar" utilities, depending on the format of your

distribution (check your tape label). Note that required

directories will be created by the command itself, so the entire

contents of the issue medium may be extracted at once with, for

example:

cpio -idv < device name

or

tar xvfb device name

where "device name" refers to the pathname of your tape or floppy

device.

The names for devices vary from one machine to another, but common

names are "/dev/mtO" and "/dev/tpO". Your working directory

should now contain the directories and files listed in Section B

of this chapter. The "install" shellscript is

facilitate installation of the LEVEL II COBOL system;

1 - 1

provided to

you should

CHAPTER 1. INSTALLATION

inspect it for commands that would overwrite existing files or

directories on your system. (Note that all shellscripts and

makefiles included in this distribution should first be examined

to insure they will not overwrite existing files). If "install"

will not overwrite anything critical, run "install" or "sh

install"; super-user permissions and a umask of "0" are required.

"Install" will create a /usr/lib/cobol directory, and copy the

contents of the distribution "lib" directory to it. If there are

any other lib directories (lib. compact or lib.hiperf for example)

their contents will also be copied to /usr/lib/cobol. It will

also copy the files "bin/cbrun" and "bin/cobol" to /usr/bin.

If you have also purchased FORMS-2 with LEVEL II COBOL, you must

install it by executing the shellscript "install" which can be

found in the distribution directory "forms2", after doing a "cd"

into the "forms2" directory.

Manual" for more information.

Refer to the "FORMS-2 Utiliti

Similarly, if you have purchased ANIMATOR, you must execute the

install script in "anim", after doing a "cd" into the "anim"

directory, and if you have the Native Code Generator, you must

execute the install script in "ncg", after doing a "cd" into the

"ncg" directory.

1 - 2

CHAPTER 1. INSTALLATION

B. Contents

The following directories and files should exist on the issue

medium:

1 • install - Installation shell script.

2. Readme - Installation notes.

3. demo - Directory of demonstration programs.

4. lib - Directory of files for the COBOL library.

5. bin - Directory of executable programs.

6. cmd - Directory of C source for commands.

7. src - Directory of linkable object modules.

8. misc Directory containing miscellaneous files.

In some environments, one of the following may also be present:

1 • lib.hiperf - Directory of additional files for the High
Performance Compiler.

2. lib.compact Directory of additional files for the
Compact Compiler.

You should verify that your terminal type is in the lib!termcap

file. Note that many directories contain a file called "Readme".

These files contain important information about the files

contained in· the directory as well as directions on how to use

them. Be sure to read them all.

The files in the distribution directory "demo" are COBOL source

code files that can be used to demonstrate LEVEL II COBOL. The

1 - 3

CHAPTER 1. INSTALLATION

directories "lib" and "bin" contain the LEVEL II COBOL files which

are copied when "install" is executed.

C language source for cbrun and cobol is provided in the

distribution "cmd" directory for users who want to make any

modifications, or for those who wish to better understand how they

work. The makefile in the same directory can be used to compile

these programs. To execute the makefile be sure you are currently

in the directory which contains it, then invoke the UNIX command

"make". (See the UNIX Programmer's Manual for more information on

make).

The distribution "src" directory contains files necessary for

incorporating your own CALL'ed subroutines into the RTS; see

Chapter 3 of this manual if you wish to do so.

The file "full termcap'" in directory ". " m~sc is the UC Berkeley

distributed termcap file. It may be used as a starting point for

building new terminal descriptions for inclusion in the LEVEL II

COBOL /usr/lib/cobol/termcap file. Note that the entries in this

file have not been tested for use with COBOL. (See your Operating

Guide for details).

1 -, 4

CHAPTER 1. INSTALLATION

C. Example

For users working with a Bourne shell, the following is provided

as an example of the commands necessary to install and test LEVEL

II COBOL. This example assumes that the COBOL distribution is in

"tar" format, that it is mounted on'device "/dev/rmtO", and that

the user is using a "vt100" terminal.

su
umask 0
mkdir /tmp/cobol
cd /tmp/cobol
tar xvfb /dev/rmtO
install
cd demo
cobol pi.cbl
TERM=vt100
export TERM
cbrun pi

Note that after installation, the entire /tmp/cobol tree may be

removed from the system.

1 - 5

CHAPTER 2. INSTALLING IN AN ALTERNATE DIRECTORY ----- - - ----- -----

If you wish to install on some file system other than /usr, you

will need to replace the pathname /usr/lib/cobol with the pathname

of the new library in several files. The procedure is as follows

using /z/lib/cobol as an example :

1) change the line

LIBCOBOL=/usr/lib/cobol

to

LIBCOBOL=/z/lib/cobol

in the file 'install'.

2) cd to the d-irectory cmd and replace

char *lib = "/usr/lib/cobol" ;

with

char *lib = "/z/lib/cobol"

in the files 'cbrun.c' and 'cobol.c'.

2 - 1

CHAPTER 2. INSTALLING IN AN ALTERNATE DIRECTORY

3) While still in the directory cmd, execute the command 'make',

which causes 'cobol.c' and 'cbrun.c' to be compiled. Then

copy the files 'cobol' and 'cbrun' to the directory ' •• /bin'.

4) If you have purchased FORMS-2, ANIMATOR or the Native Code

Generator, then repeat steps 1, 2 & 3 in their respective

directories.

5) Proceed with the normal installation procedure.

The -lb Command Line Flag

The command line flag -lb<dir), where <dir> is a directory in

which the COBOL library files are located, may be used with any of

the LEVEL II COBOL commands (such as 'cobol' and 'cbrun'). For

example, 'cobol -lb/z/lib/cobol prog.cbl' will work if the COBOL

library files are all located in /z/lib/cobol.

2 - 2

CHAPTER 3. INCORPORATING USER SUBROUTINES

A. Instructions

The xequca11() function in the userca11.c file module is the

function which must be modified to incorporate user routines into

the RTS. For each routine the user wishes to incorporate, a

"case" statement must be added. It is from this case statement

that a user routine is called.

The user subroutine itself must also be incorporated into the RTS.

If new routines are written in C, they can be included in the file

userca11.c and compiled along with xequca11(). The compilation of

userca11.c and the link to rts2.o can be done in one step_ A

typical command line to do this would be:

cc -i -0 rts.new userca11.c rts2.0

Note that, if the distribution you received contains either the

files named rts21.o and rts22.o or the files named rts21.a and

rts22.a, these file names should be substituted for rts2.o on the

command line. You should make this substitution throughout this

document where appropriate. The -i flag indicates a split I & D

machine. On most 1arger-than-16-bit machines a -n option flag

3 - 1

CHAPTER 3. INCORPORATING USER SUBROUTINES

would be used in place of the -i to indicate shared text loading.

A "makefile" for use with the UNIX utility "make" has been

provided in the distribution directory "src" to facilitate

compilation and linking.

If subroutines are written in a language other than C, they must

be compiled or assembled separately (for example, into an object

module "routines.o"), and then linked with rts2.o and usercall.c.

Note that for this to work correctly, the code generated for

procedure calls must be compatible with the C calling conventions.

For example:

cc -i -0 rts.new usercall.c rts2.o routines.o

If the loader responds with a "multiply defined" error, then you

have used routine names which conflict with an internal RTS name.

The conflicting names must be changed.

Finally, when a new RTS has been made, move it to the COBOL

library directory (usually /usr/lib/cobol), where it will be

accessed by the cbrun program.

B. Summary

The specific steps required to incorporate user subroutines can be

3 - 2

CHAPTER 3. INCORPORATING USER SUBROUTINES

summarized as follows:

1. Edit the usercall.c module, providing for each new
subroutine a case in the xequcall() function.

2. If the new subroutines are written in C, include them in
usercall.c. They can then be compiled and linked in one
step with rts2.0. This can be done, for example, with the
command line:

cc -i -0 rts.new usercall.c rts2.0

See the rtmakefile rt in the distribution directory " " src •

3. If the new routines are written in a language other than
C, compile or assemble them separately into an object
module "routines.o". Then link them with rts2.0 and
usercall.c for example, with the command line

cc -i -0 rts.new usercall.c rts2.0 routines.o

4. Move the new
it "rts2".
directory is
program.

C. Example

RTS
The
the

to the COBOL library directory and rename
file named "rts2" in the COBOL library

RTS that will be accessed by the cbrun

This section provides an example of incorporating a user program

into the RTS. The source listings include an unmodified skeleton

version of the xequcall() function (usercall.c), a version

modified to incorporate into the RTS a user routine (userdate.c),

and a short COBOL program to test and demonstrate the CALL to this

routine (date.cbl).

3 - 3

CHAPTER 3. INCORPORATING USER SUBROUTINES

Recall that a user routine incorporated into the RTS is called by

a COBOL statement of the form: CALL "0" USING A, B. It can be

seen in xequcall() that if no case is provided for a given CALL,

the default case provides an RTS error. See the "MULTILANGUAGE

CALL FACILITIES" Chapter in your Operating Guide for details of

the COBOL interface.

The arguments to USING are stored in calargv[]. Note that when

the user routine is called from a case statement in xequcall(), it

may be passed either calargv[l values as parameters, or the

routine may access calargv[] directly. The latter has been done

in the userdate.c example.

Once xequcall() has been modified (as in userdate.c) , it must be

compiled and linked with rts2.~ provided in the distribution

directory It " src • This may be done using the "makefile" also

provided in the distribution directory "src". Note that to use

either of these, the modified xequcall() must reside in a file

named usercall.c.

1. Usercall.c Source

The following is the text of the unmodified usercall.c file as
supplied in the distribution.

3 - 4

CHAPTER 3. INCORPORATING USER SUBROUTINES

/***

* * xequcall() ••• execute a user's CALL'ed subroutine.
* * The argument 'callnum' is the called routine number, in binary.
* The arguments to the routine, which appeared as USING names in
* the COBOL source, have been converted to absolute addresses and
* stored in the calargv[l array, in the same order they appeared
* on the source line. The number of USING parameters is held in
* the variable calargc. This format is similar to the 'argc,argv'
* convention used for command line arguments in C programs.
* Each pointer in calargv[] is a pointer to a data area in the
* currently running COBOL program. This is referred to as "call
* by reference". This allows two access methods for user routines:
* they can access the calargv[] array themselves, or can get
* their arguments in the standard C call format.
* The execution error message routine is also available, as shown
* for the default case. Caution should be exercised when using
* CALL'ed routines, since there is no run-time validation that
* the routine you wanted was the one you called.
*
**/

extern char *calargv[]
extern int calargc

#define ER CALL 164 /* Specified call code not supplied */

xequcall(callnum)
I I switch(callnum)

default: execerr(ER CALL);
break;

2. Userdate.c Source

The following is the text of the xequcall routine modified to
include the user program "getdate". This modified version is to
be linked with the relinkable run time system to allow COBOL CALLs
to "getdate".

3 - 5

CHAPTER 3. INCORPORATING USER SUBROUTINES

/***
* xequcall(callnum) use subroutines from COBOL
* to link with COBOL RTS to provide
* user call (01 GET-DATE PIC X VALUE 0.)
***/

extern char *calargv[];
char *dtmove();
#define ER CALL 164 /* no case for call number */
#define GET_DATE 0 /* first user call routine */

xequcall(callnum)
{
switch(callnum)

{
case GET DATE: getdate(calargv[O]);

default
break;
execerr(ER_CALL);
break;

/*****************************
* getdate(date string)
* loads DATE-STRING PIC X(11) with the current date
* as mon da year, e.g., Oct 12 1981
*/

getdate(date str) char *date str;
{ char *ctime(); int tvec L2J; char *p;
time(tvec);
p = ctime(tvec);
date str = dtmove(7, &p[4], date str);
dtmove(4, &p[20], date_str); -
}

3 - 6

CHAPTER 3. INCORPORATING USER SUBROUTINES

/*****************************
* dtmove (n, source, dest)
* ... copy up to n characters from source ptr to destination ptr
* returns ptr to char after last char copied to dest
* does not write null terminator since it copies to COBOL here
*/

char *dtmove (nn, so, de) int nn; char *so, *de
{ register n; register char *s, *d ;
n = nn; s = so; d = de;
while ((*d = *s) && (n--)·) {s++; d++;
return (d);
}

3. Date.cbl Source

The following is the text of a COBOL program that can be used to
test the incorporation of "getdate" into the RTS. USER-DATE is
assigned a value of zero, so the CALL to USER-DATE is equivalent
to CALL "a".

*

*

*

IDENTIFICATION DIVISION.
PROGRAM-ID. DATE USERCALL TEST.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. CONSOLE IS CRT.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 USER-DATE PIC X VALUE "0".
01 DATE-STRING PIC X(11).

PROCEDURE DIVISION.
START-UP.

CALL USER-DATE USING DATE-STRING.
DISPLAY DATE-STRING.
STOP RUN.

3 - 7

seD III
THE SANTA CRUZ OPERATION

500 CHESTNUT STREET, P.O. BOX 1900, SANTA CRUZ, CA 95061 • (408) 425-7222 • TWX: 910-598-4510 sca SACZ

