e T s e Tl S 2. i EHE ECRL GRS NSO SRS e B D R S e REFSIC P, - S e ST

f ::
g < ' PREFACE

This manual describes the Compact Interactive Standard COBOL (CIS COBOL)
5 language for programming microcemputers. CIS COBOL is based. on. the ANSI
COBOL standard X3.23 (1974) (see Acknowledgement). It also.describes the
additional CIS COBOL features that exploit the icapabilities of
microprocessors. 3

Each release of CIS COBOL is characterised by a two-digiﬁ code in thelfdrm
of ; i '

"Version number'. "Release number within version™
AUDIENCE

This manual is intended for programmers already familiar with COBOL on other
equipment. ¥ ' ;

MANUAL ORGANISATION

Chapters 1l through 4 of- the manual apply to all users and describe basic-
features of the language. Chapters 5 through 7 describe language features
for programming the three disk formats supported: sequential, relative and
indexed. i { :

Chapters 8 throughrll apply fo all users”éhd describe additional features
and facilities available ‘with the standard language. The appendices supply
reference information pertinent~t9;allIsyspems. : .

iy The manual contains the following'cﬁaﬁtérs'éhd’éppendices:

"Chapter 1. Introduction”,. éhichﬁlgives a general description of the
languaie, including a broad outlime of ANSI ‘COBOL:- features included “and
omitted and additional features:of CIS COBOL. o i j ;

"Chapter 2. COBOL Concepts’, which describes general: concepts of the -COBOL
language including program structure, and details of statement components
and notation.. "SRR Tl NS i Vi Smacle a8 :

"Chapter 3. Nucleus', which déscribes the aucleus of all COBOL ‘programs: and
the layout of each program division therein. '

""Chapter 4. Tablé Handling'", which describes the handling of data tables in
the Data and Procedure divisions of a COBOL program. :

"Chapter 5. Sequential Input and Output", which describes the programming of
input and output of ‘data in files with sequential format. i
"Chapter 6. Relative Input and Output”, which describes the'pfogfﬁmmiﬂg-df
input and output of data in files with relative format.

"Chapter 7. Indexed Input and Output”, which describes the programming of
input and output of data in files with indexed format.

"Chapter 8. Segmentation', which describes the facility for specifying
- permanent and independent object program sagments.
iv

AR T Y AT T T

"

"Chapter 9. Library", which describes the source library maintenance feature
of COBOL. Ee s

;"Chapter 10. Debug and Interactive Debugging'", which describes the basic and
interactlve debugging features available in CIS COBOL.

L
™

:?"Chapterj}i.‘Interprogram Communication", which describes the ability of CIS
‘COBOL - programs to interface during running and to access common data,
““‘enabling’ modular programming.

"Chapter 12. Programming Techniques and Sizing'", which describes the means
_available for CIS COBOL programmers to estimate object program size and
‘=iincrudes programmlng techniques in CIS COBOL.
- SOTS X 22
"Appendix A. Reserved Word Table", which lists words reserved for CIS COBOL
fnnctions within a program.
"Appendix B. Character Set and Collating Sequence', which 1lists all
s characters avallable and their collating sequence.

"Appendix C. Glossary', which lists specific terms used in CIS COBOL.

:,_nAppéndlx D. TCompile - Time Errors', which lists all errors that can be
-* gignalled’ during program compilation.

"Appendix E. Run-Time Errors'", which lists all errors that can be signalled
S during progrem execution.

"Appendix F. Syntax Summary", which summarises the syntax used in CIS COBOL
i programmlng.
"Appendix G. Summary of Extensions to ANSI COBOL", which summarises all
extensions to ANSI COBOL provided by CIS COBOL.
T ; i

i

“"appendix H. Systems Dependent Language Features', which describes the
- System dependent CIS COBOL entries for use with microcomputers and those
i EEatures not included because of hardware requirements.

A~ don B0

“Appendix I. Language Specification", which is an overall specification of
qheﬂQIS QOBOL language.

i BTk
.

‘ RELATED PUBLICAIIONS

~ No discussion of operating the CIS COBOL Compiler or Run-Time system is
incctporated in this manual. Please refer to document:

CIS COBOL Operating Guide
(for use with the relevant Operating System)

T TR TN

s Bk 533

2"

NOTATION TO THIS MANUAL A

Throughout this manual, the following notation is used to describe. the
format of COBOL statements: et
. 1. - All words printed in capital letters which are underlined must always
be present when the functions of which they are a part are.used. ''‘An
error printout will occur during compilation if the underlined, words
are absent or incorrectly spelled. The underlining is not necessary
when writing a COBOL source program. Ao

2. All words printed in capital letters which are not underiiﬁé@iépéﬁﬁsed
for readability only. They may be writtem, or not, as the programmer
wishes. _ PR

3. All words prinﬁed in small letters are generic terms representiné:ﬁﬁmes
which will be devised by the programmer. T

4. When material is enclosed in braces | } , a choice must be ‘made Erom
the options within them. ¢

D% When material is enclosed in square brackets [], it is an indication
that the material is an option which may be included or. omitted as
required. i

6. When material is enclosed in square brackets crossed f ;; ikfiis an
indication that the material is mandatory when the ANS (ANSI) switch is
set (see Chapter 2) but optional otherwise. : :

T Language features that are shaded in the text are languagergx ehéions

(?:L\ which exceed the ANSI standard. ; ;
8. 1In text, the ellipsis (...) shows the omission of a portion of a source
program or a sequence. This meaning becomes apparent in. context.

In the general formats, the ellipsis represents the positipd‘ééjyhiéh
repetition may occur at the user’s option. The portion of the format
that may be repeated is determined as follows:

13

ey b
R]
e

Given ... in a clause or statement format, scanning right to left,
determine the { or [immediately to the left of the ...; continue
scanning right to left and determine the logically matching-} or };. the
... applies to the words between the determined pair of delimiters.

9. The term identifier means either a data-name or a .

subscripted
data-name. An identifier takes the following form: T
= = (data-name-2)
data-name-1 [Tivaralal Xare

data-name-2 or literal-l must be a positive integer in the range 1
to the number of elements in the table.

Headings are presented in this manual in the following order of importance:

(L CHAPTER N

Chapter Heading
TITLE

vi

T T I, S T T T T AT
g e e e e 5 v A

i R SRR S ARSI ST A e S Ol o o £ i b B i S Sl LSS

ORDER ONE HEADING

ORDER TWO HEADING

Order Three Heading Text two lines down

) 5

Order Four Heading

Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters, e.g. one.
Numbers ten (10) upwards are writtem in text as numbers, e.g. 12.
The phrase "For documentation purposes only" in the text of this manual

means that the associated coding is accepted syntactically by the Compiler,
but is ignored when producing the object program.

— ii e

TABLE OF CONTENTS

PREFACE R
o CHAP 1 . e dglton
INTRODUCTION -
° WHAT IS CIS COBOL? C1-1
PROGRAM STRUCTURE 12 Sz,
FORMATS AND RULES 1-3
GENERAL FORMAT 1-3
SYNTAX RULES 1-3 ...
GENERAL RULES 1-3
ELEMENTS 13
SOURCE FORMAT , ' 1-4
SEQUENCE NUMBER ' S 1=4
INDICATOR AREA 1=4
CHAPTER 2

COBOL CONCEPTS

G, LANGUAGE CONCEPTS . | | 21
CHARACTER SET 2-1
LANGUAGE STRUCTURE 2-1

Separators : 2-1
. Character-strings - 2-3
COBOL Words . -2=3
User-Defined Words 2-3

Condition-Name 2-4

Mnemonic-Name 2=4

Paragraph-Name 2-4

Section=-Name 2-4

Other User-Defined Names 2=4

System-Names C2=4

Reserved Words 2-5

Key Words 2-5

Optional Words 2=5

Connectives 2-5

Figurative Constants 2-5

— Literals , 2-5

' | viii

S

R C O .

e A GRS T e

Nonnumeric Literals 2-6
Numeric Literals 2-6
Figurative Comstant Values 2-7

PICTURE Character-Strings 2-8 N
Comment-Entries " 2-8 ;:q
. CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION 2-8
Concept of Levels . 2-8
Level-Numbers 2-9
Concept of Classes of Data 2-9
Selection of Character Representation and Radix 2-10
Algebraic Signs 2-12
Standard Alignment Rules - 2=12
Uniqueness of Reference 2-~13
Subscripting ‘ 2-13
Indexing 2-13
Identifier 2-14
Condition=-Name 2-15
PROGRAM STRUCTURE 2-15
THE ANSI (ANS) COMPILER DIRECTIVE 3 ‘ 2-15
IDENTIFICATION DIVISION 2-16
GENERAL DESCRIPTION . : , | 2-16
ORGANIZATION 2-16 :
STRUCTURE ‘ 2-16 -
General Format , . . 2=16
"ENVIRONMENT DIVISION 2-17
GENERAL DESCRIPTION . 2-17
ORGANIZATION) 2-17
STRUCTURE _ o 2-17
General Format ' 2=17
DATA DIVISION o o 2-18
OVERALL APPROACH 2-18
PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION 2-18
Data Division Organization 2-18
General Format 2-19
PROCEDURE . DIVISION 2-20
GENERAL DESCRIPTION 2=20

% Declarations | 2-20
il Procedures _ 2-20

Execution 2=20
General Format 2-21
- Header - 2=21.
Body 2-21
STATEMENTS AND SENTENCES 2-21
Conditional Statement 2=22
Conditional Sentence 2=22
Co_t_ugiler Directing Statement 2=22
Compiler Directing Sentence 2-22
Imperative Statement 2-23
Imperative Sentence 2-23
REFERENCE FORMAT ' 2-=24
GENERAL DESCRIPTION 2=24
REFERENCE FORMAT REPRESENTATION 2=-24
Sequence Numbers 2-25
Continuation of Lines 2-25
Blank Lines 2-25
DIVISION, SECTION, PARAGRAPH FORMATS - 2-25
Division Header 2-25
Section Header) 2-25
Paragragh Header, Paragragh—Name and Paragraph 2-25
DATA DIVISION ENTRIES : 2-26
DECLARATIVES . 2-26
" COMMENT LINES 2=27
RESERVED WORDS) o 2-28
CHAPTER 3
THE NUCLEUS
FUNCTION OF THE NUCLEUS : ‘ 3-1
IDENTIFICATION DIVISION IN THE NUCLEUS 3-1
GENERAL DESCRIPTION 3-1
ORGANIZATION 3-1
Structure 3-1
General Format 3-1

Syntax Rules 3-1
\«_"/ ' THE PROGRAM-ID PARAGRAPH 3-2

Function
General Format

Syntax Rule
General Rules

THE DATE-COMPILED PARAGRAPH

Function
General Format

Syntax rule
ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION
THE SOURCE~-COMPUTER PARAGRAPH.

Function
General Format
Syatax Rules
General Rules

THE OBJECT-COMPUTER PARAGRAPH

Function
General Format
Syntax Rules
General Rules

THE SPECIAL-NAMES PARAGRAPH

Function
General Format
Syntax Rule
General Rules

DATA DIVISION IN THE NUCLEUS

WORKING-STORAGE SECTION

Noncontiguous Working-Storage
Working-Storage Records

Initial Values

THE DATA DESCRIPTION - COMPLETE ENTRY SKELEION

Function
General Format
Syntax Rules

General Rule

~

THE BLANK WHEN ZERO CLAUSE

Fuﬁction
General Format

Syntax Rule

IR R Wieas I e £ e, hes b T Bapd 2 e M ek L M s whtes b kd ot > -

C;k\ THE DATA-NAME OR FILLER CLAUSE 3=9

Function 3-9
General Format 3-9
Syntax Rules 3-9
General Rule 3-9
THE JUSTIFIED CLAUSE 3-10
Function 3-10
General Format 3-10
Syntax Rules . 3-10
General Rules.: , 3-10
LEVEL-NUMBER 3-11
Function 3=11
General Format 3-11
Syntax Rules 3-11
General Rules- 3-11
THE PICTURE CLAUSE ' 3-12
Function ’ 3-12
General Format 3-12
' ' Syntax Rules : - , 3-12
‘ General Rules ' 3-12
Alphabetic Data Rules 3-12
Numeric Data Rules ' 3-12
Alphanumeric Data Rules 3-13
Alphanumeric Edited Data Rules 3-13
Numeric Edited Data Rules . 3-13
Elementary Item Size 3-13
Symbols Used : 3-14
Editing Rules 3-15
.Simpleflhsertion Editing 3-16
L Special Insertion Editing . 3-16
S ... Fixed Insertion Editing 3-16
& : . Floating Insertion Editing - 3-17
Zero Suppresion Editing 3-18
Precedence Rules 3-18
THE REDEFINES CLAUSE 3=21
Function 3-21
General Format 3-21
Syntax Rules 3-21
. General Rules 3=-21
| . THE SIGN CLAUSE ‘ o 3-23

xii

. .
P
e .

PR CHIG RIS PoRIOT S I ST P M SNSRI Sl U AT ARV

Function
General Format
Syntax Rules
General Rules

THE SYNCHRONIZED CLAUSE

Function
General Format
Syntax Rules
General Rules

THE USAGE CLAUSE

Function
General Format
Syntax Rules
General Rules

- THE VALUE CLAUSE

Function
General Format
Syntax Rules
General Rules

Data Descrigtion-Entries other than Condition

Names

PROCEDURE DIVISION IN THE NUCLEUS

CONDITIONAL EXPRESSIONS

Simple Conditions
Relation Condition

Comparison of Numeric
Operands
-Comparison of Nonnumeric
- Operands
" Class Condition :
- Switch-Status Condition

13

COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

The ROUNDED Phrase
The SIZE ERROR Phrase

SIZE ERROR Phrase Not Specified
SIZE ERROR Phrase Specified
The Arithmetic Statements
Overlapping Operands
Incompatible Data

CRT Devices

xiii

3-23
3-23
3-23
3-23

3=25

3-25
3-25
3-25
3=25

3=27

3-27
3-27
3-27
3=27

3-28

3-28
3-28
3-28
3-28

. 3-29

3-30
3-30
3-30

3-30

3-31

3-31
3-32
3-33

3-34

3-34
3-34

3-34
3-34
3-35
3=35
3-35
3-35

e o o clated iibeenG b el et Ty o Cae

THE ACCEPT STATEMENT

Function
General Format
General Rules

THE ADD STATEMENT

Function
General Format
Syntax Rules
General Rules

THE ALTER STATEMENT

Function
General Format
Syntax Rules
General Rules

THE DISPLAY STATEMENT®

Function
General Format
Syntax Rules
General Rules

THE DIVIDE STATEMENT

Function
General
Syntax Rules
General Rules

’

THE ENTER STATEMENT

Function

General

Syntax Rules
- General Rules

* THE EXIT STATEMENT

Function
General Format
Syntax Rules
General Rules

THE GO TO STATEMENT

Function
General Format
Syntax Rules
General Rules

3-36

3-36
3-36
3-36

3-39

3-39
3-39
3-39
3-39

3-41

3=41
3=41
3-41
3-41

3-42

3-42
3-42
3-42
3-42

3=44

3=44
3-44
3-44
3=44

3-46

3-46
3-46
3-46
3-46

3-47
3=47
3-47
3=47
3-47

3-48

3-48
3-48
3-48
3-48

3o e et i S TR 2 A R e A e e 28 b e,

THE IF STATEMENT 3-49

Function 3-49‘

General Format 3=49
Syntax Rules 3=49 .
General Rules 3=49
4
THE INSPECT STATEMENT 3=51
Function 3-51
General Format 3=51
Syntax Rules : 3=-52 _
General Rules . . ' 3-52
 THE MOVE STATEMENT ' 3-57
Function 3=-57
General Format ' 3=57
Syntax Rules , 3=57
General Rules : 3=-57
THE MULTIPLY STATEMENT .3-60
Function , 3-60
General Format 3-60
Syntax Rules : 3-60
General Rules 3-60
THE PERFORM STATEMENT . 3-61
Function ‘ 3-61
General Format 3 3-61
Syntax Rules oo, 3-61
General Rules o 3-61
‘THE-STOP STATEMENT : ' ' 3-65
Function . . ' ~i 3=-65
General Format . 3-65
Syntax Rules S e ‘ 3-65
General Rules ‘ _ 3-65
THE SUBTRACT STATEMENT 3-66 ’
Function - 3-66
General Format 3-66
Syntax Rules 3-66
General Rules 3-67
CHAPTER 4

TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE 4-1
DATA DIVISION IN THE TABLE HANDLING MODULE 4-1

- xv

TIPSR

CP-P THE OCCURS CLAUSE | 4=1

Function 4=-1
General Format 4=1
Syntax Rules 4-1
General Rules . 42
THE USAGE CLAUSE 4-3
Function 4=3
General Format 4=3
Syntax Rules 43
General Rules 4=3
PRCCEDURE DIVISION IN THE TABLE HANDLING MODULE : b4=4
RELATION CONDITION 4=t

Comparisons Involving Index-names and/or
Index Data Items b=4
OVERLAPPING OPERANDS 4=4
THE SET STATEMENT 44
.) . Function 7 ‘ 4=4
~ ‘ General Format . ' 4=4.
CH Syntax Rules 4ty
General Rules 4=5

CHAPTER 5

SEQUENTIAL- INPUT AND OUTPUT

INTRODUCTION TO THE SQUENTIAL I-0 MODULE ' ‘5=1
LANGUAGE CONCEPTS — , 5-1
Organization - 5-1
- Access Mode : 5-1
Current Record Pointer 5-1
I-0 Status 5-1
Status Key 1 - ' © 5=1
Status Key 2 ' 5-2

Valid Combinations of Status
1 and 2 S5=2
. ' The AT END Condition ' 5-3
ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE 5-4
INPUT-OUTPUT SECTION 5-4
The FILE-CONTROL paragraph 5-4

PRI S L PP ¥

Function S=4
General Format St
The FILE~CONTROL Entry 5=4
Function S=4
General Format 5=4
Syntax Rules S5=f
General Rules 5=5
The I-0 CONTROL Paragraph 5=6
Function 5=-6
General Format 5=6
Syntax Rules 5-6
General Rules 5-6
DATA DIVISION IN THE SEQUENTIAL I-O MODULE 5=7
FILE SECTION ' 5-7
RECORD DESCRIPTION STRUCTURE 5=7
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 5-8
Function - 5=8
General Format 5-8
Syntax Rules '5-8
THE BLOCK CONTAINS CLAUSE 5=9
Function : 5=9
General Format 5-9
General Rule . 5-=9
THE CODE-SET CLAUSE ' ' " 5=9
Function - . ‘ e , 5-~9
General Format — 5=9
Syntax Rules A 5-9
General Rule : 5=9
THE DATA RECORDS CLAUSE . ‘ - 5-9
Function : 5-9
General Format - 5=9
Syntax Rule , 5-10
General Rule 5-10
m LABEL RECORDS CLAUSE 5-10
Function 5-10
General Format 5-=10
Syntax Rules , 5-10
General Rules 5-10 (‘D
THE RECORD CONTAINS CLAUSE ‘ 5-10
xvii

T D T R I S e TR G,

“-\

Function 5-10
General Format 5-10

General Rules 5-10

" THE VALUE OF CLAUSE - 5=-11
Function 5-11

General Format 5-11

General Rules : . 5-11

PROCEDURE DIVISION IN THE SEQUENTIAL I-0 MODULE 5=12
THE CLOSE STATEMENT , 5-12
Function 5=12

General Format 5-12

Syntax Rule 5=12

General Rules 5=12

THE OPEN STATEMENT ' : ' 5~13
Function) 5-13

General Format : 5-13

Syntax Rules 5-13

General Rules »S-13

THE READ STATEMENT. 5-~16
Function 5-16

General Format » : 5-16

Syntax Rules ‘ ' 5~16

General Rules 5-16

THE. REWRITE STATEMENT . . ‘ 5-~18
Function | 5-18

General Format) o 5-18

Syntax Rules , 5-18

General Rules ' 4 5-18

- THE USE STATEMENT SAREEE 5-19
. Function ' . - 5-19

- - General Format 4 _ 5-19
Syntax Rules 5-19

General Rules 5-19

' THE WRITE STATEMENT : 5-20
Function | : 5-20

General Format 5-=20

Syntax Rules 5-=20

%\ ~ Gemneral Rules ' 520

xviii

ML Mre's rdien S et 1 Ao R o i R PUREH . Lo . e L B T P IR S N S
i, S > rat Lot IRVE LT SHE RN\ SURY OSSN0 R I CER P E /M I A RS AT AV PN

CHAPTER 6

RELATIVE INPUT AND OUTPUT

INTRODUCTION TO THE RELATIVE I-0 MODULE 6-1
LANGUAGE CONCEPTS 6-1
Organization 6-1
Access Modes 6-1
Current Record Pointer 6-1
I-0 Status . 6~-1
Status Key 1 6-2
Status key 2 . 6-2
Valid Combination of Status Keys
1 and 2 6-3
The INVALID KEY Condition 6=3
The AT END Condition 6-4
ENVIRONMENT DIVISION IN THE RELATIVE I-0 MODULE 6=5
INPUT~OUTPUT SECTION ‘ 6=~5
The FILE-CONTROL Paragragh 6-5
Function 6=5
General Format T 6=5
The FILE CONTROL Entry 6=-5
Function 6=4
General Format 6-5
Syntax Rules ' o 6=5
. General Rules : 6-6
The I-O CONTROL Paragraph 6-7
Function . 6-7
General Format 6=7
Syntax Rules e 6-7
General Rules - 6=7
DATA DIVISION IN THE RELATIVE I-O MODULE 6-8
FILE SECTION 6-8
RECORD DESCRIPTION STRUCTURE 6-8
THE FILE DESCRIPTION-COMPLETE ENTRY SKELEION 6-8
Function 6-8
General Format 6=8
Syntax Rules 6-9

xix

‘;‘?‘\' THE BLOCK CONTAINS CLAUSE 6-9

Function ' 6=-9
General Format 6-9
General Rule ~ - 6=9
THE DATA RECORDS CLAUSE . : 6~9
Function ; 6-9
General Format 6-9
Syntax Rule _ 6-9
General Rule . ' 6-9
THE LABEL RECORDS CLAUSE 6-10
Function 6-10
General Format ' 6-10
Syntax Rule 6-10
General Rule . 6-10
THE RECORD CONTAINS CLAUSE ' 6-10
Function 6-10
General Format 6-10
General Rules o 6-10
THE VALUE OF CLAUSE : 6-10
Function 6-11
General Format) 6-11
Syntax Rules 6-11
General Rules '] 6-11
" PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE 6-12 | .
THE CLOSE STATEMENT 6-12
Fuﬁction ‘ 6-12
General Format 6-12
Syntax Rule 6-12
General Rules ' 6-12

"THE DELETE STATEMENT

Function 6-13

General Format 6-13

Syntax Rules ' 6-13

General Rules 6-13

THE OPEN STATEMENT . 6=-14

@h i 'Function 6-14
o . General Format 6=14
Syntax Rules 6-14

General Rules - 6-14

T SN SO S A TR IS ORI S ORP T ez . e

R - R .]
AR . . N

R S R R P S T o 3 .
¢ L L PP i e i D S o o it 2z

THE READ STATEMENT

Function
General Format
Syntax Rules
General Rules

THE REWRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

THE START STATEMENT

Function
General Format
Syntax Rules
General Rules

THE USE STATEMENT

Function
General Format
Syntax Rules
General Rules

THE WRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

CHAPTER 7
INDEXED INPUT AND OUTPUT
INTRODUCTION TO THE INDEXED I-O MODULE.
| LANGUAGE CONCEPTS
Organization
Access Modes

Current Record Pointer
I-0 Status

- Status Key 1
Status Key 2
Valid Combination of Status Keys
1 and 2
The INVALID KEY Condition
The AT END Condition

xxi

6-17

6-17
6-17
6-17
6~-17

6-20

6-20
6-20
6-20
6-20

6-22

6-22
6-22
6-22
6-22

6-24

6-24
6-24
6-24
6-24

6-25

6-25
6-25
6-25
6-25

7-1
7-1

7-1
7-1
7-1
7-2

7-2
7-2

7-3
7=4
7-4

A s P NG S D SRR R e B £

'

I A . ez Ao : N ae e

@\ ENVIRONMENT DIVISION IN THE INDEXED I-O MODULE 7-5

INPUT-QUTPUT SECTION 7=5

The FILE-CONTROL Paragraph <~ 71=5

Function 7-5

General Format 7=5

The FILE CONTROL Entry . 7=5

Function . 7-5

General Format 7-5

Syntax Rules 7-5

General Rules ; 7-6

The I-0 CONTROL Paragraph 7=7

Function 7-7

General Format 7=7

Syntax Rules 7-7

General Rules 7=7

DATA DIVISION IN THE INDEXED I-O0 MODULE 7-8

FILE SECTION ’ : o 7-8
dam RECORD DESCRIPTION STRUCTURE. 7-8
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 7-8

Function) o 7-8

General Format . : 7-8

Syntax Rules o 7-8

THE BLOCK CONTAINS CLAUSE : , - 7-9

Function . 7-9

General Format] _ 7-9

General Rule : : o 7-9

, | THE DATA RECORDS CLAUSE | ' 7-9
Fumction - 7-9

General Format 7-9

Syntax Rules N 7=9

General Rules 7-9
THE LABEL RECORDS CLAUSE . ’ 7-10
Function) 7=10

General Format . 7-10

Syntax Rule 7-10

i General Rule . 7-10
~ . THE. RECORD CONTAINS CLAUSE o 7-10

.
LA

THE VALUE

PROCEDURE DIVISION IN THE INDEXED I-O MODULE

THE CLOSE

Function

General Format

General Rules

OF CLAUSE

Function

General Format

General Rules

STATEMENT

Function

General Format

Syntax Rules
General Rules

THE DELETE STATEMENT

Function

General Format

Syntax Rules

General Rules

THE OPEN STATEMENT

Function

General Format

Syntax Rules

General Rules

THE READ STATEMENT

Function

General Format

Syntax Rules

General Rules

THE REWRLITE STATEMENT

THE START

Function
General Format

Syntax Rules

General Rules

STATEMENT

Function-
General Format

Syntax Rules
General Rules

xxiii

7-10
7-10
7-10

7-10

7-10
7-10
7-10

7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-13

7-13

7-13
7-13
7-13 .

7-16

7-16
7-16
7-16
7-16

7-19

7-19
7-19
7-19
7-19

7-19

7-19
7-19
7-19
7-19

THE USE STATEMENT

Function
General Format
Syntax Rules
General Rules

THE WRITE STATEMENT

Function
General Format
Syntax Rules
General Rules

CHAPTER 8

SEGMENTATION

INTRODUCTION TO THE SEGMENTATION MODULE
GENERAL DESCRIPTION OF SEGEMENTATION

ORGANIZATION

: Program Segments |
- Fixed Portion
Independent Segments

SEGMENTATION CLASSIFICATION
SEGMENTATION CONTROL

STRUCTURE OF PROGRAM SEGMENTS

SEGMENT NUMBERS
GENERAL FORMAT
SYNTAX RULES
GENERAL RULES

RESTRICTIONS ON PROGRAM FLOW

THE ALTER STATEMENT
THE PERFORM STATEMENT

CHAPTER 9
LIBRARY
o INTRODUCTION TO THE LIBRARY MODULE
THE COPY STATEMENT '

xxiv

7-23

7-23
7-23
7-23
7-23

7=24

7=24
7-24
7-24
7-24

8-1
8-1

8-1
8-1
8-1

8-2
8-2

8-3

8-3

8-3
8-3
8-3

8-4

8-4
8~4

9-1
9-2

FUNCTION
GENERAL FORMAT
SYNTAX RULES
GENERAL RULES

CHAPTER 10
DEBUG AND INTERACTIVE DEBUGGING
GENERAL DESCRIPTION
COMPILE TIME SWITCH

DEBUGGING LINES
RUN-TIME DEBUG

CHAPTER 11
INTERPROGRAM COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE
DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION

Noncontigubus Linkage Storage

PROCEDURE DIVISION IN THE INTER-PROGRAM COMﬁUNICAIION MODULE

)

THE PROCEDURE DIVISION HEADER
THE CALL STATEMENT

Function B ' !
General Format

Syntax Rules

General Rules

THE CANCEL STATEMENT

Function

General Format
- Syntax Rules

General Rules

THE EXIT PROGRAM STATEMENT

Function

~ General Format
Syntax Rules
General Rule

9-2
9-2
9-2
9-2

10-1
10-1
10-1
10-1

l11-1
11-1

1l-1

11-2

11-3

11-3
11-4

11-4
11-4
11-4
11-4

11-5

11-5
11-5
11-5
11-5

11-6
11-6

11-6
11-6

11-6

P R

|

" CHAPTER 12

PROGRAMMING TECHNIQUES AND SIZING

PROGRAMMING TECHNIQUES
SIZING

GENERAL DESCRIPTION
DATA DICTIONARY

APPENDIX A

RESERVED WORD LIST

" APPENDIX B

2

CHARACTER SETS AND COLLATING SEQUENCE

APPENDIX C

GLOSSARY

APPENDIX D

COMPILE~-TIME ERRORS

 APPENDIX E.

RUN-TIME ERRORS

APPENDIX F

SYNTAX SUMMARY

APPENDIX G

SUMMARY OF EXTENSIONS TO ANSI COBOL

SCREEN FORMATTING AND DATA ENTRY

THE ACCEPT STATEMENT
THE DISPLAY STATEMENT

DISK FILES

LINE SEQUENTIAL FILES
RUN. TIME INPUT OF FILE NAMES

xxvi

12-1
12-1

12-1
12-2

G-1

G-1
G-1

G-2

- G=2

G-2

LOWER CASE CHARACTERS : G-2
HEXADECIMAL VALUES G-2
INTERACTIVE DEBUGGING G-2

APPENDIX H

SYSTEM DEPENDENT LANGUAGE FEATURES

MANDATORY CHANGES B=-1
ENVIRONMENT DIVISION H-l
Configuration Section H-1

Input-Qutput Section H=-1

STATEMENTS COMPILED AS DOCUMENTATION ONLY H-1
ENVIRONMENT DIVISION H-1

DATA DIVISICN H=-2
PROCEDURE DIVISION H=2

APPENDIX I

LANGUAGE SPECIFICATION

ALPHABETIC INDEX

xxvii

JIRIERY T O T O VP TP s . X s L R R TSV L IR N ST Ty GO

C‘\ TABLES

Table Title Page
2-1 Figurative Constants and their Reserved Words 2-7
2-2. Data Levels Classes and Categories 2-10
2-3 Numeric Data Storage for the COMP(UTATIONAL) PICTURE

Clause 2-11
2-4 Numeric Data Storage for the COMP(~3) PICTURE CLAUSE 2-12
3-1 Editing Types for Data Categories 3-16
3=2 Editing Symbols in PICTURE Character Strings 3-17
3-3 PICTURE Character Precedence Chart 3-19
3=4 Relational Operators 3-31
3=5 Cursor Repositioning Keys 3-38
3-6 MOVE Statement Data Categories 3-59
4=-1 SET Statement Valid Operand Combinations 4=6
5-1 Permissable Combinations of Statements and

OPEN Modes for Sequential I-0 . 5-14
6-1 Permissable Combinations of Statements and

OPEN Modes for Relative I-0 6-15

C?-\ 7-1 Permissable Combinations of Statements and
s : OPEN Modes for Indexed I-0 7-14
12-1 Data Dictionary Entry Sizing - 12-2
ILLUSTRATIONS

Figure Title _ . Pagé
1-1 ‘Sample Program Listing Showing Source Format. 1-5
2-1 Reference Format.for a COBOL Source Line 2-23
3=-1 PERFORﬁ Statements in Sequence 3-63

xxviii

- o . . gt s :
s SN R St S nale T s

CHAPTER 1

INTRODUCTION

WHAT IS CIS COBOL?

COBOL (Common Business Oriented Language) 1s the most widely and
extensively wused language £for the programming of commercial and
administrative data processing.

CIS COBOL is a Compact, Interactive and Standard COBOL Language System
which 1s designed for use on microprocessor-based computers and intelligent
terminals.

It is based on the ANSI COBOL given in "American National Standard
Programming Language COBOL" (ANSI X3.23 1974). The CIS COBOL implementation
has been selected from both levels of ANSI COBOL. The following modules are
fully implemented at Level 1:

Nucleus.

Table Handling

Sequential Input and Output
Relative Input and Output
Indexed Input and Qutput
Segmentation

Library

Inter~Program Communication

e ¢ o o o o o o

In addition many Level 2 features are implemented such as:

Nucleus - Nested IF, PERFORM UNTIL

Table Handling - 3 dimensions of variable length table handlings.
Relative and Indexed sequential I/0 - START statement
Inter-Program Communication - CANCEL statement

e o o o

This manual is intended as a reference work for COBOL programmers and
material from the ANSI language standard document is included.

Along with the ANSI implementation CIS COBOL also contains several
language extensions specifically oriented to the small computer environment.
These enable a CIS COBOL program to format CRT screens for data input and

. output (DISPLAY and ACCEPT), READ and WRITE text files efficiently and
define .external file names at run time.

The programmer wishing to transport an existing COBOL program to run
under CIS COBOL must check that the individual language features he has used
are supported by CIS COBOL. The COBOL SECTION statements in the
Segmentation feature can be performed using the PERFORM statement. Segment
numbers are treated as for documentation only.

A compile time ANS (ANSI) switch can be set that makes certain COBOL
source mandatory, whereas if mot set it is optional. (See Chapter 2).

The CIS COBOL compiler is designed to enable programs '
to be developed in a 48K machine. The Compiler supports sequential,
relative and indexed sequential files, as well as interactive communications
via the ACCEPT and DISPLAY verbs.

/- 1"1

The CIS COBOL System also contains a powerful utility called FORMS that
enables the Operator to define screen layouts from a screen "module" and
produce automatically the data description for direct inclusion in an
CIS COBOL program. This 1is described in the CIS COBOL Operating Guide

CIS COBOL programs are created using a conventional text editor. The
Compiler compiles the programs and the Run-Time system 1links with the
compiled output to form a running user program. A listing of the CIS COBOL
program is provided by the Compiler during compilation. Error messages are
inserted in the listing. Interactive Debugging facilities are provided for
run~time use, and these are described in the CIS COBOL Operating Guide.

CIS COBOL is designed to be interfaced easily to any microprocessor
operating system. Detailed operating characteristics are dependent on the
particular host operating system used and are defined in the appropriate
Operating Guide. ; " :
PROGRAM STRUCTURE

A COBOL program cousists of four divisionms:

l. IDENTIFICATION DIVISION - An identification of the program

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program -

3. DATA DIVISION - A description of the data to be processed

4. PROCEDURE DIVISION - A set of procedures to specify the operations to
be performed on the data '

Each division, is divided into sections which are further divided into
paragraphs which in turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions
exist as clauses and statements. A clause is an ordered set of €O0BOL
elements that specify an attribute of an entry, and a statement is a
combination of elements in the Procedure Division that include a COBOL verb
and comnstitute a program instructionm.

KR
s
R : N PRV - el PR Y SEZaiaadalgar- B T I T Y R T ST T T

FORMATS AND RULES

GENERAL FORMAT

‘ A general format 1is the specific arrangement of the elements of a
clause or a statement. Throughout this document a format is shown adjacent
to information defining the clause or statement. When wmore than omne

specific arrangement is permitted, the general format is separated into

numbered formats. Clauses must be written in the sequence given in the
general formats. (Clauses that are optional must appear in the sequence
shown 1f they are used). In certain cases, stated explicitly in the rules
associated with a given format, the clauses may appear in sequences other
than that shown. Applications, requirements or restrictions are shown as
rules.

SYNTAX RULES

Syntax rules are those rules that define or clarify the order in which
words or elements are arranged to form larger elements such as phrases,
clauses, or statements. Syntax rules also impose restrictions on individual
words or elements,

These rules are used to define or clarify how the statement must be
written, i.e., the order of the elements of the statement and restrictions
on what each element may represent.

GENERAL RULES

A general rule is a rule that defines or clarifies the mweaning or
relationship of meanings of an element or set of elements. It is used to
define or clarify the semantics of the statement and the effect that it has

on either execution or compilation.

ELEMENTS

Elements which make up a clause or a statement consist of uppercase
words, lowercase words, level-numbers, brackets, braces, connectives and
special characters (see Chapter 2). '

~

)-‘-., SR

ST gl s a2 - L e et e . - e X o o
st FRRRICTITE AR PRS- SRALER>DLNCHINE A P PSR SRR S0 W e m Bt SR e i bt Bl

SOURCE FORMAT

The COBOL source format divides each COBOL source record into 72
columns. These columns are used in the following way: '

Columns 1 - 6 Sequence number
Column 7 Indicator area
Columns 18 - 11 Area A

Columns 12 - 72 Area B
SEQUENCE NUMBER

A sequence number of six digits may be used to identify each source
program line.

INDICATOR AREA

An asterisk * in this area marks the line as documentatary comment
only. Such a comment line can appear anywhere in the program after the
Identification Division header. Any characters from the ASCII character set
can be included in Area A and Area B of the line. '

A stroke /, in the indicator area acts as a comment line above but
causes the page to eject before printing the comment.

A "D" in the indicator atfea represents a debugging line. Areas A and B
may contain any valid COBOL sentence.

A "-" 4in the indicator area represents the continuation of a
non-numeric literal. The first non-blank character in Area B of the
continuation line must be a quotation mark. The literal continues with the
first character after the quotation mark. All spaces at the end of the
continued line are significant. '

Section names and paragraph names begin in Area A and are followed by a
period and a space. Level indications FD, Ol and 77 begin in Area A and are
followed in Area B by the appropriate file and record description.

_ Program sentences may commence anywhere in Area A and Area B, More
than one sentence is permitted in each source record. :

Figure l-1 shows the source format of a typical program.

x

=

b e e — e et s e e ek e b o iR i R it S B AR L

o md ek « B s Ghmts ot h amied b bhmen

*+ CIS C0B0L V4.2 :F13STOCK1.CBL PAGE: 0001
000010 IDENTIPICATION DIVISION. : 0118
000020 PROGRAM-ID. STOCK-FILE-SET-UP. . o118
000030 AUTHOR. MICRO POCUS LiD. 0118
000040 ESVIRONMENT DIVISION. 0118
000050 CONFIGURATION SECTION. o118
000060 SOURCE-COMPUTER. MDS-800. 0118
000070 OBJECT-COMPUTER. MDS-B00. 018 Vi
000080 SPECIAL-NAMES. CONSOLE IS CRT. 0118 &
000030 INPUT-OUTPUT SECTION., 0118 ~
000100 FILE-CONTROL. 0118 ,
600110 SELECT STOCK-FILE ASSIGN “STOCK.IT" 0176
000120 CRGANIZATION INDEXED 0176
000130 ACCESS DYNAMIC 0176
000140 RECORD KEY STOCK-CODE. 0176
000150 DATA DIVISION. 0125
000160 FILE SECTION. 01a5
000170 FD STOCK-FILE; RECORD 32. 0125
000180 O1 STOCK-ITEM. 01A5
000190 02 STOCK-CODE PIC X(4). 01AS
000200 02 PRODUCT-DBSC PIC X(24). 01A9
000210 02 UNIT-SIZE PIC 9(4). 01C1
000220 WORKING-STORAGE SECTION. 01C7
000230 01 SCREEN-HEADINGS. 01C7 00
000240 02 ASK-OODE PIC X(21) VALUE "STOCK CODE < e, 01C7 00
000250 02 FILLER PIC X(59). 010C 15
000260 02 ASK-DESC PIC X(16) VALUE "DESCRIPTION <", 0217 SO
080270 02 SI-DESC PIC X(25) VALUE * N 0227 60
000280 02. FILLER PIC X(39). ‘ 0240 79
000290 02 ASK-SIZE PIC X(21) VALUB “UNIT SIZE < .. 0267 a0
000300 0l ENTER-IT REDEFINES SCREEN-HEADINGS. 01C7 00
000310 02 FILLER PIC X(16). 01c7 00 |
000320 02 CRP-STOCK-CODE PIC X(4). 01p7 10
000330 02 PILLER PIC X(76). 0108 14
000340 02. CRT-PROD-DESC PIC X(24). 0227 60
060350 02 PILLER PIC X(S6). 023F 78
000360 02 CRT-GNIT-SIZE PIC 9(4). 0277 B0
000370 02 PILLER PIC X. 0278 B84
000380 PROCEDURE DIVISION. 0000
000390 SR1. 001A
000400 DISPIAY SPACE. 0018
000410 OPEN I-0 STOCK-PILE. 001E
000420 DISPLAY SCREEN-HEADINGS. 0022
000430 NOSMAL~INPUT. . 0036
000440 MOVE SPACE TO ENTER-IT. 0037
600450 DISPIAY ENTER-IT. 003D
000460 CORRECT-ERROR. - 0054
000470 ACCEPT ENTER-IT. . 0055 : oy
000480 IF CRY-STOCK-CODE = SPACE GO TO END-IT. : 006C - o
000490 IF CRISUNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR. 0076 | :
000500. MOVE CRT-PROD-DESC T0 PRODUCT-DESC. co7F ~~
000510 MOVE CRI-UNIT-SIZE TO UNTT-SIZE. : 0085
000520 . m CRT-STOCK-CO0E TO STOCK-CODE. 008D
600530 WRITE STOCK-ITEM; INVALID GO ‘7O CORRECT-ERFOR. 0093
000340 G0 TO NORMAL-INPUT. 009P
000550 END-IT.) : 00A2
000560, CLOSE STOCK-PILE. ooa3
000570 DISPLAY SPACE. 00”7
000580 DISPLAY. "END OF PROGRAM®. 00AA
** CIS C080L V4.2 1P1:STOCKL.CBL PAGE: 0002
ooosso STOP RIN. o8
** CIS CoBOL V4.2 COMPILER COPYRIGHT (C) 1978 MICRO POCUS LTD URN AA/000O/AA
nmm-oooco DATA=00636 CODE=00222 DICT=00420:21913 END OF LIST
. \'?-/
Cols.] 4 ! Cols. Inserted
1-6 : 12=72 by
Sequence Area B Compiler
Number :
Col 7
Indicator
Area)
Cols 8-11
Area A

Figure 1-1. Sample Program Listing showing Source Format.

1~5

L : : . PR RIS AT, SO ST TS 0 e

Totome o

CHAPTER 2

COBOL CONCEPTS

LANGUAGE CONCEPTS

CHARACTER SET

The most basic and indivisible unit of the language is the character.
The set of characters used to form CIS COBOL character-strings and
separators 1includes the letters of the alphabet, digits and special
characters. The character set consists of the characters defined below:

id User Word Characters.

A T
Space B
+ Plus sign
- Minus sign or hyphen
* Asterisk
/ Oblique Stroke/Slash .
" = Equal sign '
$ Dollar sign
. Full stop or decimal point

» Comma or decimal point
H Semicolon

' Quotation mark

(Left Parenthesis

) Right Parenthesis

> Greater than symbol

< Less than symbol

The CIS COBOL language is restricted to the above character set, but
the. content of non-numeric literals, comment lines and data may include any
of the characters from the ASCII character set. See Appendix B.

LANGUAGE STRUCTURE

The individual characters of the language are concatenmated to form
character-strings and separators. A separator may be concatenated with
another separator or with a character-string. A character-string may only
be concatenated with a separator. The concatenation of character-strings
and separators forms the text of a source program.

Separators

A separator is a string of one or more punctuation characters. 'The

- rules for formation of separators are:

l. The punctuation character space is a separator. Anywhere a space 1is
used as a separator, more than one space may be used.

2. The punctuation characters conma, gsemicolon and period, when
' immediately followed by a space, are separators. These separators

2-1

e EURN R0 B DT ey o)

e N v e

e R

may appear in a COBOL source program only where explicitly permitted by
the -gemeral formats, by format punctuation rules (see
FORMATS AND RULES in Chapter 1), by statement and sentence structure
definitions (see STATEMENTS AND SENTENCES 1in this Chapter), or
reference format rules (see REFERENCE FORMAT in this Chapter).

3. The punctuation characters right and left parenthesis are separators.
Parenthesis may appear only in balanced pairs of 1left and right
parentheses delimiting subscripts, indices, arithmetic expressions, or
conditions,

4. The punctuation character quotation mark is a separator. An opening
quotation mark must be immediately preceded by a space or left
parenthesis; a closing quotation mark must be immediately followed by
one of the separators space, comma, semicolon, period, or right
parenthesis,

Quotation marks may appear only in balanced pairs delimiting nonnumeric
literals except when the literal is continued. (See
CONTINUATION OF LINES in this Chapter).

5. Pseudo-text delimiters are separators. An opening pseudo-text
delimiter wmust be immediately preceded by a space; a closing
pseudo-text delimiter must be immediately followed by ome of the
separators space, comma, semicolon, or period.

Pseudo~text delimiters may appear only in balanced pairs delimiting
pseudo—-text.

- 6. The separator space may optionally immediately precede all separators

except the following:

a. As specified by reference format rules see REFERENCE FORMAT

in this Chapter.

b. The separator closing quotation mark. In this case, a

preceding space 1s considered as part of the nonnumeric:

Iiteral and not as a separator,

N

c.. The Opening pseudo-text delimiter, where the preceding space
is required.

P

7. The separator space is optional and can immediately follow any

-separator except the opening quotation mark. In this case, a following
space 1s considered as part of the nonnumeric literal and not as a
separator; : S

' Any punctuation character which appears as part of the specification of
a PICTURE character-string (see Chapter 3) or numeric ‘literal is not

- considered as a punctuation character, but rather as a symbol used in the

specification of that PICTURE character-string or numeric literal. PICTURE
character-strings are delimited only by the separators space, comma,
semicolon, or period.

The rules established for the formation of separators do not apply to
the characters which comprise the contents of nonnumeric literals,

©. comment-entries, or comment lines.

2 -2

Character-Strings

A character-string is a character or a sequence of contiguous
characters which forms a CIS COBOL word, a literal, a PICTURE
character-string, or a comment-entry. A character-string is delimited by
separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters which
forms a user defined word, a system-name, or a reserved word. Within a
given source program these classes form disjoint sets; a COBOL word may
belong to one and only onme of these classes.

User-Defined Words: A user-defined word is a COBOL word that must be
supplied by the user to satisfy the format of a clause or statement. Each
character of a user-defined word is selected from the set of characters 'A',
'8', 'C', ... 'z', ‘a', '®', 'e¢', ...'2', '0O', ...'9', and '-', except that
the '-' may not appear as the first or last character. ‘The exception: tos
eﬁisftnieg"'“éétextrnanesimunhamnstibefa;notmar.alphannmetic 1tteral,

R A e S LA

User-defined word types which are implemented are as follows:.

alphabet-name
condition~name
data~name
file—name

. index-name
level~-number
mnemonic-name
paragraph—-name
program-name
record-name
section-name
segment-number
text-name -

Within a given source program, ten of these ll types of user-defined
_words are grouped into nine disjoint sets. The disjoint sets are:

alphabet-names
condition-names, data-names, and record-names
file-names '
index~-names
mnemonic-names
‘ . paragraph-names
, s ”f,,-— Teoad program_names
' - " gection-names
text-names

All user-defined words, except segment-numbers and level-numbers, can
belong to one and only one of these disjoint sets. Further, all
user-defined words within a given disjoint set must be unique, because no
other user-defined word in the same source program has identical spelling or
punctuation. (See UNIQUENESS OF REFERENCE in this Section).

[P SR Y SRR PR S NI S STCERE ST SR TORE A 9 ¢ IR TN RS T LR Yy

With the exception of paragraph~name, section-name, level-number and
segment-number, all user-defined words must contain at least one alphabetic
character. Segment-numbers and level-numbers need not be unique; a given
specification of a segment-number or level-number may be identical to any
other segment-number or level-number and may even be identical to a
paragraph-name or section-name.

Condition-Name:

Mnemonic-Name:

Paragraph~Name:

Section-Name:

Other User-Defined
Names:

System-Names:

 same number of digits and/or characters.

A condition-name is a name which 1is assigned to a
specific value, set of values, or range of values,
within a complete set of values that a data item may
assume, The data item itself 1s called a conditional
variable.

Condition~names may be defined in the Data Division or
in the SPECIAL-NAMES paragraph within the Environement
Division where a condition-name must be assigned to the
ON STATUS or OFF STATUS, or both, of the run time
switches. '

A condition-name is used only in the RERUN clause or in
conditions as an abbreviation for the relation
condition; this relation condition posits that the
associated conditional variable is equal to ome of the
set of values to which that condition-name is assigned.

A mnemonic-name assigns a user-defined word to an
implementor-name. These associations are established in
the SPECIAL-NAMES paragraph of the Environment Divisioum.
(See SPECIAL-NAMES in Chapter 3).

A paragraph-name is a word which names a paragraph in
the Procedure Division. Paragraph-names are equivalent
if, and only if, they are composed of the same sequence
of the same number of digits and/or characters.

A section-name 1is 'a word which names a seciion in the
Procedure Division. Section names are equivalent if, and
only if, they are composed of the same sequence of the

. See the glossary in Appendix C for definitions of all

other types of user-defined words.

A system-name is a COBOL word which 1s used to
communicate with the operating environment. Each

 character used in the formation of a system-name must be

selected from the set of characters 'A', 'B', 'C', ...
'Z', 'a', 'b' ... 'z', '0', ... '9' and '-', except that

_ the '~' may not appear as the first or last character.

Thére are three typés of system-names:

1. computer-name
2. _..implementor-name
3. language—-name

FRAED wenaBiH e SN e S il i Vo b i«

Within a given implementation these three types of
system-names form disjoint sets; a given system—name may
belong to ome and only one of them.

The system-names listed above, are individually defined
in the glossary in Appendix C.

Reserved Words: A reserved word is a COBOL word that is ome of a
specified 1list of words which may be used in COBOL
source programs, but which must not appear in the
programs as user-defined words or system-names.
Reserved words can only be used as specified in the
general formats. (See Appendix A).

There are six types of reserved words:

1. Key words

2. Optional words

3. Connectives

4, Special registers

S.. Figurative comnstants
6.. Special-character words

Key Words: A key word is a word whose presence is required when the
format in which the word appears is used in a source
program. Within each format, such words are uppercase
and underlined. ’

Key words are of three types:

CZ’!V l. Verbs such as ADD, READ, and ENTER. :
2. Required words, which appear in statement and entry
- formats.

3. Words which have a specific functional meaning such
as NEGATIVE, SECTION, etc.

Optional Words: Within each format, uppercase words that are not
underlined are called optional words and may appear at
- the user's option. The presence or absence of an
optional word does not alter the semantics of the COBOL
program in which it appears.

Connectives: Series connectives 1link two or more consecutive
: operands: , (separator comma) or ; (separator
- semicolon)..
. PFigurative - : e
Constants: - Certain reserved words are used to name and reference

specific constant values. These reserved words are-
specified under Figurative Constant Values in this
.- chapter.

Literals

» A literal is a character-string whose value is implied by an ordered

. set of characters of which the literal is composed or by specification of a

reserved word which references a figurative constant. Every literal belongs
to one of two types, nonnumeric or numeric.

2 =5

we 30 i N - i [5 R T e R S TIE T ’ VT ne -
-~ c A ORI R st U SO S o e e BT

Nonnumeric
Literals:

A nonnumeric literal is a character-string delimited on
both ends by quotation marks and consisting of any
allowable character in the computer's character set.
Allowed are nonnumeric literals of 1 through 128
characters in length. To represent a single quotation
mark character within a nonnumeric literal, two
contiguous quotation marks must be used. The value of a
nonnumeric literal in the object program is the string
of characters itself, except:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks
represents a single quotation mark character.

All other punctuation characters are part of the value of the
ponnumeric 1literal rather than separators; all nonnumeric literal are
_category alphanumeric. (See The PICTURE Clause in chapter 3). In
‘addition,. hexadecimal binary values: can be attributed to non-numeric '

. Iiterals by expressing Iiterals as: X "nn', where n is a: hexadecimal
ichme:erihathesetﬂ-?k s nnmayberepeatedup»to 128 times,. lmt
the. mmber of hex digits must be even. :

Numeric Literals:

A numeric literal is a character-string whose characters
are selected from the digits '0' through '9', the plus

‘gign, the minus sign, and/or the decimal point. The

implemention allows for numeric literals of 1 through 18
digits in 1length. The rules for the formation of
numeric literals are as follows: :

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign

character. If a sign 1is used, it must appear as

the leftmost character of the literal. If the
literal is unsigned, the 1literal 1is positive,

3. A literal must not contain more than one decimal
. point. The decimal point is treated as an assumed
decimal point, and may appear anywhere within the
literal except as the rightmost character. If the
literal contains no decimal point, the literal is

an integer.

If a 1literal conforms to the rules for the
formation of numeric literals, but is enclosed in
quotation marks, it is a nonnumeric literal and it
is treated as such by the compiler.

4. The value of a numeric literal is the algebraic
quality represented by the characters in the
numeric literal. Every numeric literal is category

—- numeric. (See THE PICTURE CLAUSE in Chapter 3).
The size of a numeric literal in standard data
format characters is equal to the number of digits

" gspecified by the user.

Figurative Constant
Values

Figurative Constant Values are generated by the compiler and referenced
through the use of the reserved words given below. These words must not be
bounded by quotation marks when used as figurative constants. The singular
and plural forms of figurative constants are equivalent and may be used
interchangeably.

The figurative constant values and the reserved words used to reference them
are shown in Table 2-l.

Table 2-1, Figurative Constants and their Reserved Words
'CONSTANT REPRESENTATION

ZERO Represents the value '0', or one or more
of the character '0' depending on context.

ZEROS
ZEROES
SPACE Represents one or more of the character
SPACES space from the computer's character set,
HIGH-VALUE Represents one or more of the character
HIGH-VALUES that has the highest ordinal position in
the program collating sequence.
LOW-VALUE Represents one or more of the character that
LOW~VALUES has the lowest ordinal position in the program
collating sequence.
QUOTE . A Represents one or more of the character "',
QUOTES ’ The word QUOTE or QUOTES cannot be used in
place of a quotation mark in a source program
to bound a nonnumeric literal. Thus, QUOTE
. ABD QUOTE is incorrect as a way of stating
the: nonnumeric literal "ABD"
ALL literal Represents one character of the string of

characters comprising the literal. The
literal must be either a nonnumeric literal
or a figurative constant other than ALL literal.
oot 77 " When'a figurative constant is used, the word
RS m et ALL is redundant and is used for readability

" When a figurative constant represents a string of ome or more characters,
the length of the string 1s determined by the compiler from context
according to the following rules:

‘l. When a figurative constant is assoclated with another data item, as
when the figurative constant is moved to or compared with another data
item, the string of characters specified by the figurative constant is

: % - repeated character by character on the right until the size of the
_ resultant string is equal to the size in characters of the associated

4

data item., This is dome prior to and independent of the application of
any JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not assoclated with another data item, as
when the figurative constant appears in a DISPLAY or STOP statement, /i)
the length of the string is ome character.

18, o coutue,, am exceptif

A figurative constant may be used wherever a literal appears in a
format, except that whenever the 1literal 1is restricted to having only
numeric characters in it, the only figurative constant permitted is ZERO
(ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in

the source program, the actual character associated with each figurative

. constant depends upon the program collating sequence specified. (See

THE OBJECT-COMPUTER PARAGRAPH, and THE SPECIAL-NAMES PARAGRAPH in Chapter
3).

Each reserved word which is used to reference a figurative constant
value is a distinct character-string with the exception of the coamstructiomn
'ALL literal' which is composed of two distinct character-strings.

PICTURE Character-Strings

_A PICTURE character-string counsists of certain combinations of
characters 1in the COBOL character set wused as symbols. See
The PICTURE Clause for the PICTURE character-string and for the rules that
govern. their use.

Any-puﬁctuation chatacter'which appears as part of the specification of

a PICTURE character-string is not considered as a punctuation character, but f-\
~rather as a symbol used in the specification of that PICTURE o
character-string. -

Comment-Entries

A comhent—ehtry is an entry in the Identification Division that may be
any combination of characters from the computer's character set. :

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer independent as possible, the characteristics
‘or properties of the data are described in relation to a standard data
format rather than an equipment-oriented format. This standard data format
is oriented to gemeral data processing applications and uses the.decimal
system to represent numbers (regardless of the radix used by the computer)
and the remaining characters in the CIS COBOL .character set to describe
nonnumeric data items. '

Concept of Levels

A level concept isAinhefent in the structure of a logical record. This

concept arises from the need to specify subdivisions of a record for the -
purpose of data reference. Once a subdivision has been specified, it may be \:)
further subdivided to permit more detailed data referral. . /-~

2 -8

o

PRSP R A A - PR, . ey - s ey e

The most basic subdivisions of a record, that is, those not further
subdivided, are called elementary items; consequently, a record is said to
consist of a sequence of elementary items, or the record itself may be an
elementary item.

<

In order to refer to a set of elementary items, the elementary items
are combined into groups. Each group comsists of a named sequence of one or
more elementary items, Groups, in turm, may be combined into groups of two
or more groups, etc., Thus, an elementary item may belong to more than one
group.

Level-Numbers

A system of level-numbers shows the organisation of elementary items
and group items. Since records are the most inclusive data items,
level-numbers for records start at O0l. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater in
value than 49. A maximum of 49 levels in ‘a record is allowed. There is a
special level-number, 77, which is an exception to this rule (see below).
Separate entries are written im the source program for each level-number

used.

A group includes all group and elementary items following it until a
level-number less than or equal to the level-number of that group is
encountered. All items which are immediately subordinate to a given group
jtem must be described using identical level-numbers greater than the
level~-number used to describe that group item.

Three types of entries exist for which there is no true concept of
level. These are:

1. Entries that specify elementary items or groups introduced by a RENAMES
clause: :

2. ‘Entries that specify noncontiguous working storage and linkage data
items

- 3. Entries that specify condition-names.

Entries that specify noncontiguous data items, which- are not
subdivisions of other items, and are not themselves subdivided, have been
assigned the special level-number 77.

Concept of Classes of Data

The five categories of data items (see THE PICTURE CLAUSE in Chapter 3)
are grouped into three classes: alphabetic, numeric, and alphanumeric. For
alphabetic and numeric, the classes and categories are synonymous. The
alphanumeric class includes the categories of alphanumeric edited, numeric
edited and alphanumeric (without editing). Every elementary item except for
an index data item belongs to one of the classes and further to one of the
categories. The class of a group item is treated at object time as
alphanumeric regardless of the class of elementary items subordinate to that
group item. Table 2-2 depicts the relationship of the class and categoriles
of data items.

Table 2-2 Data Levels, classes and categories

LEVEL OF ITEM CLASS CATEGORY ,f)
Alphabetic Alphabetic e
‘ , Numeric Numeric)
Elementary Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric
Alphabetic
Numeric
Non-Elerentary Alphanumeric Numeric Edited
Group Alphanumeric Edited
Alphanumeric

Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or
decimal form, depending on the equipment. In additiom, there are several
ways of expressing decimal. Since these representations are actually
combinations of bits, they are commonly called binary-coded decimal forms.
The four standard formats used for storing numeric data in CIS COBOL are as
follows:

1. As alphanumeric characters stored one per byte in ASCII representation.

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause
in Chapter 3) ome per byte in ASCII representation. If they are signed
and the sign is specified as INCLUDED, bit 6 of the leading or trailing
byte of the field is set for negative, depending on the £field
definition. If a TRAILING sign is specified a one byte ASCII : or - a =
sign is added as the leading or trailing byte.. If no SIGN clause is
specified, bit 6 of the trailing digit is set to indicate negative by
default.

3. As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in pure
binary form. If the field is signed the number is held in its
twos-compliment form. Storage is then dependent on the aumber of 9's
in the PICTURE clause (see The PICTURE Clause in Chapter 3) and om
whether the field is SIGNed or not (see The SIGN Clause in Chapter 3).

Table 2-3 shows the storage reduirements for each COMP(UTATIONAL)
PICTURE Clause.. .

2 -10

TN

255D e B e b el e s st D et e TEVEN

e DA b o 8 o AP PR R e e el RIS e

Table 2-3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE

Clause,
Number of Characters
Bytes Required Signed Unsigned
1 1-2 1-2
2 3-4 3-4
3 5-6 5=7
4 7-9 8-9
5 10-11 10-11
6 12-14% 13-14
7 15-16 15-16
8 17-~18 17-18

4. As numeric characters defined by USAGE IS COMPUTATIONAL-3 or USAGE IS
COMP-3 in packed internmal decimal form. Storage is dependent on the
number of 9's in the PICTURE clause. The decimal numbers are stored as
signed strings of variable length of 1 through 18 digits. The sign of
the packed decimal number 1is always stored in place of the least
significant quartet of the low order byte. Each byte contains two
decimal positions (four bits per digit) and the digits (0 - 9) are
encoded as BCD numbers (G000 - 100l1). Numbers are represented in the
field as right-justified values with a + or - sign as shown in the
example below. The maximum number of digits permitted in arithmetic
operands is 18..

EXAMPLE:
- a. For COMPUTATIONAL-3 and PICTURE 9999, the number +1234 would be
stored as follows. '

eee 0 1 2 3 4 F

0000 0001 0010 00l1 0100 1111

1 byte ,
where F represents the non=-printing plus sign.

'b. For COMPUTATIONAL-3 and PICTURE 59999, the number +1234 would be
-~ . . stored as follows:

Storage would be as in a above except that the least sighificént
digit would be replaced by C (1100) representing the plus sign.

" ¢. For COMPUTATIONAL-3 and PICTURE $9999, the number -1234 would be
stored as. follows:

Storage would be as in a above except that the least significant
. byte: would be replaced by D (l10l) representing the minus sign.

-2 =11

Table 2-4 shows the storage requirements for each COMP-3 clause.

Table 2~4., Numeric Data Storage for the COMPU?ATION-3 PICTURE Clause.

Number of Digits
Bytes Required (Signed or Unsigned)

1

2-3
4=5
6-7
8-9
10-11
12-13
14-15
16-17
o - 18

=Yoo~ pHWND -

Algebraic Signs

Algebraic signs fall into two categories: operational sigms, which are
associated with signed numeric data items and signed numeric literals to
indicate their algebraic properties; and editing signs, which appear om
edited reports to identify the sign of the item. .

The SIGN Clause permits the programmer to state explicitly, the
location of the operational sign. The Clause is optional; if it is not used
operational signs will be represented as defined by setting bit 6 of the
trailing digit for ASCII numbers. (see above).

Editing signs are inserted into a data item through the use of the sign
control symbols of THE PICTURE CLAUSE.

Standard Alignment Rules

The standard rules for positioning data within an elementary item
depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
. character positions with zero fill or truncation on either end as
required. . :

" b. When an' assumed decimal point is not explicitly specified, the
data item is treated as if it had an assumed decimal point
immediately following its rightmost character and is aligned as in
paragraph a. above.

2. If the receiving data item 1s a numeric edited data item, the data

’ moved to the edited item is aligned by decimal point with zero fill or
truncation at either end as required within the receiving character
positions of the data item, except where editing requirements cause
replacement of the leading zeros.

2-12

IRESURNAILSARNS DU AR AR

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited or alphabetic, the sending data is
moved to the receiving character positions and aligned at the leftmost
character position in the data item with space £ill or truncation to
the right, as required.

If the JUSTIFIED Clause is specified for the receiving item, these
standard rules are modified as described in THE JUSTIFIED CLAUSE in

Chapter 3.

Uniqueness of Reference
Subscripting

Subscripts can be used only when reference is made to an individual
element within a list or table of like elements that have not been assigned
individual data-names (see THE OCCURS CLAUSE in Chapter 4).

The subscript can be represented either by a numeric literal that is an
integer or by a data-name. The data-name must be a numeric elementary item
that represents an integer.

The subscript may be signed and, if signed, it must be positive. The
lowest possible subscript value is 1. This value points to the first
element of the table. The next sequential elements of the table are pointed
to by subscripts whose values are 2, 3, The highest permissible
subscript value, in any particular case, 1is the maximum number of
occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subséripts, that identifies the table element
is delimited by the balanced pair of separators left parenthesis and. right

- parenthesis following the table element data-name. The table element

data-name appended with a subscript-is called a subscripted data-name or an
identifier. When more than one subscript is required, they are writtem in
the order of successively less inclusive dimensions of the data
organization.

- The format is:

daté-name (subscript-l [, Subscript-2 [, subscript-3]])

Indexing

References can be made to individual elements within a table of like
elements by specifying indexing for that reference. An index is assigned to
that level of the table by using the INDEXED BY phrase in the definition of
a -table. A name given in the INDEXED BY phrase is known as an index-name .
and is used to refer to the assigned index. The value of an index
corresponds to the occurrence number of an element in the agsociated table.
An index-name must be initialized before it is used as a table reference.

" An index-name can be given an initial value by a SET statement.

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified when the index-name is followed
by the operator + or -, followed by an unsigned integer numeric literal all
delimited by the balanced pair of separators left parenthesis and right

2 -~-13

ey

parenthesis following the table element data-name. The occurrence number
resulting from relative indexing is determined by incrementing (where the
operator + 1is used) or decrementing (when the operator - is used), by the
value of the literal, the occurrence number represented by the value of the
" index. When more than one index-name 1s required, they are written in the /Q
order of successively less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed
table element, the value contained in the index referenced by the index~name
associated with the table element must neither correspond to a value less
than one nor to a value greater than the highest permissible occurrence
number of an element of the associated table. This restriction also applies
to the value resultant from relative indexing.

The general format for indexing is:

data-name index-name-l :
{condition—name ({literal-l } [{I} literal-z]

[.. {ﬁ:::;l“f;e‘z} [{ + 1iteral-4] [, {i—;:?:;;i?e_a [{:} literal.6]]])

Identifier

An identifier is a term used to reflect that a data-name, if not unique
in a program, must be followed by a syntactically correct combination of
subscripts or indices necessary to ensure uniqueness.

The geﬁeral formats for identifiers are: .
Format 1:
. ' 4
data=-name-1 [(subscript—l , subscript-2 I, subscript-3]})}?’
Format 2: | '
_ _ | { index—name-l} o
data-name-1 1 literalel { :} literal-2

[{ﬁ_‘g‘:’:’;‘l‘i‘;‘e‘z}[{:} ucera_l-a] [,{i“‘{i’:;::‘;f;3}[{:} literal-é]])]

Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that
data-name is being used as an index, or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. An index wmay be modified omnly by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index~-names as data in a form
specified by the. implementor. Such data items are called index data
items.

Z-14

Lot a b 0 BT A A s DA e, B R R T .2 TR I e L LIIIY VO, GIL G T2 i a T S RS T AN £

4. Literal-l, literal-3, literal-5, in the above format must be positive
numeric integers. Literal-2, 1iteral-4 literal-6 must be unsigned
numeric integers.

Condition-Name

Each condition-name must be unique.

PROGRAM STRUCTURE

A CIS COBOL program consists of four divisions:
1. IDENTIFICATION DIVISION - An identification of the program.

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program.

3.. DATA DIVISION - A description of the data to be processed.

4, PROCEDURE DIVISION - A set of procedures to specify the operations to
be performed on the data.

Each division, is divided into sections which are further divided into
paragraphs, which in turm are made up of sentences.

THBZANSI\(ANS) COM?ILER.DIRECTIVE

ES “,‘4. L

IF‘the Operatar-isanes the ANS directive to the.compiler*at compilation}

‘time, all ANSI requirements implemented in CIS COBOL are mandatory. When:ft'
1is not set, certain ANSL requirements are optional. In the remainder of

this Chapter these statements. are marked £ 3. In the remainder of the-

manual a sentence: is included: in the text where this feature applies.

2-15

2.2 B s il i WAL 4 G e v e e e Armemir s b

.. IDENTIFICATION DIVISION
GENERAL DESCRIPTION

K
The Identification Division must be included in ever} ANSI COBOL source
program. This divisiom,identifies both the source program and the resultant
output listing. In addition, the user may include the date the program is
written, the date the compilation of the source program is accomplished and
such other information as desired under the paragraphs in the gemeral format
shown below.

ORGANISATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and
may be included in this divisiom at the user's choice, 1in order of
presentation shown by the format below.

STRUCTURE
The following 1is the general format of the paragraphs in the
Identification Division and it defines the order of presentation in the

source program.

General Format

FIDENTIFICATION DIVISION.}

$PROGRAM~ID. program-name.}

,’M. [comment<entry] .. .1"

riNSTALLATION. [comment—-entry] Cee .-‘ ~—'
-DATE-WRITTEN . [comeﬁt—entry]-
=DATE-COMPILED. [comment-entry] | cee]

=SECURITY. [comment~entry] .o .])

2 -16

ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The Enviromment Division specifies a standard method of expressing
those aspects of a data processing problem that are dependent upon the
physical characteristics of a specific computer. This division allows
specification of the configuration of the compiling computer and the object
computer. In addition, information relating to input-output control,
special hardware characteristics and control techniques can be given.

The Enviromment Division must be included ‘in every COBOL source
program.

ORGANISATION

Two sections wmake up the Enviromment Division: the Configuration
Section and the Input-QOutput Section. '

The Configuration Section deals with the characteristics of the source
computer and the object computer. This gsection 1s divided into three
paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled; the OBJECT-COMPUTER
paragraph, which describes the computer configuration on which the object
program produced by the compiler is to be run; and the SPECIAL-NAMES
paragraph, which relates the implemention-names used by the compiler to the
mnemonic-names used in the source program. .

The Input-Qutput Section deals with the informatiom needed to control
transmission and handling of data between external media and the object
program. This section is divided into two paragraphs: the FILE-CONTROL para
graph which names and associates the files with external media; and the
I-0-CONTROL paragraph which defines special control techniques to be used in
the object program. : '

STRUCTURE
The following is the gemeral format of the sections and paragraphs in
the Enviroment Division, and defines the order of presentation in the source

program,

General Format

£ ENVIRONMENT DIVISION. }

£ CONFIGURATION SECTION. ¢+

f SOURCE-COMPUTER. source-computer—entry %

OBJECT-COMPUTER. object-computer-entry ¥

[SPECIAL-NAMES. special-names-entry]

£ INPUT-OUTPUT SECTION. %

FILE-CONTROL. | file-control-emtry | ...

[I-0-CONTROL. input-output-control-entry]

2 -17

Y COLIET

[T il 2t e I i e . o Y P

PSSR TPES DU VI UURNLPUR S S UIDID SRS NPL SRR

DATA DIVISION

OVERALL APPROACH

The Data Division describes the data that the object program' is to ’3
accept as input, to manipulate, to create, or to produce as output.’ Data to)
be processed falls into three categories:) ™

1. That which 1is contained in files and enters or leaves the internal
memory of the computer from a specified area or areas.

2. That which 1is developed internally and placed into intermediate or
working storage, or placed into specific format for output reporting
purposes,

3. Constants which are defined by the user.

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION

Data Division Organization

The DATA DIVISION which is one of the required divisions in a program,

i3 subdivided into sectiomns. These are the File, Working-Storage and
Linkage sectioms, :
* The FILE SECTION defines the structure of data files. Each file is
defined by a file description entry and one or more record descriptiomns, or
by a file description entry and ome or more report description entries.
Record descriptions are written immediately following the file description
entry. The WORKING-STORAGE SECTION describes records and noncontiguous data
items which are not part of external data files but are developed and
processed internally. It also describes data items whose values are
assigned in the source program and do unot change during the execution of the
object program. The LINKAGE SECTION appears in the called program and
describes data items that are to be referred to by the calling program and
the called program. Its structure 1s the same as the WORKING-STORAGE
SECTION. ,)

2 ~-18

Lo B P I T R L N ST T W g

General Format

The following gives the genmeral format of the sections in the Data
Division, and defines the order of their presentation in the source program.

- £ DATA DIVISION. %

FILE SECTION.

-file-descriptionrentry [record—description—entry] ...]

WORKING~STORAGE SECTION.

'77-level-description-entry}
record-description-entry S

[PINKAGE SECTION.

{77-level-description-entry
record-description-entry vee

2 ~-19

PROCEDURE DIVISION
GENERAL DESCRIPTION

The Procedure Division must be included in every COBOL source program.
This division may contain declarative procedures.

Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the key word DECLARATIVES and followed by the key words
END DECLARATIVES. (See descriptions of the USE statement in Chapters 5, 6
and 7 and the Debug Chapter 10).

Procedures

A procedure 1is composed of a paragraph, or group of successive
paragraphs, or a section, or a group of successive sections within the
Procedure Division. If ome paragraph is in a section, then all paragraphs
must be in sections. A procedure-name is a word used to refer to a
paragraph or section in the source program in which it occurs. It comnsists
of a paragraph-name (which may be qualified), or a section-name.

The end of the Procedure Division and the physical end of the program
is that physical position in a COBOL source program after which no further
procedures appear.

A section consists of a section header followed by zero, one, or more
successive paragraphs. A section ends immediately before the next section
or at the end of the Procedure Division or, in the declaratives portiom of
the Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a
space and by zero, ome, or more successive sentences. A paragraph ends
'immediateley before the next paragraph-name or section-name or at the end of
the Procedure Division or, in the declaratives portion of the Procedure
Division, at the key words END DECLARATIVES. :

A sentence consists of omne or more statements and is terminated by a
period followed by a space. :

A statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb.

: The term 'identifier' is defined as the word or words necessary to make
unique reference to a data item.

Execution

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in which
they are presented for compilation, except where the rules indicate some
other order, -

2 -20

v i irn e 3 b

o

AT VRt P PRSI - e a & Pl WU PRI G I U =

General Format

Procedure Division Header

:)‘.‘

J The Procedure Division is identified by and must begin with the
™ following header:

P

PROCEDURE DIVISION [USING data-name=-1 [, data=-name=-2] con] .

Procedure Division Body

The body of the Procedure Division must conform to oue of the following
formats:

Format 1l:

DECLARATIVES.

{sectionvname SECTION [segment-number]. declarative-senteuce
[paragraph-name. [sentence] oo] ..o } veeo

END DECLARATIVES.

{section-name SECTION [segment-number] .
[baragraph-name., [sentence] ...]y... E cee

qiig" Format 2:

{paragraph—name. [sentence] cer }oee

STATEMENTS AND SENTENCES
There are three types of statements:

L. Conditional statements,:
2,. Compiler directing statements,
3. Imperative statements.

There are three types of sentences:

l.. Conditional sentences,
2. Compiler directing sentences,
3. Imperative sentences.

s R K S i b - e : e . . L
------ - e e st s o = i v ne St Rt sl A dn S B LR T

Conditional Statement

A conditional statement specifies that the truth value of a condition
is to be determined and that the subsequent action of the object program is
dependent on this truth value. '

A conditional statement is ome of the following:

* An IF statement,

"% A READ statement that specifies the AT END or INVALID KEY phrase.
* A WRITE statement that specifies the INVALID KEY phrase

* A START, REWRITE or DELETE statement that specifies the INVALID
KEY phrase. ,

* . An arithmetic statement (DD, DIVIDE, MULTIPLY, SUBTRACT) that
specifies the SIZE ERROR phrase:

* A CALL statement that specifies the ON OVERFLOW phrase.

Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded
by an imperative statement, terminated by a period followed by a space.

Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb -~
and its operands. The compiler directing verbs are COPY, ENTER and USE (see
THE COPY STATEMENT in Chapter 9, THE ENTER STATEMENT in Chapter 3, and THE
USE STATEMENT in Chapters 5, 6 and 7). A compiler directing statement
causes the compiler to take on specified action during compilation.

Compiler Directing Sentence

A compiler. directing sentence is a single compiler directing statement
terminated by a period followed by a space.

2 - 22

. et

T ORI IE FUR TS IE ¥ or P SUEAIESIICRA AT SN JEPyEe- DRI PO NI LS HOCT RIS SOWS TR ERPERVPRR SR, S

Imperative Statement

An imperative statement indicates a specific unconditional action to be
taken by the object program. An imperative statement is any statement that
is neither a conditional statement, nor a compiler directing statement. An
imperative statement may consist of a sequence of imperative statements,
each possibly separated from the next by a separator.

The imperative verbs are:

ACCEPT GO ' SET
aop INSPECT START?
ALTER . MOVE STOP
cart3 MULTIPLY suBTRACT
CANCEL OPEN WRITE®
CLOSE PERFORM |
DELETE? READ®

REWRITE?
DISPLAY
DIVIDE:
EXIT

1 = Without the optional SIZE ERROR phrase.

2 = Without the optional INVALID KEY phrase.

3 - Without the optional ON OVERFLOW phrase.

5 — Without the optional AT END phrase or INVALID KEY phrase.

6 - Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

When 'imperative-statement' appears in. the gemeral format of
gtatements, 'imperative-statement' refers to that sequence of comsecutive
imperative statements that must be ended by a period or an ELSE phrase
associated with a previous IF statement.. o

Iggerative Sentence

An imperat:l.ve sentence 1is an imperative statement terminated by a
period followed by a space. . .

.
&

. e
T e Cae i e e i e WA 245 e N et A n A 63 A e e 1 4 adan + @ meinie ek 7 PRI NV SIRR PEC TROrUELY T NP

REFERENCE FORMAT

GENERAL DESCRIPTION

The reference format, which provides a standard method for describing
COBOL source programs, is described in terms of character positions in a
line on an input-output medium. The CIS COBOL compiler accepts source
programs written in reference format and produces an output listing of the
source program input in reference format.

The rules for spacing given in the discussion of the referencé format
take precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows: the
Identification Division, then the Environment Division, then the Data
Division, then the Procedure Division. Each division must be written
according to the rules for the reference format.

REFERENCE FORMAT REPRESENTATION

The reference format for a line is represented as in Figure 2-1.
I | | |
Margin Margin Margin Margin Margin
L (o4 A . B R

1
1 2 3 4 5 6, 7 [8 9 0 1 2 3

Sequence Number Area. o B Area A Area B

Indicator Area

Margin L is immediately to the left of the leftmost character positiom
of a line..

Margin C 1is Between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

e

Margin B 1s between the llth and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character
position of a line. .
- :
The sequence number area occupies s;'.x character positions (1-6), and is
between Margin L and Margin C.

The indicator area is the 7th character position of a line.

Area A occupiles character positions 8, 9, 10 and 11, and is between
margin A and margin B.

Area B occupies character positions 12 through 72 inclusive; it begins
immediately to the right of Margin B and terminates immediately to the left
of Margin R. _

Figure 2-l. Reference Format for a COBOL Source Line.
2 - 24

2’y

BPEEAN PRI s TRt S

Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may
be used to label a source program line. '

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one
line, it may be continued by starting subsequent line(s) in area B. These
subsequent lines are called the continuation 1line(s). The 1line being
continued is called the continued line. Any word or literal may be broken
in such a way that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first
nonblank character in area B of the curreant line is the successor of the
last nonblank character of the preceding line without any intervening space.
However, if the comtinued line coatains a nonnumeric literal without closing
quotation mark, the first nonblank character in area B on the continuation
line must be a quotation mark, and the continuation starts with the
character immediately after that quotation mark.. All spaces at the end of
the continued line are considered part of the literal. Area A of a
continuation line must be blank..

If there is no .hyphen in the indicator area of a line, it is assumed
that the last character in the preceding line is followed by a space.
Blank Lines

A blank line is one that is blank from margin C to‘mrgin R, inclusive.

A blank line can appear anywhere in the source program, except immediately
preceding a continuation line. (See Figure 2-1).

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

The division header must start in area A. (See Figure 2-1).,‘

Section Header
" The section header must start in area A. (See Figure 2-1)..

‘ A 'section consists of paragraphs in the Environment and Procedure
- Divisions and Data Division entries in the Data Division.

Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph—name followed by a period and a
space and by zero, one or more sentences, Or a paragraph header followed by
one or more entries. Comment entries may be included within a paragraph.
The paragraph header or paragraph-name starts in area A of any line
following the first line of a division or a section. '

2~-25

The first sentence or entry in a paragraph begins either on the same
line as the paragraph header or paragraph-name or in area B of the next
nonblank line that is not a comment line, Successive sentences or eantries
either begin in area B of the same line as the preceding sentence or entry
or in area B of the next nomblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line
they may be continued as described in CONTINUATION OF LINES in this Chapter.

DATA DIVISION ENTRIES

Each Data Division entry begins. with a level indicator or a
level-number, followed by a space, followed by its assoclated name (except
in the Report Sectiomn), followed by a sequence of independent descriptive
clauses. Each clause, except the last clause of an entry, may be terminated
by either the separator semicolon or the separator comma.. The last clause
is always terminatedby a period followed by a space.

There are two types of Data Division entries: those which begin with a
level indicator and those which begin with a level-number.

A level indicator is the indicator: FD (see THE FILE DESCRIPTION
~COMPLETE. ENTRY SKELETON in Chapters 5, 6 and 7)

In those Data Division entries that begin with a level indicator, the
level indicator begins in area A followed by a space and followed in area B
with its associated name and appropriate descriptive information..

Those Data Division entries that begin with level-numbers are called
data description entries.

A level-number has a value taken from the set of values 1 through 49,
77. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. At least omne
space must separate a level-number from the word following the level-number.

In those data description entries that begin with level-number Ol or
77, the level-number begins in area A followed by a space and followed in
area B by its assoclated record-name or item-name and appropriate
descriptive informatiomn. .

Successive data description entries may have the same format as the
first or may be indented according to level-number. The entries in the
output listing need be indented ouly if the input is, indented. Indentation
does not affect the magnitude of a level-number. :

When level-numbers are to be indented, each new level-number way begin
any number of spaces to the right of margin A. The extent of indentation to
the right is determined only by the width of the physical medium.

DECLARATIVES

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow, respectively, the declaratives portion of the Procedure

. Division must appear on a line by itself. Each must begin in area A and be

followed by a period and a space (see Figure 2-1).

2 - 26

e R Sty

i

COMMENT LINES

A comment line is any line with an asterisk in the continuation
indicator area of the line. A comment line can appear as any line in a
source program after the Identification Division header. Any combination of
characters from the computer's character set may be included in area A and
area B of that line (see Figure 2-1). The asterisk and the characters in
area A and area B will be produced on the listing but serve as documentation
only. A special form of comment line represented by a stroke in the
indicator area of the line causes page ejection prior to printing ‘the

comment.

Successive comment lines are allowed. Continuation of comment lines is
permitted, except that each continuation line must contain an 'f' in the

indicator area.

2 - 27

e B o A S e85 N i N DAL B sk B A B A M b SRR

RESERVED WORDS

A full list of reserved words is given in Appendix A.

2 - 28

CHAPTER 3

THE NUCLEUS

FUNCTION OF THE NUCLEUS

The Nucleus provides a basic language capability for the internal
processing of data within the basic structure of the four divisions of a
program.

IDENTIFICATION DIVISION IN THE NUCLEUS
GENERAL DESCRIPTION

The Identification Division must be included in every COBOL source
program.. This division identifies the source program and the resultant
output listing. In addition, the user may include the date the program is
written and such other information as desired under the paragraphs in the
general format shown below.

ORGANIZATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and
may . be included in this division at the user's choice, in the order of
presentation shown by the general format below.

Structure

The general format of the paragraphs in the Identification Division is
given below and shows the order of presentation in the source program.

General Format

IDENTIFICATION DIVISION

PROGRAM~ID. program-name..
[~
AUTHOR. [comment-entry] . .‘.]

INSTALLATION. [comment-entry] . .,.],

[DATE-WRITTEN. [comment-entry] oo

~ 2 - . N e e P B ST gl ey
‘| DATE=COMPTLED.." [comment—entry}: - -\ }

SECURITY.. [comme.ﬁt—entry] .o .]

Syntax Rules

1. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

e R - O T L s
PSR, . D X BRIP4V S X GRS § P s

2. The comment-entry may be any combination of the characters from the
computer's character set. The continuation of the comment-entry by the
use of the hyphen in the indicator area is not permitted; however, the
comment—-entry may be contained on one or more lines.

THE PROGRAM-ID PARAGRAPH

Function

The PROGRAM-ID paragraph gives the name by which a program 1is
identified.

General Format

PROGRAM=-ID. program-name.

Syntax Rules

1. The program~name must conform to the rules for formation of a
user-defined word.

General Rules

1. - The PROGRAM-ID paragraph must contain the name of the program and must
be present in every program. i

2. The program-name identifies the source program and all listings
pertaining to a particular program.

THE DATE-COMPILED PARAGRAPH
Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

DAIE‘COMP ILED . commnt"entry cee

Syntax Rule ‘
Iﬁﬁbzpéiagtaph.téfﬁbrfdqgnméntat?cufpurpﬁéee onlf#;

ok

¢,

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

The SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled.

General Format

SOURCE COMPUTER. computer-~name,

Syntax Rﬁle

Computer-name must be one COBOL word defined by the user.
General Rules

The computer-name provides a mwmeans for identifying equipment

configuration, in which case the computer—name and its implied configuration
are specified by the user.

The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER Paragraph identifies the computer omn which the
program is to be executed.

General Format

-

‘ o WORDS -
OBJECT-COMPUTER. compufer—ﬁame , MEMORY SIZE integer 3 CHARACTERS }
) ' MODULES
[,PROGRAM COLLATING SEQUENCE IS alphabet-name] .
Syntax Rule |

1. Computer-name must be one COBOL word defined by the user.
General Rules

1. The computer-name provides a weans for didentifying equipment
configuration, in which case the computer-name and its implied
configurations are specified by the user. The configuration definition
contains specific information concerning the memory size.

The implementor defines what is to be donme if the subset specified by
the user is less than the minimum configuration required for running
the object program.

Ja B e P el el latnr s e e et LT e

ST

P R SO SR (T TS TSI V2 AL

2. If the PROGRAM COLLATING SEQUENCE Clause is specified, the collating
sequence associated with alphabet-name is used to determine the truth
value of any nonnumeric comparisons:

Explicitly specified in relation conditions (see Relation Condition ﬂ
later in this Chapter).

3. 1If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native
collating sequence is used. Appendix B lists the full ASCII collating
sequence (native) and those characters used in COBOL

4., TIf the PROGRAM COLLATING SEQUENCE Clause is specified, the program
collating sequence 1s the collating sequence assoclated with the
alphabet-name specified in that Clause.

5. The PROGRAM COLLATING SEQUENCE Clause is also applied to any nonnumeric

- merge or sort keys. ,

The SPECIAL-NAMES Pa.ragragh

Function

The SPECIAL-NAMES paragraph provides a means of relating
implementor-names to user-specified mnemonic-names and of relating
alphabet-names to character sets and/or collating sequences.

General Format

SPECIAL-NAMES.
SWITCH | 9— IS unemonic-name [,ON STATUS IS condition~-name-1]
; ' ' [,OFF STATUS IS condition~-name=2]

- -} STANDARD-1
[, alphabet-name IS NATLIVE .o

[, CURRENCY SIGN IS literal-9]
[, DECIMAL-POINT IS COMMA]

[, CONSOLE IS CRT] .

{, CURSOR is data-name-1] . |

General Ruleé.

1. If the implementor-name is a switch, at least one condition-name must
be associated with it. The status of the switch is specified by
condition~names and interrogated by -testing the condition—names (see
Switch-Status Condition later in this Chapter).

7™

4o

5.

6.

7.

8.

2

Teic s el Vo s I S a2 e s S -~ N0 S U APPSR S PSS EIOP VR TR S SR s Lt Y

The alphabet-name clause provides a means for relating a name to a

specified character code set and/or collating sequence. When

alphabet-name 1s referenced in the PROGRAM COLLATING SEQUENCE clause

(see THE OBJECT-COMPUTER PARAGRAPH in this Chapter). The alphabet-name

clause specifies a collating sequence. When alphabet-name 1is

referenced in a CODE-SET clause in a file description entry (see The

File Description - Complete Entry Skeleton in Chapter 5), the

alphabet-name clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in American National
Standard Code for Information Interchange, X3.4-1968. Appendix B
defines the correspondence between the characters of the standard

~ character set and the characters of the native character set.

b. If the NATIVE phrase 1s specified, the native character code set
or native collating sequence 1is used. The native collating
sequence is as in ANSI publication X3. 4-1968 (see Appendix B).

The character that has the highest ordinal position in the program
collating sequence specified is associated with the figurative comstant
HIGH-VALUE. If more than one character has the highest position in the
program collating sequence, the last character specified.

The character that has the lowest ordinal position in the program
collating sequence specified is associated with the figurative comstant
LOW~VALUE. If more than one character has the lowest position in the
program collating sequence, the first character specified is associlated
with the figurative constant LOW-VALUE.

The literal which appears in the CURRENCY SIGN IS literal clause is
used in the PICTURE clause to represent the currency symbol. The
literal is limited to a single character and must not .be ome of the
following characters. : '

* digits 0 thru 9;

* alphabetic characters .A, B, C, D, L, P, R, §, V, X, Z, or the
' space;

* gpecial characters '*', '+', 'o', Tt o v ot (, DY, '™,
"/tor 'a', .

If this clause is not present, ounly the currency sign is used in the
PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of comma and
period are exchanged in the character-string of the PICTURE clause and
in numeric literals,

The clause CURSOR IS specifies the data-name to contain the CRT cursor
address as used by the ACCEPT statement (see THE ACCEPT STATEMENT later
in this Chapter).

DATA DIVISION IN THE NUCLEUS

WORKING STORAGE SECTION

The Working-Storage Section 1is composed of the section header, followed
by data description entries for noncontiguous data items and/or record
description entries. Each Working-Storage Section record name and
noncontiguous item name must be unique.

-

Noncontiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical
relationship to one another need not be grouped into records, provided they
do not need to be further subdivided. 1Instead, they are classified and
defined in a separate data description entry which begins with the special
level=-number, 77. o

The following data clauses are required in each data descriptions

eatry:
%* Level=number 77
*: Data-name . ’
* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete
‘the description of the item if necessary.

Working-Storage Records

Data elements and constants in Working-Storage which bear a definite
hierarchic relationship to one another must be grouped into records
according to the rules for formation of record descriptions. All clauses
which are used in record descriptions in the File Section can be used in
record descriptions in the Working-Storage Section.

©

Initial Values

The initial value of any item in the Working-Storage Sectiom except an
index data item is specified by using the VALUE clause with the data item.
The initial value of any index data item is unpredictable.

U

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function

A d&ta.deécription entry specifiéé the characteristics of a particular
item of data. :

S carms e s e ARSI e L e e i e e it e et i AV e et L i PSRRI PSRRI Y Lo ar kB Tenl

General Format

level=-number { data-name-l}

FILLER

¥ [; REDEFINES data-name-2]
B {PICTURE
; JEICITRE

Pic } I8 charactgr-string]

COMPUTATIONAL
[USAGE ISK COMP
'DISPLAY

LEADING
[SIGN IS] { TRAILING } ' [SEPARATE CHARACTER]}

Uoj

>)\ SINC RIGHT

R {SYNCHRONIZED { LEFT }]

JUSTIFIED
{ e } RIGHT]

[

[VALUE IS literal] .

BLANK WHEN ZERO] -

Syntax Rules

l. The level-number in Format 1 may be any number from 01-49 or 77.

2. The clauses may be written in any order with two exceptions: the
data-name-1 or FILLER clause must immediately follow the level-number;
the REDEFINES clause, when used, must - immediately follow the
data-name-l clause..

3. The PICTURE clause must be specified for every elementary item except
- an index data item, in which case use of this clause is prohibited.

General Rule

- The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must
not be specified except for an elementary data item.

’h) L T

THE BLANK WHEN ZERO CLAUSE
Function

The BLANK WHEN ZERO clause permits the blanking of an item when its
value is zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE {s specified as numeric or numeric edited. (See
THE PICTURE CLAUSE later in this Chapter).

General Rules

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing
but spaces if the value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric edited.

a

e i v las e e et € - ke Lo e s Wt e . it

THE DATA-NAME OR FILLER CLAUSE
Function
A data-name specifies the name of the data being described. The word

FILLER specifies an elementary item of the logical record that cannot be
referred to explicitly.

General Foramt

data~name
- FILLER

Syntax Rule

1. In the File, Working-Storage, Communication and Linkage Sections, a
data-name or the key word. FILLER must be the first word following the
level-number in each data description entry.

General Rule

1. The key word FILLER may be used to name an elementary item in a record.
Under no circumstances can a FILLER item be referred to explicitly.

TR T

PSP E SR LR A SO VTR PSRN VS ¥ ST O ARDOIG SURR SN JE R NPT SO T S

THE JUSTIFIED CLAUSE
Function

The JUSTIFIED clause specifies non-standard positioning of data within ﬂ
a receilving data item.

General Format

{ JUSTIFIED

5T } RIGHT

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item
level.

2. JUST is an abbreviation for JUSTIFLED.

3. The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

General Rules

l. When a receiving data item is described with the JUSTIFIED clause and
the sending data item is larger than the receiving data item, the
leftmost characters are truncated. When the receiving data item is
described with the JUSTIFIED clause and it 1s larger than the sending
data item, the data is aligned at the rightmost character position in
the data. item with space £1ill for the leftmost. character positioms.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning)
data within an elementary item apply. (See Standard Alignment Rules.)
~D

3-10

AR

BN L2 i T i VTV NOE S PV R WSS 13 SURE DRI IR FREP WP SR PESS TS - A

LEVEL NUMBER

Function

The level-number shows the hierarchy of data within a logical record.
In additionm, it is used to identify entries for working storage items,
linkage items. .

General Format

level=number

Syntax Rules

1. A level-number 1is required as the first element in each data
description entry.

2. Data description entries subordinate to a File Deécription entry must
have level-numbers with the values 01-49. (See THE FILE DESCRIPTION in
.Chapter 5).. , :

3.. Data description entries in the Working-Storage Section and Linkage
: Section must have level-numbers with the values 01-49.

General Rules

l. The level-number Ol identifies the first entry in each record
description or a report group.

2. .The level-number 77 is assigned to identify noncontiguous working
storage data items,.noncontiguous linkage data items, and can be used
only as described by Format 1 of the data description skeleton. (See
THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in this Chapter).

3. Multiple level 0l entries subordinate.to any given level indicator,
represent implicit redefinitions of the same area.

3-11

B e e TN e e

THE PICTURE CLAUSE

Function
The PICTURE clause describes the genmeral characteristics and editing f-3
requirements of an elementary item. -

General Format

PIC

{ PICIDIE} IS character-string

Syntax Rules

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allowable
combinations determine the category of the elementary item.

3. The maximum number of characters allowed in the character-string is 30.

4. The PICTURE clause must be specified for every elementary item except
an index data item, in which case use of this clause is prohibited.

S5e PIC is an abbreviation for PICIURE.

6. The asterisk when used as the zero suppression symbol and the clause .
BLANK WHEN ZERO may not appear in the same entry. />

General Rules

There are five categories of data that can be described with a PICTURE
* clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric
- edited. General rules within these categories are given below:

Alphabetic Data Rules
1. Its PICTURE character-string can only comtain the symbols 'A', 'B'; and

2. TIts contents when represented in standard data format must be any
combination of the twenty-six (26) letters of the Roman alphabet and
the space from the COBOL character set.

Numeric Data Rules

1. The PICTURE character-string can only contain the symbols '9', 'P',
's', and 'V'. The number of digit positioms that can be described by
the PICTURE character-string must range from 1 to 18 inclusive.

2. If unsigned, the data in standard data format must be a combination of
the Arabic numerals '0', 'L', '2', '3', '4', 's', 'e6', '7', '8', and
'9'; if signed, the item may also contain a '+', '-', or other f‘:E>
representation of an operational sign. (see THE SIGN CLAUSE later in .
this Chapter).

3-12

SR it e Bl shte e e e Tt ARD biag e as mias e P abih S aTE 0wl i bk a8 i e

Alphanumeric Data Rules

1. The PICTURE character-string is restricted to certain combinations of
the symbols 'A', 'X', '9', and the item is treated as if the
character-string contained all X's. A PICTURE character-string which
contains all A's or all 9's dces not define an alphanumeric item; and

2. The contents when represented in standard data format can consist of
any characters in the computer's character set.

Alphanumeric Edited Data Rules

1. 1Its PICTURE character-string is restricted to certain combinations of
the following symbols: ‘'AY, 'X', '9', 'B', '0', and '/' as follows:

a. The character~-string must contain at least ome 'B' and at least
one 'X' or at least ome '0' (zero) and at least ome 'X' or at
least one '/' (stroke) and at least ome 'X'; or

b.. The character-string must contain at least one '0' (zero) and at
least onme 'A' or at least ome 'l' (stroke) and at least ome 'A';
and

2. The coutents. when represented in standard data format.are allowable
characters in the computer's set.

Numeric Edited Data Rules

l. 1Its PICTURE character-string is restricted to certain combinations of
the-aymbols 'B', v/v, tBlr tvv’ vzt’ '0', rgc’.r,],4t.'; '*l* I+J’ I_T’
'CR', 'DB', and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and the editing
rules as follows:)

a.. The number of digit positious that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive.

b. The character-string must contain at least ome '0', 'B', '/', 'Z',
thY tr vyt '=',. 'CR', '"DB', or currency symbol.

2. The contents of the character positions of these symbols that are
allowed to represent a digit in standard data format, must be one of
_ the. numerals.. S)

Elementary Item Size

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in standard data format,
is determined by the number of allowable symbols that represent character
positions. An integer which is enclosed in parentheses following the sybols
vAt' l,l’ lxr’ '9t’ 'P', IZ" t*t, lB', v/v, lot’ |+t’ v_v’ or the currency
symbol indicates the number of comsecutive occurrences of the symbol. Note
that the following symbols may appear only once in a given PICTURE: 'S',
'vf, '.', 'CR', and 'DB'..

3 -13

A T

Symbols Used

. The functions of the symbols used to describe an elementary item are
explained as follows:

A - Each tA' in the charactex:—s-tring represents 2 character position which
can contain only a letter of the alphabet or 2 space.

B - Each ' in the character-string represents & character position into

which the space character will be inserted.

p - Each tp' indicates ano assumed decimal scaling position and is used to

specify the location of an assumed decimal point when the point is not .

within the aumber that appears in the data item. The scaling position

character pt is not counted in the size of the data item. Scaling
position characters are counted in determining the paximum number of
digit positions (18) in pumeric edited items oOr aumeric items. The
gcaling position character 1p? can appear only to the left or right as
a continuous string of 1ptg within 23 PIC - descriptions. gince the ’
scaling position character 1p? implies an assumed. decimal point (to the
jeft of 'P's. if 'p's are leftmost PICTURE characters and to the right
if 'p's are rightmost PICTURE characters), the assumed decimal point
gymbol 1y! is redundant as either the leftmost OT rightmost character
within such & PICTURE description. The character 'p' and the {nsertion
character o' (period) camnot both occur in. the same PICTURE
characte-r-string-. 1£, in any operation involving conversion. of data

poa-:l.tion described by 23 tp' 1is considered to contain the value zero,
and the size of the data item 1is considered tO jpclude the digit

positions 8o described..

§ - The letter 1g! is used in 8 character-string to indicate the presence,
put neither the representation nor,. pecessarily, the position of an
operational sign; 1t must be writteo as the leftmost character in the
PICTURE., The tg! ig not counted in determining the size (in terms of

gtandard data format chatacters) of the elementary {tem unless the
entry is gsubject to & SIGN clause which specifies the optional SEPARATE

CHARACTER phrase. (See the SIGN Clause in this Chapter.)

-y — The 1y! is used in 2 character-string to indicate the jocation of the
assumed. decimal point and may only appear once in a character—string.
The 'V' does aot represent 2 character position and therefore is not
counted in the size of the elementary item. When the assumed decimal
point is to the right of the rightmost symbol. in the string the ty' is

redundant.

Each 'X' inm the character-string {s used to represent 2 character
position which contains any allowable character from the cowputer's

character set.

Each '2' im 2 character-string may ounly be gsed to represent the
leftmost aumeric character positions which will be replaced by a space
character when the contents of that character position is zero. Each

T1z' s counted in the size of the item.

e eioaweiatatee,

Veenes s T STV UUNIY GO SPYINNUSUNNIPUR: T MRS UT A OL: DRSS S8

T SO ST P TIPS

— Each '9' in the character-string represents a character position which
contains a numeral and is counted in the size of the item.

0 — Each '0' (zero) in the character-string represents a character position
into which the numeral zero will be inserted. The '0' is counted in
the size of the item.

/ - Each '/' (stroke) in the character~-string represents a character
position into which the stroke character will be inserted. The '/' is
counted in the size of the item. '

, — Each ',' ‘(comma) in the. character-string represents a character
position into which the character '.' will be inserted. This character
position is. counted in the size of the item. The insertion character
'.' must not be the last character in the PICTURE character-string..

. - When the character '.' (period) appears in the character-string is an
editing symbol which represents the decimal point for alignment
purposes and in addition, represents a character position into which
the character '.' will be inserted. The character '.' is counted in
the size of the item. For a given program the functions of the period
and comma are exchanged if the clause DECIMAL-POINT IS COMMA 1is stated
in the SPECIAL-NAMES paragraph. In this exzchange the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause. The insertion
character '.' must not. be the last character in the PICTURE
character-string.

+, =, CR, DB — These symbols are used as editing sign control symbols. When
used, they represent the character position into which the
editing sign control symbol will be placed. The symbols are
mutually exclusive in any one character-string and each
character used in the symbol is counted in determining the
size of the data item. -

% - Each '"*' (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed when
the contents of that position is zero. Each '*' is counted in the size
of the item.

cs -— The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The currency
symbol in a character-string ‘is represented by either the currency sign
or by the single character specified in the CURRENCY SIGN clause in the

~ SPECIAL-NAMES paragraph. The currency symbol is counted in the size of
. the item..

Editing Rules

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement. There are
four types of insertion editing available. They are:.

Simple insertion
Special insertion
Fixed insertion
Floating insertion

* % % *

3-15

2

There are two types of suppression and replacement editing:

* Zero suppression and replacement with spaces
* Zero suppression and replacement with asterisks
The type of editing which may be performed upon an item is dependent “}-\

upon the category to which the item belongs. Table 3-1 specifies which type
of editing may be performed upon a given categorxy.

Table 3-1. Editing Types for Data Categories

CATEGORY TYPE OF EDITING
Alphabetic Simple insertion 'B' only
Numeric Noae

Alphanumeric " None

Alphanumeric Edited Simple insertion 19', 'B' and "/'

Numeric Edited

Floating insertion editing and editing by zero suppression and replace=-
ment are mutually exclusive in a PICTURE clause. Only one type of
replacement may be used with zero suppression in a PICTURE clause.

Simple Imsertion Editing

Simple Imsertion Editing. The ',' (comma), 'B' (space), '0'" (zero),
and '/' (stroke) are used as the insertion characters. The insertion
characters are-counted in the size of the item and represent the position in
the item into which the character will be inserted.

)&

Special Insertion Editing

Special Insertion Editing. The '.' (period) is used as the insertion
character. In addition to being an inmsertion character it also represents
the decimal point for alignment:purpEEes. The insertion character used for
the actual decimal point is counted in the size of the item. The use of the
assumed decimal point, represented by the symbol 'V' and the actual decimal
point,. represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of special ingertion editing 1is
the appearnmace of the insertion character in the item in the same position
as shown in the character-string. o

Fixed Insertion Editing

Fixed Insertion Editing. The currency symbol and the editing sign
control symbols, '+', t.'_ 'CR', 'DB', are the insertion characters. Only
one currency symbol and only one of the editing sign coumtrol symbols can be
used in a. given PICTURE character-string. When the symbols 'CR' or 'DB' are
used they represent two character positions in determining the size of the
item and they must represent the rightmost. character positions that are 0

counted in the size of the item. The symbol 14! or '-', when used, must be e

3 - 16

T R e TS T T T T T TR
. R S

RS TR

R T S U O SR T SO NI EN PXIUAT AL LI B DSTNEY PN .~ 1

either the leftmost or rightmost character position to be counted in the
size of the item. The currency symbol must be the leftmost character

m Table 3-2 Editing Symbols in PICTURE Character-Strings
N\ RESULT
» EDITING SYMBOL IN
PICTURE CHARACTER-STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE
: + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols '+' or f-' are the
floating insertion characters and as such are mutually exclusive in a given
PICTURE character-string. :

Floating insertion editing is indicated in a PICIURE character-string
by using a string of at least two of the floating insertion characters.
This string of floating insertion characters may contain any of the fixed
insertion symbols. or have fixed insertion characters immediately to the
right of this string, These simple insertion characters are part of the
floating string..

The leftmost character of the floating insertion string represents the
leftmost 1imit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost limit of the
floating symbols in the data item. '

The second floating character from the left represents the leftmost
1imit of the numeric data that can be stored in the data item. Non-~zero
numeric data may replace all the characters at or to the right of this

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. One way 1s to represent amy oOr all of the
leading numeric character positions on the left of the decimal point by the

. insertion character. The other way is to represent all of the numeric
character positions in the PICTURE character-string by the insertion
character, ' '

.If the insertion characters are ouly to the left of the decimal point
in the PICTURE character-string, the result 1s that a single floating
insertion character will be placed into the character position immediately
preceding either the decimal point or the first nomn-zero digit in the data
represented by the insertion symbol string, whichever is farther to the left
in the PICTURE character=-string. The character positions preceding the
insertion character are replaced with spaces.

- . If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the value of
the data. If the value is zero the entire data item will contain spaces.

3-17

.

T S SR L IR SR> TRy SN IR WU SR S PRSI EORpe ey S ERFSSVRR S SHLS Spio SEL S S 48

If the value is not zero, the result is the same as when the insertion
character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the sending
data item, plus the number of non-floating insertion characters being edited
into the receiving data item, plus one for the floating insertion character.

Zero Suppression Editing

" The suppression of leading zeros in numeric character positions is
indicated by the use of the alphabetic character 'Z' or the character '*'
(asterisk) as suppression symbols in a PICTURE character-string. These
symbols are mutually exclusive in a given PICTURE character-string. Each
suppression symbol is counted in determining the size of the item. If 'z2"
is used, the replacement character will be the space and if the asterisk is
used, the replacement character will be '*'.

Zero suppression and replacement 1is indicated in a PICTURE
character-strong by using a string of onme or more of the allowable symbols
to represent leading numeric character positions which are to be replaced
when the associated character position in the data contains a zero. Any of
the simple insertion characters embedded in the string of symbols or to the
immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing
zero suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression.symbols.
The other way is to represent all of the numeric character positions in the
PICTURE character-string by suppression symbols.

If the suppression symbols appear -only to the left of the decimal
point, any leading zero in the data which corresponds to a symbol in the
string is replaced by the replacement character. Suppression terminates at
the first non-zero digit in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered first.

If all numeric character positioms in the PICTURE character-string are
represented by suppression symbols and the value of the data is not zero,
the result is the same as if the suppression characters were only to the
left of the decimal point. If the value is zero and the suppression symbol
is '2', the entire data item will be spaces. If the value is zero and the
suppression symbol is '#', the data item will be all '*' except for the
actual decimal point.. S

The symbols '+', '=', '*' 'Z' and the currency symbol, when used as

floating replacement characters, are mutually exclusive within a given
character-string. :

Precedence Rules

Table 3-3 shows the order of precedence when using characters as
symbols in a character-string. An 'X' at an intersection indicates that the
symbol(s) at the top of the column may precede, in a given character-string,
the symbol(s) at the left of the row. Arguments appearing in braces
indicate that the symbols are mutually exclusive. The currency symbol is
indicated by the symbol ‘'cs'.

3-18

| oeigen . . C e .
) S TP DU VDU U W N oS T SOL RO Y

PRSI - PAF TS IIT DUV TSP PUU GRS ST LSRR AL

At least one of the symbols 'A', 'X', 'Z', 9! or '*#", or at least two
of the symbols '+', '-' or 'cs' must be present in a PICTURE string.

@ Table 3-3. PICTURE Character Precedence Chart.
st NHon-Floating Floating]
yabol Iusertion Symbols Insertion Symbols Other Sysbols
) +} (¥ 1(2)|{Z I +ﬂi~] Alg
% :;::: slo] /| .} {_} {_} Q u{.l {,‘ {_ Al s| es]9 | vie|e
B3 zlzx|x}| =z}l x]x zsizx|zjxjz]j=2}=x |x}x x x
0 z{ix|z|x{x2|= xlzlz]x|xjz}x|x]|x 3 x
IBEIEIEIREIRAR. zlxlxelzi{z]z]|x|x]|= z x
'3 . zlzx|l x|l x| x| = x|xlx|x]=]=x|=|=x x x
a4
iy
53 EEEIEIEIR = x| x x x x
e b
3 B
+§ {9
|zl z] x| = x| x| = x| x| x x| x] = .
{4
{g} zlzxlz|=z]| = x|x]| x x| x| = z| x| =

- {i} ixix]lx]| x| |zl = ’ x x
-3
g»g. {:} x|z} =] = | x
¥ .
é.g _{:} z|lz2lx|{=x}|=x x z|= = x
2
“lew |zlzl=x] = x x
s | z2l=zlz] =l 2l=x | = x x
9 ziz]|x]xl =] x x| x z xi x|z}l xl=x z
a ; x}=|=x x| =
2
Bl
-»
é»
S v x|} = x| = x z x x x
Plzlz]| x| x t 3 x| = x. x: x x x
| 4 = t 3 x| = x

In Table 3-3, non-floating insertion symbols '+' and '-', floating
insertion symbols 'Z', '*', '+', '-', and 'cs', and other symbol 'P' appear
twice in the PICTURE character precedence chart. The leftmost column and
uppermost row for each symbol represents its use to the left of the decimal
point position. The second appearance of symbol in the row and column
represents its use to the right of the decimal point position.

3-20

7~
Fn

- 5 o e e - e’ L . - e
SR TP TT R SR NP UURUE It BpUL Dl 'L SARICROIISPEIS * P S SRV S SERSRRED & PSRRI

THE REDEFINES CLAUSE

Function '

(The REDEFINES clause allows the same computer storége area to be
described by different data description entries.

General Format
level-number data-name-l; REDEFINES data-name-2
NOTE: Level-number, data-name-l are shown in the above format to improve
clarity. Level-number and data-pame-l1 are not part of the
REDEFINES clause.

Syntax Rules

1. The REDEFINES clause, when specified, must Immediately follow
data~name~-1.

2. The level-numbers of data-name-l and data-name-2 must be identical.

3. This clause must not be used in level 0l entries in the File Sectiom.
(See General Rule 2 of THE DATA RECORDS CLAUSE in Chapter 5.

4. This clause must not be used in level 01 entries in the Communication
Section..

5. The data description entry for data-pame-2 camnot coutain an OCCURS
clause. Neither the original definition nor the redefinition can
include an item whose size 1s variable as defined in the OCCURS clause.
(See THE OCCURS CLAUSE in Chapter 4).

6. No entry having a level-number numerically lower than the level-number
of data-name-2 and data-name-l1 may occur between the data description
entries of data-name-2 and data-name-l.

General Rules

L.. Redefinitiom .starts at data-name-2 and ends when a level-number less
than or equal to that of datg—name-z is encountered..

2. When the level-number of data-name-l is other than 0l, it must specify
the same number of character positioms. that the data item referenced by
data-name-2 contains. It is. important to observe that the REDEFINES
clause specifies the redefinition of a storage area, not of the data
items occupying the area.

3. Multiple redefinitions of the same character positions are permitted.
The entries giving the new descriptions of the character positions must
follow the entries defining the area being redefined, without
intervening entries that define new character positions. Multiple
redefinitions of the same character positions must all use the
data-name of the entry that originally defined the area.

3 -21L

2’ ’ L

e S e et 2 akATe Fe Alens i ot - 2 T e Ae AntdeomEems i o e e e R A i R B A A U VT L G S ™ G 4t i s e 54 RIAEL

4., The entries giving the new description of the character positions must
not contain any VALUE clauses..

5. Multiple level 0l entries subordinate to any given level indicator
represent implicit redefinitions of the same area. N

3 ~-22

THE SIGN CLAUSE

Function

The SIGN clause specifies the position and the mode of representation

of the operational sign when it is necessary to describe these properties
explicitly. :

General Format

2.

3.

4.

LEADING
[SIGN l.i]{m-c} [SEPARATE CHARACTER]
‘?SzE;ax Rules
1. The SIGN clause may'be specified only for a numeric data description

entry whose PICTURE contains the character 'S', or a group item
containing at least one such numeric data description entry.

The numeric data description entries to which the SIGN clause applies
must be described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data description
entry.

If the CODE-SET clause is specified, any signed numeric data
description entries associated with that file description entry must be
describedwith the SIGN IS SEPARATIE clause.

General Rules

l.

2.

3.

The optional SIGN clause, 1f present, specifies the position and the
mode of representation of the operational sign for the numeric data
description entryto which it applies, or for each numeric data
description entry subordinate to the group to which it applies. The
SIGN clause applies only to numeric data description entries whose
PICTURE contains the character 'S'; the 'S' indicates the presence of,
but neither the representation nor, necessarily, the position of the
operational sign. '

A numeric data description entry whose picture contains the character
's?, but to which no optional SIGN clause applies, has an operational
sign, but neither the representation nor, necessarily, the position of
the operational sign 1is specified by the character 's'. In this

- (default) case, general rules 3 through 5 do not apply to such signed

numeric data items.
If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the
leading (or, respectively, trailing) digit position of the
elementary numeric data item.

b. The letter 'S'" in a PICTURE character-string is not counted in
determining the size of the item (in terms of standard data format
characters).. i

\

3 =23

2N

S.

If the optional SEPARATE CHARACTER phrase is present, then:

a.

C.

The operatiomal sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary
numeric data item; this character position 1is not a digit
position.

The 1letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data format
characters). .

The operational signs for positive and negative are the standard
data format characters '+' and '~', respectively.

Every numeric data description entry whose PICTURE contains the
character 'S' is a signed numeric data description entry. If a SIGN
clause applies to such an entry and coanversion 1is necessary for
purposes of computation or comparisons, conversion takes place
automatically,

g 3 -2

PSSOV S S

RS s

THE SYNCHRONIZED CLAUSE

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item
on the natural boundaries of the computer memory (see ITEM ALIGNMENT FOR

INCREASED OBJECT-CODE EFFICIENCY in Chapter 2).

General Format

. SYNCHRONIZED } [f LEFT
SYNC } RIGHT
Syntax Rules
1. This clause may only appear with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

L, 2 SYNCHR

1.

2. This clause specifies that the subject data item is to be aligned in
the computer such that no other data item occupies any of the character
positions. between the leftmost and rightmost natural boundaries
delimiting this data item. If the number of character positions
required to store this data item is less than the number of character
positions between those natural boundaries, the unused character
positions (or portions thereof) must not be used for any other data
item. Such unused character positions, however, are included in:

a. The size of any group' item(s) to which the elementary item
belongs; and . .

b.. ' The character positions redefined when this data. item is the
object of a: REDEFINES clause..

3. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such
a way as to effect efficient utilization of the elementary data item.

4, SYNCHRONIZED LEFT specifies that the elementary item :i.s to be posi-

tioned such that it will begin at the left character position of the
natural boundary in which the elementary item is placed.

5.. SYNCHRONIZED RIGHT specifies that the elementary item is to be posi-
tioned such that it will terminate on the right character position of
the natural boundary in which the elementary item is placed.

6. Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in
determining any action that depends oun size, such as justificationm,
truncation or overflow.

3-25

7.

9 ‘»

If the data description of an item contains the SYNCHRONIZED clause and
~an operational sign, the sign of the item appears in the normal

operational sign position, regardless of whether the item is
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data deseription entry
of a data item that also contains an OCCURS clause, or in a data
description entry of a data item subordinate to a data description
entry that contains an OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data items..

This clause is hardware dependent.

3 -26

S S

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the computer
storage.

General Format

: COMPUTATIONAL
- [USAGE IS] COMP
DISPLAY .
COMPUTATIONAL-3
- COMP-3

Syntax Rules

1. The PICTURE character-string of a COMPUTATIONAL or COMPUTATIONAL-3 item
can contain only '9's, the operational sign character 'S', the implied
decimal point character 'V', one or wore 'P's. (See THE PICTURE CLAUSE
earlier in this Chapter).

2. COMP is an abbreviation for COMPUTATIONAL.

General Rules

l. The USAGE clause can be written at any level. If the USAGE clause is
written at group level, it applies to each elementary item in the
group. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to’ which the item belongs.

2. This clause specifies the manner in which a data item is represeated in
the storage of a computer. It does not affect the use of the data
item, although the specifications for some statements in the Procedure
Division may restrict the USAGE clause of the operands referred to.
The USAGE clause may affect the radix or type of character
representation of the item. .

3. A COMPUTATIONAL or COMPUTATIONAL-3 item 1s capable of representing a
value to be used in computations and must be numeric. If a group item
' i3 described as COMPUTATIONAL(-3), the elementary items in the group
are. COMPUTATIONAL(-3). The group item itself is not COMPUTATIONAL(-3)
and cannot be used in computations.. ’

4.. The USAGE IS DISPLAY clause indicates that the format of the data is a
gstandard data format. -

5. If the USAGE clause is not specified for an elementary item, or for any
group to which the item belongs, the usage is implicitly DISPLAY.

6. Space requirements for the various USAGE storage options are given
under Selection of Character Representation and Radix in Chapter 2.

3 - 27

tereemrt v s

THE VALUE CLAUSE

Function

The VALUE clause defines the value of constanté, the initial value of

working storage items, the initial value of data items in the Communication
Section.

Generél Format

VALUE is literal

Syntax Rules

l.

2.

3.

The VALUE clause cannot be stated for any items whose size is variable.
(See THE OCCURS CLAUSE in Chapter 4). :

" A gigned numeric literal must have associated with it a signed numeric

PICTURE character-string.

All numeric literal in a VALUE clause of an item must have a value
which is within the range of values indicated by the PICTURE clause,

- and must not have a value which would require truncation of nonzero

digits. Nonnumeric literals in a. VALUE clause of an item must not
exceed the size indicated by the PICTURE clause.

General Rules

1.

The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the hierarchy
of the item. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE
clause must. be numeric. If the literal defines the value of a
working storage item, the literal is aligned in the data item

according to the standard alignment rules. {(See Standard

Alignment Rules in Chapter 2).

b. If the category of the 4item 1is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the VALUE
clause must be nonnumeric literals. The literal is aligned in the™

- data item as if the data item had been described as alphanumeric.

(See STANDARD ALIGNMENT RULES in Chapter 2). Editing characters

 in the PICTURE clause are included in determining the size of the

data item (see THE PICTURE CLAUSE earlier in this Chapter) but

~ have no effect on initialization of the data item. Therefore, the
"* VALUE. for an edited item 'is presented in an edited form. '

¢. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

3-28

2

A

Data Description Entries other than Condition-Names

Rules governing the use of the VALUE clause differ with the respective
(i:“ sections of the Data Division:

1. The VALUE clause cannot be used in the File Section., In the File
Section, the VALUE clause may be used only in condition-name entries.

2. In the Working-Storage Section, the VALUE clause may be used to specify
the initial value of a data item; in which case the clause causes the
jtem to assume the specified value at the start of the object program.
If the VALUE clause is not used in an item's descriptiom, the initial
value 13 undefined.

3. The VALUE clause cannot be used in the Linkage Section. In the Linkage
Section, the VALUE clause may be used only in condition-name entries,

4. The VALUE clause may be stated in a data description entry that
contains an OCCURS clause, but not in an entry that is subordinate to
.an entry containing an OCCURS clause. (See THE OCCURS CLAUSE in
Chapter 4).

5. The VALUE clause must not be stated in a data description entry that
contains a REDEFINES clause, or in an eantry that is subordinate to an
entry containing a REDEFINES clause.

6. If the VALUE clause is used in an entry at the group level, the literal
must be a figurative comstant or a nonnumeric literal, and the group
area is initialized without consideration for the individual elementary

(f‘\ or group items contained within this group. The VALUE clause cannot be
& stated at the subordinate levels within this group.

7. The VALUE clause must not be written for a group containing items with
descriptions, including JUSTIFLED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY).

3-29

2

T R A T i i b e

PROCEDURE DIVISION IN THE NUCLEUS

CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable
the object program to select between alternate paths of control depending
upon the truth value of the condition. Conditional expressions are
specified in the IF, PERFORM and SEARCH statements. There are two
categories of conditions assoclated with conditional expressions: simple
conditions and relation conditions. Each may be enclosed within any number
of paired parentheses, in which case its category is not changed.

Sgggle Conditions

The simple conditions are "the relation, class, switch-status,
conditions. A simple condition has a truth value of - "true' or 'false'. The
inclusion in parentheses of simple conditions dces not change the simple
truth value.

Relation. Condition

A relation condition causes a comparisom of two operands, each of which
may be the data item referenced by an identifier, a literal., A relation
condition has a truth value of 'true' if the relation exists between the
operands. Comparison of two numeric operands is permitted regardless of the
formats specified in their respective USAGE clauses. However, for all other
comparisons the operands must have the same usage. If either of the
operands is a group item, the nonnumeric comparison rules apply.

The general format of a relation condition is as follows:

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

identifier-1 IS [NOT] EQUAL TO { identifier~2
literal=-l IS [NOT] > literal-2
IS [NOT] <
Is [NOT] =
- NOTE: The required relational characters '<', '>!' and '=' are not

underlined to avoid confusion with other symbols such as >!
‘ (Greater than or equal to) .

The first operand (identifier-l or literal-l) is called the subject of
the condition; the second operand (identifier-2 or literal-2) is called the
object of the coandition. The relation condition must contain at least one
reference to a variable.

' The relational operator specifies the type of comparison to be made in
a_relation condition. a space must precede and follow each reserved word
comprising the relational operator. When used, 'NOT' and the next key word
or relation character are one relational operator that defines the
comparison to be executed for truth value; e.g., 'NOT EQUAL' is a truth test
for an 'unequal’.

3 - 30

Lt B S Y e o el R e - Teaa

Comparison; 'NOT GREATER' 1is a truth test for an 'equal' or 'less'
comparison. The meaning of the relational operators is as shown in Table

3=4.
(A Table 3-4. Relational Operators.
__Meaning Relational Operator
Greater than or not greater than IS NOT GREATER THAN
IS NOT >
Less than or not less than IS NOT LESS THAN
IS NOT <
Equal to or not equal to IS NOT EQUAL TO
IS NOT =
The required relational characters '>', '<', and '=' are not
. underlined to avoid confusion with other symbols such as '>'
(Greater than or equal to).

Comparison of Numeric Operands: For operands whose class is numeric a
comparison is made with respect to the algebraic value of the operands. The
length of the literal in terms of number of digits represented, is not
significant. Zero 1is considered a unique value regardless of the sign.

A~ Comparison of these operands is permitted regardless of the manner in which
(' their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.
Comparison of Nonnumeric Operands: For nonnumeric operands, or one numeric
and one nonnumeric operand, a comparison is made with respect to a specified
collating sequence of characters (see The OBJECT-COMPUTER Paragraph in this
Chapter). 1If ome of the operands is specified as numeric, it must be an
integer data item or an integer literal and:

1. If the nonnumeric operand 1s an elementary data item or a nonnumeric
literal, the numeric operand is treated as though it were moved to an
elementary alphanumeric data item of the same size as the numeric data
item (in terms of standard data format characters), and the ‘contents of
this alphanumeric data item were then compared to the nonnumeric

" operand. (See THE MOVE STATMENT in this Chapter, and the PICTURE

.~ Character 'P' under the Reading Symbols Used earlier in this Chapter).

2. If the numeric operand is a group item, the numeric operand 1is treated
as though it were moved to a group item of the same size as the numeric
data item (in terms of standard data format characters), and the
contents of this group item were then compared to the nonnumeric
operand. (See THE MOVE STATEMENT in this Chapter, and the PICTURE
character 'P' under the Heading Symbols Used earlier in this Chapter).

3. A non-integer numeric operand cannot be compared to a nonnumeric

O) operand.

3-31

¥

S L T T e L g

The size of an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be compared
only when their usage is the same.

There are two cases to consider: ;ZR

1. Operands of equal size - If the operands are of equal size, comparisoun
effectively proceeds by comparing characters in corresponding character
positions startiag from the high order end and continuing until either
a pair of unequal characters is encountered or the low order end of the
operand is reached, whichever comes first. The operands are determined
to be equal if all pairs of characters compare equally through the last
pair, when the low order end is reached.

The first encountered pair- of unequal characters is compared to deter-
mine their relative position in the collating sequence. The operand
that contains the character that is positioned higher in the collating
sequence is considered to be the greater operand.

2. Operands of unequal size = TIf the operands are of unequal size,
- comparison proceeds as though the shorter operand were extended on the
right by sufficient spaces to make the operands of equal size.

Class Condition

The class condition determines whether the operand is numeric, that. is,
consists entirely of the characters ‘0', 'l', '2', '3', ..., '9', with or
without the operational sign, or alphabetic, that is, comsists entirely of
the characters 'A', 'B', 'C', ..., 'Z', space. The general format for the
class condition is as follows: ' : :

NUMERIC

identifier IS [NO‘I]{ ALPHABETIC

The usage of the operand being tested must be described as display.

When used, 'NOT' and the next key word specify ome class condition that

- defines the class test to be executed for truth value; e.g. 'NOT NUMERIC'
" 18 a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary
items whose data description indicates the presence of operational sign(s).

. If the data description of the item being tested does not indicate the
presence of an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and an operational sign is not
present. If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be numeric only
if the coantents are numeric and a valid operational sign is present. Valid
operational signs for data items described with the SIGN IS SEPARATE clause
are the standard data format characters, '+' and '=',

The ALAPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only 1f the contents consist of any combination of the alphabetic v \)
characters 'A' through 'Z' and the space. =

3-32

oo o]
Yoo far e

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of an
implementor-defined switch. The implementor-name and the ‘on' or 'off'
value associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format for the
switch-gtatus condition is as follows:

condition~-name

The result of the test is true if the switch is set to the specified
position corresponding to the condition-name.

3 -33

COMMON PHRASES AMD GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear
frequently: the ROUNDED phrase, the SIZE ERROR phrase.

These are described below. A resultant-identifier is that identifier
associated with a result of an arithmetic operatiom.

The Rounded Phrase

If, after decimal point alignment, the number of places in the fraction
of the result of an arithmetic operation is greater than the number of
places provided for the fraction of the resultant-identifier, truncation is
relative to the size provided for the resultant-identifier. When rounding
is requested the absolute value of the resultant-identifier is increased by
one whenever the most significant digit of the the excess 1s greater than or
equal to five.

When the low-order integer positions in a resultant-identifier are
represented by the character 'p! in the PICTURE for the
resultant-identifier, rounding or truncation occurs relative to the
rightmost intege:r position for which storage is allocated.

The Size Error Phrase

If, after decimal point aligmment, the absolute value of a result
exceeds the largest value that can be contained in the associated
resultant-identifier a size error condition exists. Division by zero always
causes a size error condition. The size error condition applies only to the
final results, except in MULTIPLY and DIVIDE statements, in which case the
size error condition applies to the intermediate results as well, If the
ROUNDED phrase is specified rounding takes place before checking for size
error. When such a size error condition occurs, the subsequent action
depends on whether or not the SIZE ERROR phrase is specified as follows:

SIZE ERROR Phrase Not Specified

When a size error condition occurs, the value of those
resultant-identiiier(s) affected is undefined. Values . of
resultant-identifier(s) for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifier(s)
.during execution of this operationm.

SIZE ERROR Phrase Specified

When a size error condition occurs, then the values of
resultant-identifier(s) affected by the size errors are not altered. After
completion of the execution of this operation, the imperative statement in
the SIZE ERROR phrase is executed.

3 -34

Arithmetic Statements

The arithmetic statements are the ADD, DIVIDE, MULTIPLY, and SUBTRACT
statements. Common features are as follows:

1. The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment are supplied
throughout the calculation.

2. The maximum size of each operand is 18 decimal digits. The composite
of operands, which is a hypothetical data item resulting from the
superimposition of specified operands in a statement aligned om their
decimal points (See THE ADD STATEMENT, THE DIVIDE STATEMENT, THE

MULTIPLY STATEMENT and THE SUBTRACT STATEMENT later in this Chapter).

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an
INSPECT, MOVE, SET, statement share a part of their storage areas, the
result of the execution of such a statement is undefined.

Incompatible Data

Except for the class condition (See Class Coudition in this Chapter),
when the contents of a data item are referenced in the Procedure Division
and the contents of that data item are not compatible with the class
specified for that data item by its PICTURE clause, then the result of such
a reference is undefined.

CRT Devices

The CRT is driven directly by the run time system via a buffer. The
COBOL programmer moves data into and out of this buffer by means of ACCEPT
and DISPLAY statements., Each ACCEPT or DISPLAY action is relative to the
start of the CRT buffer unless POSITION is specified. The syntax is limited
to inputting to or outputting from a single data name. The data name may be
a group item and several such group items may redefine the same area of
storage.

The use of FILLER data items in record descriptions used for input or
output to a CRT device 1s subject to special rules. On output, any FILLER

-item in a record. results in suppression of output for the character

positions it defines. On input, any FILLER item suppresses operator keying

into the character positions it defines.

3 -35

ks S s s

B T o

THE ACCEPT STATEMENT
Function

The ACCEPT statement causes data keyed at the CRT cousole to be made
available to the program in a specified data item A

General Formats

Format 1

ACCEPT identifier [FRCM CONSOLE]

Formar. 2

General Rules

1. Format 1 is the standard ANSI ACCEPT statement
Format 2 is the extended ACCEPT format.

The two formats are distinguished by their FROM phrases and the default
- agssumes FROM CONSOLE. The default can, however, be changed by
specifying CONSOLE IS CRT in the SPECIAL-NAMES clause so that FROM CRT
becomes the ‘default. This changed default is not shown in the syntax
above..

Format 1

2, The ACCEPT statement reads ome line of input data from the system
consol device. This input data replaces the contents of the data item
" named by the 1dentifier.

3, The line of input is line-edited according to the operating system
‘rules for line~editing (see Operating Systems User Guide). The line is
terminated by pressing the CR (Carriage Return) key or by exceeding 120
characters in length.

4, If the input line is of the same size as the receiving data item, the
transferred data is stored in the receiving data item.

5. If the input line is not of the same size as the receiving data item,
- thens A

a. If the size of the receiving data item exceeds the size of the
input line, the transferred data is stored aligned to the left in
the receiving data item and the data item is filled with trailing
spaces.

b. If the size of the transferred data exceeds 120 bytes, only the
first 120 characters of the input line are stored in the receiving

data item. The remaining characters of the input line which do
not £it into the receiving data item are ignored.

3 -36

e et et o i

‘d:ﬁspla».ye& in the: GR!I.’ location correspondfng to: the lefmst nom-E’EI.ER,
character: pos:htiom i’ data-name~L.. AIterxmtively,, wben\ & iss
specified in the: SBEGIAI—NAHES‘ paragrapb: - digplays. at th
posdtion held in the: CURSOR: d’acta-name-. . The: CURSOR pos:l.t:liow s stated
in: CURSOR: data=name: in the same:- format as: the screen position is: held
in data-name-2. If the. da:tafnamee-z has' the' vaIue SBAGE, or ZERO,, the:
e:ﬂ:’ect is as: if” CURSOK was- ot s@eeified...

If Fm GR:J'. is= noc spec;f.‘f:l.ed‘ th.es defan]:t i.a FROM. CONSOI‘.K: (see: m1e¢ L
beves)* .

As: the opetaa:orr key& charactex:sz, the. cursor moves: to thes tight- one -
character position: at a time im locations corresponding to: data fields.
'mre opemtor always: ke.ys 1nttr the current cursor: position. At thee end i

c&aracuer pos:l;tion

L4, If the data item; 137 fntegex: mme.::ic,. only nume:ic chaxacters (0 - 9)
- will be accepted into that item. Keying the decimal point character (.
©+..% OF . ag specified: in the DECIMAL POINT phrase) when accepting a numeric
- item:. causes the i;tem t:o be: right justified and zero-filled from: the
left.,.

15, When. the cursor location: reaches a position corresponding to: & FILLER
- item: in. a data-name, it Immediately skips. to the next non-FILLER
~ character position, or if there 1is no such position. remaining in: the
" portiomr of the CRT specified. by the data-name, it remains' in its:
; cum:e.nt position.. P

3-37

B A T

S

R

~-

3 -38 :

G Tel i e TR i .
TR Naraar s W mad TS W LTSRS

AN

THE ADD STATEMENT

Function

The ADD statement causes two or more numeric operands to be summed and
the result to be stored.

General Format

Format 1

identifier-l , identifier-Z}
20 {literal-l. [{literal-z] +++ IO identifier-m [ROUNDED]

[, identifier-n [ROUNDED]] ese [3 ON SIZE ERROR imperative-statement]
Format 2

ADD

literal-l literal-2 literal-3

{identifier~l N { identifier-2 } [, {identifier*li }] ves

GIVING identifier-m [ROUNDED] [, identifier-n [ROUNDED]] cee

[; ON SIZE ERRDRAimperative-statement]

Syntax Rules

1.. In Formats 1 and 2, each identifier must refer to an elementary numeric
item, except that in Format 2 each identifier following the word GIVING
must refer to either an elementary numeric item or an elementary
numeric edited item.

2., Each literal must be a numeric literal.

3. Thé'composite of operands must’notvcontain more than 18 digits (see The
Arithmetic Statements in this Chapter).

a. In Format 1 the composite of operands is determined by using all
- of the operands in a given statement..

'b. In Format 2 the composite of operands is determined by using all

of the operands in a given statement excluding the data items that
follow the word GIVING.

General Rules

1. See THE ROUNDED PHRASE, THE SIZE ERROR PHRASE, THE ARITHMETIC
STATEMENTS and OVERLAPPING OPERANDS in this Chapter. -

3 -39

If Format 1 is used, the values of the operands preceding the word TO
are added together, then the sum 1s added to the current wvalue of
identifier-m storing the result immediately into identifier-m.

If Format 2 is used, the value of the operands preceding the word
GIVING are added together, then the sum is stored as the new value of
identifier-m, the resultant identifiers.

The compiler ensures that enough places are carried so as not to lose
any significant digits during execution.

3 -40

£

R Y PR ST

D st 1L ettt e o3 SRR e LS Y AL 35 A A PP YOO SIS B A WU rAPY JRPETE)

THE ALTER STATEMENT
Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

ALTER procedure-name-l1 TO PROCEED TO procedure-name-2.

Syntax. Rules

1. Each procedure-name-l, is. the name of a paragraph that contains a
single sentence consisting of a GO TO statement without the DEPENDING
phrase.

2. Each procedure-name-2, is the name of a paragraph or section in the
Procedure Division.

General Rule

Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-l, so that subsequent executions of the
modified GO TO statements cause transfer of control to procedure-name-2,
Modified GO TO statements in independent segments wmay, under some
circumstances, be returned to their initial states (see Independent Segments
in Chapter 8). : :

3 -41

THE DISPLAY STATEMENT
Function .;:f‘f‘ff;

The DISPLAY statement causes data to be transferred from specified data P
items to the CRT screen. /-;\3

General Formats

Format 1
icdentifier~l identifier-2)
DISPLAY i s g § .+s| [UPON CONSOLE]
literal-l literal-2
Format 2

Syntax Rules

1. Each literal may be any figurative constant, except ALL.
2..
3.
4;

General Rules

1. PFormat 1 is the standard ANSI DISPLAY statement.
Format 2 is the extended DISPLAY format. o ’
The two formats are distinguished by their UPON phrases and the default
assumes UPON CONSOLE. The default can, however, be changed by

specifying CONSOLE IS CRT in the SPECIAL-NAMES clause so that UPON CRT

becomes the default. This changed default is not shown in the syntax
above..

Format 1

2. The DISPLAY statement causes the contents of each operand to be
transferred to the CRT in the order listed as one line of output data.

3. The size of the data transfer can be up to 132 bytes.

4. If a figurative counstant 1s specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

3 -42

i e O P NS e R A o AL LI i et T s A TR A s e ey GRS«

5. 1If the CRT is capable of displaying data of the same size as the data
item being output, the data item is transferred.

6. If the CRT is not capable of displaying data of the same size as the
data item being transferred, ome of the following applies.,

(a) 1f the size of the data item being displayed exceeds the size of
the data that the CRT is capable of receiving in a single
transfer, the data beginning with the leftmost character 1is stored
aligned to the left in the receiving CRT.

(b) If the size of the data item that the CRT is capable of receiving
exceeds the size of the data being transferred, the tramnsferred
data 1s stored aligned to the left in the receiving CRT.

7. When a DISPLAY statement contains more than one operand, the size of
the sending item 1s the sum of the sizes associated with the operands,
and the values of the operands are transferred in the sequence in which
the operands are encountered.

nm Bezauhscsigtgd. EREDEEBmﬂi m@y be;qsed, tn,wﬁicﬁ[caae.the»firstg
on.. of thex:data:: f® used and subsequent: desctigtﬂmmyfafer

Eﬁtﬁﬁng thea>whone. screenr wdth: space39~
chamacte:)” howeme:;.disghm s'only'one-spacerchazacter-‘

IAUV Ihe:CREFGNDE&;ph:asercmwmmmfg elementary*1zemnzmnvedsto-the.CRT;tn,be

‘displayed: with: the: ‘underline- ‘feature: ' present.. ' This:. feature*‘ﬁs

.. . dependent on: the: CRT" hardware. functions: and. is: not awailable on: all

45%1\ . makea&offcnr"(see»theLCIS GUBGE.Operating'Guide)u T

3 =43

N A L SV PN UL £ ¥ NGRS TN BRI TR et

THE DIVIDE STATEMENT

Function

The DIVIDE statement divides ome numeric data item into others and sets
the values of data items equal to the quotient.

General Format

Format 1
identifier-l
DIVIDE {literal-l. } INTO identifierfz [ROUNDED]

[, identifier—B] [ROUNDED] «es [3ON SIZE ERROR imperative-statement]

Format 2
. identifier 1 identifier-2
orvpg {ldentifier L} pug | jdeneitior?)

GIVING identifier-3 [ROUNDED] [,identifier-4 [ROUNDED]] ces

[;ON SIZE ERROR imperative-statement]

Format 3

BY identifier-2

identifier-~l
ovie { SO Frviciei

literal-l

" GIVING identifier-3 [ROUNDED] [, ldentifier-4 !ROUNDED]] cee

[;ON SIZE ERROR imperative-statement]

Syntax Rules

1._ Each identifiét mst refer to an elementary numeric item, except that
any identifier associated with the GIVING phrase must refer to either
an elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

General Rules

l. See The Rounded Phrase, The Size Error Phrase, The Arithmetic Statements
* and Overlapping Operands in this Chapter for a description of these
functions.

2. When Format 1 1is used, the value of identifier-1 or literal-l is K;RN
divided into the value of identifier-2. The value of the dividend !
(identifier-2) is replaced by this quotient.

3 - 44

3.

When Format 2 1is used, the value of identifier-l or 1literal-l dis
divided into identifier-2 or 1literal-2 and the result is stored in
identifier-3.

When Format 3 is used, the value of identifier-l or literal-l is
divided by the value of identifier-2 or literal-2 and the result is
stored in identifier-3.

3 -45

el

e e e wbe e vt e T e il A s Y e ea T mL L Ad e b AL e o Lo o

THE ENTER STATEMENT
Function

The ENTER statement provides a means of allowing the use of more than ,‘:%
one language in the same program. '
General Format

ENTER language-name [routine-name] .

General Rule

1. Access to other languages can be achieved by means of CALL.

3 - 46

ial elal A, AT 73w e

THE EXIT STATEMENT
Function

The EXIT statement provides a common end point for a series of
procedures.

General Format

EXIT
SYNTAX RULES
1. The EXIT statement must appear in a sentence by itself.
2. The EXIT sentence must be the only sentence in the paragraph.
General Rule
An EXIT statement serves only to enable the user to assign a

procedure-name to a given point in a program. Such an EXIT statement
has no other effect on the compilation or execution of the program.

co e,

= . - SR L SR T T Y ST VU SR TSP I L MO R ey MR VR
frana B T o DI D B R T T - -

THE GO TO STATEMENT
Function

The GO TO statement causes control to be transferred from one part of A
the Procedure Division to another.

General Format

Format 1
GO TO [procedure~-name-1]
Format=-2

GO TO procedure-name-1 [, procedure-name-2] ... [, procedure-name-n]

DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph.
can consist only of a paragraph header followed by a Format 1 GO TO
gtatement..

3. If a GO TO statement represented by Format | appears in a consecutive
sequence of imperative statements within a sentence, it appears as the
last statement in that sequence.

General Rules

1. When a GO TO statement, represented by Format 1 is executed, comntrol is
transferred to procedure-name-l or to another procedure-name if the GO
TO staterent has been modified by an ALTER statement.

2., When a GO TO statement represented by Format 2 is executed, control is
transferred to procedure-name-l, procedure-name-2, etc., depending on
- the value of the identifier being 1, 2, ..., n. If the value of the
identifier is anything other than the positive or unsigned integers 1,
2, «eey. 0, then no transfer occurs and control passes to the next
statement in the normal sequence for execution.

3 - 48"

B TS P N L £

THE IF STATEMENT

Function

The IF statement causes a condition (see CONDITIONAL EXPRESSIONS in
this Chapter). The subsequent action of the object program depends on
whether the value of the condition is true or false.

General Format

. statement-l 3 ELSE statement-2
I condition; { NEXT SENTENCE } { ; ELSE NEXT smmcx}
- Syntax Rules

1. Statement-l and statement-2 represent either an imperative statement or
a conditional statement, and either may be followed by a conditiomal
statement. '

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes
the terminal period of the sentence.

General Rules

1. When an IF statement 1s executed, the following transfers of coatrol
occurs: ‘ .

ae.

b.

C.

d.

" If the condition is true, statement-l is executed if specified. If

statement-l contains a procedure branching or conditional.
statement, control is explicitly transferred in accordance with
the rules of that statement. If statement-l does not contain a
procedure branching or conditional statement, the ELSE phrase, 1if

.gpecified, is ignored and control passes to the next executable

sentence.,.

If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-l, the ELSE phrase, if specified, is ignored
and control passes to the next executable sentence.

If the condition is anlse, statement-l or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is executed.
If statement-2 contains a procedure branching or conditional

 statement, control is explicitly transferred in accordance with
. the rules of that statement. If statement-2 does not contain a
' procedure branching or conditional statement, control passes to

the next executable sentence. If the ELSE statement-2 phrase is
not specified, statement-l 1s ignored and control passes to the
next executable sentence..

If the condition 1s false, and the ELSE NEXT SENTENCE phrase is
specified, statement-l 1s ignored, if specified, and control
passes to the next executable sentence.

3 - 49

2. Statement-1 and/or statement-2 may contain an IF statement. - In this
case the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF that has
not been already paired with an ELSE.

3-50

ey

THE INSPECT STATEMENT
Function
&\ The: INSPECT statement provides the ability to tally (Format 1), replace

‘(Format 2), or tally and replace (Format 3) occurrences of single characters
in a data item.

General Format

Format 1

INSPECT identifier-1 TALLYING

ALL
, identifier-2 FOR ,{ LEADING ﬁ‘:“ti{ﬁh"
CHARACTERS §\ 672

(BEFORE) identifier-7
[{;_AFT_E_&_} o {19500 }]

Format 2

INSPECT identifier-1 REPLACING

caaractees Y {3195000100

‘FIRST

LEADIN 14teral-3 literal—4

‘ {_—ALL } {identifiet—S} o identifier-6}

(BEFORE } ' identifier-7\ |
[{ AFTER } INITTAL {uteral-s- }]

Fc;r;nat. 3

INSPECT idemtifier-l TALLYING

ALL .
ALL identifier-3) {BEFORE , identifiet—4}
» 1dentifier-2 JOR '{I‘CTART" %Rs;‘litetal-l } AFTER } INITIAL {literal-z

REPLACING
{identifier-61{
cuaracters 3v { 1ocar ity }

——‘ﬁI‘EﬁDmG identifier—S} B identifier-é} ‘
’ FIRST V ’ 1literal-3 —= | literal-4

BEFORE }- identifier-7
[{ AFTER } INITIAL { 1iteral-5 }]

.3 =-51

. s ke s Te L . - . N ok TR IR s
. tdas e e hm b ek ana Vet L 2 e tes M B e e s el s o N L - e <& s "’

Syntax Rules

All Formats

1. Identifier-l must reference either a group item or amy category of
elementary item, described (either emplicitly or explicitly) as usage ,Q
is DISPLAY.

2. Identifier-3 ... didentifier-n must ‘reference either an elementary
alphabetic, alphanumeric or numeric item described (either implicitly
or explicitly) as usage is DISPLAY.

3. Each literal must be nonnumeric and may be any figurative constant,
except ALL.

4. In Level 1, literal-l, literal-2, literal-3, literal-4, and literal-5,
and the data items ' referenced by identifier-3, identifier-4,
identifier-5, identifier-6, and identifier-7 must be one character in
length.

Formats 1 and 3 Only -
S.. Identifier-2 must reference an elementary numeric data item.

6. If either literal-l or literal-2 is a figurative counstant, the
figurative comstant refers to an implicit ome character data item.

Formats 2 and 3 Only

7. The size of the data referenced by literal-4 or identifier-6 must be
equal to the size of the data referenced by literal-3 or identifier-5.
When a figurative constant 1is used as literal-4, the size of the
figurative constant is equal to the size of literal-3 or the size of
the data Ltem referenced by identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5, or the size
of the dsta item referenced by identifier-6, identifier-7 must be one
character in length. :

9. When a figurative constant is used as literal-3, the data referenced by
literal-4 or identifier-6 must be one character in length.

General Rules

All Formats

l.. Inspection (which includes the ' comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for
tallying and/or replacing) begins at the leftmost character position of
the data item referenced by identifier-l, regardless of its class, and
proceeds from left to right to the rightmost character position as
described in general rules 4 through 6.

2. For use in the INSPECT Statement, the contents of the data item
refer-erniced by identifier-l, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 will be treated as follows:

3-52

" R
e

L AR LD e e L i i Kb e e i 8 b A TR et ST 20 SRV i B e N e W 2k e W

a. If any of identifier-l, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as alphanumeric, the
INSPECT statement treats the contents of each such identifier as a
character-string.

b. If any of identifier-l, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as alphanumeric edited,
numeric edited or unsigned numeric, the data item is inspected as
though it had been redefined as alphanumeric (see general rule 2a)
and the INSPECT statement had been written to reference the
redefined data item.’

¢. If any of the 1identifier-l, identifier-3, identifier-4,
identifier-5, identifier-6 or identifier-7 are described as signed
numeric, the data item is inspected as though it had been moved to
an. unsigned numeric data item of ‘the same length and then the
rules in general rule 2b had been applied. (See THE MOVE STATEMENT
later in this Chapter).

3.. In general rules 4 through 11 all references to literal-l, literal-2,
literal-3, literal-4, and. literal-5 apply equally to the contents of
the data item referenced by identifier-3, identifier-4, ideantifier-5,
identifier=-6, and identifier-7, respectively.

4. During inspection of the contents of the data item referenced by
identifier-l, each properly matched occurrence of literal-l is tallied
(Formats 1 and 3) and/or each properly matched occurrence of literal=3
is: replaced by literal-4 (Formats 2 and 3).

5.. The comparison operation to determine the occurrences of literal-l to
‘be tallied and/or occurrences of literal-3 to be replaced, occurs as
follows:: ,

a. The operands of the TALLYING and REPLACING phrases are considered
in the order they are specified in the INSPECT statement from left
to right. The first literal-l, literal-3 is compared to an equal
number of contiguous characters, starting with the leftmost
- character position in the data item referenced by identifier-l.
Literal-l, literal-3 and that. portion of the contents of the data . ,
itemr referenced by identifier-l match if, and only if, they are
equal, character for character.

b.. If no match occurs. in the comparison of the first literal-l,

literal-3, the comparison is repeated with each successive

. literal-l, literal-3, if any, until either a match is found or

- . there is no next successive literal-l, literal=-3. When there is

- vi. no mext successive literal-l, literal-3, the char-acter position

. in the data item referenced by identifier-l immediately to the

right: of the leftmost character position considered in the last

comparisow cycle is considered as the leftmost character position,

and the comparison cycle begins again with the first literal-l,
literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place as

described in general rules 8 through 10. The character position
_ : in the data item referenced by identifier~l immediately to the
P : right of the rightmost character position that participated in the

3 -53

BRI R T TV L L AL UG VOS UV UIUE PNIUPPENPI PR URSIES S S SHBHLLLLLLL L 14

match is now considered to be the leftmost character position of
the data item referenced by identifier-l, and the comparison cycle
starts again with the first literal-l, literal-3.

d. The comparison operation continues until the rightmost character ,‘Q
position of the data item referenced by identifier-1 has
participated in a match or has been considered as the leftmost
character position. When this occurs, inspection is terminated.

e, If the CHARACTERS phrase is specified, an implied oue character
operand participates in the cycle described in paragraphs 5a
through 5d above, except that no comparison to the contents of the
data item referenced by identifier-l takes place. This implied
character is considered always to match the leftmost character of
the contents of the data item referenced by identifier-l
participating in the current comparison cycle.

6. The comparison operation defined in genmeral rule 5 is affected by the
BEFORE. and AFTER phrases as follows: .

a. If the BEFORE or AFTER phrase is not specified, literal-l,
literal=-3 or the implied operand of the CHARACTERS phrase
participates in the comparison operation as described in general
rule 5.

b. If the BEFORE phrase is specified, the associated literal-l,
literal-3 or the implied operand of the CHARACTERS phrase
participates only in those comparison cycles which involve that
portion of the contents of the data item referenced by
identifier-l from its leftwost character position up to, but not LN
including, the first occurrence of literal-2, literal-5 within the /‘Q
contents of the data item referenced by identifier-l. The
position of this first occurrence 1s determined before the first
cycle of the comparison opera-tion described in gemeral rule 5 is
begun. If, on any comparison cycle, literal-l, literal-3 or the
implied operand of the CHARACTERS phrase is not eligible to
participate, it 1is considered not to match the contents of the
~data 1item referenced by identifier-l. If there is no occurrence
of literal-2 1literal-5 within -the contents of the data item
referenced by identifier-l, its associated literal-l, literal-3,
or the implied operand of the CHARACTERS phrase participates in
the comparison operation as though the BEFORE phrase had not been
specified. .- '

- c. If the AFTER phrase 1is specified, the associated literal-l,
. literal-3 or the implied operand of the CHARACTERS phrase may
- participate only in those comparison cycles which involve that
portion. of the contents of the data item referenced by
identifier-l from the character position immediately to the right
of the rightmost character position of the first occurrence of
literal-2, 1literal-5 within the contents of the data item
referenced by iden-tifier-l1 and the rightmost character position
of the data item referenced by identifier-l. The positiou of this
first occurrence is determined before the first cycle of the
comparison operation described in gemeral rule 5 is begun. If, on

- any comparison cycle, literal-l, literal-3 or the implied operand

of the CHARACTERS phrase is not eligible to participate, it is /‘\>

3 -54

¢ ot e e et s e+ Wl il R e P RSN Al s e el

considered not to match the contents of the data item referenced

by identifier-l. If there 1s no occurrence of 1literal-2,

literal=5 within the contents of the data item referenced by

identifier~-l, its associated literal-l, literal-3, or the implied
0"‘\ operand of the CHARACTERS phrase is never eligible to participate
in the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 is not
initialized by the execution. of the INSPECT statement.

8., The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data. item
referenced by identifier-2 is incremented by ome for each
occurrence of literal-l matched within the contents of the data
item referenced by identifier-l.

b. If the LEADING phrase 1s specified, the contents of the data item
referenced by identifier-2 is incremented by one for each
contiguous occurrence of literal-l matched within the contents of
the data item refer-enced. by identifier-l, provided that the
leftmost such occurrence is at the point where comparison began in
the first comparison cycle in which literal-l was eligible to
participate..

c. If the CHARACTERS phrase is specified, the coatents of the data

. . {item referenced by identifier-2 is incremented by one for each

. . character matched, in the sense of gemeral rule Se, within the
Gh\ contents of the data item referenced by identifier-l.

Format 2
9. The required words ALL, LEADING, and FIRST are adjectives.
10. The rules. for replacement are as follows:

a.. When the CHARACTERS.A phrase is specified, each character matched;
in the sense of general rule Se, in the contents of the data item
referenced by identifier-l is replaced by literal—4.

b. When the adjective ALL is specified, each occurrence of literal-3
matched in: the coantents of the data {item referenced by
.| identifier-l is replaced by literal-4..

occurrence of literal-=3 matched in the contents of the data item
referenced by identiffer-l is replaced by literal=4, provided that
the leftmost occurrence is at the point where comparison began in
the first comparison cycle in which 1literal-3 was eligible to
participate. '

@ ‘ " e. When the adjuective LEADING 1is speéified,- each contiguous

d. When the adjective FIRST is specified, the leftmost occurrence of
’ literal-3 matched within the contents of the data item referenced
(,?n\ by identifier-1 is replaced by literal-4.

3 -55

PRt TS SR N SU Ty SN ORI VS P LI Y-SR SPP IO PPRID IS SPERSI RIS SO R RS SR VSR S S SSNUISICINC VUSRI PSS S S A S L

Format 3

11. A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-l had been
written with one statement being a Format 1 statement with TALLYING
phrases identical to those specified in the Format 3 statement, and the
other statement being a Format 2 statement with REPLACING phrases
identical to those specified in the Format 3 statement. The general
rules. given for matching and counting apply to the Format 1 statement
and the general rules given for matching and replacing apply to the
Format 2 statement.

EXAMPLES
Six. examples of the use of the INSPECT statement follow:

INSPECT word TALLYING count FOR LEADING "L'" BEFORE INITIAL "A", count-l FOR
LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-l = 0.
Where word = ANALYST, count = 0, count-l = l.

INSPECT word TALLYING count FOR ALL "L', REPLACING LEADING "A" BY "E" AFTER
INITIAL "L",

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word. = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX. ; i

I'EN'S'PECT"wérd. TALLYING count FOR CHARACTERS AFTER II'QITIAL "J' REPLACING ALL
A" BY "B" :

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "2", "W" BY "Q" AFTER INITIAL

"R" .

Where word = RXXBQWY, word = RYYZQQY.
Where word = YZACDWBR, word = YZACDWZR.
Where word = RAWRXEB, word = RAQRYEZ,

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A",

word before: 1

2 X Z A
word after: BBBB B A

B C D _—)
B C D Py

3 —56

“TATEMENT

VE statement transfers data, in accordance with the rules of
o one or more data areas. -

C

tal Format
srmat 1
. : identifier-1 v]
// MOVE { literal . } T0 iden;ifier 2‘ - [, ideg‘tif':l.er-a] oo
A /
//
//
J Syntax Rules
' 1. Identifier-1 and literal represent the sending area; identifiér-z;
L identifier-3, ..., represent the receiving area..
/o 2. An index data item cannot appear as an operand of a MOVE statement.'
(See THE USAGE CLAUSE in this Chapter).
General Rules
i 1. The data designated by the literal or identifier-l is moved first to
&, identifier-2, then to identifier-3, The rules referring to

identifier=-2 also apply to the other receiving areas. Any subscripting
or indexing associated with identifier-2, ..., is evaluated immediately
‘before the data is moved to the respective data item.

Any subscripting or indexing associated with identifier-l is evaluated
only once, immediately before data is moved to the first of the
receiving operands. The result of the statement:

MOVE a (b) TO b, ¢ (b)
is equivalent to:

MOVE a (b) TO temp

MOVE temp TO b

MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the
implementor.

)

3 =57

-r

2.

Any MOVE in which the sending and receiving items are both elementary
items is an elementary move, Every elementary item belongs to one of
the following categories: numeric, alphabetic, alphanumeric, numeric
edited, alphanumeric edited. These categories are described in the
PICTURE .clause. Numeric literals belong to the category numeric, and
nonnumeric literals belongs to the category alphanumeric.- The
figurative constant ZERO belongs to the category numeric. The
figurative constant SPACE belongs to the category alphabetic. All
other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these
categories:

a. ‘The figurative constant SPACE, alphanumeric edited, or alphabetic
data item must not be moved to a numeric or numeric edited data
item. ' ‘

b. A numeric literal, the figurative constant ZERO, a numeric datav
item or a numeric edited data item must not be moved to an
alphabetic data item. ' o :

c. A non-integer numeric literal or a non-integer numeric data item
. must not be moved to an alphanumeric or alphanumeric edited data
item. v

d. All other elementary moveé are legal and are performed according
to the rules given in general rule 4.

Any necessary conversion of data from onme form of internal
representation to another takes place during legal elementary moves,
along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling takes place as
defined under STANDARD ALIGNMENT RULES in this Chapter. If the
size of the sending item is greater than the size of the receiving
item, the excess characters are truncated on the right after the
receiving item is filled. If the sending item is described as
being signed numeric, the operational sign will not be moved; if
the operational sign occupies a separate character position (see
THE SIGN CLAUSE in this Chapter), that character will not be moved
and the size of the sending item will be comsidered to be one less
than i1its actual size (in terms of standard data format
characters).

b.. When a numeric or numeric edited item is the receiving itenm,
alignment by decimal point and any nécessary zero—filling takes
place as defined under the STANDARD ALIGNMENT RULES in Chapter 2,
except where zeroes are replaced because of editing requirements.

When a signed numeric item is the receiving item, the sign of the
~ sending item is placed in the receiving item. (See THE
SIGN CLAUSE in this Chapter). Conversion of the representation of
the sign takes place as neces-sary. If the sending item is
unsigned, a positive sign is generated for the receiving item.

3 ~-58

/ /
.

4,

When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is
generated for the receiving item. '

When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned
numeric integer. ' :

c. When a receiving field is described as alphabetic, justification
and any necessary space-filling takes place as defined under the
 STANDARD ALIGNMENT RULES in Chapter 2. If the size of the sending
item is greater than the size of the receiving item, the excess
characters are truncated on the right after the receiving item is
£illed.

Any move that is not an elementary move is treated exactly as if it
were an alphanumeric to alphanumeric elementary move, except that there -
is no conversion of data from one form of internal represemtation to
another. In such a move, the receiving area will be filled without
consideration for the individual elementary or group items contained
within either the sending or receiving area, except as noted in general
rule 4 of the OCCURS clause. . :

Data in Table 3-6 summarizes the legality of the various types of MOVE

" gtatements. The general rule reference indicates the rule that

prohibits the move or the behavior of a legal move.

Table 3-6. MOVE Statement Data Categories.

Category of Sending Category Of Receiving Data Item1
Pata Item '
Alphabetic | Alphanumeric | Numeric lnteger
Eddited Numeric Non-Integer
Alphanumeric | Numeric Edited
ALPHABETIC Yes/3c Yes/3a No/2a
ALPHANUMERIC Yes/3c Yes/3a Yes/3b
ALPHANUMERIC EDITED | Yes/3c Yes/3a No/2a
INTEGER No/2b Yes/3a . Yes/3b
NUMERIC NON-INTEGER | No/2b No/2c Yes/3b
NUMERIC EDITED No/2b Yes/3a Yes/2a

1 - The relevant rule number is quotéd in these colummns

i ettt ot ST e s e ey . —r v e m e - e e

3 -59

* 'THE MULTIPLY STATEMENT

Function

The MULTIPLY statemént causes nﬁmeric data itemé to be multiplied and :>
sets the values of data items equal to the results. N - <

General Format

Format 1

identifier-l o ‘ | "'; 2 -
MULTIPLY {1 {teralel } BY identifier 2, | [ROUNDED]. .

[, identifier-3 [ROUNDED]] .;.w [s .ON SIZE ERROR imperétive-statement]
Format 2

identifier-1\ identifier~2
MULTIPLY {literal-l - } BY {literal-z } GIVING identifier-3 [ROUNDED]

-

o

[, identifier~4 [ROUNDED]]}.,. [; ON SIZE ERROR imperative-statement]

. . -~
Syntax Rules 7 . <;>

1, Each identifier must refer to a numeric elementary item, except that in_
Format 2 each identifier following the word GIVING must refer to either.
an elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

General Rules

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, The Arithmetic'
Statements, and Overlapping Operands in this Chapter.

2. When Format 1 is used, the value of identifier-l or 1literal-l is
multiplied by the value of identifier-2. The value of the multiplier
(identifier-2) is replaced by this product; similarly for identifier-l
or literal-l and identifier-3, etc.

3. When Format 2 is used,' the value of identifier-l or literal-l is
. multiplied by identifier-2 or literal-2 and the result is stored in

identifier-3, identifier-4, etc.

e

3 -60

‘v . ‘n’.

THE PERFORM STATEMENT

Function

The PERFORM statement 1is used to transfer control explicitly to ome or
more procedures and to return control implicitly whenmever execution of the
specified procedure is complete. E

General Format

Format 1

- THROUGH. ' e
THERD } procedure-namefZ]; |

PERFORM procedure-name-1 [{

Format 2 : s P

PERFORM procedure-name-l[{w identif ier-l'}

THRD } procgdure—name-Z] { integer-1 TIMES.
Format 3
PERFORM procedure-name-l[{ -ﬁi-m-@i} procedure-name-?..] UNTIL condition-1
Syntax Rules

1. Each identifier represents a numeric elementary item ‘described in the
Data Division. In Format 2, identifier-l must be described as a
numeric integer, e :

2. The words THRU and THROUGH are equivalent.

3. Where procedure-name-l and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the
program then both must be procedure-names in the same declarative
section.

General Rules

1. When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-l (except as
indicated in gemeral rules 4b, 4c, and 4d). This tramsfer of control
occurs only once for each execution of a PERFORM statement. For those
cases where a transfer of control to the named procedure does take
place, an implicit transfer of control to the next executable statement
following the PERFORM statement is established as follows:

a. If procedure-name-l is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of
procedure~name-l.

3 ~-61

-?

4.

b. If procedure-name-l is a section-name and -procedureéname~2 is not
specified, then the return is after the last statement of the last
paragraph in procedure-name-l. .

c. If procedure-name-2 is specified and it is a paragraph-name, then
the return is after the last statement of the paragraph. B

d. If procedure-name-2 is specified and it 1s a section-name, then
the return is after the last statement of the last paragraph in
the section.

There 1s no necessary relationship between procedure-name-l and
procedure-name-2 except that a consecutive sequence of operatious is to
be executed beginning at the procedure named procedure-~name-l and
ending with the execution of the procedure named procedure-name-2. In

particular, GO TO and PERFORM statements may occur between .

procedure-name-1 and the end of procedure-name-2, If there are two or
more logical paths to the return point, then procedure-name-2 may be
the name of a paragraph consisting of ‘the EXIT statement, to which all
of these paths must lead. . '

If control passes to these procedures other than via a PERFORM
statement the procedures are executed right through to the next
executable statement in the main program as if they were just part of
the main program. o

The PERFORM statements operate as follows with rule 5 above applying to
all formats: -

a. Format 1 is the basic PERFORM statement. A procedure referenced
by this type of PERFORM statement is executed once and then
control passes to the next executable statemeat following the
PERFORM statement.

b. Format 2 is the PERFORM,.,TIMES. The procedures are performed the
number of times specified by integer~l or by the initial value of
the data item referenced by identifier-l for that execution. If,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identiffer-l 1is equal to zero or is
negative, control passes to the next executable statement
following the PERFORM statement, Following the execution of the
procedures the specified number of times, control is transferred
-to the next executable statement following the PERFORM statement.

During execution of the PERFORM statement, references to identi-
fier~l cannot alter the number of times the procedures are to be
executed from that which was indicated by the initial value of
identifier-l.

¢c. Format 3 is the PERFORM...UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true, control is tramsferred to the
- next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement 1s entered, no
transfer to procedure-name~l takes place, and control is passed to
the next executable statement following the PERFORM statement.

3 -62

TE TITe e e S v

........

@

6.

If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with
the included PERFORM must itself either be totally included in, or
totally excluded from, the logical sequence reférred to by the first
PERFORM. Thus, an active PERFORM statement, whose execution point
begins within the range of amother active PERFORM statement, must not
allow control to pass to the exit of the other active PERFORM
statement; furthermore, two or more such active PERFORM statements may
not have a common exit. See Figure 3-l.

X PERFORM a THRU m x PERFORM a THRU m

a - a

(-9

d PERFORM £ THRU j PERFORM. £ THRU j

x PERFORM a THRU m

-

—
3

3
d PERFORM £ THRU j

Fig. 3-1. PERFORM Statement in Sequence.

A PERFORM statement that appears in a section that is not an
independent segment can have within its range, im addition to amy
declarative sections whose execution is caused within that range, only
one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

b. Sections and/or paragraphs wholly contained in a single
independent segment.

3 -63

7.

A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose
execution is caused within that range, only one of the following:

a..

Sections and/or paragraphs wholly contained in one or more
non-independent segments. v _ _ : o -

Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement. '

3 - 64

THE STOP STATEMENT _ : o - .

Function

The STOP statement causes a permanent or temporary suspension of the

execution of the object program.

General Format i

RUN
STIOP { literal}

Syntax Rules S ,fi , “7”: 7“flf'v

1.

2.

3.

The literal may be numeric or non-numeric or may be any figurative‘
constant, except ALL. ' . - .

If the literal is numeric,btheﬁ it must be an unsigned integer.
If a STOP RUN statement appears in a consecutive sequence of imperative

statements within a sentence, it must appear as the last statement in
that sequence.. .

General Rules

1-’0

If the RUN phrase is used, then the operating system eanding procedure
is instituted.

If STOP literal is specified, the literal is communicated to the

operator. Continuation of the object program begins with the execution
of the next executable statement in sequence.

3 - 65

—~ B T TR e T et £ttt i R - - n

THE SUBTRACT STATEMENT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric data items from one or more items, and set the values of one
or more items equal to the results.

General Format

Format 1
identifier-1 , fidentifier-2
swmact {JomEiIeEt ol eraly | e EEOM o
identifier-m [ROUNDED] [, identifier-n [ROUNDED]]
[; ON SIZE ERROR "imperative-statement]
Format 2
‘identifier-1) ,fidentifier-2
SUBTRACT {literal-l } {literal-z } +-+ IEROM identifier-n
GIVING identifier-n [ROUNDED] A[, identifier-o [ROUNDED]] .o ,ﬂhi)

[3 ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item except that in
Format 2, each identifier following the word GIVING must refer to
either an elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. (See
The Arithmetic Statements in this Chapter).

a. In Format 1 the composite of operands is determined by using all
of the operands in a given statement.

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that
follow the word GIVING.

3 - 66

— ¢ Y g0 s s s

E e e

GENERAL RULES

1.

2.

See The Rounded Phrase, The Size Error Phrase, The Arithmetic Statement
and Overlapping Operands in this Chapter.

In Format 1, all literals or identifiers preceding the word FROM are
added together and this total is subtracted from the current value of
identifier-m storing the result immediately into identifier-m, and
repeating this process respectively for each operand following the word

FROM.

In Format 2, all literals or identifiers preceding the word FROM are
added together, the sum is subtracted from literal-m or identifier-m
and the result of the subtraction is stored as the new value of
identifier-n, identifier-n, etc. o

The compiler ensdres enough places are carried so as not to lose
significant digits during execution. . '

3 ~67

[US—— - - - v

T

' TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE

The Table Handling module provides a capability for defining tables of
contiguous data items and accessing an item relative to its position in the
table, Language facilities are provided for specifying how many times an
item is to be repeated. Each item may be identified through use of a
subscript or an index (see Chapter 2). ' '

Table Handling provides a capability for .accéssing items A:l.ﬁ variable

length tables of multiple dimensions. The maximum number of multiple
dimensions if the ANS switch is on (see Chapter 2) is restricted to three.

DATA DIVISION IN THE TABLE HANDLING MODULE

THE OCCURS CLAUSE
Function
. The OCCURS clause eliminates the need for séparate entries for repeated

data items and supplies information required for the application of
subscripts or iIndices.

General Format

OCCURS integer-2 TIMES

[INDEXED BY index-—name-l [, index-name~2] ...] oo

Syntax Rules

1. An INDEXED BY phrase is required if the subject of this entry, or am
entry subordinate to this entry, is to be referred to by indexing. The
index-name identified by this clause is not defined elsewhere since its
allocation and format are dependent on the hardware, and not being
data, cannot be associated with any data hierarchy.

2. The OCCURS clause cannotv be specified in a data description entry that
has 01 or 77 level-number (ﬁmsaimcrmvehagbeen\gat),

3. Index-name-l, index-pame-2, ... must be unique words within the
program.

-r
0

General Rules

1.

2.

The OCCURS clause is used in defining tables and other homogenous sets
of repeated data items, Whenever the OCCURS clause is used, the
data-name which is the subject of this entry must be either subscripted
or indexed whenever it is referred to in a statement other than USE FOR

DEBUGGING. Further, if the subject of this entry is the name of a

group item, then all data-names belonging to the group must be
subscripted or indexed whenever they are used as operands, except as
the object of a REDEFINES clause. (See under headings Subscripting,
Indexing and Identifier in Chapter 2).

Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS clause

apply to each occurrence of the item described. (See restriction in

general zrule 2 under Data Descrigtion Entries Other Than Condition
Names in Chapter 3).

The number of occurrences of the subject entry 1s defined as the value

of integer-2 representing the exact number of occurrences.

THE USAGE CLAUSE

Function

storage.

General Format

[USAGE 15] INDEX

Syntax Rules

- General Rules ' .

1. An index data item can be referenced explicitly only in a SET

statement, a relation condition, the USING -phrase of -a Procedure

Division header, or thg USING‘ phrase of a CALL statement. -.:-: :

2. The SYNCHRONIZED, JUSTIFIED, PIC’I’URE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items described with ‘the
USAGE 1S INDEX clause. . e Lo :

© L ——

1. The USAGE clause can be written at any level. If the USAGE clause is
written -&t a group level, it applies to each elementary item in the
group. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs. '

2. An elementary item described with the USAGE IS INDEX clause is called
an index data item and contains a value which must correspond to an
occurrence number of a table element., The elementary item cannot be a
conditional variable. The compiler will allocate a 2 byte binary field.
If a group item is described with the USAGE IS INDEX clause the

elementary items in the group are all index data items. The group
itself is not an index data item and cannot be used in the SET
statement or in a relation condition.

3. An index data item can be part of a group which is referred to in a
MOVE or input-output statement, in which case no conversion will take
place.

 mmge ey en v s os e, panaas i P

The USAGE clause specifies the format of a data item in the computer

~r

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

RELATION CONDITION

Comparisons Involving Index-Names And/or Index Data Items

Relation tests may be made between the following data items:

*

Two index-names. The result is the same as if the corresponding
occurrence numbers were compared. - :

vAn index-name and a data item (other than an index data item) or

literal. The occurrence number that corresponds to the value of
the index-name compared to the data item or literal.

An index data item andvan index-name or'another'index data item.
The actual values are compared without conversion.

The result of the comparison of an index data item with any data
item or literal not specified above is undefined.

' OVERLAPPING OPERANDS

When a sending and a receiving item in a SET statement share a part of
their storage areas, the result of the execution of such a statement is

undefined.

THE SET STATEMENT

Function

The SET statemént establishes reference points for table handling
operations by setting index-names assoclated with table elements.

General Format

Format 1
identifier-3
identifier-1 [, identifier-2] ces - -
EEI'{index-name-l [, index-name=-2]) cae I0 »%ndex name-3
integer-l
Format 2

SET index-name-4 [, index-name-5] .-.{

UP BY ~identifier—4}
DOWN BY f linteger-2

Syntax Rules

1. All references to index-name-l, identifier-l, and index-name-4 apply
equally to index-name-2, identifier-2, and index-name-5, respectively.

}

v"f

TR AT e T

2. Identifier-l and identifier-3 must name either index data items,' or
elementary items described as an integer.

3. Identifier-4 must be described as an elementary numeric integer.

4. . Integer-l and inte-gei:-z‘ inéy Be signed. Integer-l'" must be positive.

General Rules

PATY 4 a3 49 Ma T et n % e s e - - F T T

1. Index-names are considered related to a given table and are defined by
being spec'tfied in the INDEXED BY clause. : ~

2. If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence number
of an element in the associated table. C @ ad :
If index-name-4, 1ndex—name-5 is specified, the value of the index both

before and after the execution of the SET statement must correspond to an

occurrence number of an element in the associated table., If index-name-l,
index-name-2 is specified, the value of the index after the execution of the

SET statement must correspond to an occurrence number of an element in the

associated table. The value of the index associated with an index-name

after the execution of a PERFORM statement may be undefined. (See THE

PERFORM STATEMENT in Chapter 3). ‘
3. In Format l, the following action occurs:

a. Index-name~l1 is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table element
referenced by index-name-3, identifier-3, or integer-l. If
identifier-3 is an index data item, or if index-name-3 is related

to the same table as index-name 1, no conversion takes place.

b. If identifier-l is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3 where
identifier-3 is also an index item; no conversion takes place in
either case.

¢. If identifier-l is not an index data item, it may be set only to
an occurrence number that corresponds to the value of
index-name-3, Neither identifier-3 nor integer-l can be used in
this case.

d. The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time the value of index-name-3 or identifier-3 is
used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-l, etc.,

is evaluated immediately before the value of the respective data

item is changed.

4, In Format 2, the contents of index-name~4 are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of integer-2 or identifier-4;
thereafter, the process is repeated for index-name-5, etc. Each time

the value of identifier-4 is used as it was at the beginning of the

execution of the statement.

© e

5.

combinations

in the SET

statement.
indicates the applicable general rule.

Data in Table 4-1 represents the validity of various operand
The general rule reference

Table 4-1. SET Statement Valued Operand Combinationms.

. Sending Item ~L___Receiving Tte 1 - _
i ___~ .. | Integer Data Item | Index-Name | Index Data Item
Integer Literal No/3c Valid/3a No/3b
Integer Data Item No/3c Valid/3a No/3b
Index-Name valid/c | valid/3a | vValid/s?
Index Data Item No/3c V’al:l.d/Sa2 Valid/Bbz

N

- Rule numbers under'General Rules above are teferredﬂto{
= - No comnversion takes place

-

P

N

-r
)

CHAPTER '5

SEQUENTIAL INPUT AND OUTPUT

INTRODUCTION TO THE SEQUENTIAL I-O0 MODULE

The Sequential I-0 module provides a capability to access records of a
file in established sequence. The sequence is established as a result of
writing the records to the file. It also provides for the specification of
re-run points and the sharing of memory areas among files.

LANGUAGE CONCEPTS

Organization : . e

Sequential files are organized such that each record in the file except
the first has-a unique predecessor record, and each record exzcept the last
has a unique successor record. These predecessor-successor relationships
are established by the order of WRITE statements when the file is created.
Once established, the predecessor-successor relationships do not change
except in the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally written.

Current Record Pointer

The current record pointer is a conceptual entity used in this document
to facilitate specification of the next record to be accessed within a given
file. The concept of the current record point has no meaning for a file
opened in the output mode. The setting of the curremt record pointer is
affected only by the OPEN and READ statements.

I-0 Status

If the FILE STATUS clause is specified in a file comtrol entry, a value
is placed into the specified two-character data item during the execution of
an OPEN, CLOSE, READ, WRITE, or REWRITE statement and before any applicable
USE procedure is executed, to indicate to the COBOL program the status of
that input-output operationm..

Status Key 1

The leftmost character position of the FILE STATUS data item is known
as Status Key 1 and is set to indicate one of the following conditions upon
completion of the imput-output operation.

'0' - indicates Successful Completion
'1' <~ indicates At End
- '3' = indicates Permanent Error
'9' = indicates an Operating System Error Message

e}

The meaning of the above indications are as follows:

Successful Completion. The input—output statement was

At End. The sequential READ statement was unsuccessfully
executed either as a result of an attempt to read a record
when no next logical record exists in the file

Permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary violationm
for a sequential file or as the result of an input-output
error, such as data check parity error, or transmission

0 -
successfully executied.
1 -
3 -
error.
9 -

Operating System Error Message. The input-output statement
was unsuccessfully executed as a result of a condition that
is specified by the Operating System Error Message. This
value is used only to indicate a condition not indicated by
other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known
as Status Key 2 and is used to further describe the results of the

5

input-output operation. This character will contain a value as follow:

* If no further information is available concerning the input-output
operation, then status key 2 contains a value of '0'. '

* When status key 1 contains a value of '3' an irrecoverable error
has occurred. This is treated as a fatal error by the Operating
Systemn,

* When status key 1 contains a value of '9', the value of status key

2 is the Operating System Error Message number.

Valid Combinations of Status Keys 1 and 2.

The valid permissible combinations of the values of status key 1 and
status key 2 are shown in the following table.
indicates a valid permissible combination.

An 'X' at an intersection

Status Key 2

No Further

Status Key 1 Information
(0)
Successful Completion (0) X
At End (1) X
Permanent Error (3) X

Implementor Defined (9)

0/S Error Number

i

WP 2 e e et ot ¢ e T b .

-,

e

The AT END Condition ' -

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see THE READ .
STATEMENT later in this Chapter. A)

——— e ee . ;-

R P R TS I PP

. e 3 T———————
i

ENVIRONMENT DIVISION IN THE SEQUENTIAL I-0 MODULE

INPUT-OQUTPUT SECTION

The FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information. (See also Appendix I in this manual).

General Format

FILE-CONTROL. file-control—-entry eee

The FILE CONTROL Entry

Function

The file control entry‘names a -file and may specify other file-related
information. - : ’

General Format

SELECT file~-nane
ASSIGN TO external-file-name-literal , external-file-name~-literal
file-identifier . file-identifier

. SEQUENTIAL }
[, ORGANIZATION IS {Lm SEQUBNTIAL

[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data=-name=-l] .
Syntax Rules

1. The SELECT clause must be specified first in the file control -entry.
The clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. EBach file specified
in the file control entry must have a file description entry in the
Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied. ‘

4. Data-name~l must be defined in the Data Division as a two-character

data item of the category alphanumeric and must not be defined in the
File Section. ‘

5. Data-name-l may be qualified.

T e e R e R e T T

Y N

6'

When the ORGANIZATION IS SEQUENTIAL clause 1is not specified,' the
ORGANIZATION IS SEQUENTIAL clause is implied.

General Rules

1.

2.

The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium. See Appendix F in the CIS COBOL Operating
Guide. The first assigmment takes effect. Subsequent assignments .
within any one ASSIGN clause are for documentation. purposes only.

The ORGANIZATION clause specifies the logical structure of a file. The
file organization is established at the time a file is created and
cannot subsequently be changed.

When LINE SEQUENTIAL ORGANIZAII@N is. specified, ‘the file is treated as .
consisting of variable lemgth ‘records: CR LF characters separate the.
records. These control characters ave exchanged by the Run Time System
for padding with spaces on record inmput, Coaversely, trailing spaces, :
in records are replaced by CR LF on record outputs -
(See Appendix B for CR, LF) po Sl R T

Records in the file are accessed in the sequence dictated by the file
organization. This sequence is specified by predecessor-successor
record relationships established by the execution of WRITE statements
when the file is created or extended.

When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-1 after the
execution of every statement that referemces that file either
explicitly or implicitly. This value indicates the status of execution
of the statement (See I-0 STATUS in this Chapter).

——— U - L . P e e - R At AN

The I-0-CONTROL Paragraph

Function

The I-0 CONTROL paragraph specifies the points at which re-run is to be
established, the memory area which is to be shared by different files, and
the location of files on a multiple file reel.

General Format

I-0-CONTROL. REEL

[Em oF] {——}

— UNIT

. file-name-1 integer-2 CLOCK-UNITS ‘
3 RERUN [Pﬂ { implementor—-name}] EVERY | oondition-name .

[; SAME AREA FOR file-name-3 {, file-name~4} .. 1 wee

Syntax Rules

1. The I-O-CONTROL paragraph is optional. The whole. clauseis for:

documentation only when present.
2. TFile-name-l must be a sequentially organized file.

3, The END OF REEL/UNIT clause may only be used if file-name-2 is &
sequentially organized file and is for documentation purposes only.

4. When either the integer-l1 RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN
clause. ‘

5. More than one RERUN clause may be specified for a given file-name-2.

6. The files referenced in the SAME AREA clause need not all have the same
organization or access. '

General Rules
1. The RERUN clause is treated as for documentation purposes only.

2. The SAME AREA clause is treated as for documentation purposes only.

o o - 33+ g 1 =

Y

DATA DIVISION IN THE SEQUENTIAL I-0 MODULE

FILE SECTION

In a CIS COBOL program the file description entry (FD) represents the
highest level of organisation in the File Section. The File Section header
is followed by a file description entry consisting of a level indicator
(FD), a file-name and a series of independent clauses. The FD clauses
specify the size of the logical and physical records, the presence or
absence of label records, the value of implementor-defined label iteuws, the
names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries
which describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data~name if
required, followed by a series of independent clauses as required. A record
description has a hierarchical structure and therefore the clauses used with
an entry may vary considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record description is defined in
CONCEPT OF LEVELS in Chapter 2, while the elements allowed in a record:
description are shown in the Data Description - Complete Entry Skeleton in
Chapter 3. '

.

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON e e e

Function

The file description furnishes information conceruning the physical

structure, identification, and record names pertaining to a given file.

General Format

B

we we

file~name

CHARACTERS

[; BLOCK CONTAINS integer-2 {RECORDS }]

; RECORD CONTAINS integer-3 TO integer-4 CHARACTERS]

LABFL {RECORD 1s } { STANDARD}

we

RECORDS ARE OMITTED
VALUE OF data-name-l IS literal~-l
[, data-name-2 IS literal-2] ...]

RECORD IS

DATA {<§§9952§.ARE} data-name=-3 [, data-name~4] ...]

; CODE-SET IS alphabet-name .

Syntax Rules

1.

2.

3.

The level indicator FD identifieé the beginning of a file description
and must precede the file-name.

The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial. All clauses are.
optional when the ANS switch is unset (See Chapter 2).

One or more record description entries must follow the file description
entry. '

“r .

-y e e e St e o ~ - . o —— g | e e ———

THE BLOCK CONTAINS CLAUSE
Fuanction

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

RECORDS
BLOCK CONTAINS [integer-1 T0] integer-2 {_cumcmas}

General Rule

This clause is requiﬁed-fer_éocumgntation“pu@posgé~onmy$'
THE CODE~SET CLAUSE
Function

The CODE-SET clause specifies the character code set used to represent
data on the external media.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When the CODE-SET clause is specified for a file, all data in that file
must be described as usage 1is DISPLAY and any signed numeric data must
be described with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

3. The CODE-SET clause may only be specified for non-disk files.

General Rule

The CODE-SET clause is specified for documentation ;mxposesffaﬁii;#

THE DATA RECORDS CLAUSE
Function

The DATA RECORDS clause serves only as documentation for the names of
data records with their associated file.
General Format

RECORD IS
RECORDS ARE

DATA { } data-name-1 [, data-name-2] cee

Y

i BTN T B S

Syntax Rule A ‘ AR

Data-name-] and data-name-2 are the names of data records and must have
01 level-number record descriptions, with the same names, associated
with them. : : .

General Rule

The DATA RECORDS clause 1s specified for documentation purposes only.

THE LABEL RECORDS CLAUSE
Function
The LABEL RECORDS clause specifies wﬁether labels are preseat. .

General Format : P PO T e

RECORD IS STANDARD
moe { SO e} { ST
Syntax Rule

This clause is required in every file description entry, ﬁheaxth@#ﬁﬁi

General Rule

This clause is used for documentation pﬁ:poses only..

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS integer-1 TO integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record
description entry, therefore this clause is never required. The RECORD
CONTAINS clause is specified for documentation purposes only..

5=-10

R

THE VALUE OF CLAUSE

Function

The VALUE OF clause specialises the description of an item in the label

records associated with a file.

General Format

VALUE OF data-name-l IS literal-l
[, dataname2 IS 1literal-2] ...

General Rules

1. This clause is used for documentatién puzpeses ouly. .

2. A figurative constant may be substituted in the format above wherever a

literal is specified. o

5-11

P s o e e a0 tn b o - R e

IS

i

-~

PROCEDURE DIVISION IN THE SEQUENTIAL I-0 MODULE

THE CLOSE STATEMENT _ S

Function

The CLOSE statement terminates the processing of files.

General Format

REEL

CLOSE £ ile-name-.l[-—-—}] .

UNIT

Syntax Rule

'I'he REEL or UNIT phrase must only be used for sequent:l.al file, aad m

General Rules_

l.

2.

3.

4.

A CLOSE statement may only be executed for a file in an open mode.

The action taken if the file is in the open mode when a STOP RUN
statement is executed is to close the file., The action taken for a file
that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is to
leave the file open.

If a CLOSE statement has been executed for a file, mno other statement
can be executed that references that file, either explicitly or
implicitly, unless an intervening OPEN statement for that file is
executed. '

Following the successful execution of a CLOSE statément the record area
associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the
record area undefined.

5 =12

'b',(.

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs

checking and/or writing of labels and other input-output operatioms. -

General Format

OPEN H, L

INPUT file-name-1 ([, file-name=2] ...

OUTPUT file-name-3| [, file-name-4] ...

I-0 file-name-5 [, file-name-6] ...}

EXTEND file-name-7{ [, file-name-8]

Syntax Rules

1.

2.

The I-0 phrase can be used only for disk files.

The EXTEND phrase can be used only for sequential files.‘

General Rules

1-

2.

The successful execution of an OPEN statement determines the avail-
ability of the file and results in the file being in an open mode.

The successful egecution of an OPEN statement makes the associated
record area available to the program.

Prior to the successful execution of an OPEN statement for a given '
file, no statement can be executed that references that file, either
explicitly or implicitly.

An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statement. In Table 5-1, 'X' at
an intersection indicates that the specified statement, used in the
sequential access mode, may be used with the sequential file
organization and open mode given at the top of the columm.

5-13

s A T d - - Eas s - g v |t S P v YRS

Table 5-1. Permissable Combinations of Statements amd OPEN Modes for
Sequential I/0. . o i

Statenie nt Open Mode

Input OQutput Input-OuLputl Extend
READ X X
WRITE X - X
REWRITE | X

‘I = This OPEN mode is not supported for ORGANIZATION line sequential files.

5.

6.

8.

10.

11.

12.

A file may be opened with the INPUT, OUTPUT, EXTEND and I-0 phrases in
the same program. Following the initial execution of an OPEN statement
for a file, each subsequent OPEN statement execution for that same file
must be preceded by the execution of a CLOSE statement, for that file.

Execution of the OPEN statement does not obtain or release the first
data record.

The ASSIGNed name in the SELECT statement for a file is proceséed as
follows: .

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the ASSIGNed name to be checked in accordance
with the operating system conventions for opening files for input.

b. When the OUTPUT phrase is specified, the exzecution of the OPEN
statement causes the ASSIGNed name to be writtem in accordance
with the operating system conventions for opening files for
output.

The file description entry for file-name-l, file-name-5, must be
equivalent to that used when this file was created. ‘

I1f the storage medium for the file permits rewinding, execution of the
OPEN statement causes the file to be positioned at its beginning.

For files being opened with the INPUT or I-O phrase, the OPEN statement
sets the current record pointer to the first record currently existing
within the file. 1If no records exist in the file, the curreat record
pointer is set such that the next executed READ statement for the file
will result in an AT END condition. If the file does not exist, OPEN
INPUT will cause an error status.

When the EXTEND phrase is specified, the OPEN statement positions the
file immediately following the last logical record of that file.
Subsequent WRITE statements referencing the file will add records to
the file as though the file had been opened with the OUTPUT phrase.

The I-O phrase permits the opening of a disk file for both input and
output operations except for files in ORGANIZATION LINE SEQUENTIAL.
Since this phrase implies the existence of the file, it camnot be used
if the mass storage file is being initially created. If the file does
not exist it will be created.

5 -14

Tee T

Ll i

e i e fai

13. Upon successful execution of an OPEN statement with the OUTPUT phrase

specified, a file 1is created. At that time the associated file
contains no data records. If a file of the same name exists it will be
deleted. If write—protected on error will occur.

5-15

-

TR e e e

Se

[4 A

THE READ STATEMENT

Functiom
The READ statement makes available the next logical record froﬁ a file.

General Format

READ file-name RECORD [INTO identifier] [; AT END imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the inmput file contains logical
records of various sizes as indicated by their record descriptioms.
The storage area associated with identifier and the record area
associated with file-name must not be the same storage area..

2. The AT END phrase must be specified if no applicable USE procedure is
specified for file-name.

General Rules

1. The associated file must be open in the INPUT or I-0 mode at the time
this statement is executed. (See THE OPEN STATEMENT in this Chapter).

2. The record to be mﬁde available by the READ statement is determined as
follows: -

a. If the current record pointer was positioned by the éxecution of
the OPEN statement, the record pointed to by the current record
pointer is made available. :

b. If the current record pointer was positioned by the execution of a
" previous READ statement, the curremt record pointer is updated to
point to the next existing record in the file and then that record

is made available,

3. The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See I-0
STATUS in this Chapter).

4. Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record
is available to the object program prior to the execution of any
statement following the READ statement.

5. When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalent to an implicit redefimition of the area. The
contents of any data items which lie beyond the range of the current
data record are undefined at the completion of the execution of the
READ statement.

5 =-16

B -

9.

11l.

12.

13.

14.

If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the
rules specified for the MOVE statement. The implied MOVE does not
occur if the execution of the READ statement was unsuccessful. Any
subscripting or indexing associated with identifier is evaluated after
the record has been read and immediately before it is moved to the data
item.

When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with
identifier.

If, at the time of execution of a READ statement, the position of
current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful. : o

If the end of a reel or unit is recognized during the execution of a
READ statement, an end-of-file status condition exists. .

a. The standard ending reel/unit label procedure.

b. A reel/unit swap. |

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

If, at the time of the execution of a READ statement, no next logical

record exists in the file, the AT END condition occurs, and the .

execution of the READ statement 1is considered unsuccessful. (See I-0
STATUS).

When the AT END condition is recognized the following actions are taken
in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for

this file, to indicate an AT END condition. (See I-0 STATUS).

b. - If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for this file
is not executed.

c. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file and
that procedure is executed.

When the AT END condition occurs, execution of the input-—output
statement which caused the condition is unsuccessful.

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the current
record pointer are undefined.

When the AT END condition has been recognized, a READ statement for
that file must not be executed without first executing a successful
CLOSE statement followed by the execution of a successful OPEN
statement for that file.

5-17

se

file.

TEE REWRITE STATEMENT . = oo Tl

Function R - L s

The REWRITE statement logically replaces a récord gxistimg in a disk

General Format

REWRITE record—~name LE&Qg identifier]

Syntax Rules S T L R

l.

2.

Record-name and identifier must not refer to the same storage area.

Reeord-name is the name of'a logical'recofd ih the File Section of the
Data Division and may be qualified. B ‘

General Rules -

" L.

2.

L2

The file associated with record-name must be a disk file and must be
open in the I-0 mode at the time of execution of this statement. (See
THE OPEN STATEMENT in this Chapter). '

The last input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a successfully
executed READ statement. The operating system logically replaces the
record that was assessed by the READ statement.

The number of character positions "in the record referenced by

record-name must be equal to the number of character positions in the
record being replaced.) .

The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area.

The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of:

MOVE identifier TO record-name
followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of
the implicit MOVE statement have no effect om the execution of the
REWRITE statement. '

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
I-0 STATUS in this Chapter).

The REWRITE statement cannot be used with line sequential files

5-18

o T Y R SRR T T R T SIS e Lo ATy T e

. ¢

T P

THE USE STATEMENT

Functien

The USE statement specifies procedures for imput-output error handling

that are in addition to the standard procedures provided by the input-output
control system,

General Format

file—naﬁe-l

T INPUT
USE AFTER STANDARD{ ZXCEFTIONY pRoCEDURE ON{OUTPUT
Syntax Rules
1. A USE statement, when present, must immediately follow a section header

2.

in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must comsist of zero, ome or
more procedural paragraphs that define the procedure to be used.

The USE si:atement itself 1is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

General Rules

1.

3.

4.

If the AT END phase has not been specified in the input-output
statement, the designated procedures are executed by the imput-output
system after completing the standard input-output error routine upon
recognition of the AT END condition

After execution of a USE procedure, control is returned to the invoking
routine.

Within a USE procedure, there must not be any reference to any non-—
declarative procedures. Conversely, in the nondeclarative portion
there must be no reference to procedure-names that appear in the
declarative portion, except that PERFORM statements may refer to a USE
statement or to the procedures associated with such a USE statement.

Within a USE procedure, there must not be the execution of any state-
ment that would cause the execution of a USE procedure that had
previously been irdvoked and had not yet returned control to the
invoking routine.

5-19

N

)

Q)

~

e e e e ¢ e e o e e 2 T P e Ty e T e T S T P ST S e e

)

THE WRITE STATEMENT
Function

The WRITE statement releases a logical record for an output file. Tt
can also be used for vertical positioning of~Eines within a logical page.

General Format

WRITE record-name [FROM identifier-1]

e (2]

f BEFORE _—
{ R } ADVANCING

Syntax Rules

1. Record-name and identifier—-l must not reference the same storage area.

2..

3. The record-name is the name of a logical record in the File Section of
' the Data Division. . :

4, ‘Integer may be zero.

General Rules

1. The associated file must be open in the OUTPUT mode at the time of the
execution of this statement. (See THE OPEN STATEMENT in this Chapter).

2. - The logical record released by the execution of the WRITE statement is
no longer available in the record area unlessthe execution of the WRITE
statement was unsuccessful due to a boundary violationm.

3. The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:
MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement, followed
by:

b. The same WRITE statement without the FROM phrase.
The contents of the record area prior to the execution of the

implicit MOVE statement have no effect on the execution of this
WRITE statement.

5 - 20

s 9 g e s o 0 A e - . > e T s T T—————

4.

10.

After .execution of the WRITE statement 18 complete, the
information in ‘the area referenced by idemtifier-l is available,
even though the informaiiou in the area referenced by reeord-name
may not be. (See general rule 2.)

The current record pointer is unaffected by the execution of a WRITE
statement.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, assoclated with the file to be updated. (See
1-0 STATUS in this Chapter).

The maximum record size for a file is established at the time the file
is created and must not subsequently be changed.

The number of character positions on a disk requixed to store a logical

record in a file may or may not be equal to the number of character’

positions defimed by the logical description of that reecord in the
program.

The execution of the WRITE statement releases a logical record to the

-operating system.

The ADVANCING phrase allows control of the vertical positioning of each
line ou a representation of 8 printed page.\ﬁTt the hot:

e PRL-. specl:
advancing is provided as follows:

a. If integer is specified, the répresentation of the printed page is
advanced the number of lines equal to the value of integer.

b, If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rule a
above, .

¢. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to rule
above.

d. If PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used) the device is
repositioned to the next logical page.

When an attempt is made to write beyond the externally defined bound-
aries of a sequential file, an exception condition exists aund the
contents of the record area are unaffected. The following action takes
place:

a. The value of the FILE STATUS data item, if any, of the associated
file is set to a value indicating a boundary violatiomn. (See I-0
STATUS in this Chapter).

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or

implicitly specified for the file, that declarative procedure will
then be executed.

5-21

2 g

SPES RS S SR

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or
implicitly specified for the file, the result is undefined.

5 - 22

[P . e evmiin I IO Tt

' GHAPTER 6

' mmwz E«m D OUTPUT -

INBR@EECTI@N TQ THE RELATIVE Iw-@ M@DHLE

The Relative I-0 module provides a capability to access records of a mass
storage file in either a randem ow: sequential manner. Bach recewd in a
relative file is uniquely identifie.d by an integer value greater than zero '
which specifies the record's ordinal pesition in the file,

LANGUAGE CONCEPTS

Oxganization

Relative file organizatien is permitted only on disk devices. A relative
file conmsists of records which are identified by relative record numbers.
The file may be thought of as composed of a serial strimg of areas, each
capable of holdding a legical record. Each of these areas is denominated -by
a relative record number. Records are stored and retrieved based om this
number. For examplé, the tenth record area, whether or not records have
been written in the first through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are accessed 1is
the ascending order of the relative record numbers of all records which
currently exist within the file.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer, The desired record is accessed by placing its
relative record number in a relative key data item.

In the dynamic access mode, the programmer may change at will from
sequential access -to random access using appropriate forms of input-output
statements.

Current Record Pointer

The current record printer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given
file. The concept of the current record pointer has no meaning for a file
opened in the output mode. The setting of the current record pointer is
\iffected only by the OPEN, START and READ statements.

'~ Status

the specified two-character data item during the execution of an

_ READ, WRITE, REWRITE, DELETE or START statement and before any

%, procedure is executed, to indicate to the COBOL program the
fnput~-output operation.

QESTATUS clause 1is specified in a file control entry, a value is

B

S AU U G A e ——

e
A

Status Key 1

- The leftmost character position of the FILE STATUS data item is known as
status key 1 and 13 set to indicate ome of the following conditioms upon
completion of the imput—output operation.

"' - indicates Successful Completion

']' = indicates At End

'2' - indicates Invalid Key

'3' -~ indicates Permament Error

9! — indicates an Operating System Error Message

The meaning of the above indications are as follows:

'0' - Successful Completion. The input-output statement was
* succesgfully executed.

']1' — At End. The Format 1 READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

'2' - Invalid Key. The input-output statement was unsuccessfully
executed as a result of one of the following:

* Duplicate Key
* No Record Found
* Boundary Violation

'3' _ Permanent Error. The input-output statement was unsuccessfully
executed as the reult of an input-output error, such as data
C check, parity error or transmission error.

'9! - Operating System Error Message. The input-output statement was
unsuccessfully executed as the result of a condition that is
specified by the Operating System. This value is used ounly to .
indicate a condition not indicated by other defined values of
status key 1, or by specified combinations of the values of status
key 1 and status key 2. ' -

Status Key 2
The rightmost character position of the FILE STATUS data item 1s known
as status key 2 and is used to further describe the reults of the

input-output operation. This character coatains a value as follows:

* ' If no further information is available concerning the input-output
operation, then status key 2 contains a value of '0'

O

s e ATt e A o e N T ¢

* When status key 1 econtaims a value of '2' indicating an INVALID
. KBY conditiom, status key 2 is used to designate the cause of that
condition by the following values:

2 - Indicates a duplicate Key wvalue. Am attempt has been
made to write a record that would create a duplicate key
in a relative file..

3 - Indicates no record found., An attempt has been made to
access a record, identiffed by a key, and that recerd
does not exist in the file.

4 - Indicates a boundary violation. An attempt has been
made to write beyomd the externally-defined boundaries
of a relative file. This is normally treated as a fatal

error by the Operation System.

* When status key 1 contains a value of '9' the value of status key
2 is the Operating System Error Message number.

Valid Combinations of Status Keys 1l and 2
The valid permissible combinations of the values of status key 1 and

status key2 are shown in the table. An 'X" at an intersection indicates a
valid permissible combination.

Status Key 1 ' Status Key 2
No Further Duplicate [No Record Boundary
Information Key Found Violation
0) (2) 3) @
Successful
Completion .(0) X . X X _ X
At End (1) X
Invalid Key (2) X 4 X
.| Permanent ‘
" Error (3) X
Inplementor
Defined (9) . ~ Operating System Error Message Number

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START,
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the
condition, see The START Statement, The READ Statement, The WRITE Statement,
The REWRITE Statement, and The DELETE Statement later in this chapter.

O S — v

When the INVALID KEY condition 1s recognised, the Operating System takes
these actions in the following order: ‘

1.

3.

A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an INVALID KEY condition. (See I-O Status in this
Chapter).

If the INVALID KEY phrase 1is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that
procedure is executed.

When the INVALID XEY condition occurs, execution of the input-output
statement which recognised the condition 1is unsuccessful, and the file is
not affected. '

The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see The READ
Statement later in this chapter. ‘

BMVIRORMENT DIVESION IN THE RELATIVE 1-O MODULE

INPYT-QUTPUT SECTLON

The File-Control Pagragraph ! ‘D
Function
The PILE-CONTROL paragraph names each file and allows specification of
other file-related iInformationm. (See also Appendix F in the CIS COBOL
Operating Guide).

General Format

ETLE—CONEROL (file-control=-entry) ese

' The File Control Entry

Function

The file control entry names a file and may specify other file-related
information.

. General Format
SELECT file-name
ASSIGN TO extemal-file-name-literal}
:f1le=identifier '
 external-file-name-literal }]
* 1 file-identifier '

s ORGANIZATION IS RELATIVE

SEQUENTIAL ,RELATIVE KEY IS data—-name

; ACCESS MODE IS RANDOM _ _
—_— {—-‘-DYNAMIC ,RELATIVE KEY IS data-name-l

[; FELE STATUS IS data-name-2].

Syntax Rules:

1. The SELECT clause must be specified first in the file comntrol entry.
The clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. Each file specified
in the file control entry must have a file description entry in the
Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied..

4, Data-name-? must be defined in the Data Division as a two-—character -~
data item of the category alphanumeric and must not be defined in the J;‘)
File Section, the Report Section, or the Communication Section.

6 -5

)

Dataghame-l must not be defined im a record description entry
associated with that file-name. .

The data item referenced by data-mame-1 must be defined as an unsigned
integer.,

General Rules

1.

2.

3'0

4,

7.

8.

The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium. See Appendix F in the CIS COBOL

L

The ORGANIZATION clause specifiesé;he logical structure of a file. The
file organization is established”at the time a file is created and
cannot subsequently be changed.

When the access mode is sequential, records in the file are accessed in
the sequence dictated by the file organization. This sequence is the
order of ascending relative record numbers of existing records in the
file.

When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-2 after the
execution of every statement that references that file either
explicitly or implicitly. This value indicates the status of execution
of the statement. (See I-0 Status in this Chapter).

If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

When the access made is dynamic, records in the file may be assessed
sequentially and/or randomly. (See Gemeral Rules 3 and 5). ‘

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given record
specifies the record's logical ordinal position in the file.. The first
logical record has a relative record number of 1, and subsequent
logical records have relative record numbers of 2, 3, by, ves o

The data item specified by data-name-l is used to communicate a
relative record number between the user and the Operating System.

L i v fad et sl it e ek i e i e A ceme sl st e em W a

Y

The I-0-CONTROL Paragraph

Function
The I-0-CONTROL paragraph specifies the points at which rerun is to be ™
established and the memory area which is to be shared by different files. .)

General Format

I-0-CONTROL..
sRERUN ON file-name-l integer-1 RECORDS OF file-name-2
EVERY (integer-2 CLOCK-UNITS
implementor-name ‘condition—-name

[;SAME AREA FOR file-name-3 {, file-name=4 } oue] .uv .
Syntax Rules

1. The I-0-CONTROL paragraph 1is optional. The whole clause 1is for
documentation purposes only when present

2. File-name-] must be a sequentially organized file.
- 3. When either the integer-l1 RECORDS clause or the integer-2 CLOCK-UNITS
- clause 1is specified, implementor-name must be given in the RERUN

clause.. . .

4. More than one RERUN clause may be specified for a given file-name-2,
subject to the following restriction: '

J

When multiple integer-1 RECORDS clauses are specified, no two of
them way specify the same file-name-2.

5... Only one RERUN clause containing the CLOCK-UNITS clause may be
: specified.

6. More than one SAME clause may be included in a program but file-name
must not appear in more than one SAME AREA clause.

7. The files referenced in the SAME AREA clause need not all have the same
organization or access. ’

R T

General Rules.

B T A A L Ye (T e e A S BT
R T R A A
as- for do

d

1.

ted a5, for' documentation purposes: only..

)

Vet
‘" v

DATA DIVISION IN THE RELATIVE I-O0 MODULE

FILE SECTION

In a CIS COBOL program the file description entry (FD) represents the

S highest level or organization in the File Section. The File Section header
is followed by a file description entry consisting of a level indicator
(FD), a file-name and a series of independent clauses. The FD clauses
specify the size of the logical and physical records, the . presence or
absence of label records, the value of implementor-defined label items, and
the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTICON STRUCTURE

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry cousists of a level-number followed by a data-name if required,
followed by a series of independent clauses as required. A record
description has a hierarchical structure and therefor the clauses used with
an entry may vary considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record description is defined in
CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a record
description are shown in the DATA DESCRIPTION-COMPLETE ENTRY SKELETON in
Chapter 3. ' .

THE FILE DESCRIPTION — COMPLETE ENTRY SKELETION

: ' Function

The file description furnishes information concerning the physical
structure, identification, and record names pertaining to a given file.

General Format

FD file-name

; BLOCK CONTAINS integer-2 § RECORDS }
'CHARACTERS

[; RECORD CONTAINS integer-3 TO integer-4 CHARACTERS]

3 LABEL {RECORD IS STANDARD
R - | RECORDS AREf | OMITTED

v !

VALUE OF implementor-name-l IS literal-l e

[, implementor-name-2 IS literal-2] . .,.]

r-;_ DATA { RECORD IS data-name-3 [, data-name~4] ...] .
RECORDS ARE

e et v e e e pmreyeye

NS =z i s el e e b e — & = he e et e e e o . Ve e P it e s s P e

Syntax Rules

1. The level indicator FD identifies the beginning of a file descripton
and must precede the file-name.

2. The clauses which follow the name of the file are optional in many
_cases, and their order of appearance is immaterial. ArI eianses are.
"opitional. when the ANS switch is: umset.

3. One or more record description entries must follow the file description
entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

.General Format

BLOCK CONTAINS integer-2 . RECORDS }
, CHARACTERS

General Rules

,,,,,

l. ﬂbi& e&ause is reqpi:ed.faz'documenxation;pumposes*oniy.

THE DATA RECORDS CLAUSE
Function

The DATA RECORDS clause serves only as documentation for the names of
data records with their assoclated file.

General Format

DATA (RECORD IS | data-name-l [, data-name-2] ...
"RECORDS ARE

Syntax Rule

Data-name~l and data-name-2 are the names of data records and must have
0l level-number record descriptions, with the same names, associated
with them,

‘General Rule

The. DATA RECORDS cladse{is;sge¢££iéd'fbt'dOéumep:ation;purposes:oniif

b v

7™

THE LABEL RECORDS CLAUSE
Function
The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL RECORD IS STANDARD
RECORDS AREf | OMITTED

Syntax Rule

General Rule

“Phite’clause. 18 used For: dbcunentation. purpsses’ oalys

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.
Format

RECORD CONTAINS integer-l TO integer-2 CHARACTERS

General Rule

The- size of each data record is completely defined within the record
description entry, therefore this. clause is never required.

“THe-' REGORD. CONTAINS clause: 1is’ specified. for documentation purposes

S

6 - 10

Kisdoad

2~ ‘ el

PECTURTSIRT RIS NN SN RPIPRE IS DO P SO ; i g i o i PP LT

THE VALUE OF CLAUSE

Function.
- ~
The VALUE of clause specialises the description of an item in the label /)
records associated with a file.
General Format
VALUE OF data-name-l IS literal-l
[,data-name-2 IS literal-2]
Syntax Rules
I. Data-name-l, data-name-2, etc, should be qualified when necessary, but
cannot be subscripted or indexed, nor can they be items described with
the USAGE IS INDEX clause
2. Data-name-l, data-name-2 etc, must be in the Working-~Storage Section
General Rules
2. A figurative coustant may be substituted in the format above wherever a
literal is specified.
Vam
) V)

6 - 11

)

o~
b u

i e e cic— . - S - e Ay o e e -

PROCEDURE DIVISION IN THE RELATIVE I-0 MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files. 'Bhe

General Format

CLOSE file-name-1 [WITH LOCK] [,file-name-z [WITH LOCK]] coe

Syntax Rule

The files referenced in the CLOSE statement need not all have the same

organisation or access.

General Rules

1.

2.

3.

A CLOSE statement may only be executed for a file in an open mode.

The action taken if a f£file is in the open mode when a STOP RUN
statement 1s executed is to close the file. The action taken for a
file that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for the program is
to close the file..

If a CLOSE statement has been executed for a file, no other statement
can. be executed that references that file, either explicitly or
implicitly, unless an intervening OPEN statement for that file is
executed..

Following the successful execution of a CLOSE statement, the record.
area associated with file-name 1is no longer available. The
unsuccessful execution of such a CLOSE: statement leaves the
availability of the record area undefined.

6 - 12

THE DELETE STATEMENT

Function

The DELETE statement logically removes a record from a mass storage

file.

General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

Syntax Rules

1.

2.

The INVALID KEY phrase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

The INVALID KEY phrase must be specified for 2 DELETE statement which
references 2 file which 1is unot in sequential access mode and for which
an applicable USE procedure is not specified

General Rules

1.

2.

4.

5.

The associated file must be open in the I-O mode at the time of the
execution of this statement. (See THE OPEN STATEMENT later in this
Chapter) '

For files in the sequential access mode, the last imput-output
statement executed for file-name prior to the execution of the DELETE
statement must have been a successfully executed READ statement. The
Operating System logically removes from the file the record that was
accessed by that READ statement,

For a file in random or dynamic access mode, the Operating System
logically removes from the file that record identified by the contents
of the RELATIVE KEY data item associated with file-name. If the file
does not contain the record specified by the key, an INVALID key
condition exists, (See The INVALID KEY Condition in this Chapter).

After the succesful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be
accessed. :

The execution of a DELETE statement does not affect the contents of the
record area assoclated with file—name.

The current record pointer is not affected by the execution of a DELETE
statement.

The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, assoclated with the file-name to be
updated. See I-0 STATUS in this chapter.

6 - 13

-
o

SIS L S SO S R UM NSSRE SRV PO

THE OPEN STATEMENT
Function

The OPEN statement initiates the processing of files. It also performs
checking and/or writing of labels and other input-output operations.

General Format

OUTPUT file-name-3 [,£ile-name=4 ...

INPUT file=-name-l [,f£ile-name-2 ...]
OPEN] cee
" I-0 file=-name-5 [,file-name=6 ...]

Syntax Rule

The files referenced in the OPEN statement need not all have the same
organization or access. :

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open mode.

2. The successful execution of the OPEN statement makes the assoclated
record area available to the program.

3. Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, edither
explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution
of any of the permissible inout-output statements. In Table 6-1, X!
at an intersection indicates that the specified statement, used in the
access mode given for that row, may be used with the relative file
organisation and the open mode given at the top of the column.

6 - 14

U R R

Table 6-1. Permissible Combinations of Statements and Open Modes for
Relative I/0 :

File Access| - - R Open Mode £~
Mode Statement Input Output Input-Output :

Sequential READ X X
WRITE X
REWRITE
START X
DELETE
Random READ X

WRITE ‘ X

Lo TR T < B B <

REWRITE
START

DELETE
Dynamic READ X

WRITE X

"

REWRITE

START X

L I T < B A T o

DELETE

5. A file may be opened with the INPUT, OUTPUT, AND I-0 phrases in the

: same program. Following the initial execution of an OPEN statement for
a file, each subsequent execution for that same file must be preceded
by the execution of a CLOSE statement, for that file,

6. Execution of the OPEN statement does not obtain or release the first
data record.

7.. The file description entry for file-name-l, file-name-2, file-name-5 or
file-name-6 must be equivalent to that used when this file was created.

8.. For files being opened with the INPUT or I-O phrase, the OPEN statement
sets the current record pointer to the first record
currently existing within the file. If no records exist in the file,
the current record pointer is set such that the next executed Format 1
READ gtatement for the file will result in an AT END condition. If the
file does not exist, INPUT will cause an error status.

9. The I-0 phrase permits the opening of a file for both input and output N
operations. Since this phrase implies the existence of the file, it - -

6 - 15

s T iave s o g
LM DA S b

10.

e & b e s b < e s R - e e

cannot be used if the file is being initially created. If the file
does not exist, it will be created

Upon successful execution of an OPEN statement with the OUTPUT phrase
gspecified, a file 1is created. At the time the associated
file contains no data records. If a file of the same number exists it
will be deleted. If write protected, an error status occurs.

6 - 16

THE READ STATEMENT '

Function

For sequential access, the READ statement makes available the next logical o)
record from a file. For random access, the READ statement makes available a

specified record from a disk file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative-statement]
~ Format 2

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area assoclated with 1dentifier and the record area associated
with file-name must not be the same storage area.

2, TFormat 1 must be used for all files in sequential access mode.

3. The NEXT phrase must be specified for files in dynamic access mode,
when records are to be retrieved subsequentially.

4. Format 2 is used for files in random access mode or for files in ﬁ
dynamic access mode when records are to be retrieved randomly.)

5. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

Geherafl Rules

L. The associated files must be open in the INPUT or I-0 mode at the time
this statement i1s executed. See THE OPEN STATEMENT in this Chapter

2. The record to be made available by a Format 1 READ statement is
determined sas- follows:

a. The record, pointed to by the curreat record pointer, is made
available provided that the current record pointer was positioned
by the START or OPEN statement and the record is still accessible
through. the path indicated by the current record pointer; if the
record i1s no longer accessible, which may have been caused by the
deleticn of the record, the current record pointer is updated to
point to the next existing record in the file and that record is
then made available.

b.. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
"point to the next existing record in the file and then that record -~
is made available. :

6 —17

.
Fal

- - -t s3im 2 . AN A S ey NS
— i PSSR O U SRR SURPUP P> GPVSORPRPUSEY . 5 JUSIP USSP DS SIPUEU SRR AR RS LB LS A

THE USE STATEMENT

- Function
J.J '
C/ The USE statement specified procedures for input-output error handling that

are in addition to the standard procedures provided by the input-output
control system.

General Format

EXCEPTION file-name-1

INPUT
USE AFTER STANDARD PROCEDURE ON OUTPUT
ERROR I-0

Syntax Rules

1. A USE statement, when present, must immediately follow a section header
in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must comnsist of zero, one or
more procedural paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the
' conditions calling for the execution of the USE procedures.

General Rules

1. If the INVALID KEY or AT END phrases have not been specified in the
input-output staement, the designated procedures are executed by the
input-output system after completing the standard input-output error
routine, or upon recognition of the INVALID KEY or AT END conditions.

2. After exécution of a USE procedure, control is returned to the invoking
routine. :

3. Within a USE procedure, there must not be any reference to any
: nondeclarative procedures. Conversely, in the nondeclarative portion
there must no reference to procedure-names in the delcarative portion,
except that PERFORM statements may refer to a USE statement or to the

- procedures associated with such a USE statement.

4. ‘Within Va USE procedure, there wmust not be the execution of any
statement that would cause the execution of a USE procedure that had
previously been invokved and had not yet returned control to the

invoking routing.

—~ > N

6 - 24

X

THE WRITE STATEMENT

Function
-~
The WRITE statement releases a logical record for an output or input-output S
£ile.
General Format
WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]
Syntax Rules
1. Record-name and identifier must not reference the same storage area.
2. The record-name is the name of a logica record in the File Section of
the Data Division..
3. The INVALID KEY phrase must be specified if an applicable USE procedure
is not specified for the associated file.
General Rules
1. The associated file must be open in the OUTPUT or I-0 mode at the time
of the execution of this statement. (See THE OPEN STATEMENT Chapter).
2. The logical record released by the execution of the WRITE statement is =
no longer available in the record area unless the execution of the
WRITE statement is unsuccessful due to an INVALID KEY condition.
3. The results of the execution of the WRITE statement with the FROM
phrase 1s equivalent to the execution of
. a. The statement:
MOVE identifier TO record-name
according to the rules specified for the MOVE statement, followed
by:
b. The same WRITE statement without the FROM phrase.
The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.
. After execution of the WRITE statement 1is complete, the
information in the area referenced by identifier i1s available,
even though the information in the area referenced by record-name
may not be. (See general rule 2 above).
4. The current record pointer is unaffected by the execution of a WRITE .
statement. T

6 - 25

)

10.

11.

12.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
I-0 Status in this Chapter).

The maximum record size for a file is established at the time the file
is created and must oot subsequently be changed.

The number of character positions on a mass storage device required to
-gtore a logical record in a file may or may not be equal to the number
of character positions defined by the logical description of that
record in the program.

The execution of the WRITE statement releases a logical record to the
operating system.

When a file is opened in the output mode, records may be placed into
the file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause a
record to be released to the Operating System. The first record
will have a relative record number of one and subsequent records
released will have relative record numbers of 2, 3, 4, ... If the
RELATIVE KEY data item has been specified in the file control
entry for the assoclated file, the relative record number of the
record just released will be placed into the RELATIVE KEY data
item by the Operating System during execution of the WRITE
statement. : R—

b. If the access mode is random or dynamic, prior to the execution of
the WRITE statement the value of the RELATIVE KEY data item must
be initialised in the program with the relative record number of
be associated with the record in the record area. That record is
then released to the Operating System by execution of the WRITE
statement. :

_When a file is opened in the I-0 mode and the access mode is random or
dynamic, records are to be inserted in the associated file. The value
of the RELATIVE KEY data item must be initialised by the program with
the relative record number to be associated with the record in the
record area. Execution of a WRITE statement then causes the contents
of the record area to be released to the Operating System.

The INVALID KEY condition exists under the following circumstances:

a. When the access mode 1is random or dynamic, and the RELATIVE KEY
data item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined
boundaries of the file.

When the INVALID KEY condition is recognised, the execution of the
WRITE statement is unsuccessful, the contents of the record area are
unaffected, and the FILE STATUS data item, if any, of the associated
file 1s set to a value indicating the cause of the condition.
Execution of the program proceeds according to the rules stated in The
INVALID KEY Condition in this Chapter see also I-O Status in this
Chapter).

6 - 26

i rmm i e ea e e v

CHAPTER 7

INDEXED INPUT AND OUTPUT

INTRODUCTION TO THE INDEXED I-O MODULE

The Indexed I-0 module provides 2 capability to access records of a
mass storage file in either a random OT sequential manner. Each record in
an indexed file is uniquely jdentified by the value of ome or more keys
within that record.

LANGUAGE CONCEPTS

Organisation

A file whose srganisation is indexed is a wass storage file in which
date records may be accessed by the value of a key. A record description
may include. one or more key data items, each of which is associated with an
index. Each index provides a logical path to the data records according to
the contents of a data item within each record which 1is the record key for
that index.

The data item named in the RECORD KEY clause of the file control entry
for a file 1is the prime record key for that file. For purposes of
jnserting, updating and deleting records in a file, each record 1is
jdentified solely by the value of its prime record key. This value must,
therefore, be unique and must not be changed when updating the record.

Access Modes

In the sequential access mode, the sequence in which records are
accessed 1is the ascending order of the record key values., The order of
retrieval of records within a set of records having duplicate record key
values is the orex in which the records were written into the set.

In the random access mode, the sequence in which records are accessed
is controlled by the programmer. The desired record is accessed by placing
the value of its record key in a record key data item.

In the dynamic access mode, the programmer way change at will from
sequential access to random access using appropriate forms of input—output
statements. '

Current Récord Pointer

The current record pointer is a conceptual entity used in this document
to facilitate specification of the next record to be accessed within a given
file. The concept of the curreut record pointer has no meaning for a file
opened only in the output mode. The setting of the current record pointer
is affected only by the OPEN, START and READ statements.

)‘7
LY

D PSR SRS /¥ S G] P

4.

S.

7.

10..

The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See I-0
Status in this Chapter).

Regardless of the method used to overlap access time with processing
time, the concept of the READ statement 1s unchanged in that a record
is available to the object program prior to the execution of any
statement following the READ statement.

When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalant to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current
data record are undefined at the completion of the execution of the
READ statement.

. If the INTO phrase is specified, the record being read is moved from

the record area to the area specified by identifier according to the
rules specified for the MOVE statement without the CORRESPONDING
phrase. The implied MOVE does not occur if the execution of the READ
statement was unsuccessful. Any subscripting or indexing associated
with identifier 1is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with
identifier. :

If, at the time of execution of a Format 1 READ statement, the position
of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

If, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful. (See I-0
Status in this Chapter).

When the AT END condition is recognised the following actions are taken
in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an AT END condition. (See I-0 Status in
this Chapter) :

.b. If the AT END phrase is specified in the statement causing the

condition,. control is transferred to the AT END
imperative~statement.. Any USE procedure specified for this file
1s. not executed.

¢.. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file, and
that procedure is executed.

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful..

6 - 18

11.

12.

14.

15.

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the current
record pointer are undefined.

When the AT END condition has been recognised, a Format 1 READ
statement for that file must not be executed without first executing
one. of the following: .

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file. -

b. A successful START statement for that file.
¢.. A successful Format 2 READ statement for that file.

For a file for which dynamic access mode is specified, a'Format 1 READ
statement with the NEXT phrase specified causes the next logical record
to be retrieved from the file as described in general rule 2.

If the RELATIVE KEY phrase is specified, the execution of a Format 1
READ statement updates the contents of the RELATIVE KEY data item such
that it contains the relative record number of the record made
available.

The execution of a Format 2 READ statement sets the current record
pointer to, and makes available, - the record whose relative record
number 1is contained in the data item named in the RELATIVE KEY
condition exists and execution of the READ statement i1s unsuccessful.
(See The INVALID KEY Condition in this Chapter).

6 - 19

)

et) A fes
.o, e

A
a4

THE REWRITE STATEMENT
Function

(‘/‘ The REWRITE statement logically replaces a record existing in a disk file.

General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules
1. Record-pame and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the
Data Division. . .

3. The INVALID KEY phrase must be specified in the REWRITE statement for

files. in the random or dynamic access mode for which an appropriate USE
procedure is not specified.

Genéral Rules

l. The file associated with record-name must be open in the I-O mode at
the time of execution of this statement. (See THE OPEN STATEMENT in
this Chapter).

é::ﬁ 2. For files in the sequential access wode, the 1last imput-output
statement executed for the associated file prior to the execution of
_the REWRITE statement must have been a successfully executed READ
statement. The Operating System logically replaces the record that was
accesgsed by the READ statement. ‘ :

3. The number of character poéitions in the record referenced by
record-name must be equal to the number of character positions in the
record being replaced. :

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area.

S. The execution of a REWRITE statement with the FROM phrase is equivalent
to- the execution of:

. MOVE. identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the execution of the
REWRITE statement..

6. The current record pointer is not affected by the execution of a
~ REWRITE. statement..

O

6 - 20

v b e a AR b an Lomle et R Tan e 2 ; - E S SR RSP A XUV CRNPREr R S WIUOP R PRSP ACIMRC S L SN S SR

The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
I-0 STATUS in this Chapter).

For a file accessed. in either random or dynamic access mode, the
Operating System logically replaces the record specified by the
contents of the RELATIVE KEY data item assoclated with the file. 1If
the file does not contain the record specified by the key, the INVALID
KEY condition exists. (See THE INVALID KEY CONDITION in this Chapter).
The updating operation does not take place and the data in the record
area is unaffected..

6 - 21

()

EX]

THE START STATEMENT
Function
(j:ﬁ\ The START statement provides a basis for logical positioning within a

relative file, for subsequent sequential retrieval of records.

General Format

IS =
START file-name[%EY Is > data—-name
Is NOT <

[; INVALID KEY imperative-statement]
NOTE: The required relatiomal characters '>', and '<' and '='

are not underlined to avoid confusion with other symbols
such as '>" (greater than or equal to).

Syntax Rules .
1. File-name must be the name of a file with sequential or dynamic access.
2. Data-name may be qualified.

3. The INVALID KEY phrase must be specified if no applicable USE procedure
is specified for file-name.

4, Data-name, if specified, must be the data item specified in the
RELATIVE KEY phrase of the associated file control entry.

General Rules

1. File-name must be open in the INPUT or I-0 mode at the time that the
START statement is executed. (See THE OPEN STATEMENT in this Chapter).

2. If the KEY phrase is not specified the relational operator 'IS EQUAL
' TO' is implied. : '

3. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file
referenced by file-name and a data item as specified in general Rule 5.

a. The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

b. If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, the execution of the START statement
is unsuccessful, and the position of the current record pointer is
undefined. (See The INVALID KEY Condition in this Chapter).

6 - 22

a~

5.

The execution of the START statement causes the value of the
STATUS data item, if any, associated with file-name to be updated.
I-0 STATUS in this Chapter).

The comparison described in general rule 3 uses the data
referenced by the RELATIVE KEY clause associated with file-name.

6 — 23

- FILE
(See

item

~

e s s i ema PP < PO SN UM U S A SRR X SR

I-0 Status

If the FILE STATUS clause is specified in a file control eatry, a value
is placed into the specified two-character data item during the execution of

an OPEN,

CLOSE, READ, WRITE, REWRITE, DELETE or START statement and before

any applicable USE procedure is executed, to indicate to the COBOL program
the status of that input-output operatiomn.

Status Key 1

The

leftmost character position of the FILE STATUS data item 1s known

as status key 1 and is set to indicate ome of the following conditions upon
completion of the input-output operation.

tol
tll
'2'
13'
19'

The

- Successful Completion

= At End .

Invalid Key

- Permanent Error :
- Operating System Error Message

meaning of the above indications are as follows:

Successful Completion. The input=-output statement was
successfully executed.

At End. The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next logical
record exists in the file. :

Invalid Key. The input-output statement was unsuccessfully
executed as a result of one of the following:

Sequence Error
Duplicate Key

No Record Found
Boundary Violation

Permanent Error. The input-output statement was unsuccessful as
the result of an input-output error, such as data check, parity
error, or transmission error. ' :

Operating System Error Message. The input—-output statement was
unsuccessfully executed as a result of a condition that is
specified by the Operating System Error Message number. This
-value is used only to indicate a condition not indicated by other
defined values of status key 1, or by specified combinations of
the value of status key 1 and status key 2.

Status Key 2

The

rightmost character position of the FILE STATUS data item is known

as status key 2 and is used to further describe the results of the
input-output operation. This character will countain a value as follows:

If

no further information is available concerning the input-output

operation, then status key 2 contains a value of 'o’.

- ety s
el

&

—— - : S T e UUVETU Sy s U R O . . . © emshee L e edemesmeieat o

When status key 1 contains a value of 'O' indicating a successful
completion, status key 2 may contain a value of '2' indicating a
duplicate key. This coudition indicates one of two possibilities+

1. For a READ statement, the key value for the current key of ﬁ:§
reference 1is equal to the value of that same key in the next
record within the current key of reference.

2 For a WRITE or REWRITE statement, the record just written created
a duplicate key value for at least one alternate record key for
which duplicates are allowed.

3. When status key 1 contains a value of '2' indicating an INVALID
KEY condition, status key 2 contains values to designate the cause
of that condi.tion as follows+

1 Indicates a sequence error for a sequentially accessed
indexed £file. The ascending sequence requirements of
successive record key values have been violated (see The
WRITE Statement later in this Chapter, or the prime record
‘key value has been changed by the COBOL program between the
successful execution of a READ statement and the execution of
the next REWRITE statement for that file.

2 Indicates a duplicate key value. An attempt has been made to
write o rewrite a record that would create a duplicate key
in an indexed file.

3 Indicates no record found. An attempt has been made to
access a record, identified by a key, and that record does S
not exist in the file. -

4 Indicates a boundary violation. An attempt has been made to
write beyond the externally defined boundaries of an indexed
file. 7This is usually treated as a fatal error by Operating
Systems,

When status key 1 contains a value of '9' the value of status key 2 is
the Operating System Error Message number.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and
status key 2 are shown in the following table. An 'X' at an intersection
indicates a valid permissible combination. ' : S

Feme e e e - - - PUNRSUUSURSTEIUUK . USRI SRR S AR S P : 3 et - ol o s s

Status Key 1 Status Key 2
-~ -+ =" I No Further Sequence | Duplicate No Record Boundary
- Information Error Key Found Violation
0) 1) (2) 3 (4)
Successful X X
Completion (0)
At End (1) X
Invalid Key (2) X X X { X
Permanent
Error (3) X Z/,—s\\
Implementor
Defined (9) Operating System Error Message Number

/

The INVALID KEY Condition <

The INVALID KEY condition can occur as a result of the exefution of a
START, READ, WRITE, REWRITE or DELETE statement. For details gf the causes
of the condition see THE START STATEMENT, THE READ STATEMENT, THE WRITE
STATEMENT, and THE DELETE STATEMENT later in this Chapter. 'L ;77

When the INVALID KEY condition is recognised, the Operating System
takes these actions in the following order: N

1. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an INVALID KEY condition. (See I-0 Status).

2. If the INVALID KEY phrase is specified in the statement gausing the
condition, control 1s transferred to the INVALID K '//imperative
statement. Any USE procedure specified for this file is/hot.executed.

When the INVALID KEY condition occurs, execution of .the inmput-output

statement which recognised the condition is unsuccessful and the file
is not affected. : :

The AT END Conditiom

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see THE READ
STATEMENT later in this Chapter.

/ﬁ\

TN I

ENVIRONMENT DIVISION IN THE INDEXED I-0 MODULE

INPUT-OUTPUT SECTION

The File Control Paragragh

Function
The FILE-CONTROL paragraph names each file and allows specification of

other file-related information. (See also appendix F in the CIS COBOL
Operating Guide).

General Format

FILE-CONTROL. {file-control—entry}...

The File Control Entry

Function
The file control entry names a file and may specify other file-related
information.
General Format
SELECT file-name
ASSIGN TO external—file-name-literal}

{file-identifier g
{external-file-name-literali]
*tfile-identifier ‘

ORGANISATION IS INDEXED

ACCESS MODE IS { SE UENTIAI‘}}

we

- DYNAMIC

* RANDOM

| ——re

RECORD KEY IS data-name~l , ‘

we

[; FILE STATUS IS data-name-3]

Y

Syntax Rules

1. The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. Each file specified
in the file control entry must have a file description entry in the
Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.
7-5

LR g PRSP

A e o e 5, ST o o

4, Data-name-3 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not be defined in the
File Section, the Report Section, or the Communication Section.

(v 5. The data items referenced by data-name-l muét each be defined as a data
4 item of the category alphanumeric within a record description entry
associated with that file-name.

6. Neither data-name-1 can describe an item whose size is variable. (See
THE OCCURS CLAUSE in Chapter 4).

General Rules

1. The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium. See Appendix F in the CIS COBOL
Operating Guide. The first assignment takes effect. Subsequent
agssignments within any one ASSIGN clause are for documentation purposes
only.

2. The ORGANISATION clause specifies the logical structure of a file. The
File organisation is established at the time a file is created and
cannot subsequently be changed.

3. When the access mode is sequential, records in the file are accessed in
the sequence dictated by the file organisation. For indexed files this
sequence is the order of ascending record key values within a given key
of reference.

operating system into the data item specified by data-name-3 after the
execution of every statement that references that file either

~ explicitly or implicitly. This value indicates the status of execution
of the statement. (See I-0 STATUS in this Chapter).

<f-§ 4. When the FILE STATUS clause is specified, a value will be moved by the
o4

6. TIf the access mode is random, the value of the record key data item
indicates the record to be accessed. '

7. TWhen the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See genmeral rules 4 and 6).

8. The RECORD KEY clause specifies the record key that is the prime record
key for the file. The values of the prime record key must be unique
among records of the file. This prime record key provides an access

* path to records in an indexed file.

9. The data description of data-name-l1 as well as relative locations
within a record must be the same as that used when the file was
created.

Se

The I-0 Control Paragraph

Function
The I-O-CONTROL paragraph specifies the points at which rerun is to be o
established and the memory area which is to be shared by different files. i

,General Format

1-0-CONTROL
3 RERUN ON f file-name-l EVERY (integer-l RECORDS OF file-name-2
implementor-name integer-2 CLOCK-UNITS
‘condition-name cos

[; SAME ARFA fOR file-name-3 ,{file-name-4}...] ces
Syntax Rules

1. The I-O-CONTROL paragraph 1is optional. The whole clause 1s for
documentation purposes only when present.

2. File-name-l must be a sequentially organised file.
3. When either the integer-1 RECORDS clause or the integer-2 CLOSE-UNITS
clause is specified, implementor-name must be given .in the RERUN

clause.

4, When multiple integer-1 RECORDS clauses are specified, no two of them
may specify the same file-name-2.

~
5. Only one RERUN clause containing the CLOCK-UNITS clause may be e
specificed. - '
6. More than one SAME clause (SAME AREA) may be included in a program but
a file-name must not appear in more than one SAME AREA clause.
7. The files referenced in the SAME AREA clause need not all have the same
organisation or access. '
General Rules
1. -The RERUN ;{auSeiisrtreatedﬁas‘for'documenta;ion purposes only.
2. ~The SAME AREA clause is treated as for: documentation purposes only.
“ ~
~

o AT AT e R e et S - ey e S e s—— —a” s

e e amn e S T b e L Tt 367

. DATA DIVISION IN THE INDEXED I-O MODULE

FILE SECTION ‘

@\ In a COBOL program the file description entry (FD) represents the
highest level of organisation in the File Section. The File Section header
is followed by a file description entry consisting of a level indicator
(FD), a file-name and a seriles of independant clauses., The FD clauses
specify the size of the logical "and physical records, the presence or
absence of label records, the value of implementor-defined label items, and
the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a- set of data description entries
which describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data-name 1if
required, followed by a series of independent clauses as required. A record
description has a hierarchical structure and therefore the clauses used with
an entry may vary considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record description is defined in
CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a record
description are shown in THEE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in
Chapter 3.

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

(J;‘\ : Function

The file description furnishes information concerning the physical
structure, identification, and record names pertaining to a given file.

General Format

FD file-name

[; BLOCK CONTAINS integer-2jRECORDS
CHARACTERS) j

[; RECORD CONTAINS [;Lnteger—S gg_]inieger-A CHARACTERS]

sLABEL 'RECORD IS } STANDARD
- RECORDS ARE OMITTED

sVALUE OF data-name-l IS literal-l
[,data~name-2 IS literal-2] ...

DATA { RECORD is } data-name-3 [,data-name-4]
RECORDS ARE

Syntax Rules

Q ' 1. The level indicator FD identifies the beginning of a file description
and must precede the file-name,

7-8

a1 e g e A

e oen st e S e e e

2. The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial. -All clauses are
‘eptitonal’ whea the ANSI switch is.Set om. . | |

3. One or more record description entries must follow the file description ﬁ;i\
entry.

THE BLOCK CONTAINS CLAUSE . -

Function

The BLOCK CONTAINS claus'e specifies the size of a physical record.

General Format

BLOCK CONTAINS :Lnteger-Z{ RECORDS
' CHARACTERS

General Ruie

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of fiﬁ
data records with their associated file. : o

General Format

’

DATA RECORD IS } data-name-l [, data-name-2] ...
RECORDS ARE :

Syntax Rules

Data-name-l and data-name-2 are the names of data records and must have
01 level-number record descriptions, with the same names, associated
with them.

General Rules

1. The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of
differing sizes, different formats, etc. The order in which they are
listed is not significant.

2.. Conceptually, all data records within a file share the same area. This
is in no way altered by the presence of more than one type of data ﬂ‘ﬁ
record within the file..

THE LABEL RECORDS CLAUSE
Function

The LABEL RECORDS clause specifies whether labels are preseat.

General Format

——————

LABEL { RECORD IS } STANDARD
RECORDS. ARE

OMLTTED

General Rule

THE. RECORD CONTAINS CLAUSE
Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer—~l TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record
description entry, therefore this clause 1is never required. .The' RECORD:
gmﬂgﬁmxﬁgggggsgg;gﬁ;peciffed;Eot:documentatiou;pumpasesionkz“,) o

THE VALUE OF CLAUSE
Function

The VALUE OF clause specialises the description of an item in the label
records associated with a file..

General Format

VALUE OF data-namel IS literal-l
[,dataname2 IS literal-2] ...

General Rules

l. . This clause is used for documentation purposes only..

2. A figurative constant may be substituted in the format above wherever a
literal is specified..

7-10

e RO Py R YU RN

PROCEDURE DIVISION IN THE INDEXED I-O MODULE

THE CLOSE STATEMENT
Function

. The CLOSE statement terminates the

General Format

CLOSE file-name=-l [WI'I’H LOCK][[, ‘file-name-2 [WITH LOCK]] oo

~ Syntax Rule

The files, referenced in the CLOSE statement héed not all have the same v

organisation or access.

General Rules

l.. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if a file is in the open mode when a STOP RON
statement is executed 1s to close the file. The action taken for a file
that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is to
close the file :

3. If a CLOSE statement has been executed for a file, no other statement
can be executed that references that file, either explicitly or
implicitly, unless an intervening OPEN statement for that file is
executed.

4. TFollowing the successful execution of a CLOSE statement, the record are

' associated with file-name is no louger available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the
record area undefined. '

7 -11

THE DELETE STATEMENT

Function
7~
_ The DELETE statement logically removes a record from a mass storage
", file.

General Format
DELETE file-name RECORD [; INVALID KEY imperative—statement]

Syntax Rules

1. The INVALID KEY phase must not be specified for a DELEIE ‘statement
which references a file which is in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which
an applicable USE procedure is not specified.

General Rules

1. The associated file must be open in I-0 mode at the time of the
execution of this statement. (See THE OPEN STATEMENT later in this
Chapter).

2. For files in the sequential access mode, the 1last input-output
statement executed for file-name prior to the execution of the DELETE

7 statement must have been a successfully executed READ statement. The
s MSCS logically removes from the file the record that was accessed by

that READ statement.

3., For a file in random or dynamic access mode, the MSCS logically removes
from the file the record identified by the contents of the prime record
key data.item associated with file-name. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See
THE INVALID KEY CONDITION in this Chapter).

4., After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be
accessed.

5. The execution of a DELETE.statement does not affect the contents of the
record area associated with file~-name. '

6. 'The current record pointer is not affected by the execution of a DELETE
gtatement.. '

7. The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, assoclated with file-name to be updated.
. (See I-0 STATUS in this Chapter).

7 -12

T AT e e a X i g s o LA o,

THE OPEN STATEMENT
Function

The OPEN statement initiates the processing of files. It also performs
checking and/or writing of labels and other input-output operations.

General Format

INPUT file-name-l [,file-name-2] ...
- I=0 file-name=5 [,file-name=6] ...

Syntax Rules

- 1. The files referenced in the OPEN statement need not all have the same
organisation or access.

General Rules

1. The successful execution of the OPEN statement determines the
availability of the file and results in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated
record area available to the program.

3.. Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, either
explicitly or implicitly. ‘

4. An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 2,
Permissible Statements, 'X' at an intersection indicates that the
specified statement, used in the access mode given for that row, may be
used with the indexed file organisation and the open mode given at the
top of the column.

7-13

Table 7-1. Permissable Combinations of Statements and Open Modes for Indexed
I/0.

—~ . Open Mode
(';'\ File Access
Mode Statement Input Output Input-Output

Sequential READ X X
WRITE X
REWRITE
START X
DELETE

Random READ X
WRITE X
REWRITE
START
DELETE

PA PP pd | DY

Dynamic READ X
WRITE X
REWRITE X
START X
DELETE

P4 P4 b4 M

5. A file may be opened with the INPUT, OUTPUT and I-0 phrases in the same
program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must
(2\ be preceded by the execution of a CLOSE statement for that file,

6. Execution of the OPEN statement does not obtain or release the first
data record. '

7. The assigned name in the select statement for a file is processed as
follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the assigned name to be checked in accordance
with the operating system conventions for opening files for input.

b. When the OUTPUT phrase is specified, the execution of the OPEN

statement causes the assigned name to be writtem in accordance

. with the operating system conventions for opening files for
output. '

8. The file description entry for file-name~l, file-name-2, file-name-5,.
or file-name-6 must be equivalent to that used when this file was
created.. ‘

9, For files being opened with the INPUT or I-O phrase, the OPEN statement
sets the current record pointer to the first record currently existing
within the file. For indexed files, the prime record is established as:
the key of reference and 1s used to determine the first record to be
accessed. If no records exist in the file, the current record pointer

F:Q is set such that the next executed Format 1 READ statement for the file
: will result in an AT END condition. If the file does not exist, INPUT

will cause an error status.

7 - 14

VSR UIUS SAR P PO e e et e —— s At e et i e e+ - mbevmiaimas s e ek e e e

e e ey , TR (S T e

S S PN PRI 1 SO P

10. The I-0 phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it
cannot be used if the file is being initially created. If the file
does not exist, it will be created.

11. Upon successful execution of an OPEN statement with the output phrase ;}\
specified, a file is created. At that time the associated £file
contains no data records. If a file of the same name exists it will be
deleted. If write protected, an error status occurs.

7-15

)

THE READ STATEMENT

Function

For sequential access, the READ statemeant makes available the next
logical record from a file. For random access, the READ statement makes
available a specified record from a mass storage file.

General Format

Format 1
READ file-name [NEXT] RECORD [INTO identifier]
[;AT END imperative-statement]
Format 2
READ file-name RECORD [INTO identifier]

[;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptioas.
The storage area associated with identifier and the storage area which

is the record area associated with file-name must not be the same.

storage area.
2. TFormat 1 must be used for all files in sequential access mode.

3., Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly..

4. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name. '

General Rules

1.. The associated file must be open in the INPUT or I-0 mode at the time
this statement is executed. (See THE OPEN STATEMENT in this Chapter).

2. .The record to be made available by a Format 1 READ statement is
determined as follows:

i The record, pointed to by the current record pointer, 1is made
available provided that the current record pointer was positioned
by the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the
record 1s no longer accessible, which may have been caused by the
deletion of the record. The current record pointer is updated to
point to the next existing record within the established key of
reference and that record is then made available.

7 - 16

4.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file with the established
key of reference and then that record is made available.

The execution of the READ statement causes the value of the FILE STATUS

data item, if any, associated with file-name to be updated. (See I-0
Status in this Chapter).

Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a recoxrd
is available to the object program prior to the execution of any
statement following the READ statement.

When the logical records of a file are described with more than omne

record description, these records automatically share the same storage
area; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current
data record are undefined at the completion of the execution of the
READ statement. '

If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the
rules specified for the MOVE statement. The implied MOVE does not
occur 1if the execution of the READ statement was unsuccessful. Any
subscripting or indexing associated with identifier is evaluated after
the record has been read and immediately before it is moved to the data
item.

" When the INTO phrase is used, the record being read is available in

8.

9.

both the dinput record area and the data area associated with
identifier.

If, at the time of execution of a Format 1 READ statement, the position
of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

1f, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs, and. the
execution of the READ statement 1is considered unsuccessful. (See I-0

Status in this Chapter). _—

10.

When the AT END condition is, recognised the following actioms are taken
in the.specified order: ‘

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an AT END condition. (See I-O STATUS in
this Chapter). , .

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative
statement. Any USE procedure specified for this file is not
executed.

c. If the AT END phrase is not specified, then a USE procedure must

- be specified, either explictly or implicitly, for this file, and
that procedure is executed.

7 =17

i e R R A RS

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful.

11. Following the unsuccessful execution of any READ statement, the

({-\ contents of the associated record area and the position of the current

‘ record pointer are undefined. For indexed files the key of reference
is also undefined.

12. When the AT END condition has been recognised, a Format 1 READ
statement for that file must not be executed without first executing
one of the following:

a. A succesfful CLOSE statement followed by the execution of a
gsuccessful OPEN statement for that file.

b.. A successful START statement for that file.
C. A successful Format 2 READ statement for that file.

13. For a file which dynamic access mode is specified, a Format 1 READ
statement with the NEXT phrase specified causes the next logical record
to be retrieved from that file as described in general rule 2 above.

l4. For an indexed file being sequentially accessed, records having the
same duplicate value in an alternate record key which is the key of
reference are made available in the same order in which they are
released by execution of WRITE statements, OTr by execution of rewrite
statements which create such duplicate values.

- 15. If the KEY phrase is not specified in a Format 2 READ statement, the

@ prime record key 1is established as the key of reference for this
retrieval. If the dynamic access mode is specified, this key of
reference is also used for retrievals by any subsequent executions of
Format 1 READ statement for the file.

16. Execution of a Format 2 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding
data: item of the stored records in the file, until the first record
having an equal value 1is found. The curreant record pointer is
positioned to this record which is then made available. If no record
can be so identified, the INVALID KEY condition exists and execution of
the READ statement is unsuccessful. (See The INVALID KEY Condition in
‘this Chapter).

. 7 -18

Sananitt Sed 0 ol

s

THE REWRITE STATEMENT

Function
The REWRITE statement logically replaces a record existing in a mass f-\
storage file. S

General Format

REWRITE record-name [FROM identifier] [;INVALID KEY imperative-statement]

Syn:ax Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the
Data Division.

3. The INVALID KEY phrase must be specified in the REWRITE statement for
files for which an appropriate USE procedure is not specified.

General Rules

1. The file associated with record-name must be open in the I-0 mode at
" the time of execution of this statement. (See THE OPEN STATEMENT in
this Chapter).

2. For £iles in the sequential access mode, the last input=-output f-ﬁ
statement executed for the associated file prior to the execution of
the REWRITE statement must have been a successfully executed READ
statement. The Operating System logically replaces the record that was
accessed by the READ statement. :

3. The number of character positions in the record referenced by
record-name must be equal to the number of character positions in the
record being replaced. : ~

4.; The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area.

5. The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of: - : :

" MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of
the implicit MOVE statement have uno effect on the execution of the
REWRITE statement.

6.. The current record pointer is not affected by the execution of a
REWRITE statement.

7-19

9.

10.

PO PRSP : JRUPIIPNPUIP S SR S SSS SR P RS

The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See

1-0 Status).

For a file in the sequential access mode, the record to be replaced 1is
specified by the value contained in the prime record key. When the
REWRITE statement is executed the value contained in the prime record
key data item of the record to be replaced must be equal to the value
of the prime record key of the last record read from this file.

For a file in the random or dynamic access mode, the record to be
replaced is specified by the prime record key data item.

The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the prime
record key data item of the record to be replaced is not equal to
the value of the prime record key of the last record read from
this file or,

b. - The value contained in the prime record key data item dces not
equal that of any record stored in the file, or

c. The updating operation does not take place and the data in the
record area is unaffected. (See The INVALID KEY Condition in this
Chapter).

7-20

© dwae e e el et e -

s Bt At ST

‘8- N . 4 . A 1

THE START STATEMENT
Function

 The START statement provides a basis for logical positioning within an ﬂﬁQ
indexed file, for subsequent sequential retrieval of records.

General Format

' 1s =
START file-name[gEY 1s > data-nam;]
IS NOT <

sINVALID KEY imperative-statement
" NOTE: The required relational characters '>', ' and '=' are not
' underlined to avoid confusion with other symbols such as >

(greater than or equal to).

Syntax Rules

1. File-name must be the name of an indexed file.
2. File-name must be the name of a file with sequential or dymamic access.
3. Data-name may be qualified.

4, The INVALID KEY phrase must be specified if no applicable USE procedure
is specified for file-name.

5. TIf file-name is the name of an indexed file, and if the KEY phrase is ,359
specified, data-name may reference a data item specified as a record
key associated with file-name, or it may reference any data item of
category alpanumeric subordinate to the data~name of a data item
specified as a record key associlated with file-name whose leftmost
character position corresponds to the leftmost character position of
that record key data item.

General Rules

1. File-name must be open in the INPUT or I-0 mode at the time that the
START statement is executed. (See THE OPEN STATEMENT in this Chapter).

2. If the KEY phrase 1is not specified the relational operator 'IS EQUAL
TO' is implied. '

3. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file
referenced by file-name and a data item as specified in general rule 5.
If file—name references an indexed file and the operands are of unequal
size, comparison proceeds as though the longer ome were truncated on
the right such that its length is equal to that of the shorter. All
other nonnumeric comparison rules apply except that the presence of the
PROGRAM COLLATING SEQUENCE clause will have no effect on the
comparison. (See Comparison of Nonnumeric Operands).

7 -21

— RN SITIITESPIIC RIS SIS PO SPSEPITTISSRIRE SRR RS SRS bt A B

a. The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

q; ‘ b. If the comparison is not satisfied by any record im the file, an

- INVALID KEY condition exists, the execution of the START statement
is unsuccessful, and the position of the current record pointer is
undefined. (See The INVALID KEY Condition in this Chapter)

4. The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See
I-0 Status).

5. 1If the KEY phrase is specified, the comparison described in general
rule 3 uses the data item referenced by data-name.

6. If the KEY phrase is not specified, the comparison described in general
rule 3 uses the data item referenced in the RECORD KEY clause
assoclated with file—name.

7. Upon completion of the successful execution of the START statement, a
key of reference 1is established and used in subsequent Format 1 READ
statements as follows: (See THE READ STATEMENT in this Chapter). ‘

a. If the KEY phrase is not specified, the prime record key specified
for file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a
record key for file-name, that record key becomes the key of

Cf-\ reference.

¢.. 1f the KEY phrase is specified, and data-name is not specified as
a record key for file-name, the record key whose leftmost
character position corresponds to the leftmost character position
of the data item specified. by data-name, becomes the key of
reference.
8. If the execution of the START statement is not successful, the key of
reference is undefined. : :

7 -22

B L R I PR S PR

THE USE STATEMENT
Function
The USE statement specifies procedures for input-output error handling f‘\

that are in addition to the standard procedures provided by the input-output
control system.

General Format

file-name-l
EXCEPTION INPUT
USE AFTER STANDARD ERROR PROCEDURE ON | OUTPUT
- I-0

Syntax Rules

1. A USE statement, when present, must immediately follow a section header
: in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or
more procedural paragraphs that define the procedures to be used.

2. The USE statement itself 1is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

- General Rules

1. . If the INVALID KEY phrase on the AT END phrase have not been specified
in the input-output statements the designated procedures are executed
by the input-output system after completing the standard input-output
routine upon recognition of the INVALID KEY or AT END condition.

2. After execution of a USE procedure, controlis returned to the invoking
routine.

3. Within a USE procedure, there must be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion
there must be no reference to procedure-names . that appear in the
declarative portion, except that PERFORM statements may refer to a USE
statement or to the procedures associated with such a USE statement.

4, Within a USE procedure, there must not be the excecution of any

. gtatement that would cause the execution of a USE procedure that had

" previously been invoked and had not yet returned control to the’
invoking routine.

7-23

THE WRITE STATEMENT

Function
FALLULT 2

The WRITE statement vreleases a logical record for am output or

input-output file.

General Format

2.

3.

1.

2.

be

WRITE record=-name FROM identifier ; INVALID KEY imperative-statement

Record-name and identifier must not reference the same storage area.

The record-name is the name of a logical record in the File Section of
the Data Division. :

The INVALID KEY phrase must be specified if an applicable USE procedure
is. not specified for the associated file. :

General Rules

The associated file must be open in the OUTPUT or I-0 mode at the time
of the execution of this statement. (See THE OPEN STATEMENT in this
Chapter).

.The logical record released by the execution of the WRITE statement is
no longer available in the record area unless the execution of the
WRITE statement is unsuccessful due to an INVALID KEY condition.

The results of the execution of the WRITE statement with the FROM

_phrase is equivalent to the execution of:

a.. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed
byr o . .

b. The same WRITE statement without the FROM phrase.

- The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

After execution of the: WRITE statement is complete, the
information in the area referenced by identifier 1s available,
even though the information in the area referenced by record-name
may not be. (See gemeral rule 2 above).

The current record pointer is unaffected by the execution of a WRITE
statement.

7 - 24

5.
6.

7.

8.

9.

10.

11.

12.

13.

L4,

15.

The execution. of the WRITE statement causes the vélue of the FILE
STATUS data item, if any, associated with the file to be updated. (See

I-0 Status in this Chapter).

The maximum record size for a file is established at the time the file
is created and must not subsequently be changed.

The number of character positions on a mass storage device required to

~store a logical record in a file may or may not be equal to the number

of character positions defined by the logical description of that
record in the program.

The execution of the WRITE statement releases a logical record to the
operating system. :

Execution of the WRITE statement causes the contents of the record area
to be released. The Operating System utilizes the content of the
record keys in such a way that subsequent access of the record may be
made based upon any of those specified record keys.

The. value of the prime record key must be unique within the records in
the. file.

The data item specified as the prime record key must be set by the

program to the desired value prior to the execution of the WRITE

statement.

If sequential access mode is specified for the file, records must be
released to the Operating System is ascending order of prime record key
values.

If random or dynamic access mode is specified, records may be released
to the Operating System in any program-specified order..

The INVALID KEY condition exists under the following circumstances:

a.. When sequential access mode is specified for a file opened in the
output mode, and the value of the prime record key is not greater
than the value of the prime record key of the previous record, or

b. When the file is openmed in the output or I-0 mode, and the value
of the prime record key is equal to the value of a prime record
key of a record glready‘existing in the file, or

c. ' When an attempt is made to write beyond the extermally defined
boundaries of the file.

When the INVALID KEY condition is recognised the execution of the WRITE
statement 1s unsuccessful, the contents of the record area are
unaffected and the FILE STATUS data item, if any, associated with
file-name of the associated file is set to a value indicating the cause
of the condition. Execution of the program proceeds according to the
rules. stated under THE INVALID KEY CONDITION (See also I-O Status in
this Chapter). ;

S o e e e e o i+ & e e e et oo e h L L e e o e o+ bt 4

CHAPTER 8

SEGMENTATION
™ INTRODUCTION TO THE SEGMENTATION MODULE

The Segmentation module provides a capability to specify object program
overlay requirements.

Segmentation provides a facility for specifying permanent and
independent segments.. All sections with the same segment-number must be
contiguous in the source program. All segments specified as permanent
segments must be contiguous in the source program.

GENERAL DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that provides a means by which the
user may. communicate with the compiler to specify object program overlay
requirements..

COBOL segmentation deals. only with segmentation of procedures. As
such, only the Procedure Division is considered in determining segmentation
requirements for an object program.

ORGANIZATION
Program Segments

Q;-c\ Although it is not mandatory, the Procedure Division for a source
program 1s usually written as a counsecutive group of sections, each of which

is composed of a series of closely related operations that are designed to

. collectively perform a particular function. However, when segmentation is
used, the entire Procedure Division must be in sections. In addition, each
section must be classified as belonging either to the fixed portiom or to
one of the independent segments of the object program.

Fixed Portion

" The: fixed portion is defined as that part of the object program which
is logically treated as if it were always in memory. This portion of the
program is composed of fixed permanent segments.

A fixed permanent segment 1is a segment in the fixed portion which
cannot be overlaid by any other part of the program.

Iﬁdepende.nt Segments

An independent segment is defined as part of the object program which
can overlay, and can be overlaid by another independent segment. An
independent segment is in its initial state whenever control is transferred
(either implicitly or explicitly) to that segment for the first time during
the execution of a program. On subsequent transfers of control to the
segment, an independent segment is also in its initial state when:

1. Control is transferred to that segment as a result of the implicit
transfer of control between consecutive statements from a segment with
a different segment-number.

2. Control is transferred explicitly to that segmeat from a segmenf with a) ;is\
different segment-number (with the exception noted in paragraph 2 :
below).

On subsequent transfer of control to the segment, an independent
segment is in its last-used state when:

1. Control is transferred implicitly to that segment from a segment with a
different segment-number (except as noted in paragraph 1.

2. Control is transferred explicitly to that segment as the result of the
execution of an EXIT PROGRAM statement.

SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system .of
segment-numbers and the following criteria:

1. Logic Requirements - Sections which must be available for reference at
all times, or which are referred to very frequently, are normally
classified as belonging to ome of the permanent segments; sectlons
which are used less frequently are normally classified as belonging to
one of the independent segments, depending om logic requirements.

2. Frequency of Use - Genmerally, the more frequently a section is referred
to, the lower its segment-number, the less frequently it is referred
to, the higher its segment-number.

)

3. Relationship to Other Sections ~ Sections which frequently communicate
with one another should be given the same segment-numbers

SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control. Control wmay be
transferred within a source program to amy paragraph in a sectiom; that is,
it is not mandatory to transfer control to the beginning of a section.

¢

EL

i - _— P S5r S DY P DR e o

STRUCTURE OF PROGRAM SEGMENTS

SEGMENT-NUMBERS

Section classification is accomplished by means of a system of
segment-numbers. The segment-number is included in the section header.

GENERAL FORMAT e
gsection-name SECTION [segment-number]
SYNTAX RULES

1. The segment-number must be an integer ranging in value from 0 through
99, '

2, If the segment-number is omitted from the section header, the
segment-number is. assumed to be 0. .

3. Sections in the declaratives must contain segment-numbers less than 50.
GENERAL ROLES

(1) All sections which have the same segment-number comstitute a program
segment. All sections which have the same segment-number must be together
in the source program.

(2) Segments with segment-number 0 through 49 belong to the fixed portion
of the object program. All sections with segment-number 0 through 49 must
be together in the source program..

(3) Segments with segment-number 50 through 99 are independent segments.

RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the
ALTER and PERFORM statement,

THE ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with
a different segment-number.
THE PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any

declarative sections whose execution is caused within that range, only one

of the followding:

* Sections and/or paragraphs wholly contained in ome or more
non—-independent segments.

* Séctions and/or paragraph wholly contained in a single.independent
segment,

A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

- Sections and/or paragraphs wholly contained in one or more
: non-independent segments.

b. Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

)

()

Bt e o

P dmm s der e etcaamms - tm e e cem mmcas emec o oo Ead e ¢t s —— a4 et i = mmmemim e mm aecae 8 Sews - -

CHAPTER 9
LIBRARY

INTRODUCTION TO THE LIBRARY MODULE

The Library module provides a capability for specifying text that is to
be copied from a source user-library file. This 1s usually created using

any suitable source text editor

CIS COBOL libraries comsist of disk files that contain source to be
made available to the compiler. The effect of the interpretation of the
COPY statement 1s to insert text into the source program, where it will be
treated by the compiler as part of the source program.

THE COPY STATEMENT

FUNCTION

The COPY statement incorporates text into a CIS COBOL source program.

GENERAL FORMAT

COPY "text-name"

SYNTAX RULES

l. Text-name must be a unique standard operating system file name.

2., The COPY statement must be preceded by a space and terminated by the
separator period. .

3. A COPY statement may occur in the source program anywhere a

character-string or a separator may occur except that a COPY statement
must not occur within a COPY statement,

GENERAL RULES

l.

2.

3.
4.

The compilation of a source program containing COPY statement is
logically equivalent to processing all COPY statements prior to the
processing of the resulting source program.

The effect of processing a COPY statement is that the library text
associated with text-name is copied into the source program, logically
replacing the entire COPY statement, beginning with the reserved word
COPY and ending with the punctuation character period, inclusive.

The library text is copied unchanged.

If the unit identifier is not explicitly specified, default is to the
drive from which the compiler is loaded. '

[P - [N I IVRIRY ST DTP ST S

B et e

3
et SO £ 3 S, e —

CHAPTER 10
 DEBUG AND INTERACTIVE DEBUGGING

GENERAL DESCRIPTION

COBOL debugging provides a means by which the user can describe the
conditions under which data items or procedures are to be monitored during
the execution of the object program.

The decisions of what to monitor and what information to display are
explicitly in the domain of the user. The COBOL Debug facility simply
provides a convenient access to pertinent information.

The features. of COBOL that support the debug facility are; a compile time
switch-DEBUGGING MODE and debugging lines.

COMPILE-TIME SWITCH

The DEBUGGING MODE clause 1s written as part of the SOURCE-COMPUTER
paragraph in the Environment Division. It serves as a compile~time switch
over debugging statements written in the program.

When. the DEBUGGING MODE is not specified in a program, all the debugging

lines are compiled as if they were comment lines and their syntax is not
checked..

DEBUGGING LINES

A debugging line is any line with a "D'" in the indicator area of the line.

The contents of a debugging line must be such that a syntactically correct
program is formed with or without the debugging lines considered as comment
lines.

A debugging line is considered to have thevcharacteristics.of a comment line
if the DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph. .

If DEBUGGING MODE is specified, debugging lines are compiled as normal
source lines.

Sucéessivg~debugging_Iines are allowed..

A.deﬁugging;line is only permitted in the program after the OBJECT-COMPUTER
paragraph in the Enviromment Division..

Continuation of debugging lines is not permitted.

| pmerne vews

"Ihere is a Rnnriime Debug Package~"’provide break-point facilities in the:

'usez~s program. ' ‘Programs. may be run from the start until a specified.
) bxeakrpoint is: reached, when: control is passed back to: the. user.. ‘At this~
) point, data. areas may: be: inspectedior changed.. :

10 -1

4 ne."by ‘Ha
 package can- ne:ﬁerenee proeédnr st&tements and da.ta; ateas. b
:llg . hexadeciml cede’ output‘-‘by‘the compiler- against each linm
> - Powerful mac::q! _of commands can be used. to: giy
“The - prec:tse details for usd.ng th

. :'debugging facilities. A
«package. vary: acdording to the:host ‘operating system.. .

10 - 2

2

)

XY
.

e e e e i e c— s s S S b o S ¢+ b e A

CHAPTER 11

INTERPROGRAM COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

The Inter-Program Communication module provides a facility by which a
program can communicate with one or more programs. This provides a
programmer with a modular programming capability. Each module when CALLed
is loaded dynamically by the Run Time System. Communication is provided by:

* The ability to transfer control from one program to another within
a run unit

* The ability for both programs to have access to the same data
items..

DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION

The. Linkage Section in a program is meaningful if and only if the object
program is to function under the control of a CALL statement, and the CALL
statement in the calling program countains a USING phrase.

The Linkage Section 1is used for describing data that is available through
the calling program but is to be referred to in both the calling and the
called program. No space 1is allocated in the program for data items

referenced by data-names in the Linkage Section of that program. Procedure

. Division references to these data items are resolved at object time by
equating the reference in the called program to the location used in the
calling program. In the case of index-names, no such correspondence is.
established., Index-names in the called and calling program always refer to
gseparate indices. K

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if they

are specified as operands of the USING phrase of the Procedure Division .
header or are subordinate to such operands, and the object program is under-

the control of a CALL statement that specifies a USING phrase.

The structure of the Linkage Section is the same as that previously
described for the Working-Storage Section, beginning with a section header,
followed by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must be unique
within the called program since it cannot be qualified. Data items defined
in the Linkage Section of the called.program must not be associated with
data items defined in the Report Section of the calling program.

Of those items defined in the Linkage Section only data-name-l, data-name-2,
v.. in the USING phrase of the Procedure Division header, data items
subordinate to these data-names, and condition-names and/or

11 -1

index-names associated with such data-names and/or subordinate data items,
may be referenced in the Procedure Division.

Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to ome
another need not be grouped into records and are classified and defined as
noncontiguous elementary items. Each of these data items is defined in a
separate data description entry which begins with the special level-number
77.
The following data clauses are required in each data description entry:
* Level-number 77
* Data-name

* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

11 -2

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER

The Procedure Division is. identified by and must begin with the following
header:

PROCEDURE DIVISION [USING data-name-l1 [, data-name-2] ...]

The USING phrase is present if and only if the object program is to function
under the control of a CALL statement, and the CALL statement in the calling
-program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header
must be defined as a data item in the Linkage Section of the program in
which this header occurs, and it must have a Ol or 77 level-number.

Within a called program, Linkage Section data items are processed according
to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if
data-name-1 of the Procedure Division header in the called program and
data-name-l1 in the USING phrase of the CALL statement in the calling program
refer to a single set of data that is equally available to both the called .
and calling programs. Their descriptions must define an equal number of
character positions; however they need not be the same name. 1In like
manner, there is an equivalent relationship between data-name-2, ..., in the
USING phrase of the called program and data-name-2, ..., in the USING phrase
of the CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the Procedure Division header of the
called program; however, a given data-name may appear more than oace in the
same USING phrase of a CALL statement.

11 -3

B S s T R)

THE CALL STATEMENT
Function

The CALL statement causes control to be transferred from one object program
to another, within the run unit.)

General Format

identifier-l oo
CaLL literal~l [U_s_ly_g data~name-1 [, data-name-2] ...]
Syntax Rules .

1. Literal-l must be a nonnumeric literal.

2. The USING phrase is included in the CALL statement only if there is a
USING phrase in the Procedure Division header of the called program and
the number of operands in each USING phrase must be identical.

3. Each of the operands in the USING phrase must have been defined as a

data item in the File Section, Working-Storage Section, Communication
Section, or Linkage Section, and must have a level-number of Ol or 77.

General Rules

1. The program whose name is specified by the value of literal-l is the
called program; the program in which the CALL statement appears is the ,‘:?
calling program. ,)

2. The execution of a CALL statement causes control to pass to the called
program, 4

3. A called program is in its initial state the first time it is called
within a run unit.

On all other eantries into the called program, the state of the program
remains unchanged from its state when last existed. This includes all
data fields, the status and positioning of all files, and all alterable
switch settings. T

4, If during the execution of a CALL statement, it is determined that the

: available portion of run~time memory is incapable of accomodating the
program gpecified in the CALL statement, an operating system error is
generated. :

5. Called programs may contain CALL statements. However, a called program
must not contain a call statement that directly or indirectly calls the
calling program.

6. The data-names, specified by the USING phrase of the CALL statement,
indicate those data items available to a calling program that may be
referred to in the called program. The order of appearance of the
data-names in the USING phrase of the CALL statement and the USING /‘gD

11 - 4

@

R e T

phrase in the Procedure Division header is critical. Corresponding
data-names refer to a single set of data which 1is available to the
called and calling program. The correspondence 1is positional, not by
name. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program always
refer to separate indices.

11 -5

et e s et W iy e e S hmme s o amiena b L e B L e

THE CANCEL STATEMENT

Function

The CANCEL statement releases the memory areas occupied by the referred to

program. : :

General Format

identifier-1 } [R {identifier-z }]

CANCEL { literal-~l literal-2

Syntax Rules

l. Literal-l, literal-2, ..., must each be.a nonnumeric literal.

2. Identifier-l, identifier-2, ..., must each be defined as an
alphanumeric data item such that its value can be a program name.

General Rules

1. Subsequent to the execution of a CANCEL statement, the program referred
to therein ceases to have any logical relationship to the rua unit in
which the CANCEL statement appears. A subsequently executed CALL
statéement naming the same program will result in that program being
initiated in its initial state. The memory areas associated with the
named programs are released so as to be made available for disposition
by the operating system. n®

2. A program named in the CANCEL statement must not refer to any program
that has been called and has not yet executed an EXIT PROGRAM

statement.

3. A logical relationship to a cancelled subprogram is established ounly by
execution of a subsequent call statement.

4, A called program is cancelled either by being referred to as the
operand of a CANCEL statement or by the termination of the run unit of
which the program is a member.

5. No action is taken when a CANCEL statement is executed naming a program
that has not been called in this run unit or has been called and is at
present cancelled. Control passes to the next statement.

11 -6

e e A—— 2% . . B L L b T TP TN

THE EXIT PROGRAM STATEMENT
Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM

Syntax Rules

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the paragraph.

General Rule

An execution of an EXIT PROGRAM statement in a called program causes control
to be passed to the calling program. Execution of an EXIT PROGRAM statement
in a program which is not called behaves as if the statement were an EXIT
statement. (See THE EXIT STATEMENT in Chapter 3).

11 - 7

CHAPTER 12
PROGRAMMING TECHNIQUES AND SIZING

PROGRAMMING TECHNIQUES

Although COBOL is written in an essentially free form, the user will
nevertheless reap many advantages from a few self-imposed disciplines. It is
suggested that these should include the following:

1, Use of the first 256 bytes of working-storage for variables which are
frequently referenced will produce more compact and efficient code.

2. Use subscripts as sparingly as possible because each subscript has a
storage requirement approximately equal to the size of a normal
instruction.

3. For ACCEPT and DISPLAY the compiler generates one instruction per
elementary item of the data-name being displayed/accepted. Therefore
redefine a group of fields as a single field for DISPLAY whenever
possible and avoid unnecessary numbers of small fields in ACCEPT.

.4, Use FILLER instead of a data-name for any elementary field not
referenced explicitly because the word FILLER is compacted to one
character in the Data Dictiomnary. ’

5. Keep the number of digits in numeric fields as small as possible.

6. Whenever possible move a group instead of several elementary moves.

SIZING
GENERAL DESCRIPTION

There ‘are three aspects to sizing a program; the source code, the Data
Dictionary and the compiled code.

The maximum number of source statements per program is limited, firstly by
the space available for the compiler's data dictionary and secondly that
available to load the generated program.

The Data Dictionary contains an entry for every user-defined name in the
program. Detailed information is contained in the next section.

The maximum number of bytes available for the user's program and work space
for any given configuration, can be found in the appropriate Operating
Guide. A guide for calculating the size of the generated program is as
follows:

12 -1

[N SOP G SO VS S, - [PV = S Sl i e eae e o T b

o~ ' T

o et T e & o e tir e o o F POV SORNP PP o ——— L -

The sum of the Record size for each file in bytes

the Record size for each Working-Storage record in bytes

the number of characters in all Procedure Division literals

60 bytes per File

300 bytes control area

6 bytes per COBOL instruction with the following qualifiers:

+ 4+ 4+ 4+

for an ACCEPT/DISPLAY statement add 3 bytes per elementary item within
the Accepted/Displayed data-name.
for every subscript used in a statement add 7 bytes
for a comparision add 6 bytes
for an implicitly generated comparison e.g. PERFORM UNTIL, READ AT
END - add 6 bytes
DATA DICTIONARY
The Data Dictionary is constructed as the program is compiled. Its size
depends on the host operating system. Each user defined name will have an
entry in this dictionmary. The number of bytes required for each entry is
given in Table 12-1 below
Table 12-1. Data Dictionary Entry Sizing o

User-defined name Number of

=)
<
[ad
1
(7]

File-name ‘ 1
Record—-name

Key-name

Status—-name

Paragraph—-name

Data-name Group
Alphanumeric 32 characters
Alphanumeric 32 characters
Numeric integer

Numeric non integer
Numeric edited

300 ~J 00~ 00 ONOO 00 OO 0O
NN

SR T A A Tk &
poPsppOopEBpPR

1 - n * number of characters in user-defined name.
For a FILLER, n = 1.
X = number of characters in PICture, after coalescing repetitious.
e.g« 9 9 9 9 . 9 = 3 bytes
9 G . 9 = 3 bytes
Z (2) 9 (4) . 9 (3)= 4 bytes

2 - Subtract 1 byte if item is in the first 256 bytes of
Working~Storage.

ﬁ ! - Add 4 bytes if item has an OCCURS clause associated with it.

Add 2 bytes if item is subordinate to an item described with
OCCURS.

12 -2

et o St s M et T ke e s e s aemeime e e

APPENDIX A

RESERVED WORD LIST

This appendix contains a full list of COBOL and CIS COBOL reserved
words. A shaded reserved word is a CIS COBOL extension to ANSI COBOL.

The / symbol denotes that the text up to that point is a reserved word,
as is the whole word.

e.g., In INDEX/ED, INDEX and INDEXED are reserved words IN SPACE/S,
SPACE dnd SPACES are reserved words.

O

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
AND

ARE

AREA
ASSIGN
AT
AUTHOR

BEFORE
BLANK
BLOCK
BY

CALL

CANCEL ‘
CHARACTER/S
CLOCK-UNITS
CLOSE

COBOL
CODE-SET
COLLATING

- COMMA

COMP-M
COMP-N

COMP~3
COMP/UTATIONAL /-3
CONFIGURATION
CONSOLE
CONTAINS
COPY

CRT
CRT-UNDER
CURRENCY
CURSOR

DATA
DATE-COMPILED
DATE-WRITTEN
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DISPLAY
DIVIDE
DIVISION
DOWN

DYNAMIC

ELSE
END
ENTER

ENVIRONMENT
EQUAL

ERROR

EVERY
EXCEPTION
EXCESS=-3
EXIT

EXTEND

FD

FILE
FILE-CONTROL
FILTER
FIRST

FOR

FROM

GIVING
GO
GREATER

HIGH-VALUE/S

I-0/-CONTROL
IDENTIFICATION
IF

INDEX/ED
INITIAL
INPUT/-QUTPUT
INSPECT
INSTALLATION
INTO

INVALID

IS

JUST/IFIED
KEY

LABEL
LEADING
LEFT

LESS
LIMIT/S
LINE/S
LINKAGE
LOCK
LOW-VALUE/S

MEMORY
MODE
MODULES
MOVE
MULTIPLY

NATIVE

- NEGATIVE

NEXT

NOT
NUMERIC

OCCURS

OFF

OMITTED

OPEN

OR
ORGANIZATION
OUTPUT
OVERFLOW

PAGE
PERFORM
PIC/TURE
POSITIVE
PROCEED
PRODEDURE/S
PROGRAM~ID

QUOTE/S

RANDOM
RD

READ
RECORD/S
REDEFINES
REEL
RELATIVE
REMAINDER
REPLACING
RERUN

- RENRITE
RIGHT
ROUNDED
RON

SAME
SECTION
SECURITY
SEGMENT

SELECT

SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL

SET

SIGN

SIZE
SOURCE-COMPUTER
SPACE/S
SPECIAL-NAMES
STANDARD-1
START

STATUS

STOP
SUBTRACT

SYNC/HRONIZED

-I-oo'\/.,\

TABLE
TALLYING
THAN
THEN
THRO
TIMES

TO
TRAILING
TYPE

UNIT
UNTIL
up
UPON
USAGE
USE

VALUE/S
VARYING

WHEN

WITH

WORDS -
WORKING-STORAGE
WRITE

ZERO/ES or S

. (period)

Vi Ae

CIS COBOL system name
figurative constant

optional work

APPENDIX B

CHARACTER SETS AND COLLATING SEQUENCE

ASCII HEX COBOL ASCII HEX COBOL
character character |character character
NUL 1) X space 29

SOH g1 X ! 21 X
STX @2 x " 22

ETX @3 X # 23 X
EOT g4 b4 $ 24

ENQ @5 b4 yA 25 x
ACK £6 X & 26 X
BEL @7 b 4 ' 27 b4
BS @8 x (28

HT _ 9?9 p3) 29

LF @A b4 * 2A

VT @B x + 2B

FF gc X ’ 2C

CR gD X - 2D

S0 gE b4 . 2E

sI gF X / 2F

DLE 19 x g 3¢

DCIL 11 X 1 31

DC2 12 X 2 32

DC3 13 b 4 3 33

DC4 14 X "4 34

NAK 15 x 5 35

SIN 16 b4 6 36

ETB 17 X 7 37

CAN 18 b4 8. 38

EM 19 X 9 39

SUB 1A x : 3A X
ESC 1B X 3 3B

FS 1C X < 3C

GS 1D X = 3D

RS 1E X > 3E

us 1F b4 ? 3F X
$ 49 X 60 X
A 41 a 61

B 42 b 62

c 43 c 63

D 44 d 64

E 45 e 65

F . 46 £ 66

G 47 g 67

H 48 h 68

I 49 i 69

J LA 3 6A

K 4B k 6B

L 4C 1 6C

M 4D m 6D

N 4E n 6E

0 4F o 6F

P 59) 70

) R,

N E<aHRn® O

51
52
53
54

56
57
58
59
5A
5B
5C
5D
5E
5F

B XM NMN

NY ¥ g <.

DEL

71
72
73

75
76
77
78
79
7A
7B
7C
7D
7E
7F

HH XWX

DTS T T,

e e B e e S i e e e e e s e B SOV PN

APPENDIX C

GLOSSARY

INTRODUCTION

The terms in this Chapter are defined in accordance with their meaning as
used in this document describing iCIS COBOL and may not have the same
meaning for other languages.

These definitions are also intended to be either reference material or
introductory material to be reviewed prior to reading the detailed language
specifications that are contained in this manual. For this reason, these
definitions are, in most instances, brief and do not include detailed
syntactical rules.

DEFINITIONS

Access Mode. The manner in wh:.ch records are to be operated upon within a
file

Actual Decimal Point. The physical representation, using either of the
decimal point characters . (period) or , (comma) of the decimal
point position in a data item. :

Alphabet-Name. A user-defined word in the SPECIAL-NAMES paragraph of the
Environment Division that assigns a name to a specific character
~ set and/or collating sequence.

Alphabetic Character. A character that belongs to the following set of
letters: A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z and

the space. Also a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,r,s,t

u,V,W,X,y and 2 which are converted ta their upper case
equivalents. : - o

Alphanumeric Character. Any character in the computer's character set.

Arithmetic Expression. An arithmetic expression can be an identifier or a
numeric elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by a arithmetic operator, or—an arithmetic
expression enclosed in parentheses.

Arithmetic Operator. A single character, or a fixed two-character combin=-
ation, that belongs to the following set:

Character Meaning
+ Addition
- Subtraction
* Multiplication
/ . Division
*% Exponentiation

Ascending Key. A key upon the values of which data is ordered starting with

the lowest value of key up to the highest value of key in
accordance with the rules for comparison of the data items.

2
2

v

PP S T POV PUUPRIFFRRIPUE e U S SR

Assumed Decimal Point. A decimal point position which does not involve the

existance of an actual character in a data item. The assumed
decimal point has logical meaning but no physical representation.

At End Condition. A condition caused in one of two circumstances:

1. During the execution of a READ statement for a sequentially
accessed file.

2. During the execution of a RETURN statement when no next
logical record exists for the associated sort or merge file.

Called Program. A program which is the objéct of a CALL statement combined

at run time with the calling program to produce a run unit.

Calling Program. A'program which executes a CALL to another program.

Character. The basic indivisible unit of the language.

Character Set (CIS COBOL). The complete CIS COBOL character set consists

of all characters listed below:

Character . Meaning
0,1,00.,9 Numeric digit
AyByeeey2 Uppercase alphabetic
8yDyeeesZ Lowercase alphabetic:
Space (Blank)
Plus Sign
Minus Sign
Asterisk
Stroke (Virgule or Slash)
Equal Sign
Currency Sign
~ Comma
Semicolon
Period (Decimal Point, Fullstop=
Quotation Mark
Left Parenthesis
Right Parenthesis
Greater Than Symbol
Less Than Symbol

AV =0 voe g~ %1 +

Character Position. A character position is the amount of physical storage
Tequired to store a single standard data format character
described as usage in DISPLAY. Further characteristics of the
physical storage are defined by the implementor.

Character-String. A sequence of contiguous characters which form a
CIS COBOL word, a 1literal, a PICTURE character-string or a
comment-entry. '

Class Condition. The proposition, for which a truth value can be determined,

That the content of an item is wholly alphabetic or is wholly
numeric.

Clause. A clause is an ordered set of consecutive iCIS COBOL character=—
strings whose purpose is to specify an attribute of an entry.

Collating Sequence. The sequence in which the characters that are
acceptable in a computer are ordered for purposes of sorting,
merging and or comparing.

Column. A character position within a print 1line. The columns are
numbered from one, by one, starting at the left-most character
position of the print line and extending to the right-most
character position of the print line.

Comment Entry. An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line. A source program line represented by an asterisk in the
indicator area of the line and any characters from the computer's
character set in area A and area B of that line. The comment line
serves only for documentation in a program. A special form of
comment line represented by a stroke (/) in the indicator area of
the line and any characters from the computer's character set in
area A and area B of that line causes page ejection before
printing the comment.

Compile Time. The time at which an iCIS COBOL source program is translated
by the compiler to an iCIS COBOL intermediate code program.

Compiler-Directing Statement. A statement, beginning with ' a
compiler-directing verb, that causes the compiler to take a
specific action during compilation.

Complex Condition. A condition in which one or more logical opetétors act
upon one or more conditionms. (See Negated Simple Condition.

Computer-Name. A system~-name that identifies the computer upon which the
program is to be compiled or rum.

Condition. A status of a program at execution time for which a truth value
can be determined. Where the term "condition" (condition-l,
condition-2,...) appears in these language specifications in or in
reference to '"condition" (coandition-1, condition-2, ...) of a
general format, it 1is a conditional expression consisting of
either a simple condition optionally parenthesised, or a negated

simple condition.

Conditional Expression. A simple condition or a complex condition specified
in an 1IF, or PERFORM. (See Simple Condition and Complex
Condition,) -

Conditional Statement. A conditional statement specifies that the truth
value of a condition is to be determined, and that the subsequent
action of the run-time program is dependent on this truth value.

Configuration Section. A section of the Environment Division that describes
overall specifications of source aad run computers.

Connective. A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or
text-name with its qualifier.

2. Link two or more operands written in a series.

3, Form conditions (logical connectives). (See Logical
Operator.)

Contiguous Items. Items that are described by consecutive entries in
the Data Division, and that bear a definite hierarchic
relationship to one another.

Counter. A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number, or to be changed or reset to zero
or to an arbitrary positive or negative value.

CRT. - An interactive input/output device comprising a cathode ray tube
by which an Operator can enter and receive visual data.

Currency Sign. The character "$" (dollar sign) in the iCIS COBOL character
set. .

Currency Symbol. The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. 'If no CURRENCY SIGN clause 1is present in
an 1iCIS COBOL source program, the currency symbol is identical to
the currency sign.

Current Record. The record which is available in the record area associated
with the file.

Current Record Pointer. A counceptual entity that is used in the selection
of the next record.

" Cursor. The indicator om a CRT screen that marks the line and character
position which the input/output countrol is currently referencing.

Data Clause. A clausé that appears in a data description eatry in the Data
Division and provides information describing a particular
attribute of a data item.

Data Description Entry. An entry in the Data Division that is composed of a
level-number followed by a data-name, 1if required, and then
followed by a set of data clauses as required.

Data Dictionary. A dictionmary file of user defined names constructed by the
Compiler containing the number of bytes for each entry.

Daﬁa Item. A character or set of contiguous characters (excluding in either
case literals) defined as a unit of data by the iCIS COBOL
program.

Data-name. A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats, "data-name" represents a word which can neither be
subscripted, nor indexed unless specifically permitted by the

- rules for that format. '

c-4

[- PV RSP NC SRR S RERESUEI TR S DS S e i et S

S BTV erat v, - e ol A e A . s EEE e pa s s s B N L s
———— o i — ¥ be . amiily - 4 eem— e oieee e - - e o= e e esmtuwrisee

Debugging Line. A debugging line is any line with "D" in the indicator area
of the line.

Declaratives. A set of one or more special purpose sections written at the
beginning of the Procedure Division, the first of which 1is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing
sequence, followed by a set of associated paragraphs (0 or more).

Declarative~Sentence. A compiler-directing sentence consisting of a single
USE statement terminated by the separator period (.).

Default Disk. The disk from which the compiler on run-time system is loaded
‘ and from which, in the absence of a specific drive identifier, any
copy file or called code will be loaded if required.

Delimiter. A character (or sequence of contiguous characters) that
identifies the end of a string of characters, and separates that
string of characters from the following string of characters. A
delimiter is mnot part of the string of characters that it
delimits.

Descending Key. A key upon the values of which data is ordered starting
with the highest value of key down to the lowest value of key, in
accordance with the rules for comparing data items.

Digit Position. A digit position 1s the amount of physical storage
required to store a single digit. This amount varies depending on
the usage of the data item describing the digit position. Further
charactersitics of the physical storage are defined by the
implementor.

Division. A set of sections or paragraphs (0 or more) that are formed and
combined in accordance with a specific set of rules are called a
division body. .There are 4 divisions in an iCIS COBOL program:
Identification, Environment, Data and Procedure.

Division Header. A combination of words followed by a period and a space
that indicate the beginning of a division. The division headers
are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION USING data-name-l data-name=2

Dynamic Access. An access mode in which specific logical records can be
obtained from or placed into a disk file in a non-sequential
manner (see Random Access) and obtained from a file in a
sequential manner (see Sequential Access) during the scope of the
same OPEN statement. '

Editing Character. A single character or a fixed two character combination
belonging to the same set:

o

| ®

Character Meaning

B Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero Suppress

* Check Protect

$ Currency Sign

’ Comma

. Period (Decimal Point)
/ Stroke (Virgule, Slash)

Elementary Item. A data item that is described as not being further
logically subdivided.

End of Procedure Division. The physical position in a CIS COBOL source
program after which no further procedures appear.

Entry. Any descriptive set of comsecutive clauses terminated by a
period (.(and written in the Identification Division, Eanvironment
Division or Data Division of an CIS COBOL source program.

Environment Clause. A clause that appears as part of an Enviroanment
Division entry.

Extend Mode. With the EXTEND phrase specified, the state of a file after
execution of an OPEN statement, and before the execution of a
CLOSE statement for the file, '

Figurative Comstant. A compiler-generated value referenced through the use
of certain reserved words. :

File. A collection of records.

File Clause. A clause that appears as part of any of the following Data

Division entries:
File Description (FD)

FILE-CONTROL. The name of an Environment Division paragraph in which the
data files for a given source program are declared.

File Description Entry. An entry in the File Section of the Data Division
that 1s composed of the level indicator FD, followed by a
file-name, and then followed by a set of file clauses as required.

File-Name. A user-defined word that names a file described in a file
description entry or a sort-merge file description entry within
the File Section of the Data Division.

File Organization. The permanent logical file structure established at the
time that a file is created.

"File Section. The section of the Data Divisionthat contains file

description entries together with their associated record
descriptions.

P T T - - S U U Ut B I P e ke i ab i]

Format. A specific arrangement of a set of data.

FORMS Program. A screen formatting .program that automatically generates
~ CIS COBOL CRT input/output coding from actual screen layout.

Group Item. A named contiguous set of elementary or group items.
High Order End. The leftmost character of a string of characters.

I-0~-CONTROL. The name of an Environment Disvision paragraph in which
object program requirements for specific input/output techniques,
rerun points, sharing of same areas by several data files, and
multiple file storage on a single input/output device are
specified.

I-0 Mode. The state of a file after execution of an OPEN statement, with the
I-0 phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Identifier. A data-name, followed as required, by the syntactically
correct combination of subscripts and indices necessary to make
unique reference to a data item.

Imperative Statement. A satement that begins with an imperative verb and
specifies an unconditional action to be taken. An imperative
statement may consist of a sequence of imperative statements.

Implementor-Name. A system-name that refers to a particular feature avail-
able on the implementors computing system.

Index. A computer storage position or register, the contents of which
represent the identification of a particular element in a table.

Index Data Item, A data item in which the wvalue associated with an
index-name can be stored in a form specified by the implementor.

Indexed File. A file with indexed organizaton.

Indexed Organization. The permanent logical file 'structure in which each
record is identified by the value of ome or more keys within that
record.

Indicator Area. The leftmost parameter position of a CIS COBOL source
record that indicates the use of the record.

Input File. A file that is opened in the input mode.

Input Mode. fhe state of a file after execution of an OPEN statement, with
the INPUT phrase specified, for that file and before the execution
of a CLOSE statement for that file.

Input-Qutput File. A file that is opened in the I-0 mode.

Input-Qutput Section. The section of the Environment Division that names

the files and the extermal media by a program and which provides
information required for transmission and handling of data during
execution of the run-time program.

yo

Ry

= e = s ew e v N e - [o E O T Ly

Integer. A numeric literal or a numeric data item that does not
include any character positions to the right of the assumed
decimal point. Where the ter 'integer' appears in general
formats, integer must not be a numeric data item, and must not be

;:Q signed, nor zero unless explicitly allowed by the rules of that
- format.

Intermediate Code. The code produced by the CIS COBOL compiler from the
source code entered, and which the Run Time System ‘'fast loads'
“for execution.

Invalid Key Condition. A conditiom, at object time, caused when a specified
value of the key associated with an indexed or relative file is
determined to be invalid.

Issue Disk. - The flexible diskette or which the CIS COBOL software 1is
~ supplied to users., — , . B C

Key. A data item which identifies the location of a record, or a set of
data items which serve to identify the ordering of data.

Key of Reference. The key currently being used to access records within an
indexed file.

Key Word. A reserved word whose presence 1s required when the format in
which the word appears 1s used in a source program.

Level-Number. A user-defined word which indicates the position of a data
item in the hierarchical structure of a logical record or which
indicates special properties of a data description eantry. A
Q:R level-number is expressed as a oune or two digit number.
’ Level-numbers in the range 1 through 49 indicate the position of a
data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit.
Level-number 77 identifies special properties of a data
description entry.

Library-Name. A user-defined word that names a CIS COBOL library
intermediate file that is to be used by the compiler for a given
source program compilation.

Library-Text. A sequence of character-strings and/or separators in a
COBOL 1library.

Line Sequential File Organizatiou. A sequential file containing variable
; ~ length records separated by the C/R (carriage returnm) and L/F
‘{1ine feed) characters. : .

Linkage Section. The section in the Data Division of the called program
that describes data items available from the calling program.
These data items may be referred to by both the calling and called
program,

Literal. A character-string whose value is implied by the ordered set of
characters comprising the string. ‘

Logical Operator. The reserved word 'NOT'. It can be used for logical
negation,

'Logical Record. The most inclusive data item. The level-number for a
record is Ol.

Low Order End. The rightmost character of a string of characters.

Mnemonic-Name. A user-defined word that is assoclated in the Environment
Division with a specified implementor-name.

Native Character Set. The implementor-defined character set associated with
the computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-defined collating sequence
associated with the computer specified in the OBJECT~-COMPUTER
paragraph.

Negated Simple Condition. The 'NOT' logical operator immediately followed
by a simple condition.

Next Executable Sentence. The next sentence to which control will be
transferred after execution of the current statement is complete.

Next Executable Statement. The next statement to which control will be
transferred after execution of the current statement is complete.

Next Record. The record which logically follows the curreant record of a
file.

Noncontiguous Items. Elementary data items, in the Working-Storage and
Linkage Sections, which bear no hierarchic relationship to other
data items.

Nonnumeric Item. A data item whose description permits its countents to be
composed of any combination of characters taken f£from the
computer's character set. Certain categories of nonnumeric items
may be formed from more restricted character sets.

Nonnumeric Literal. A character-string bounded by quotation marks. The
string of characters may 1include any character 1in the
computer's character set. To represent a single quotation mark
character within a nonnumeric 1literal, two contiguous quotation
marks must be used.

Numeric Character. A character that belongs to the following set of digits:
o’ 1, 2, 3’ 4’ 5, 6’ 7’ 8, 9.

Numeric Item. A data item whose description restricts its contents to a
value represented by characters chosen from the digits '0' through
'9'; if signed, the item may also contain a '+', '=', or other
representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that
also may contain either a decimal point, or an algebraic sign, or
both. The decimal point must not be the rightmost character. The
algebraic sign, if present, must be the leftmost character.

D
-~

»)
-

O

O

OBJECT-COMPUTER. The name of an Enviroument Division paragraph in which the
computer environment, within which the run-time program is
executed, is described.

Open Mode. The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, I-O or EXTEND.

Operand. Whereas the general definition of operand is 'that component which
is operated upon', for the purposes of this publication, any
lowercase word (or words) that appears in a statement or entry
format may be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or
a numeric literal, to indicate whether its value is positive or
negative.

Optional Word. A reserved word that is included in a specified format only
to improve the readability of the language and whose presence 1s
optional to the user when the format in which the word appears is
used in a source program. ’

Output File. A file that is opened in either the output mode or extend
mode.

Output-Mode. The state of a file after execution of an OPEN statement, with
the OUTPUT or EXTEND phrase specified for that file and before the
execution of a CLOSE statement for that file. :

Paragraph. In the Procedure Division, a parégraph—name followed by a period

and a space and optionally by one, or more sentences. In the
Identification and Environment Divisions, a paragraph header
followed by zero, one, or more entries.

Paragraph Header. A reserved word, followed by a period and a space that
indicates the beginning of a paragraph in the Identification and
Environment Divisions. The permissable paragraph headers are:

In the Identific¢ation Division:

PROGRAM-~ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Enviromment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-0-CONTROL.

c-10

s e s it T o At et v e a et i

B R et T B i S S L PR R e Lt P0G MPU P UO P e S 5 D

Paragraph-Name. A user-defined word that identifies and begins a paragraph
in the Procedure Division. :

Phrase, A phrase 1s an ordered set of ome or more consecutive COBOL
character-strings that form a portion of a CIS COBOL procedural
statement or of a COBOL clause.

)

Prime Record Key. A key whose contents uniquely identify a record within an
indexed file. -

Procedure. A paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections, within the
Procedure Division.

Procedure-Name. A user-defined word which is used to name a paragraph or
section in the Procedure Division. It comsists of a
paragraph—-name or a section-name.

Punctuation Character. A character that belongs to the following set:

Character Meaning
s comma
H semicolon
. period
"

quotation mark

) left parenthesis

(right parenthesis
space

= equal sign

Random Access. An access mode in which the program-specified value of a key
data item identifies the logical record that is obtained from,
deleted from or placed into a relative or indexed file.

Record., (see Logical Record)

Record Area. A storage area allocated for the purpose of processing the
record described in a record description entry in the File
Section,

Record Description. (See Record Description Entry)

Record Déscription Entry. The total set of data description entries
associated with a particular record.

Record Key. A key, either the prime record key or an alternate record key,
whose contents identify a record within an indexed file.

Record-Name. A user-defined word that names a record described in a record
description entry in the Data Division.

Reference~Format. A format that provides a standard method for describing
COBOL source programs.

c-11

T BT NI T e

(RN

. 2l s el - T R

Relation. (See Relational Operator)

Relation Character. A character that belongs to the following set:

/Q Character . Meaning
> greater than
< less than
= equal to

Relation Condition. The proposition, for which a truth value can be
determined, that the value of an arithmetic expression or data
item has a specified relationship to the value of another
arithmetic expression or data item. (See Relational Operator).

Relational Operator. A reserved word, a relation character, a group of
consecutive reserved words, or a group of consecutive reserved
words and relation characters used in the construction of a
relation condition, The permissable operators and their meaning

are:
Relational Operator Meaning
IS NOT GREATER THAN Greater than or not greater than
IS NOT > :
IS NOT LESS THAN . Less than or not less than
IS NOT <

IS NOT EQUAL TO Equal to or not equal to

) IS NOT =

Relative File. A file with relative organizationm.

Relative Key. A key whose coantents identify' a logical record in a relative
file.

Relative Organization. The permanent logical file structure in which each
record 1s uniquely identified by an integer value greater than
zero, which specifies the record's logical ordinal positiom in the
fileo s

' Reserved Word. A COBOL word specified in the list of words which may be
used in COBOL source programs, but which must not appear in the
-programs as user-defined words or system—names.

Routine-Name. A user-defined word that identifies a procedure written in a
language other than COBOL

Run-Time Debug. An option available to CIS COBOL programmers enteréd as a
user option enabling break-point facilities in run-time programs.

Run-Time. The time at which the intermediate code produced by the compiler
i is interpreted by the Run Time System for execution. ' :

Cc =12

AU S S E g e e s e ¢ s

Run-Time-System~(RTS). The software that interprets the intermediate code
produced by the CIS COBOL compiler and enables it to be executed
by providing interfaces to the operating system and CRT.

Run Unit. A set of one or-more intermediate code programs which function, at
run time, as a unit to provide problem solutions.

Section. A set of none, one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body. '

Section Header. A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment, Data and
Procedure Divisioun.

In the Enviromment and Data Divisions, a section header 1is composed of
reserved words followed by a period and a space. The permissible section
headers are:

In the Enviromment Division:

CONFIGURATION SECTION
INPUT-OUTPUT SECTION

In the Data Division:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION

In the Procedure Division, a section header 1is composed of a section-name,
followed by the reserved word SECTION, followed by a segment-number
(optional), followed by a period and a space.

Section-Name., A user-defined word which names a section in the Procedure
Division.

Segment-Number. A user-defined word which classifies sections in the
Procedure Division for purposes of segmentation. Segment-numbers
may contain only the characters '0', 'l', ..., '9'. A
segment-number may be expressed either as a omne or two digit
number, and is checked for syntax omnly.

Sentence. A sequence of omne or more statements, the last of which is
terminated by a period followed by a space.

Separator. A puhcfﬁation character used to delimit character-strings.

Sequential Access. An acceés mode in which logical records are obtained from
or placed into a file in a coamsecutive predecessor-to-successor
logical record sequence determined by the order of records in the
file. '

Sequential File. A file with sequential organization.

c-13

P T

i -

TSI N SO N
PURBNS IV SO SOF TS SOV U I VR R ML ERRRDUREEY L SR SRR WL

Sequential Organization. The permanent logical file structure in which a
record is identified by a predecessor-successor relationship
established when the record is placed into the file.

. Sign Condition. The proposition, for which a truth value can be determined,
that the algebraic value of a data item or an arithmetic
expression is either less tham, greater tham, or equal to zero.

Simple Condition. Any single condition chose from the set:

relation condition
class condition
switch-status condition
sign condition
(simple-condition)

SOURCE-~-COMPUTER. The name of an Enviromment Division paragraph in which
the computer environment, within which the source program is
compiled, is described.

Source Program. Although it is recognised that a source program may be
represented by other forms and symbols, in this document it always
refers to a syntactically correct set of COBOL statements
beginning with an Identification Division and ending with the end
of the Procedure Division. In comtexts where there is no danger
of ambiguity, the word 'program' alone may be used in place of the
phrase 'source program'. :

Special Character. A character that belongs to the following set:

Character Meaning

plus sign

minus sign

asterisk

stroke (virgule, slash)
equal sign

curreancy sign

comma (decimal point)
semicolon

period (decimal point)
quotation mark

left parenthesis

right parenthesis
greater than symbol
less than symbol

Te wew U~ * I +

Special=Character Word., A reserved word which is an arithmetic operator or
a relation character.

SPECIAL-NAMES. The name of an Enviromment Division paragraph in which
implementor-names are related to user specified mnemonic-names.

Special Registers. Compiler generated storage areas whose primary use is to
. store information produced in conjunction with the user of
i specified COBOL features.

c-14

B

S R e E o RET R R

Standard Data Format. The concept used in describing the characteristics of
data 1in 2 COBOL Data Division under which the characterstics or
properties of the data are expressed in a form oriented to the
appearance of the data om a printed page of infinite length and
" breadth, rather than a form oriented to the manmer in which the /53
data 1s stored internally in the computer, or omn a particular o
external medium, ™

Statement. A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb. ' -

Subprogram. (See Called Program).

Subscript. An integer whose value identifies a particular element in a
table.

Subscripted Data~Name. An identifier that is composed of a data—name
followed by ome or more subscripts enclosed in parenthesis.

Switch-Status Condition. The proposition, for which a truth value can be
determined, that an implementor-defined switch, capable of being
set to an 'on' or 'off' status, has been set to a specified
status. :

Sjmbol Function. The use of specified characters in the PICTURE clause to
represent data types.

System-Name. A COBOL word which is used to communicate with the operating
environment.

Svntax. The order in which elements must be put together to form a
2yntax
program.

Table. A set of logically consecutive item$ of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items.
comprising a table. '

Text-Name. A user-defined word wich identifies library text.

Text-Word. Any character-string or separator, except space, in a COBOL
library or in pseudo-text,

Unary Operator. A plus (+) or a minus (~) sign, wich precedes a variable or
a left parenthesis in an arithmetic expression and which has the
effect of multiplying the expressing of +1 or -l respectively.

User-Defined Word. A COBOL word that must be supplied by the user to
satisfy the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb. A word that expresses an action to be taken by a COBOL compiler or .
run time program. ;;2

c-15

SR T T T TR TR RIS R T e,

BRI X T . . B
RS NP NN P R PIEIA PR JCINUIL SRSPRERR o ApEpoR S S SRS S S S

L . FE R -

Word. A character-string of not more than 30 characters which forms a
user-defined word, a system~-name, or a reserved word. ’

‘ Working-Storage Section. The section of the Data Division that describes
working storage data items, composed either of noncontiguous items
or of working storage records or of both.

77 Level-Description-Eantry. A data description entry that describes a
noncontiguous data item with the level-number 77.

c-16

PO L e e e A aeimiaes e awil cmas n o meme wmeis s v T en e ma . sim ke amese g a L eeeld D e el

APPENDIX D

COMPILE~-TIME ERRORS

The error descriptions that correspond to error numbers as printed on /j;
listings produced by the CIS COBOL compiler are as follows: ‘f-\
ERROR DESCRIPTION

01 Compiler Error N

02 Bad lexical item: data-name

03 Bad lexical item: literal

04 Bad lexical item: character

05 data-name declared twice

06 Dictionary overflow

07 Illegal character in column 7

08 Nested COPY or unknown file

09 CIS COBOL extension used with ANS directive

10 Wrong area A/B

21 '.' missing

22 'DIVISION' missing

23 'SECTION' missing

24 '"IDENTIFICATION' missing

25 'PROGRAM-ID' missing

26 'AUTHOR' missing

27 "INSTALLATION' missing

28 '"DATE-WRITTEN' missing

29 'SECURITY' missing

30 '"ENVIRONMENT' missing

31 '"CONFIGURATION' wmissing

32 'SOURCE-COMPUTER' missing B

33 MEMORY SIZE/COLLATING SEQUENCE in error ™~

34 'OBJECT~-COMPUTER' missing

36 'SPECIAL-NAMES' missing

37 SWITCH Clause in error

38 DECIMAL~POINT Clause in error

39 CONSOLE Clause in error

40 Illegal currency symbol

41 '.' missing

42 'DIVISION' missing

43 'SECTION' missing

44 'INPUT-OUTPUT' missing

45 'FILE-CONTROL' missing

46 'ASSIGN' missing

47 'SEQUENTIAL' or 'INDEXED' or 'RELATIVE' missing

48 'ACCESS' missing on indexed/relative file

49 'SEQUENTIAL/DYNAMIC' missing

50 Illegal combination ORGANIZATION/ACCESS/KEY

51 SELECT Clause phrase unrecognised

52 RERUN Clause syntax error

53 ' SAME AREA Clause syntax error

54 file-name missing

55 'DATA DIVISION' missing

56 '"PROCEDURE DIVISION' missing or unknown statement

61 = ', " missing

62 'DIVISION' missing

63 'SECTION' missing

64 file~-name is not selected

65 Record size integer missing

66 Illegal level number)0l-49= or 0l level required

e 67 FD qualification contains syntax error

68 '"WORKING~STORAGE' missing

69 TPROCEDURE DIVISION' missing or unknown statement

70 Data Description Qualifier or '.' missing

71 SIGN/USAGE illegal with COMP data-item or unsigned
PICTURE data or incompatible with other qualifier

72 BLANK is illegal with non-numeric data-item

73 PICTURE clause too long (Numberic 18 Numeric
Edited 512 Alphanumeric 8192)

74 VALUE clause on non-elementary data-item, or truncation,
or wrong data type

75 'VALUE' in error or illegal for PICTURE type

76 FILLER/SYNCHRONIZED/JUSTIFIED/BLANK non-elementary
item

77 Level 0 or level with more than 8192 bytes

78 REDEFINES of unequal fields or different levels,

79 Data storage exceeds 64K bytes

80 'DYNAMIC' only allowed in non-ANS and at level 01

81 Data Description Qualifier inappropriate or repeated

82 REDEFINES data-name not declared

83 USAGE must be COMP, DISPLAY or INDEX

84 SIGN must be LEADING or TRAILING

85 SYNCHRONIZED must be LEFT or RIGHT

86 JUSTIFIED must be RIGHT

87 BLANK must be ZERO

88 OCCURS must be numeric, non-zero and unsigned

= 89 VALUE must be a literal, numeric literal or

figurative coustant

90 PICTURE string has illegal precedence or illegal
character ' .

91 INDEXED data-name missing or already declared

92 numeric edited PICTURE string is too large

101 Unrecognised verb

102 If ... else mismatch

103 : Wrong data-type

104 . Paragraph name declared twice

105 - Paragraph name same as data-name . v

106 Name required

107 Wrong combination of data types

108 Conditional imperative statement

109 Malformed subscript

110 ' ACCEPT/DISPLAY wrong

111 Bad I/0 Syntax

116 Ifs nested too deep

117 Bad skeletal structure of Procedure Division

118 Obligatory Reserved Word missing

119 Subscript vector overflow

120 Intermediate code output buffer overflow

140 Inter-segment procedure name check

142 ; If ... mismatch at end of Source Input

143 Wrong data-type

144 Paragraph name undeclared

ﬁia . 145 Index-name declared twice

D-2

146 Bad cursor control

147 KEY declaration uissing
148 STATUS declaration missing
149 Bad STATUS record
151 PROCEDURE DIVISION in error ~
152 USING parameter not declared in linkage section ,;:R
153 USING parameter is not leve 0l or 77
154 USING parameter used twice in parameter list
156 I-0 Error on auxiliary segmentation files
157 Bad skeletal structure of Procedure Division
160 Intermediate Code Qutput buffer overflow
: \
ﬁ
D-3

SO — ;

IR

e E e e o e e S A L s een s aFeiiiue ot T e s M e - U R

APPENDIX E
RUN-TIME ERRORS

Run-Time error messages are preceded by the name and segment number of the
’ currently executing intermediate code file.

Run-time errors can be either recoverable or fatal, as described below:

RECOVERABLE ERRORS

Recoverable error handling is programmed by the CIS COBOL programmer using
the file STATUS reserved word. A decision can be made to terminate or
recover from the error.

FATAL ERRORS

All run-time errors that are not handled as recoverable errors are fatal.
They can arise from the operating system or from the Run-Time System. Fatal
errors cause a message to be output to the sceen that includes a 3-digit
error code and a reference to the CIS COBOL statement in which it occurred.
Fatal errors can be of two types, as follows:

1. Exceptions

These cover arithmetic o#erflow, subscript out of range, too many
levels of perform nesting.

2. I/0 errors.

These exclude those for which STATUS is not selected as above.

ERROR DESCRIPTION
151 Random read on sequential file
152 REWRITE on file not open for I/0
153 Subscript out of range
154 Perform nesting excees 22 levels
155 Illegal command line
156 - Invalid file operation

- 157 Object file too large
158 REWRITE on line-sequential file
159 Malformed line-sequential file
160 Overlay loading error
161 Illegal intermediate code
163 AT cursor position is off screen
164 : Specified code mot found
165 Incompatible releases of compiler and run-time system
170 Illegal operation in indexed Sequential
171 Attempt to read I-S record in output/extend mode
172 Attempt to delete I-S record in non I/0 mode
173 Attempt to write I-S record im input mode
180 COBOL file malformed

181 . Fatal file malformation

e n S B o coni e e s 2t bt = aam o +een D mams

ot et S T ik b emem! e vt e e e e 4 s e e e e el @b LA sin mmeames mea mms o e e mm W sea eTe e et b s

APPENDIX F

SYNTAX SUMMARY

All the syntax for CIS COBOL is summarised below.
E denotes that the feature is a CIS COBOL extension to ANSI COBOL.
D denotes that the feature is documentary only in CIS COBOL.

GENERAL FORMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

- PROGRAM-ID. program name
AUTHOR. [comment entry] .

INSTALLATION. [comment entry]...

DATE-WRITTEN. [comment entry]...
-

DATE-COMPILED. [comment entry]...

—

['sEcurrTY. fcomment entryf..]

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE~-COMPUTER. source=-computer—-entry

OBJECT-COMPUTER. object-computer—entry

WORDS
,MEMORY SIZE integer CHARACTERS
MODULES

[,PROGRAM COLLATING SEQUENCE IS alphabet-name] .

SPECIAL-NAMES
¢
[SWLTCH . } [1S mnemonic-name]
7
ON STATUS IS condition-name-1
Q - - [OFF STATUS 1S condition-name—Z]]

[,CURRENCY SIGN IS literal-9]

[,DECIMAL-POINT 1s comm]

. . _
,CURSOR IS data-name-l] E

) . -
-, CONSOLE IS CRIL T E

._,[INPUT-OUTPUT SECTION.

FILE-CONTROL. '
i file-control-entry}...] .
[I-O—CONTROL
{; RERDN [ou {fne-uamé.-L | }]
implementor-name
END OF J REEL
{ {UNIT} , OF file-name=~2
EVERY integer-1 RECORDS
integer~2 CLOCK-UNITS
condition—name
Q ’ [‘;{sm_m FOR file-name-l {,file-name-2}...}]

F-2

e
R A

e amle eimte m e e mi et s 1t s k. s s A+ ot 4o ot i 2 e nm At b= ot B a0 0T isame il Dt e sate e et e ie e Xl e i

GENERAL FORMAT FOR FILE-CONTROL ENTRY

Sequential SELECT:
SELECT file-name

ASSIGN TO {external-file-name-literal}
file~identifier

;ORGANISATION IS [{ SEQUENTIAL }]

LINE SEQUENTIAL

[;ACCESS MODE IS SEQUENTIAL]
[;FILE STATUS IS data-name] .
Relative Select:
| §§£§§1 file-name

ASSIGN TO {external-file-name-literal
file-identifier

ORGANISATION IS RELATIVE

,{external-file-name-literal}]
file-identifier

E

} ,{external-file-name-literal
file~-identifier

. SEQUENTIAL o,RELATIVE KEY IS data-name
sACCESS MODE IS { RANDOM } ,RELATIVE KEY IS data-name

DYNAMIC
[;FILE STATUS IS data-name] .
Indexed Select:
SELECT file-name

ASSIGN TO {external-file-name—literal
. file-identifier

;ORGANISATION IS INDEXED __’ *
SEQUENTIAL
sACCESS MODE IS RANDOM
: DYNAMIC

sRECORD KEY_IS data~name

[;FILE STATUS IS data-name] .

} [,{externalhfile-namé-literal
file~identifier

]

]

[N PG SV S U0 SOV S S AP YR SURIP SISO L S S D SR R

GENERAL FORMAT FOR THE DATA DIVISION

DATA DIVISION.

FILE SECTION.

P file-name

BLOCK coumns integer 'RECORDS \] . . o.oTon

[; RECORD CONTAINS, [integer-l TO] integer-z. CHARACTERS] D
RECORD IS STANDARD} N W D
RECORDS AREf . | OMITTED s LT

+ VALUE OF data—name-1 TS lteral-l . D
2T data-name-2 IS literal-2 = ... s

LABEL{

hS

[:*DAIA~ {~%§%§%§SI§RE} idata-nameélfg dataPname-ZI;.w]‘,ff D

[;. CODE-SET IS alphabet-name] . S P
[(record-description-entry] ...].

* [WORKING-STORAGE SECTION
77-level-description-entry]
record-description-entry *ee

’ LINKAGE SECTION
77-level-description-entry]
[record-description-entry *te

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

level-number data-name
FILLER
[;REDEFINES data-name]

. [{EEEEEEE}IS picture-string

APIC _

' [COMPUTATIONAL |
COMP.
COMPUTATIONAL-3

;USAGE 1S {Z=m—3
DISPLAY
INDEX 1

LEADING
[, . SIGN Is] {mc} [SEPARATE CHARACTER]]

BOCCURS integer TIMES INDEXED BY index-name-1 [, index-name-=2] ...]

',4{ SYNCHRONIZED } { LEFT }]

SYNG . RIGHT
s JUSTIFIED RIGHT
| JUST

[;BLANK WHEN ZERO]

{;VALUE IS literal] .

R Ry S e e P L e
PRI SR TN RSt SRR S SO K HPEY SN 2 ol

yaann-g¥o \ p=TEI9ITI) _ |f €~TRI83T1\ —oees
{ - 4 } Nodn [{Z"WPU-?WP Lv]{l-ameu-a:;ep} Av1asid

Z-TB193TT 1-TBI93T1
7-19T3TIUSPT 1-19TJTIUSPT

g

[310sN0D NO4n] **° { } Iv1esid

jusuelels-saTIeIedmT XA QITVANI ¢ (H0D3¥ OWeu-a1T3 ﬁz—a'

[xgoq HIIM] euwen-aTI3* [¥00T HITM] {%gg} suen-3113 F5010
a a -

: ' . 1=Te1°3IF] | o

['°' [Z-sueu-e3EP] T-sweu-e3ep ONISA) | 1-ISFFFIUSPT TIVO

[3uswo3leis—oaT3ieaadur JYOWyd FZIS NO ¢]
[a3aNNo¥] aI9TIFITBPT ONIAID

{ €-TRIO3T] Z-1B337T1 1-18133T1\ =g
€-I9TJTIUSPT(¢ | T-T9TITIUSPT 1=29TITIUSPT aav
[lueme3e3s-oayrezadur JYouwdd 4ZIS NO ¢] '

— Z-Tea9aT] 1-Teas3Tl
[qIaNNOY¥] 3°TITIUSPT O °° ")T~ISTITFIVSPT S |1-ASTITFIUSPE) AWV

[2TOSNOD WO¥3] I9FITIUSPT LdEDDV

e [1-termaTt | w5 | imeneier TG
. T WoE [{z_am_mep mv] 1-sweue3ep IIADOV .

SEYEA ¥0d IVWHOd TVHINID

'°'{'°° [sousjues] ameu-qde:ﬁexed}
*[*** [z-oweu-e3ep‘] [-oweu-e3ep DNISA | NOISIAIQ ZWNQADO¥d

$3EUI0F an;;e:exaap—uon

ser dvee +¢+ [soudjues] amen-qdez%eaed]
+ [1oqunu-jusm8es] NOILDES SWEU-UOT309S }
*SIATIVIVIOZQ ANE

see see +ee [pousjuds] °ouweu-ydeaSexed
20UPIUSS~-OATIRIRIOSP ‘Ioqunu-jusmdss NOILDJS SWEU-UOTIoes
*SEAIIVYVIOAd

*[*** [¢~owen-e3ep ‘] [-oweu-elEp ONISN] NOISIAIQ F¥NQED0¥d

$3PWIO] SATIBABIOSQ

NOISIAIQ TANAIO0Nd ¥0d IVWUOd TVHINAD

e A cnanm

1-18123T T\
=197 311“9191:} ANOH

[€-310T3T3uepT‘] Z-I9TITIUSPT OL {

ssnero-3utoe(dea HNIOVIJAY oSneTO-ATTE3 ONIATIVI I9T3ITIUSPT LO3dSNI

JILIV
180444

LS¥1d

$=-1Ba=3ITI | =7 €=-TBI2ITT ——enlld
{9-Jats'rwap:} 4 {g-za;;nuap;} ‘ {SNIG}I_E_W'} [‘]}

{ ¢-TB323TT

L--‘laTJ'rnnapT} TVILINI {

9-I9TIFIUCPT
DNIOVIdad 1-19TITITSPF IDEASNI

{ "Ie;a‘n} 7T SUEIOVEVED

TALIV
v—zaunuapt} TVILINI {:moaaa }]

¢ SYILIVYEVHI
-Tex ey g —
i e

TIV))
ONIXTTVI 1-33FITIUSPT LOAASNI

et [[£-TBIS3ITT

{aanzm:-rs IXAN 3STd

} { FONAINAS IXAN
Z-juswalels ASTH

J-3uswe3E3S } SUOTITPUOD AT

on on

I9TJFIUSPT NO DNIGNZAEC
o { Z-supu-ainpadoad ‘} 1-sweu-aanpsd01d 0L o9
- smeu-~sanpesoad 0L 09
“IIXa
-omwPu-suUFINO1 swpu-sSenSue] WALNE
[3uewe3e3s-oaTIEIoduy YOWEA 321S NOf)

T=Te1°3T1 <7 { T-Teaa3T]

z-35T3T3uepr A0

[qEaNNO¥] €-a°TIFIUSPT ONIAID [-19TITIUSPT

} 3AIAId

[uswe3elsS-aATIRIadWr YOWNE HZIS NO‘]

7-1ST3FTIULPT 1-I9TITIULPT } FaIAId

[Q2aNno¥) z-I9TIFIUSPT ONIAID { Z-Iezaﬂt} BINT { I-1BI93T1

[3usmejeys-aATIEIodUr JON¥E HZIS NO¢]

1-TB2°3T]

[CIaNnO¥] ¢-ISTITISPT OINI {t—aa;;nuam

} IAIAIA

e Sl

(C

1-13823ut Z9_NMoa :
g~SUBU-XBpUT i d .

€-19T3FFIUSPT

UOT3ITPUOD TILINA

SIRIL {

[qusmejels—aaTiRIaduT XM GITVANIS]

sWeU-BIEBP

g

als

> ION SI

I:{ < SI} I.H)l] sweu-aTF3 JIYVLS
= ST : .

. {[z-eweu-xapur] } {I-ameu-xapu'; } —_—
[z-a2T3FI09pT]

138

1-19TITIUSPT

[Fuswmeiels~oariezadur XAN QITVANI €]

[219FITIUSPT WOUI]

SWeU-pI0o31 FITYMTY

[3usmaiels—sariezedur XIN QITVANI®]

[x9T3IT3USPT OINI]

[29T3T3UsPT OINI]

I-Iezazrt}
1-19TJTIUSPT

Z~sueu-aanpado0ad {

7-9oupu-axnpadoad {

7~-aueu-aanpsvoad {

@QO0TY SWeu-sTTF AVIY

[:;uahxa;e; seoArRIodur QNI IVE]

X oo ‘[z-ameu—a'[‘p; ‘]

(er:fon ke |

MIHL
HDNOYHY

MIHL
HONOYHL

MIHL
HONOYHL

[

IXIN] sweu-o[T13 AVIY

}I..ameu-a:mpaao:d worgad
}I-ameu-a:mpaao:ld wioggad

} {-sweu-aanpsdoid YOIYAd

[juswoieys-aariezadmy YO§Wd FZIS NO ¢

[@IaNNO¥] €-ISTFITIUSPT ONIAID {

Z-T239371
Z-15T3ITIUSPT

paa {

[1uemeieis-oarrersdur Yo¥¥d H2IS NO ¢]

[@IaNNO¥] Z-I°TITIUSPT A4 {

ANgLXd
0-I{ | —==
1-sweu-31T3 Th37R0 Rt (o
I0dNI
S LA RN S Bl Qe
I-za';;‘;:tuap-;} XTAILTON
1-18123TT\ === mrs
I-Iet;nuapt} A14IIIR

e

N s e

P UL N

~ COPY "text-name"

RUN
STOP {literal}

identifer-l} , f{identifier-2 ,
SUBTRACT {11tera1-*1 [{ literal=2 }} ceoe FROM identifier-3

[; ON SIZE ERROR imperative-statement]

identifier-l |,fidentifier-2 FROM identifier-3
literal-~-l literal=2 v literal-3

SUBTRACT{

GIVING identifier-4 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

file-name
INPUT
USE AFTER STANDARD { EXCEBTION| ppocEDURE ON OUTPUT
USE AFTER ERROR EROCEDURE o
 EXTEND
WRITE record-name [FROM identifier]
integer {LINE ﬂ S
LINES
BEFORE) ,nyANCING { f PAGE
AFTER TAB E

WRITE record-name FROM identifier

[;INVALID KEY imperative-statement]

GENERAL FORM FOR COPY STATEMENT

P = LT o

[ROUNDED]

APPENDIX G
SUMMARY OF EXTENSIONS TO ANSI COBOL
CIS COBOL is oriented to microcomputer users with the system close at hand
and usually with a CRT, CIS COBOL therefore provides extensions for

interactive working, program control of files, text file handling and rapid
development and testing. These facilities are summarised below.

SCREEN FORMATTING AND DATA ENTRY

THE ACCEPT STATEMENT
An additional format for the ACCEPT statement is provided as follows:

Format

dataname=2

ACCEPT dataname-l[{1iteral-1

}] FROM CRT

data—~name-2 allows the start of screen to be changed dynamically. It
refers to a PIC 9999 field where the most significant 99 is a
line count 1-25 and the least significant 99 is a character
position 1-80.

data-name-l refers to a record, group or elementary item but may not be

subscripted.
literal-l is in alphanumeric literal
NOTE: See Chapter 3 for description. See also Appendix ﬁ for

Environment Division changes.

THE DISPLAY STATEMENT

An additional format for the DISPLAY statement is provided as follows:

Formaﬁ
) data—-name-1 dataname=2 CRT
DISPLAY { }[AT { }] UPON { }
—_— literél 3 literal-l CRT-UNDER
literal-3 is an alphanumeric literal
dataname-l refers to a record, group or elementary item but may not be
subscripted
dataname-2 . defines the left-most position on the screen. It refers to a
PIC 9999 field where the most significant 99 is a line count
1-25 and the least significant 99 is a character position
1-800
NOTE: See Chapter 3 for description.

eima e gt e oo mmea e meranm s aime v § e A e 2t L et el i A R - bt

DISK FILES

Two extensions are offered by CIS COBOL file processing. these are as
follows:

1. Line sequential files
2., Run time input of filenames

LINE SEQUENTIAL FILES

When LINE SEQUENTIAL ORGANIZATION is specified in the FILE CONTROL
paragraph ORGANIZATION is entry, the file is treated as consisting of
variable length records separated by C/R L/F characters. Trailing spaces in
output records are replaced by C/R L/F records.

RUN TIME INPUT OF FILENAMES

The ASSIGNed name in the SELECT statement for a file is processed on
OPENing as follows:

When the INPUT or OUTPUT phrase is specified, execution of OPEN causes
checking of the files names in accordance with the operating system
connections for opening on input or output file. The full operating system
features for file reallocation and device control are therefore available to
the CIS COBOL program.

I3

LOWER CASE CHARACTERS

The full alphanumeric lower case a to zis available in CIS COBOL.
Reserved and user word characters are read as their upper case equivalents
(A to Z). '

HEXADECIMAL VALUES

Hexadecimal binary values can be attributed to non-numeric literals in
CIS COBOL by expressing them as X "xx", where x is a hexadecimal character
in the set 0-9, A-F; xx can be repeated up to 120 times, but the number of
hexadecimal digits must be even, :

.

INTERACTIVE DEBUGGING

There is a Run-Time Debug Package to provide break-point facilities in
the user@s program. Programs may be run from the start until a specified
break-point is reached, when control is passed back to the user. At this
point, data areas may be inspected or changed.

The debug package is entered as an option by the user and the user
program is then tested line by line, paragraph by paragraph and so on as
required. The commands to the package can reference procedure statements
and data areas by means of a 4 digit hexadecimal code output by the compiler
against each line of the compilation listing. Powerful macros of commands
can be used to give very sophisticated debugging facilitiles. The precise
details for using the package vary according to the host operating system

and are described in the appropriate Operating Guide.

G -2

APPENDIX H
SYSTEM DEPENDENT LANGUAGE FEATURES

This Appendix summarises those parts of a COBOL program that need to be
changed to run them as CIS COBOL programs and those parts that do not need
changing specifically but are ignored by the CIS COBOL compiler when
generating the object program.

' MANDATORY CHANGES

ENVIRONMENT DIVISION

The oaly statements in the enviromment division that must be
specialised for CIS COBOL are shown below:

Configuration Section

SPECIAL-NAMES. special names entry

special names entry must include the following:
CURSOR IS data-name-l

The CURSOR IS data-name-1 clause specifies the data-name which will contain
the CRT cursor address as used by ACCEPT statements. Data-name-l must be
declared in the Working-Storage section as a 4 character item. The
interpretation of the 4 characters is given in the ACCEPT statement
description. :

Input-Output Section

File names must be as described in Appendix F of the CIS COBOL
Operating Guide.

STATEMENTS COMPILED AS DOCUMENTATION ONLY

COBOL programs not specifically written for compilation as CIS COBOL on
microcomputers can still be compiled. Statements using features that are
not available are treated as documentary only, and are not compiled. A
summary of these features follows:

ENVIRONMENT DIVISION

I-0-Control Paragraph

The clauses that refer to a real time clock and magnetic tape in this
paragraph are ignored by the compiler during compilation but do not cuase
compile times errors. These clauses are as follows:

UNIT

END OF { REEL } of file-name-2 (no magnetic tape)

T T

it st 30 o} S —-n‘--.:»—.—-“:‘* e Smammed T i eme b s TSt mee s e ety

integer-2 CLOCK UNITS (no clock)

DATA DIVISION

File Description Paragraph

The following complete statements in the file description are ignored
by the compiler during compilation but do not cause compile time errors:

BLOCK CONTAINS integer-l1 TO integer-2

RECORDS
CHARACTERS

CODE-SET IS alphabetic-name

RECORD IS STANDARD
LABEL {RECORDS A.RE} { OMITTED }

VALUE OF implementor-name-~l IS literal-l
[,implementor-name-2 IS literal-2] ...

PROCEDURE DIVISION

CLOSE Statement

The following phrases in the CLOSE statement are ignored by the
compiler during compilation but do not cause compiler-time errors:

{ s |

(No.magnetic tape)

JRONSVRSEYSTE S ORI,

g
e mAm e me e

APPENDIX 1

LANGUAGE SPECIFICATION

CIS COBOL is ANSI COBOL as given in "American National Standard Programming
Language COBOL" (ANSI X3.23 1974). CIS COBOL implements both levels of
ANSI COBOL. The following modules are fully implemented at Level 1:

‘Nucleus

Table Handling

Sequential Input and Output
Relative Input and Output
Indexed Input and Output
Segmentation

Library

Inter-Program Communication

In addition many Level 2 features are implemented such as:

. Nucleus - Nested IF, PERFORM UNTIL :
. Table Handling - Multiple dimensions of variable length table

handling.
e Relative and Indexed sequential I/0 - START statement
. Inter-Program Communication = Fully implemented

This appendix specifies the implementation of Version 4.2 CIS COBOL. The
implementation of each of the eight standard COBOL modules listed above is
given under the following headings as applicable: '

Level 1 Implementation
Level 2 Implementation
CIS COBOL Extensions

Appendix F in this manual is a CIS COBOL syntax summary.

e N i k¥t e ne 8 ke b A T

hR

B T LT DL TR SN UUE APORD- PSP S NPUPIS S R RERVISR S MEA

NUCLEUS

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

1.

2.
3.
4,
5.
6.
7.

8.

9.
10.

11.

DATE-COMPILED in the Identification Division 1is accepted for
documentation purposes only. :

Up to 49 pevel Numbers are permitted and 1-9 can be a single digit..
The characters , and ; are permitted as separators

The character '>', '=' and '<' are permitted in relative conditions.
The PERFORM ... THROUGH ... UNTIL feature is implemented.

Plural forms of the figurative constants can be used.

IF statements can be nested.

Mnemonic names are permitted in ACCEPT and DISPLAY statements (See
CIS COBOL extensions 6 and 7 below).

Procedure names can be all digits.
REDEFINES clauses can be nested.

Non-numeric operands can be compared.

CIS COBOL Extensions

1.

2.

3.

4.

5'-

6.

Lower case letters a to z are read as upper case letters A to Z.

Hexadecimal binary values can be attributed to non-numeric values by
expressing literals as X"nn".

Reserved word SPACE can be used to clear the whole CRT screen.

ANS switch not set enables omission of certain ANSI required "red tape"
paragraphs aund statements.

COMPUTATIONAL-3 or COMP-3 can be specified in the USAGE clause .to
specify packed internal decimal storage, (BCD).

data=-name-2

ACCE?T data-name-1 [AI {literal-l

}] FROM CRT

gives enhanced CRT input features

data-name~l data-name-2 CRT
O {literal—l }[AT{literal-Z }] UPON{CRT-UNDER} g\

8. 'CURSOR IS data-name' can be specified in SPECIAL-NAMES and 'data-name'
in WORKING-STORAGE section to specify CRT cursor address for ACCEPT
statements :

SEQUENTIAL, RELATIVE AND INDEXED I-0

gives enhanced CRT output facilities.

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

¥ * The START statement is fully supported for Relative and Indexed files.
2. - In sequential files, EXTEND is supported.

3. In OPEN and CLOSE statements:
{REEL
UNIT
are accepted for documentation purposes only.

4, LOCK in the CLOSE statement is treated as documentary only. {;:R

5. Dynamic access mode and READ NEXT are supported for relative and
indexed files.

6. Only the first assignment in each ASSIGN is actioned, others are
treated as documentary only at compilation.

7. The I-O-CONTROL paragraph is treated as documentary oanly as are its
RERUN and SAME AREA clauses. :

8. The following are treated as documentary only in the FD clause:

BLOCK CONTAINS
CODE-SET

DATA RECORDS
LABEL RECORDS
RECORDS CONTAINS
VALUE OF

L

- .CIS COBOL Extensions

l. Run Time allocation of file-names. See Appendix F in Operating Guide.

JORCHNRUN ¥ S M- SUIUIC U USSP JRRTEE TSI TR AP

2. LINE SEQUENTIAL is an additional file type.

§::K 3., All File Description (FD) clauses are optional when ANS switch 1is
unset.

4., Tabbing is available, specified by TAB in the WRITE statement.

TABLE HANDLING

Level One Implementation

Fully implemented to Level One.

CIS COBOL Extemsions | -

e

1. TItems can be. accessed in tables up to 49 dimensions. This extension is
restricted to three dimensions if the ANS switch 1s set.

-

SEGMENTATION

Level One Implementation

Fully implemented to Level One

LIBRARY

Level One Implementation

Fully implemented to Level One

DEBUG

Level One Implementation

Implemented as a subset of Level 1, but with an additional Run-Time Debug
package. Only Compile-time switch and Debugging lines are implemented of
the standard COBOL Debug. C

Unw e oo P

CIS COBOL Extemnsions

A powerful Run-Time Debug package is available.
CIS COBOL Operating Guide.

INTER-PROGRAM COMMUNICATION

- ¢ Level Two Implementation

Fully implemented to Level Two.

See Chapter 3 in the

2
-

A

ACCEPT Statement, 3-36
Access Mode, 5-1,6-1,7-1
ADD Statement, 3-39
Algebraic Signs, 2-12
Alignment Rules, Standard,
2-12
Alphabetic Data Rules, 3-12
Alphanumeric Data Rules,
3-13
Alphanumeric Edited Data
Rules, 3-13
ALTER Statement, 3-41,8-4
ANSI (ANS) Compiler
Directive, 2-15
Area, Indicator, l1-4 -
Arithmetic Statements, 3=-45
AT END Condition, 5-3, 6=4
7-4

Blank Lines, 2-25

BLANK WHEN ZERO Clause, 3-8

BLOCK CONTAINS Clause, 5-9,
6-9, 7-9

Body, Procedure Division,
2=-21

CALL Statement, ll=4

CANCEL Statement, 11-5

Character Representation and
Radix, Selection of, 2-10

Character Sets, 2-l1

Character Strings, 2-3

Character Strings, PICTURE
2-8

CIS COBOL, What It Is, l=l

Class Condition, 3-32

ALPHABETIC INDEX

Classes of Data, Concepts,
2-9
Classification, Segmentation,
8-2
Clause, BLANK WHEN ZERO, 3-8
Clause, BLOCK CONTAINS, 5-9,
6-9,7-9
Clause, CODE-SET, 5-9
Clause, DATA-NAME or FILLER
3-9
Clause, DATA RECORDS,: 5-8 5-9,.[,
7-9 Sl
Clause, JUSTIFIED, 3ﬁ1Q,;ﬁ;
Clause, LABEL RECORDS, 5-10,
6-10, 7-10
Clause, OCCURS, 4-1
Clause, PICTURE, 3-11 .
Clause, RECORD CONTAINS, 5-9
6-10, 7-10 ‘
Clause, REDEFINES, 3=-21
Clause, SIGN, 3-21
Clause, SYNCHRONISED, 3-25
Clause, USAGE, 3-27, 4-3
Clause, VALUE, 3-28
Clause, VALUE OF, 5-11, 6-10,
7-10
CLOSE Statement, 5-12, 6-12
7-11
COBOL Words, 2-3
CODE~-SET Clause, 5-9
Comment Lines, 2-27
Comment Entries, 2-8
Comparison Involving Index
Names and/or Index Data
Items, 4-4
Comparison of Nonnumeric
Operands, 3-31

'Comparison of Numeric

Operands, 3-31

Compile Time Switch, 10-1

Compiler Directives, ANS,
2-15
COMP (UTATIONAL) (-=3) PICTURE
Clause, 2-10-
Computer Independent Data
Description, Concept of,
2-8

Index - 1

- .
L UITHIN U U U S U,

Concept, Classes of Data,
2-9

" Concepts, Computer

.. Independent Data

Description, 2-8

Concepts, Language, 2-1

Concepts, Levels, 2-9

Condition-Name, 2-4, 2-14

Condition-Name Rules 3-18

Conditipnal Expressions,
3-30 -

Conditions, AT END, 5-3 6=4

: 7-4

Conditions, Class, 3-32.

Condixions, INVALID KEY, 5-3

6-3, 7-4
Conditions, Relation, 3-30
4-4 '

Conditions, Simple, 3=30

cOnditions,, witch-Status,

. 3-33

CONFIGURATION SECTION, 3-3

Connectives, 2-5 ’

Constants, Figurative, 2=5

Continuation of.Lines, . 2—25

COPY Statement, 9-2=

CRT Devices, 3-35

Current Record Pointer, 5-1
6-1, 7-1

Data Description, Computer
Independent, Concept of,
2-8
Data Description, Entries
Other Than Condition-Names
3-29
Data Description, Entry
Skeleton, 3-6
Data Dictionary, 12-2
Data Division Entriles, 2-26
Data Division in Indexed 1-0
Module, 7-8° - T
Data Division in =~ "
Interprgoram Communication
Module, 11-1 "~ % ==
Data Division ia Nucleus,
36 - e
Data Division id’ Relatfve
I-0 Module, 6-8 o
-Data Division in Sequential
I-0 Module, 5-7

Data, Incompatable, 3-35

DATA-NAME or FILLER Clause, 3-9

DATA RECORDS Clause, 5-7, 6-9
7-9

DATE-COMPILED Paragraph, 3-2

Debug, 10-1

Debugging Lines, 10-1

Debug, Run Time, 10-1

Declarations, 2-20

Declaratives, 2-26

DELETE Statement, 6-13, 7-1

DISPLAY Statement, 3-42

DIVIDE Statement, 3-44

Division Format, 2-25

Division Header, 2-25

E

Editing Symbols, 3-17

Editing Types for Data
Categories, 3-16

Elementary Item Size Rules,

3-13

Elements, 1-3

ENTER Statement, 3-~46

Entries, Comment, 2-8,

Entry, FILE-CONTROL, 5-4, 6-5,

7-5
Environment Division in
Indexed I-0 Module, 7-5
Environment Division in
Nucleus, 3-3
Environment Division in
Relative I-O0 Module, 6-5
Environment Division in
Sequential I-O Module, 5-4
Execution, Procedure Division
2-20
EXIT Statement, 3-47
EXIT PROGRAM Statement, l1-6
Expressions, Counditiomal,
3-30

Figurative Constants, 2-5
Figurative Constant Values,
2=-7
File Description Entry
Skeleton, 5-8, 6-8, 7-8
FILE SECTION, 5-7, 6-8, 7-8

FILE-CONTROL Entry, 5-4, 6-5, 7-5

Index -~ 2

ﬂ‘:?

FILE-CONTROL Paragraph, 5-4,

6=5, 7=5
FILLER or DATA-NAME Clause
3-9
Fixed Insertion Editing
Rules, 3-16
Fixed Portion, 8-1
Formats, Division, 2-25
Formats, General, 1-3
Formats, Paragraph, 2-25
Formats, Reference, 2-24
Formats, Section, 2-25
Formats, Source, l-4

General Formats, 1-3
GO TO Statement, 3-48

Header, Division, 2-25
Header, Paragraph, 2-25
Header, Procedure Division
2-25 '
Header, Section, 2-25

»Identification Division,

2-16 ,
Identification Division, in
Nucleus, 3-1
Identifier, 2-14
IF Statement, 3=49
Incompatible Data, 3-35
Independent Segments, 8-l
Indexed I-0 Module, 7-1
Indexed I-0 Module, Data
Division in, 7-8
Indexed I-0 Module,
Enviromment Division in,
7=5
Indexed I-0 Module,
Procedure Division in,
7-11
Indexing, 2-13
Index Data Items, 4=t
Index~-Names, 4=4

U S SLSE DV SOU-VE e T st i s

Indicator Area, 1-4

Input-Output Section, 5-4 6-5,

7=5
Input-Output Status, 5-1 6—1,
7-2
Insertion Editing Rules,~* o
Fixed, 3-16 -
Insertion Editing Rules, '~
Floating, 3=17 ~ ~ - wv
Insertion Editing Rules, “"'-°
Simple, 3-=16 Ve
Insertion Editing Rulésy +'*
Special, 3-16 4
INSPECT Statement, 3=5T tonc
Inter Program Cbmmuntcatidh g
Module, 11-1 =~ ° T
Inter Program cammunicatiau~
Module, Data Division in,”
11-1 v~
Inter Program Ccmmnnicationt
Module, Procedure Divisipn
in, 11-3 o
INVALID KEY Condition, 5;3,
6=3, 7=4" ST
I-0 Control- Paragraph 546,
6=7, 777" L

JUSTIFIED Clause, 3-10 = ~

Keys, Status, 5-1, 6-2, j;f:

. R [
- B e B

LABEL mcoans Clause, 5-10,,

"6=10, 7-10 . e
Language Concepts, 2-I 5-
6=1, 7=1 f"‘ S

I

‘Language’ Structu:g, 2-1

Levels, Concept, 2<§ "~ v
Levels, Numbér, 2-9 3-II
Library Module, 9-1°"~ |
Lines, Blank, 2-=25 ‘““.“;"
Lines, Comment, 2=-27
Lines, Continuation of, 2-25
Lines, Debugging, 10-1

Index - 3

Wi,

Linkage Sectiom, 11-1
Literals, Nonnumeric, 2-6
Literals, Numeric, 2-6

Mnemonic-Name, 2-4

Mode, Access, 5-1, 6-1, 7-1
MOVE Statement, 3-57
MULTIPLY Statement, -3-60

Name, Conditiom,-2-4
Name, Mnemonic, 2-4
Name, Paragraph, 2-4
Name, Section, 2-4
Name, System, 2-4
Name, ‘User<Defined,: 2-4
Nonnumeric Literals, 2-6
Nucleus, Environment Division
in, 3-3
Nucleus, Function, 3-1
Nucleus, Identification
Division in, 3-1
Nucleus, Organisatiom, 3-1
Nucleus, Procedure Division
in, 3-30 '
Nucleus, Structure, 3-1
Number, Levély, 2-9,-3-11
Number, Sequence, 1-4, 2-25
Numeric Data Dlvision in,
3-6
Numeric Data Rules, 3-13
Numeric Edited Data Rules,
©3-13
Numeric Literals, 2-6
Numeric Operands, Comparisonr
of, 3-31 3 =

OBJECT-COMPUTER - Paragraph !
3-3

OCCURS Clause, 4=1 5

QPEN Statement, 5-13, 6- 15

- 7=13

Operand Comparison, 3-31

Operand, Overlapping 3-35
4=4

Organisation Data Division,
2-18
Organisation Environment
Division, 2-17
Organisation Identification
Division, 2-16
Organisation, Indexed ILnput-
Output Module, 7-1
Organisation, Nucleus, 3-1
Organisation, Procedure
Division, 2-20
Organisation, Relative Input-
Output Module, 6-1
Organisation, Segmentation,
8=t
Organisation, Sequential
Input-Qutput Module, 5-1
Overlapping Operands, 3-35,
4=4

Paragraph, DATA-COMPILED,
3-2 :

Paragraph, FILE-CONTROL, 5-4
-6=5, 7=5

Paragraph Format, 2-25

Paragraph, I-O CONTROL, 5-6,
6=7, 7-7

Paragraph-Name, 2-4

Paragraph, OBJECT-COMPUTER,
3-3

Paragraph, PROGRAM-ID, 3-2

Paragraph, SOURCE-COMPUTER,
3=3 .

Paragraph, SPECIAL-NAMES, 3-4

PERFORM Statement, 3-61, 8-4

Phrase, ROUNDED, 3-34

Phrase, SIZE ERROR, 3-34

PICTURE Character Strings, 2-8

PICTURE Clause, 3-12

Portion, Fixed, 8-l

Precedent Rules, 3-18

Procedures, 2-20

Procedure Division, 2-21

Procedure Division, Body, 2-21

Procedure Division,

Declarations, 2-20

Procedure Division, Execution,

2-20

'Procedure Division, General

Format, 2-21
Procedure Division Header,
2-21, 11-3

Index - 4

{43\

-y

F

procedure Division in the
Indexed I-0 Module, 7-11

Procedure Division in the
Interprogram Communication
Module, 11-3

Procedure Division in the
Nucleus 3-30

Procedure Division in the
Relative I-0 Module, 6-12

Procedure Division in the
Sequential I-0 Module, 5-11

Procedures, 2-20

PROGRAM-ID Paragraph,. 3-2
Programing Techniques, 12- L

Program Segments, 8-1.'-.

Program Structure, 1-2 2~15

8=3 T A

READ Statement, 5 16 6—17
7-16
RECORD CONTAINS Clause, 5-10,
6-10, 7-10 : ‘ o
Record Descrlption Format
2-24
Record Description Structure,
5-7, 6=8, 7-8 : ;
Record Pointer, Current 5-1,
6-1, 7-1 ; y
REDEFINES Clause,”3—21
Reference, Uniqueness of,
2-12
Relation Condition, 3 30
Relation Condition, Table
Handling, 4=-4 .
Relative Input—Qutput Module,:
Data Division in, 6-8 :
Relative Input-Qutput Module,
" Enviromment Division in:
6=5 -
Relative Input-Output Module,
Procedure Division in, 6-12
Reserved Words, 2-28
REWRITE Statement, 5=18, 6-20
7-19 .
ROUNDED Phrase, 3-34 -
Rules, Alignment, Standard 2-12

Rules, Alphabetic Data, 3-12 . .

Rules, Alphanumeric Data, 3-13.

Rules, Alphanumeric Edited _. =
Data, 3-13 BN

Rules, Editing, 3-15

Rules, Editing, Fixed)
Insertion, 3-16

Rules, Editing, Floating
Insertion, 3=17 . & Cososs =

Rules, Editing, Simple S
Insertion, 3-16.. ., .

Rules, Editing, Special
Insertion, 3- 16

Rules, Editing, Zero
Suppression, 3-18

Rules, Elementary Item Size,

3-13

Rules, General, .1-3: SikcrTet

Rules, Numeric Data,. 3-12 iy

Rules, Numeric Edited Data ok

3-13 S

Rules, Precedence, 3—18‘

Rules, Symbols Used,-3 -14

Rules,.Syntax,-1-3 -

Run:Time Debug, 10~ 1

SECTION CONFIGURATION 3 3 :
SECTION, FILE, 5-7, 6—8 7-8
Section Format, 2= 25 = d
Sectiom Input—Output 5-4 6-5
7=5 - o L
Section, Linkage, 1;—1',;?:h_
Section Name, 2-4 A et
SECTION, WORKING-STORAGE,. 3=6
Segmentation, 8-1 LN o
Segmentation C13551fication,
8-2
Segmentation Control 8~ Z
Segmentation Organisation,,S l
Segments, Program, 8-l
Segments, Independent, 8-1
Selection of Character
Representation and Dadix
2-10
Sentences, 2-21 :
Separators, 2- 15
Separators, Compiler
Directing, 2-22 :
Separators, Conditlonal, 2-22

Index - 5

e R VTR Oy ST O

i

s

Separators, Imperative, 2-23
Sequenee Number, 1-4, 2+25°

Sequential

Input-Output

Module, 5-1

Sequential

Input-Output

Module, Data Division in,

5':—7
Sequential

Input=Output

Module, Enviromment

Division
Sequential

in, 5=4
Input-Qutput

Module, Procedure Division

in,: 5=12

SET Statement, 4—4

SIGN Clause, 3-21

Signs, Algebraic, 2-12

Simple Conditions, 3-30

Simple Insertion Editing
Rules, 3~16

SIZE ERROR

Phrase, 3-34

Sizing, 12-1
SOURCE-COMPUTER Paragraph,

3=3

Source Format, l-4

Special Insertion Editing
Rules, 3-16

SPECIAL-NAMES Paragraph, 3-4

Standard Alignment Rules,

2-12

START Statement, 6~22, 7-21

Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
7-11
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,
Statement,

ACCEPT, 3-36
ADD, 3-39

ALTER, 3-41, 8~4
CALL, 1l=4
CANCEL, 11-5
CLOSE, 5-12, 6-12

COPY, 9-2-

DELETE, 6-13, 7-12
DISPLAY, 3-42
DIVIDE, 3-44
ENTER, 3-46

EXIT; 3-47

EXIT PROGRAM, 3-48
GO TO, 11-6

IF, 3-49

INSPECT, 3-51
MOVE, 3-57
MULTIPLY, . 3-60

OPEN, §~13, 6-14, 7-13

Statement, PERFORM, 3-61, 3-4
Statement, READ, 5-16, 6-17,
-7-16

Statement, REWRITE, 5-18, 6-20

7-19
Statement, SET, 4-4
Statement, START, 6-22, 7-21
Statement, STOP, 3-65
Statement, SUBTRACT, 3-66
Statement, USE, 5-19, 6-=24
; 7-23
Statement, WRITE, 5-20, 6-25
7=24
Statements, Arithmetic, 3-35
Statements, Compiler
Directing, 2-22
Statements, Conditional,. 2-22
Statements, Imperative, 2-23
Status, Input=Qutput, 5-1, 6-l
7=2
Status Keys 5-1, 6-2, 7-2
STOP Statement, 3-65
Structure, Data Division, 2-18
Structure, Environment
Division, 2-17]
Structure, Identification
Division, 2-16
Structure, Language, 2-1
Structure, Nucleus, 3-1
Structure, Procedure
Division, 2-20
Structure, Program, 1-2, 2-15
Sructure, Program Segments,
8-3. i
Structure, Record Description
5=7, 6=8, 7-8
Subscripting, 2-13 ;
SUBTRACT Statement, 3-66
Suppression Editing, Zero,
: 3-18

" Switch, Compile Time, 10-1

Switch Status- Condition, 3=33
Symbols Used Rules, 3-14
SYNCHRONISED Clause, 3-25
Syntax Rules, 1-3 ‘

Syntax Rules, in Nucleus, 3-1
System~Name, 2-4

Index = 6

