
v

iS
i -• •••,' v-^a.

PREFACE -

Th^is. manual describes the Compact Interactive Standard COBOL (CIS COBOL)
l3jjgua,ge for programmiiig microconiputers# CIS COBOL is based, on tl\e ANSI
COBOL standard X3.23 (1974) (see Acknowledgement), It also describes the
additional CIS COBOL features that exploit the ^capabilities of
microprocessors. . •;

Each release of CIS COBOL is characterised by a two-digit code in the form
of . '

"Version number". "Release number within version"

AUDIENCE

This manual is intended for programmers already familiar with COBOL On other
equipment. --

MANUAL ORGANISATION

Chapters 1 through 4 of- the manual apply to all users and describe basic,
features of the language. Chapters 5 through 7 describe language features
for programming the three disk"formats supported: sequential, relative and
indexed.

Chapters 8 through 11 apply to all users hnd describe additional features
and facilities available -with the standard language. The appendices supply
reference information pertinent to all systems.

The manual contains the following chapters and'appendices:

"Chapter 1. Introduction",. which gives a general description of the
languaM, including a broad outline of ANSI COBOL features included and
omitted and additional, features of CIS COBOL. ...

"Chapter 2. COBOL Concepts", Xi^ich describes general, concepts of the COBOL
language Including program structure, and details of statement .cpmponetvts
and notation.

"Chapter 3. Nucleus", which describes the nucleus of all COBOL programs:.and
the layout of each program division therein.

"Chapter 4. .Table .Bandling", which describes the handling of data tables in
the Data and Procedure divisions of a COBOL program.

"Chapter 5. Sequential Input" and Output", which describes the programming of
input and output of^ data in files with sequential format.

"Chapter 6. Relative Input and Output", which describes the programning-o"f
input and output of data in files with relative format.

"Chapter 7. Indexed Input and Output", which describes the programming of
input and output of data in files with indexed format.

"Chapter 8. Segmentation", which describes the facility 'for specifying
permanent and independent object program segments.

IV

"Chapter 9. Library", ^ich describes the source library maintenance feature
of COBOL. - •

" "Chapter iO. Debug and Interactive Debugging", which describes the basic and
interactive debugging features available in CIS COBOL. ,

' /"Ch^ter 11. Interprogram Communication", which describes the ability of CIS
•QOBOL " programs to Interface during running and to access common data,

V 'enab'ling" modular programming.

"Chapter 12. Programming Techniques and Sizing", which describes the means
available for CIS COBOL programmers to estimate object program size and

'••••/thciiides programming techniques in CIS COBOL.
ix-ii n'-'. "• .

"Appendix A. Reserved Word Table", which lists words reserved for CIS COBOL
functions within a program.

"Appendix B. Character Set and Collating Sequence", which lists all
characters available and their collating sequence.

"Appendix C. Glossary", which lists specific terms used in CIS COBOL.

"Appendix D. 'Compile - Time Errors", which lists all errors that can be
:.Si i-'jr—.1 I.signalled"-during program compilation.

"Appendix E. Run-Time Errors", vdiich lists all errors that can be signalled
durijag program execution.

c-'X 1. •

"Appendix F. Syntax Summary", irtiich summarises the syntax used in CIS COBOL
programming.

J"',' Z"- ' •

"Appendix G. Summary of Extensions to ANSI COBOL", which summarises all
extensions to ANSI COBOL provided by CIS COBOL.

" •^'Appendix H. Systems Dependent Language Features", which describes the
. system dependent CIS COBOL entries for use with microcomputers and those
- features'not included because of hardware requirements.

:i 0.—2

"Appendix I. Language Specification", which is an overall specification of
t^^e CIS COBOL language.

R'ELAlTED PUBLICATIONS

No discussion of operating the CIS COBOL Compiler or Run-Time system is
Incorporated in this manual. Please refer to document!

Uil:-

CIS COBOL Operating Guide
(for use with the relevant Operating System)

NOTATION TO THIS MANUAL

Throughout this manual, the following notation is used to .describethe
format of COBOL statements:

1. • All words printed in capital letters which are underlined mus.t,_..always
be present when the functions of which they are a part are.used. . / An
error printout will occur during compilation if the underlined.,^words
are absent or incorrectly spelled. The underlining is not necdssary
when writing a COBOL source program. . i:: cv,

2. All words printed in capital letters which are not underlineinrelused
for readability only. They may be written, or not, as the programmer
wishes. -

3. All words printed in small letters are generic terms representing names
which will be devised by the programmer. ,

4, When material is enclosed in braces] } . a choice must 'be mde from
the options within them.

5. When material is enclosed in square brackets [], it is- an indication
that the material is an option which may be included or. omitted„ as
required.

6. When material is enclosed in square brackets crossed f f, it--Is an
indication that the material is mandatory when the ANS (ANSI) switch is
set (see Chapter 2) but optional otherwise. ^•

7,. Language features that are shaded in the text are language extensions
which exceed the ANSI standard.

...

8. In text, the ellipsis (...) shows the omission of a portion of a source
program or a sequence. This meaning becomes apparent in-^context.

In the general formats, the ellipsis represents the position at^which
repetition may occur at the user's option. The portion of the format
that may be repeated is determined as follows: 'J

Given ... in a clause or statement format, scanning right to left,
determine the | or [immediately to the left of the ...; continue
scanning right to left and determine the logically matching [:-or h the
... applies to the words between the determined pair' of de'l*ia±ters.

9, The term identifier means either a data—name or a .sui^c^pted
data-name. An identifier takes the following form:

data-name-1
[((data-name-2))1

\ literal-1) J

data-name-2 or literal-l must be a positive integer in the range 1
to the number of elements in the table.

Headings are presented in this manual in the following order of importance:

CHAPTER N)

TITLE

Chapter Heading

vi

ORDER ONE HEADING

ORDER TWO HEADING

Order Three Heading

Order Four Heading

Order Five Heading;

Text two lines down

Text on same line

Numbers one (1) to nine (9) are written in text as letters, e.g. one.

Numbers ten (10) upwards are written in text as numbers, e.g. 12.

The phrase "For documentation purposes only" in the text of this manual
means that the associated coding is accepted syntactically by the Compiler,
but is ignored when.producing the object program.

y,-. -t V

• TITO'S.

vii

w'

I

<A

•iioVi • : .-w.:

TABLE OF CONTENTS

PREFACE

CHAPTER 1
N.

INTRODUCTION

WHAT IS CIS COBOL? 1-1

PROGRAM STRUCTURE 1-2-

FORMATS AND RULES 1-3

GENERAL FORMAT 1-3

SYNTAX RULES 1-3

GENERAL RULES 1-3

ELEMENTS 1-3

SOURCE FORMAT 1-4

SEQUENCE NUMBER 1-4

INDICATOR AREA 1-4

CHAPTER 2

COBOL CONCEPTS

LANGUAGE CONCEPTS 2-1

CHARACTER SET 2-1

LANGUAGE STRUCTURE 2-1

Separators 2-1

Character-•strings 2-3

COBOL Words 2-3

User-Defined Words 2-3

Condition-Name 2-4

Mnemonic-Name 2-4

Paragraph-Name 2-4

Section-^ame 2-4

Other User-Defined Names 2-4

System-Names 2-4

Reserved Words 2-5

Key Words 2-5

Optional Words 2-5

Connectives 2-5

Figurative Constants 2-5

Literals 2-5

viii

.V .. ! ,

;

r." i

Nonnumeric Literals

Numeric Literals

Figurative Constant Values

PICTURE Character-Strings
Comment-Entries

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

Concept of Levels

Leve1-Numbers

Concept of Classes of Data
Selection of Character Representation and Radix
Algebraic Signs
Standard Alignment Rules
Uniqueness of Reference

Subscripting
Indexing
Identifier
Condition-Name

PROGRAM STRUCTURE

THE ANSI (ANS) COMPILER DIRECTIVE

IDENTIFICATION DIVISION

GENERAL DESCRIPTION
ORGANIZATION

STRUCTURE

General Format

•ENVIRONMENT DIVISION

GENERAL DESCRIPTION
ORGANIZATION

STRUCTURE

General Format

DATA DIVISION

OVERALL APPROACH

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION

Data Division Organization
General Format

PROCEDURE DIVISION

GENERAL DESCRIPTION

ix

2—6

2-6

2-7

2-8

2-8

2-8

2-8

2-9

2-9

2-10

2-12

2-12

2-13

2-13

2-13

2-14

2-15

2-15

2-15

2-16

2-16

2-16

2-16

2-16

2-17

2-17

2-17

2-17

2-17

2-18

2-18

2-18

2-18

2-19

2-20

2-20

Declarations

Procedures

Execution

General Format

^ Header
Body

STATEMENTS AND SENTENCES

Conditional Statement
Conditional Sentence

Compiler Directing Statement
Compiler Directing Sentence
Imperative Statement
Imperative Sentence

REFERENCE FORMAT

GENERAL DESCRIPTION
REFERENCE FORMAT REPRESENTATION

Sequence Numbers
Continuation of Lines
Blank Lines

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

Section Header

Paragraph Header, Paragraph-Name and Paragraph

DATA DIVISION ENTRIES

DECLARATIVES

COMMENT LINES

RESERVED WORDS

CHAPTER 3

THE NUCLEUS

FUNCTION OF THE NUCLEUS

IDENTIFICATION DIVISION IN THE NUCLEUS

GENERAL DESCRIPTION

ORGANIZATION

Structure

General Format

Syntax Rules

THE PROGRAM-ID PARAGRAPH

2-20

2-20

2-20

2-21

2-21

2-21

2-21

2-22

2-22

2-22

2-22

2-23

2-23

2-24

2-24

2-24

2-25

2-25

2-25

2-25

2-25

2-25

2-25

2-26

2-26

2-27

2-28

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-2

Function

General Format

Syntax Rule
General Rules

THE DATE-COMPILED PARAGRAPH

Function

General Format

Syntax rule

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

THE SOURCE-COMPUTER PARAGRAPH

Function

General Format

Syntax Rules
General Rules

THE OBJECT-COMPUTER PARAGRAPH

Function

General Format

Syntax Rules
General Rules

THE SPECIAL-NAMES PARAGRAPH

Function

General Format
Syntax Rule
General Rules

DATA DIVISION IN THE NUCLEUS

WORKING-STORAGE SECTION

Noncontiguous Working-Storage
Working-Storage Records
Initial Values

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function

General Format

Syntax Rules
General Rule

THE BLANK WHEN ZERO CLAUSE

Function

General Format

Syntax Rule

xi.

3-2

3-2

3-2

3-2

3-2

3-2

3-2

3-2

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-4

3-4

3-4

3-4
3-4

3-6

3-6

3-6

3-6

3-6

3-6

3—6

3-7

3-7

3-7

3-8

3-8

3-8

3-8

r%,.

THE DATA-NAME OR FILLER CLAUSE

Function

General Format

Syntax Rules
General Rule

THE JUSTIFIED CLAUSE

Function

General Format

Syntax Rules
General Rules

LEVEL-NUMBER

Function

General Format

Syntax Rules
General Rules

THE PICTURE CLAUSE

Function

General Format

Syntax Rules
General Rules

Alphabetic Data Rules
Numeric Data Rules

Alphanumeric Data Rules
Alphanumeric Edited Data Rules
Numeric Edited Data Rules
Elementary Item Size
Symbols Used

Editing Rules

Simple Insertion Editing
Special Insertion Editing
Fixed Insertion Editing
Floating Insertion Editing
Zero Suppresion Editing

Precedence Rules

THE REDEFINES CLAUSE

Function

General Format

Syntax Rules
General Rules

THE SIOI CLAUSE

xii

3-9

3-9

3-9

3-9

3-9

3-10

3-10

3-10

3-10

3-10

3-11

3-11

3-11

3-11

3-11

3-12

3-12

3-12

3-12

3-12

3-12

3-12

3-13

3-13

3-13

3-13
3-14

3-15

3-16

3-16

3-16

3-17

3-18

3-18

.3-21

3-21

3-21

3-21

3-21

3-23

-'wj

Function

General Format

Syntax Rules
General Rules

THE SYNCHRONIZED CLAUSE

Function

General Format

Syntax Rules
General Rules

THE USAGE CLAUSE

Function

General Format

Syntax Rules
General Rules

THE VALUE CLAUSE

Function

General Format

Syntax Rules
General Rules

Data Description Entries other than Condition
Names

PROCEDURE DIVISION IN THE NUCLEUS

CONDITIONAL EXPRESSIONS

Simple Conditions

Relation Condition

Comparison of Numeric
Operands
Comparison of Nonnumerlc
Operands
Class Condition

. ' Switch-Status Condition

COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

The ROUNDED Phrase

The SIZE ERROR Phrase

SIZE ERROR Phrase Not Specified
SIZE ERROR Phrase Specified
The Arithmetic Statements
Overlapping Operands
Incompatible Data
CRT Devices

xllL

3-23

3-23

3-23

3-23

3-25

3-25

3-25

3-25

3-25

3-27

3-27

3-27

3-27

3-27

3-28

3-28

3-28

3-28

3-28

3-29

3-30

3-30

3-30

3-30

3-31

3-31

3-32

3-33

3-34

3-34

3-34

3-34

3-34

3-35

3-35

3-35

3-35

THE ACCEPT STATEMENT 3-36

Function 3—36
General Format 3-36
General Rules 3-36

THE ADD STATEMENT 3-39

Function 3—39
General Format 3-39
Syntax Rules 3-39
General Rules 3—39

THE ALTER STATEMENT 3-41

Function 3-41
General Format 3-41
Syntax Rules 3-41
General Rules 3-41

THE DISPLAY STATEMENT^ 3-42

Function 3-42
General Format 3-42
Syntax Rules 3-42
General Rules 3-42

THE DIVIDE STATEMENT 3-44

Function 3-44
General 3-44
Syntax Rules 3-44
General Rules 3-44

THE ENTER STATEMENT 3-46

Function 3-46
General 3-46
Syntax Rules 3-46
General Rules 3-46

THE EXIT STATEMENT 3-47

Function 3-47
General Format 3-47
Syntax Rules 3-47
General Rules 3-47

THE GO TO STATEMENT 3-48

Function 3-48
General Format 3-48
Syntax Rules 3-48
General Rules 3-48

xiv

[V'

THE IF STATEMENT

Function

General Format

Syntax Rules
General Rules

THE INSPECT STATEMENT

Function

General Format

Syntax Rules
General Rules

THE MOVE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE MULTIPLY STATEMENT

Function

General Format

Syntax Rules
General Rules

THE PERFORM STATEMENT

Function

General Format

Syntax Rules
General Rules

THE STOP STATEMENT

Function

General Format

Syntax Rules
General Rules

THE SUBTRACT STATEMENT

Function

General Format

Syntax Rules
General Rules

CHAPTER 4

TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE
DATA DIVISION IN THE TABLE HANDLING MODULE

xy

3-49

3-49

3-49

3-49

3-49

3-51

3-51

3-51

3-52
3-52

3-57

3-57

3-57

3-57

3-57

3-60

3-60

3-60

3-60

3—60

3-61

3-61

3-61

3-61

3-61

3-65

3-65

3-65
3-65

3-65

3-66

3-66

3-66

3-66

3-67

4-1

4-1

(h THE OCCURS CLAUSE

Function

General Format

Syntax Rules
General Rules

THE USAGE CLAUSE

Function

General Format

Syntax Rules
General Rules

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

RELATION CONDITION

Comparisons Involving Index-names and/or
Index Data Items

OVERLAPPING OPERANDS

THE SET STATEMENT

Function

General Format

Syntax Rules
General Rules

CHAPTER 5

SEQUENTIAL INPUT AND OUTPUT

INTRODUCTION TO THE SEQUENTIAL I-O MODULE

LANGUAGE CONCEPTS

Organization
• Access Mode

Current Record Pointer
1-0 Status

Status Key 1
Status Key 2
Valid Combinations of Status

1 and 2

The AT END Condition

ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL paragraph

xvi

WJWUH Iji! II mI.jupPw

4-1

4-1
4-1

4-1

4-2

4-3

4-3

4-3

4-3

4-3

4-4

4-4

4-4

4-4

4-4

4-4

4-4

4-4

4-5

5-1

5-1

5-1

5-1

5-1

5-1

5-1

5-2

5-2

5-3

5-4

5-4

5-4

Function

General Fomiat

The FILE-CONTROL Entry

Function

General Format

Syntax Rules
General Rules

The I-O CONTROL Paragraph

Function

General Format

S3rntax Rules
General Rules

DATA DIVISION IN THE SEQUENTIAL 1-0 MODULE

FILE SECTION

RECORD DESCRIPTION STRUCTURE

THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON

Function

General Format

Syntax Rules

THE BLOCK CONTAINS CLAUSE

Function

General Format

General Rule

THE CODE-SET CLAUSE

Function

General Format

Syntax Rules
General Rule

THE DATA RECORDS CLAUSE

Function

General Format

Syntax Rule
General Rule

THE LABEL RECORDS CLAUSE

Function

General Format

Syntax Rules
General Rules

THE RECORD CONTAINS CLAUSE

xvii

5-4

5-4

5-4

5-4

5-4

5-4

5-5

5-6

5-6

5-6

5-6
5-6

5-7

5-7

5-7

5-8

5-8

5-8

5-8

5-9

5-9
5-9

5-9

5-9

5-9

5-9

5-9

5-9

5-9

5-9

5-9

5-10

5-10

5-10

5-10

5-10

5-10

5-10

5-10

Function

General Format

General Rules

THE VALUE OF CLAUSE

Function

General Format

General Rules

PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE

THE CLOSE STATEMENT

Function

General Format

Syntax Rule
General Rules

THE OPEN STATEMENT

Function

General Format

Syntax Rules
General Rules

THE READ STATEMENT

Function

General Format
Syntax Rules

General Rules

THE REWRITE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE USE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE WRITE STATEMENT

Function

General Format

Syntax Rules
General Rules

xvlll

5-10

5-10

5-10

5-11

5-11

5-11

5-11

5-12

5-12

5-12

5-12

5-12

5-12

5-13

5-13

5-13

5-13

5-13

5-16

5-16

5-16
5-16

5-16

5-18

5-18

5-18

5-18

5-18

5-19

5-19

5-19

5-19

5-19

5-20

5-20

5-20

5-20

5-20

I ' fmm t•

CHAPTER 6

RELATIVE INPUT AND OUTPUT

INTRODUCTION TO THE RELATIVE I-O MODULE

LANGUAGE CONCEPTS

OrganjLzatlon

Access Modes

Current Record Pointer
I-O Status

Status Key I
Status key 2
Valid Combination o£ Status Keys

1 and 2

The INVALID KEY Condition
The AT END Condition

ENVIRONMENT DIVISION IN THE RELATIVE I-O MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function

General Format

The FILE CONTROL Entry

Function

General Format

Syntax Rules
General Rules

The 1-0 CONTROL Paragraph

Function

General Format

Syntax Rules
General Rules

DATA DIVISION IN THE RELATIVE 1-0 MODULE

FILE SECTION

RECORD DESCRIPTION STRUCTURE
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON

Function

General Format

Syntax Rules

xix

6-1

6-1

6-1

6-1

6-1

6-1

6-2

6-2

6-3

6-3

6-4

6-5

6-5

6-5

6-5

6-5

6-5

6-4

6-5

6-5

6-6

6-7

6-7

6-7

6-7

6-7

6-8

6-8

6-8

6-8

6-8

6-8

6-9

THE BLOCK CONTAINS CLAUSE

Fuaction

General Format

General Rule

THE DATA RECORDS CLAUSE

Function

General Format

Syntax Rule
General Rule

THE LABEL RECORDS CLAUSE

Function

General Format

Syntax Rule
General Rule

THE RECORD CONTAINS CLAUSE

Function

General Format

General Rules

THE VALUE OF CLAUSE

Function

General Format

Syntax Rules
General Rules

PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE

THE CLOSE STATEMENT

Function

General Format

Syntax Rule
General Rules

THE DELETE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE OPEN STATEMENT

Function

General Format

S3mtax Rules
General Rules

XX

6-9

6-9

6-9

6-9

6-9

6-9

6-9

6-9

6-9

6-10

6-10

6-10

6-10

6-10

6-10

6-10

6-lQ

6-10

6-10

6-11

6-11

6-11

6-11

6-12

6-12

6-12

6-12

6-12

6-12

6-13

6-13

6-13

6-13

6-14

6-14

6-14

6-14

6-14

THE READ STATEMENT

Function

General Format

Syntax Rules
General Rules

THE REHRITE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE START STATEMENT

Function

General Format

Syntax Rules
General Rules

THE USE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE WRITE STATEMENT

Function

General Format

Syntax Rules
General Rules

CHAPTER 7

INDEXED INPUT AND OUTPUT

INTRODUCTION TO THE INDEXED I-O MODULE.

LANGUAGE CONCEPTS

Organization

Access Modes

Current Record Pointer

1-0 Status

Status Key 1
Status Key 2
Valid Combination of Status Keys

1 and 2

The INVALID KEY Condition
The AT END Condition

xxi

6-17

6-17

6-17

6-17

6-17

6-20

6-20

6-20

6-20

6-20

6-22

6-22

6-22

6-22

6-22

6-24

6-24

6-24

6-24

6-24

6-25

6-25

6-25

6-25

6-25

7-1

7-1

7-1

7-1

7-1

7-2

7-2

7-2

7-3

7-4

7-4

ENVIRONMENT DIVISION IN THE INDEXED I-O MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function

General Format

The FILE CONTROL Entry

Function

General Format

Syntax Rules
General Rules

The I-O CONTROL Paragraph

Function

General Format

Syntax Rules
General Rules

DATA DIVISION IN THE INDEXED 1-0 MODULE

FILE SECTION

RECORD DESCRIPTION STRUCTURE

THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON

Function

General Format

Syntax Rules

THE BLOCK CONTAINS CLAUSE

Function

General Format

General Rule

THE DATA RECORDS CLAUSE

Function

General Format

Syntax Rules
General Rules

THE LABEL RECORDS CLAUSE

Function

General Format

Syntax Rule
General Rule

THE.RECORD CONTAINS CLAUSE

xxii

7-5

7-5

7-5

7-5

7-5

7-5

7-5

7-5

7-5

7-6

7-7

7-7

7-7

7-7

7-7

7-8

7-8

7-8

7-8

7-8

7-8

7-8

7-9

7-9

7-9

7-9

7-9

7-9
7-9

7-9

7-9

7-10

7-10
7-10

7-10

7-10

7-10

Function 7-10
General Format 7-10
General Rules 7-10

THE VALUE OF CLAUSE 7-10

Function 7-10
General Format 7-10
General Rules 7-10

PROCEDURE DIVISION IN THE INDEXED I-O MODULE 7-11

THE CLOSE STATEMENT 7-11

Function 7-11
General Format 7-11
Syntax Rules 7-11
General Rules 7-11

THE DELETE STATEMENT 7-11

Function 7-12
General Format 7-12
Syntax Rules 7-12
General Rules 7-12

THE OPEN STATEMENT 7-13

Function 7-13
General Format 7-13
Syntax Rules .7-13
General Rules 7-13

THE READ STATEMENT 7-16

Function •» 7-16
General Format 7-16
Syntax Rules 7-16
General Rules 7-16

THE REWRITE STATEMENT 7-19

Function 7-19
General Format 7-19
Syntax Rules 7-19
General Rules 7-19

THE START STATEMENT 7-19

Function 7-19
General Format 7-19
Syntax Rules 7-19
General Rules 7-19

xxiii

THE USE STATEMENT

Function

General Format

Syntax Rules
General Rules

THE WRITE STATEMENT

Function

General Format

Syntax Rules
General Rules

CHAPTER 8

SEGMENTATION

INTRODUCTION TO THE SEGMENTATION MODULE
GENERAL DESCRIPTION OF SEGEMENTATION

ORGANIZATION

Program Segments
Fixed Portion

Independent Segments

SEGMENTATION CLASSIFICATION
SEOIENTATION CONTROL

STRUCTURE OF PROGRAM SEGMENTS

SEQIENT NUMBERS

GENERAL FORMAT

SYNTAX RULES

GENERAL RULES

RESTRICTIONS ON PROGRAM FLOW

THE ALTER STATEMENT
THE PERFORM STATEMENT

CHAPTER 9

LIBRARY

INTRODUCTION TO THE LIBRARY MODULE

THE COPY STATEMENT

•V • •

xxiv

7-23

7-23

7-23

7-23

7-23

7-24

7-24

7-24

7-24

7-24

8-1

8-1

8-1

8-1

8-1

8-1

8-2

8-2

8-3

8-3

8-3

8-3

8-3

8-4

8-4

8-4

9-1

9-2

FUNCTION

GENERAL FORMAT

SYNTAX RULES

GENERAL RULES

CHAPTER 10

DEBUG AND INTERACTIVE DEBUGGING

GENERAL DESCRIPTION
COMPILE TIME SWITCH

DEBUGGING LINES

RUN-TIME DEBUG

CHAPTER II

INTERPROGRAM COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE
DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION

Noncontiguous Linkage Storage

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER

THE f^AT.T. STATEMENT

Function

General Format

Syntax Rules
General Rules

THE CANCEL STATEMENT

Function

General Format

Syntax Rules
General Rules

THE EXIT PROGRAM STATEMENT

Function

General Format

Syntax Rules
General Rule

XXV

9-2

9-2

9-2

9-2

10-1

10-1

10-1

10-1

11-1

11-1

11-1

11-2

11-3

11-3

11-4

11-4

11-4

11-4

11-4

11-5

11-5

11-5

11-5

11-5

11-6

11-6

11-6

11-6

11-6

CHAPTER 12

PROGRAMMING TECHNIQUES AND SIZING

PROGRAMMING TECHNIQUES 12-1
SIZING 12-1

GENERAL DESCRIPTION 12-1
DATA DICTIONARY 12-2

APPENDIX A

RESERVED WORD LIST

APPENDIX B
$

CHARACTER SETS AND COLLATING SEQUENCE

APPENDIX C

GLOSSARY

APPENDIX D

COMPILE-TIME ERRORS

APPENDIX E

RUN-TIME ERRORS

APPENDIX F

SYNTAX SUMMARY

APPENDIX G

SUMMARY OP EXTENSIONS TO ANSI COBOL

SCREEN FORMATTING AND DATA ENTRY G-1

THE ACCEPT STATEMENT G-I
THE DISPLAY STATEMENT G-1

DISK FILES G-2

LINE SEQUENTIAL FILES G-2
run: time INPUT OF FILE NAMES G-2

xxvi

•TV.!- v'w

LOWER CASE CHARACTERS

HEXADECIMAL VALUES

INTERACTIVE DEBUGGING

•L'M.

APPENDIX H

SYSTEM DEPENDENT LANGUAGE FEATURES

MANDATORY CHANGES

ENVIRONMENT DIVISION

Configuration Section
Input-Output Section

STATEMENTS COMPILED AS DOCUMENTATION ONLY
f

ENVIRONMENT DIVISION

DATA DlVISirai

PROCEDURE DIVISION

APPENDIX I

LANGUAGE SPECIFICATION

ALPHABETIC INDEX

xxvll

, ktm t, id^r't 'tkmt

G-2

G-2

G-2

H-1

H-I

H-1

H-I

H-1

H-1

H-2

H-2

K)

y-*:-

Table

2-1

2-2

2-3

2-4

3-1

3-2

3-3

3-4

3-5

3-6

4-1

5-1

6-1

7-1

12-1

Figure

1-1

2-1

3-1

TABLES

Title Page

Figurative Constants and their Reserved Words
Data Levels Classes and Categories
Numeric Data Storage for the CQMP(UTATIONAL) PICTURE

Clause
Numeric Data Storage for the CCMP(—3) PICTURE CLAUSE

Editing Types for Data Categories
Editing Symbols in PICTURE Character Strings
PICTURE Character Precedence Chart
Relational Operators
Cursor Repositioning Keys
MOVE Statement Data Categories

SET Statement Valid Operand Combinations

Permissable Combinations of Statements and
OPEN Modes for Sequential I-O

Permissable Combinations of Statements and
OPEN Modes for Relative 1-0

Permissable Combinations of Statements and
OPEN Modes for Indexed 1-0

Data Dictionary Entry Sizing

ILLUSTRATIONS

Title

Sample Program Listing Showing Source Format

Reference Format for a COBOL Source Line

PERFORM Statements in Sequence

xxviii

2-7

2-10

2-11

2-12

3-16

3-17

3-19

3-31

3-38
3-59

4-6

5-14

6-15

7-14

12-2

P^i

1-5

2-23

3-63

i Tr-ftiPrtfVfrv ;»rv.-Jiiii;:-:

CHAPTER 1

INTRODUCTION

WHAT IS CIS COBOL?

COBOL (CoTQinon Business Oriented Language) Is the most widely and
e:stenslvely used language for the programming of commercial and
administrative data processing.

CIS COBOL Is a Compact, Interactive and Standard COBOL Language System
which Is designed for use on mlcroprocessor'-based computers and Intelligent
terminals.

It Is based on the ANSI COBOL given In "American National Standard
Programming Language COBOL" (ANSI X3.23 1974). The CIS COBOL Implementation
has been selected from both levels of ANSI COBOL. The following modules are
fully Implemented at Level 1:

Nucleus

Table Handling
Sequential Input and Output
Relative Input and Output

. Indexed Input and Output
Segmentation
Library

.. Inter-Program Communication

In addition many Level 2 features are Implemented such as:

Nucleus - Nested IF, PERFORM UNTIL
. Table Handling - 3 dimensions of variable length table handlings.
. Relative and Indexed sequential I/O - START statement
.. Inter-Program Communication - CANCEL statement

This manual Is Intended as a reference work for COBOL programmers and
material from the ANSI language standard document Is Included.

Along with the ANSI Implementation CIS COBOL also contains several
language extensions specifically oriented to the small computer environment.
These enable a CIS COBOL program to format CRT screens for data Input and
output (DISPLAY and ACCEPT), READ and WRXTE text files efficiently and
define external file names at run time.

The programmer wishing to transport an existing COBOL program to run
under CIS COBOL must check that the Individual language features he has used
are supported by CIS COBOL. The COBOL SECTION statements In the
Segmentation feature can be performed using the PERFORM statement. Segment
numbers are treated as for documentation only.

A compile time ANS (ANSI) switch can be set that makes certain COBOL
source mandatory, whereas If not set It Is optional. (See Chapter 2).

The CIS COBOL coitq)ller Is designed to enable programs
to be developed In a 4dK machine. The Compiler supports sequential,
relative and Indexed sequential files, as well as Interactive communications
via the ACCEPT and DISPLAY verbs.

1-1

III naiii ifn I•' rt nnMiriiriirriTirimn ...
a^AiWM,iT,Tiriri

The CIS COBOL System also contains a powerful utility called FORMS^^that
enables the Operator to define screen layouts from a screen module and
nroduce automatically the data description for direct inclusionSL cSbOL Thi is described'in the CIS COBOL Operating Guide

CIS COBOL programs are created using a conventional text
Compiler compiles the programs and the Run-Tii^ of^e CIS COBOL
comniled output to form a running user program. A listing of the CIS COBOL
program is provided by the Compiler during compilation. Error messages are
inserted in the listing. Interactive Debugging facilities are provided for
run-time use, and these are described in the CIS COBOL Operating Guide.

CIS COBOL is designed to be interfaced easily to any microprocessor
operating system. Detailed operating characteristics are
particular host operating system used and are defined in the appropriate
Operating Guide.

PROGRAM STEDCTORE

A COBOL program consists of four divisions;

1. IDENTIFICATION DIVISION - An identification of the program

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program

3. DATA DIVISION - Adescription of the data to be processed

4. PROCEDURE DIVISION - A set of procedures to specify the operations to
be performed on the data

Each division, is divided into sections which are further divided into
paragraphs which in turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions
exist as clauses and statements. A clause is an ordered set of COBOL
elements that specify an attribute of an entry, and a statement is a
combination of elements in the Procedure Division that include a COBOL verb
and constitute a program instruction.

1-2

i-'Hij

•V;:

FORMATS AND RULES

GENERAL FORMAT

A general format Is the specific arrangement of the elements of a
clause or a statement. Throughout this document a format Is shown adjacent
to Information defining the clause or statement. When more than one
specific arrangement Is permitted, the general format Is separated Into
numbered formats. Clauses must be written In the sequence given In the
general formats. (Clauses that are optional must appear In the sequence
shown If they are used). In certain cases, stated explicitly In the rules
associated with a given format, the clauses may appear In sequences other
than that shown. Applications, requirements or restrictions are shown as
rules.

SYNTAX RULES

Syntax rules are those rules that define or clarify the order In which
words or elements are arranged to form larger elements such as phrases,
clauses, or statements. Syntax rules also Impose restrictions on Individual
words or elements.

These rules are used to define, or clarify how the statement must be
written. I.e., the order of the elements of the statement and restrictions
on what each element may represent.

GENERAL RULES

A. general rule Is a rule that defines or clarifies the meaning or
relationship of meanings of an element or ser of elements. It Is used to
define or clarify the semantics of the statement and the effect that It has
on either execution or compilation. y

ELEMENTS

Elements which make up a clause or a statement consist of uppercase
words, lowercase words, levelr-numbers, brackets, braces, connectives and
special characters (see Chapter 2).

1-3

•frf

SOURCE FORMAT

The COBOL source format divides each COBOL source record Into 72
columns. These columns are used in the following way;

Columns 1-6 Sequence number
Column 7 Indicator area
Columns 18—11 Area A
Columns 12 - 72 Area B

SEQUENCE NUMBER

A sequence number of sisc digits may be used to identify each source
program line,

INDICATOR AREA

An asterisk * in this area marks the line as documentatary comment
only. Such a comment line can appear anywhere in the program after the
Identification Division header. Any characters from the ASCII character set
can be included in Area A and Area B of the line,

A stroke /, in the indicator area acts as a comment line above but
causes the page to eject before printing the comment.

A "D" in the indicator area represents a debugging line. Areas A and B
may contain any valid COBOL sentence,

A " in the indicator area represents the continuation of a
non-numeric literal. The first non-blank character in Area B of the
continuation line must be a quotation mark. The literal continues with the
first character after the quotation mark. All spaces at the end of the
continued line are significant.

Section names and paragraph names begin in Area A and are followed by a
period and a space. Level indications FD, 01 and 77 begin in Area A and are
followed in Area B by the appropriate file and record description.

Program sentences may commence anywhere in Area A and Area B, More
tiian one sentence is permitted in each source record.

Figure 1-1 shows the source format of a typical program.

1-^4

i^dia^Pw - •

**'CIS CCaOL V4.2 :91:SI0Ckl.CBL
*«

000010 IDBtmPICAaiGN OIVlSZaN.
000020 EfosnM-io. siaa(-pii£-ssiH)p.
000030 AOraOR. HICRO POCOS US.
000040 ENVIBOtMair DIVlSXOei.
000050 CGNPIGORATICN SECTION.
000060 SCOBCS-OCKEOIER. KD8-800.
000070 OBJBCT-CCMFOIBR. M05-SOO.
000080 3EBC1AL-NAMES. CONSOLE IS CBI.
000090 XNFOlHXmUT SECTION.
000100 PILB-CQNTBOL.
000110 SELECT STOCK-flLE ASSIOl "STOCK.IT"
000120 CRGANlzmON INDEXED
000130 ACCESS DTNAMIC
000140 BECCHB) XEX STOCK'OQOe.
000150 DA3A DIVISXai.
000160 PIXS SECTION.
000170 PD SIOCK-PILBr HBOCStD 32.
OOOISO 01 SIQCR-rEQI.
000190 02 SIOCK-CQOB PIC X(4) .
000200 02 E5CD0CT-0ESC PIC X(24) .
000210 02 UNIT-SIZE PIC 9(4).
000220 («»SZN&-SroitAGS SBCTXCN.
000230 01 SCREEN-HEADINGS.
000240 02 ASR-COOB PIC X(21} VALUE "STOCK CODS <
000250 02 PIUER PIC X(59).
000260 02 ASK-OESC PIC X(16) VALUE "OESCRIPTION <".
000270 02 SI-OESC PIC X(25) VALUE "
0002BO 02 FILLER PIC X(39).
000290 OZ ASK-SIZB PIC X(21) VALUE "UNIT SIZE <
000300 01 ENIEEt-IT REDEFINES SCREEN-HEADINGS.
000310 02 FIIIER PIC X(16) .
000320 02 CBT-STOCK-CaCB PIC X(4).
000330 02 FIUER PIC X(76).
000340 02 CEET-PRDD-DBSC PIC X(24).
000350 02 FIUER PIC X(S6).
000360 02 CRT-UNIT-SIZB PIC 9(4).
000370 02 PHXER PIC X.
000380 PBOCBDaiB DIVXSICN.
000390 SRI.
000400 DISPIAX SPACE.
000410 OPEN I-O STOCK-PILE.
000420 DISPIAX SCREEN-HEADINGS.
000430 NCKHAL-INPUT.
000440 HOVE S»CE TO EmBR-IT.
000450 Dl^UUr BNIER-IT.
000460 OC»RBCT-BRROR.
000470 ACCEPT ENTER-IT.
000480 IF CRP-STOCK-CODB • SPACE GD TO END-IT.
000490 IP CRT-<aiIT-SIZE NOT NUMERIC GO TO CGRRECT-ERBCR.
000500 MOVE CRMfOD-DBSC TO KiCOOCMSSC.
OOOSIO MOVE CRT-UNIT-SIZE TO UNIT-SIZE.
000520 MOVE CHT-9T0CK-C0£» TO STOCK-CODE.
000530 NRITB STOCK-ITEMi INVALID GO TO CORRBCT-BRRUl.
000540 GO TO NORMAL-INPUT.
000550 END-IT.
000560 CLOSE SEOCK-PIXE.
000570 DISPLAX SPACE.
000580 DISPIAY. "END GF PROGRAM".

** CIS COBCS. V4.2 :F1:ST0CK1.CBL

PAGE: OOOl

0118
0U8
0U8
0118

0U8
0U8
0118
0118

0118
0118

0176
0176
0176
0176

01A5
OlAS

OlAS
OlAS
OlAS
OlAS
OlCl
01C7
01C7 00
01C7 00
OlOC 15
0217 SO
0227 60
0240 79
0267 AO
01C7 00
01C7 00
01D7 10
OlDB 14
0227 60
023P 78
0277 BO
027B 34
0000

OOIA
OOIB
OOIB
0022
0036
0037
003D
0054
0055
006C
0076
007P

0085
008D

0093
009F
00A2
00A3
00A7
OOAA

?P£Ei 0002

000590 SXC» RUN.
** CIS TWn:, V4.2 COMPUER COPXRIGOT (C) 1978 tOCBO FOCUS UD Um AA/OOOO/AA
**

**BRIK»S>00000 OATAM)0636 C01»M)0222 DICiy00420:21918 END OP LIST

TfCols.-»

1—6

Sequence
Nm^er

Col 7

Indicator

Area

Cols 8-11

Area A

Cols.

"12-72
Area B

Inserted

by
Compiler

Figure 1—1. Sample Program Listing showing Source Format.

1-5

%

CHAPTER 2

COBOL CONCEPTS

LANGUAGE CONCEPTS

CHARACTER SET

The most basic and Indivisible unit of the language is the character.
The set of characters used to form CIS COBOL character—strings and
separators includes the letters of the alphabet, digits and special
characters. The character set consists of the characters defined below;

d to 9

^ed and. User Word Character^;
"" A^vtO' Z.)

Space
+ Plus sign

Minus sign, or hyphen
Asterisk

Oblique Stroke/Slash
Equal sign
Dollar sign
Full stop or decimal point
Comma or decimal point
Semicolon

Quotation mark
Left Parenthesis
Right Parenthesis
Greater than symbol
Less than symbol

to Z

The CIS COBOL language is restricted to the above character set, but
the. content of non-numeric literals, comment lines and data may include any
of the characters from the ASCII character set. See Appendix B.

LANGUAGE STRUCTURE

The individual characters of the lanjguage are concatenated to form
character—strings and separators. A separator may be concatenated with
another separator or with a character-string. A character-string may only
be concatenated with a separator. The concatenation of character-strings
and separators forms the text of a source program.

Separators

A separator is a string of one or more punctuation, characters. The
rules for formation of separators are:

1. The punctuation character space is a separator. Anywhere a space is
used as a separator, more than one space may be used.

2. The punctuation characters comma, semicolon and period, when
Immediately followed by a space, are separators. These separators

2-1

may appear In a COBOL source program only where explicitly permitted by
the general formats, by format punctuation rules (see
FORMATS AND RULES in Chapter 1), by statement and 'sentence structure
definitions (see STATEMENTS AMD SENTENCES in this Chapter), or
reference format rules (see REFERENCE FORMAT in this Chapter)•

3. The punctuation characters right and left parenthesis are separators.
Parenthesis may appear only in balanced pairs of left and right
parentheses delimiting subscripts, indices, arithmetic expressions, or
conditions.

4. The punctuation character quotation mark is a separator. An opening
quotation mark must be immediately preceded by a space or left
parenthesis; a closing quotation mark must be Immediately followed by
one of the separators space, comma, semicolon, period, or right
parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnuroeric
literals except when the literal is continued. (See
CONTINUATION OF LINES in this Chapter)•

Pseudo-text delimiters are separators. An opening pseudo-text
delimiter must be immediately preceded by a space; a closing
pseudo-text delimiter must be immediately followed by one of the
separators space, comma, semicolon, or period.

Pseudo—text delimiters may appear only in balanced pairs delimiting
pseudo-text.

6. The separator space may optionally immediately precede all separators
excepr the following:

a. As specified by reference format rules see REFERENCE FORMAT
in this Chapter.

b.. The separator closing quotation mark. In this case, a
preceding space is considered as part of^ the nonnumerlc
literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space
is required.

7» The separator space is optional and can immediately follow any
separator except the opening quotation mark. In this case, a following

: space is considered as part of the nonnumeric literal and not as a
separatbir.

Any punctuation character which appears as part of the specification of
a PICTURE character-string (see Chapter 3) or numeric literal is not
considered as a. punctuation character, but rather as a symbol used in the
specification of that PICTURE character-string or numeric literal. PICTURE
character-strings are delimited only by the separators space, comma,
semicolon, or period.

The rules established for the formation of separators do not apply to
the characters which comprise the contents of nonnumeric literals,
comment-entries, or comment lines.

2-2

'> - %r/

Character'strings

A character-string is a character or a sequence of contiguous
characters which forms a CIS COBOL word, a literal, a PICTURE
character-string, or a comment-entry. A character-string is delimited by
separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters which
forms a user defined word, a system—name, or a reserved word. Within a
given source program these classes form disjoint sets; a COBOL word may
belong to one and only one of these classes.

User-Defined Words: A user-defined word is a COBOL word that must be
supplied by the user to satisfy the format of a clause or statement. Each
character of a user-defined word is selected from the set of characters 'A*,
'B', 'C*, ... 'Z', *a', *b', 'c*, ...*z*, *0*, and except that^
the may not appear as the first or last character. The exceptEbirrto^:

which mnfft: be a* normal: alphaniimp-ric literaJT*. ^

User-defined word types which are implemented are as follows:

alphabet-name
condition-name

data?-name

file-name

index-name

level-number

mnemonic-name

paragraph-name
program-name

record-name

section-name
segment-number
text-name

Within a given source program, ten of these 11 types of user-defined
words are grouped into nine disjoint sets. The disjoint sets are:

alphabet-names
condition-names, data-names, and record-names
file-names

index-names

mnemonic-names

paragraph-names
program-names

section-names

text-names

All user-defined words, except segment-numbers and level-numbers, can
belong to one and only one of these disjoint sets. Further, all
user—defined words within a given disjoint set must be unique, because no
other user—defined word in the same source program has identical spelling or
punctuation. (See UNIQUENESS OF REFERENCE in this Section).

2 - 3

" I• ii'ifjrj'*iti'iftiifii«r^?i • IruSti '4'i

with the exception of paragraph-name, section-name, level-number and
segment-number, all user-defined words must contain at least one alphabetic
character. Segment-numbers and level-numbers need not be unique; a given
specification of a segment-number or level-number may be Identical to any
other segment-number or level-number and may even be Identical to a
pafragraph-name or section-name.

Condition-Name:

hDcemonlc-Name:

Paragraphr-Name:

Section-Name:

Other User-Defined

Names:

System-Names:

A condition-name is a name which Is assigned to a
specific value, set of values, or range of values,
within a complete set of values that a data Item may
assume. The data Item Itself Is called a conditional
variable.

Condition-names may be defined In the Data Division or
in the SPECIAL-NAMES paragraph within the Envlronement
Division where a condition-name must be assigned to the
ON STATUS or OFF STATUS, or both, of the run time
switches.

A condition-name Is used only In the RERUN clause or In
conditions as an abbreviation for the relation
condition; this relation condition posits that the
associated conditional variable Is equal to one of the
set of values to which that condition-name Is assigned.

A mnemonic-name assigns a user-defined word to an
implamentor-name. These associations are established In
the SPECIAL-NAMES paragraph of the Environment Division.
(See SPECIAL-NAMES In Chapter 3).

A paragraph-name Is a word which names a paragraph In
the Procedure Division. Paragraph-names are equivalent
if, and only If, they are conqposed of the same sequence
of the same number of digits and/or characters.

A section-name is a word which names a section In the
Procedure Division, Section names are equivalent if, and
only If, they are composed of the same sequence of the
same nui^er of digits and/or characters. .

See the glossary In Appendix C for definitions of all
other types of user—defined words.

A system-name Is a COBOL word which Is used to
communicate with the operating environment. Each
character used In the formation of a system-name must be
selected from the set of characters 'A', *B', 'C*, ...

... *9' and except that
the first or last character.

'Z', -a
the

f ^ t Ivf

may not
. '2*, »0V
appear as

There are three types of system-names;

1. computer-name
2.- . Implementor-name
3. language-name

2-4

«'rf/V*T V-•

Reserved Words:

Key Words:

Optional Words;

Connectives:

Figurative
Constants:

Literals

Within a given Implementation these three types of
system-names form disjoint sets; a given system-name may
belong to one and only one of them.

The system—names listed above, are individually defined
in the glossary in Appendix C.

A reserved word is a COBOL word that is one of a
specified list of words which may be used in COBOL
source programs, but which must not appear in the
programs as user-defined words or system-names.
Reserved words can only be used as specified in the
general formats. (See Appendix A).

There are six types of reserved words:

1.

2.

3.

4.

5.-

6.

Key words
Optional words
Connectives

Special registers
Figurative constants
Special-character words

A key word is a word whose presence is required when the
format in which the word appears is used in a source
program. Within each format, such words are uppercase
and underlined.

Key words are of three types:

1.

2.

Verbs such as ADD, READ, and ENTER.
Required words, which appear in statement and entry
formats.

3. Words which have a specific functional meaning such
as NEGATIVE, SECTION, etc.

Within each format, uppercase words that are not
underlined are called optional words and may appear at
the user's option. The presence or absence of an
optional word does not alter the semantics of the COBOL
program in which it appears.

Series connectives link two or more consecutive
operands: , (separator comma) or ; (separator
semicolon).

Certain reserved words are used to name and reference
specific constant, values. These reserved words are
specified under Figurative Constant Values in this
chapter.

A- literal is a character-string whose value is Implied by an ordered
set of characters of which the literal is coiiq)osed or by specification of a
reserved word which references a figurative constant. Every literal belongs
to one of two types, nonnumeric or numeric.

2-5

' I '-^1 Tilir«ri -i** 1 iMffrtlBii'iWl'J-r -rt"rt i •

Nonnumerlc

Literals: A nonnumeric literal is a character-string delimited on
both ends by quotation marks and consisting of any
allowable character in the computer's character set.
Allowed are nonnumeric literals of 1 through 128 i
characters in length. To represent a single quotation
mark character within a nonnumeric literal, two
contiguous quotation marks must be used. The value of a
nonnumeric literal in the object program is the string
of characters itself, except:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks
represents a single quotation mark character.

All other punctuation characters are part of the value of the
nonnumeric literal rather than separators; all nonnumeric literal are
category alphanumeric. (See The PICTURE Clause in chapter 3). In

tl•^^nary val^ea can. b& atitributed to non-numeric
by'^ressdng literal:® aat X "nn?' ,. where n i® at h^adecimal '

tihfflaetear d^ the set O-f-As-F;. nn may lie repeated tip! ta 128 timea^ but
titiie-mnaher of hex dijglts, must be even«>

Numeric Literals: A numeric literal is a character-string whose characters
are selected from the digits .'0' through '9*, the plus
sign, the minus sign, and/or the decimal point. The
implemention allows for numeric literals of 1 through 18
digits in length. The rules for the formation of
numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign
character. If a sign is used, it must appear as
the leftmost character of the literal. If the
literal is unsigned, the literal is positive.

3. A literal must not contain more than one decimal
point. The decimal point is treated as an assumed
decimal point, and may appear anywhere within the
literal except as the rightmost character. If the
literal contains no decimal point, the literal is
an integer.

If a literal conforms to the rules for the
formation of numeric literals, but is enclosed in
quotation marks, it is a nonnumeric literal and it
is treated as such by the compiler.

4. The value of a numeric literal is the algebraic
quality represented by the characters in the
numeric literal. Every numeric literal is category

' numeric. (See THE PICTURE CLAUSE in Chapter 3).
The size of a numeric literal in standard data
format characters is equal to the number of digits
specified by the user.

2-6

v..

Figurative Constant
Values

Figurative Constant Values are generated by the compiler and referenced
through the use of the reserved words given below. These words must not be
bounded by quotation marks when used as figurative constants. The singular
and plural forms of figurative constants are equivalent and may be used
interchangeably.

The figurative constant values and the reserved words used to reference them
are shown in Table 2-1.

Table 2-1. Figurative Constants and their Reserved Words

CONSTANT REPRESENTATION

ZERO

ZEROS

ZEROES

SPACE

SPACES

HIGH-VALOE

HIGH-VALUES

LOW-VALUE

LOW-VALUES

QUOTE

QUOTES

ALL literal

Represents the value '0', or one or more
of the character '0' depending on context,

Represents one or more of the character
space from the computer's character set.

Represents one or more of the character
that has the highest ordinal position in
the program collating sequence.

Represents one or more of the character that
has the lowest ordinal position in the program
collating sequence.

Represents one or more of the character
The word QUOTE or QUOTES cannot be used in
place of a quotation mark in a source program
to bound a nonnumeric literal. Thus, QUOTE
AfiD QUOTE is incorrect as a way of stating
the nonnumeric literal "ABD".

Represents one character of the string of
characters comprising the literal. The
literal must be either a nonnumeric literal

or a figurative constant other than ALL literal.
When a figurative constant is used, the word
ALL is redundant and is used for readability
only.

When a figurative constant represents a string of one or more characters,
the length of the string is determined by the compiler from context
according to the following rules:

1. When a figurative constant is associated with another data item, as
when the figurative constant is moved to or compared with another data
item, the string of characters specified by the figurative constant is
repeated character by character on the right until the size of the
resultant string is equal to the size in characters of the associated

2-7

2.

data item. This is done prior to and independent of the application of
any JUSTIFIED clause that may be associated with the data item.

When a figurative constant is nor associated with another data item, as
when the figurative constant appears in a DISPLAY or STOP statement,
the length of the string is one character.

IBSEME SfiAUEL is, of course,, aa^fsce]

A figurative constant may be used wherever a literal appears in a
format, except that whenever the literal is restricted to having only
numeric characters in it, the only figurative constant permitted is ZERO
(ZEROS, ZEROES),

When the figurative constants HIGH-VALUE(S) or LOW-VALDE(S) are used in
the source program, the actual character associated with each figurative
constant depends upon the program collating sequence specified, (See
THE OBJECT-COMPUTER PARAGRAPH, and THE SPECIAL-NAMES PARAGRAPH in Chapter
3).

Each reserved' word which is used to reference a figurative constant
value is a distinct character-string with the exception of the construction
'ALL literal' which is composed of two distinct character-strings.

PICTURE Character-Strings

A PICnM character-string consists of certain combinations of
characters in the COBOL character set used as symbols. See
The PICTURE Clause for the PICTURE character-string and for the rules that
govern their use.

Any punctuation character which appears as part of the specification of
a PICTURE character-string is not considered as a punctuation character, but,
rather as a symbol used in the specification of that PICTURE
character-string.

Comment-Entries

A comment-entry is an entry in the Identification Division that may be
any combination of characters from the cooiputer's character set.

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

To Tnaifft data as computer independent as possible, the characteristics
or properties of the data are described in relation to a standard data
format rather than an equipment—oriented format. This standard data format
is oriented to general data processing applications and uses the - decimal
system to represent numbers (regardless of the radix used by the computer)
and the remaining characters in the CIS COBOL .character set to describe
nonnumeric data items.

Concept of Levels

A level concept is inherent in the structure of a logical record. This
concept arises from the need to specify subdivisions of a record for the
purpose of data reference. Once a subdivision has been specified, it may be
further subdivided to permit more detailed data referral,.

2-8

The most basic subdivisions of a record, that is, those not further
subdivided, are called elementary items; consequently, a record is said to
consist of a sequence of elementary items, or the record itself may be an
elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. Each group consists of a named sequence of one or
more elementary items. Groups, in turn, may be combined into groups of two
or more groups, etc. Thus, an elementary item may belong to more than one
group.

Level'-Numbers

A system of level-numbers shows the organisation of elementary items
and group items. Since records are the most inclusive data items,
level-numbers for records start at 01. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater in
value than 49. A maximum of 49 levels in a record is allowed. There is a
special level-number, 77, which is an exception to this rule (see below).
Separate entries are written in the source program for each level-number
used.

A group includes all group and elementary items following it until a
level-number less than or equal to the level-number of that group is
encountered. All items which are Immediately subordinate to a given group
item must be described using identical level-numbers greater than the
level—number used to describe that group item.

Three types of entries exist for which there is no true concept of
level. These aret

1. Entries that specify elementary items or groups introduced by a RENAMES
clause

2.. Entries that specify noncontiguous working storage and linkage data
items

3. Entries that specify condition-names.

Entries that specify noncontiguous data items, which are not
siibdivisions of other items, and are not themselves subdivided, have been
assigned the special level—number 77.

Concept of Classes of Data

^^0 five categories of data items (see THE PICTURE CLAUSE in Chapter 3)
are- grouped into three classes, alphabetic, numeric, and alphanumeric. For
alphabetic and numeric, the classes and categories are synonymous. The
alphanumeric class includes the categories of alphanumeric edited, numeric
edited and alphanumeric (without editing). Every elementary item except for
0X1 index data item belongs to one of the classes and further to one of the
categories. The class of a group item is treated at object time as
alphanumeric regardless of the class of elementary items subordinate to that
group item. Table 2-2 depicts the relationship of the class and categories
of data items.

r - 9

Table 2-2 Data Levels, classes and categories

LEVEL OF ITEM CLASS CATEGORY

Elementary

Alphabetic Alphabetic

Numeric Numeric

Alphanumeric
Numeric Edited

Alphaniimeric Edited
Alphanumeric

Non-Elementary
Group

Alphanumeric

Alphabetic
Numeric

Numeric Edited

Alphanumeric Edited
Alphanumeric

Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or
decimal form, depending on the equipment. In addition, there are several
ways of expressing decimal. Since these representations are actually
combinations of bits, they are commonly called binary-coded decimal forms.
The four standard formats used for storing numeric data in CIS COBOL are as
follows:

1. As alphanumeric characters stored one per byte in ASCII representation.

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause
in Chapter 3) one per byte in ASCII representation. If they are signed
and the sign is specified as INCLUDED, bit 6 of the leading or trailing
byte of the field is set for negative, depending on the field
definition. If a TRAILING sign is specified a one byte ASCII : or - a
sign is added as the leading or trailing byte. If no SIGN clause is
specified, bit 6 of the trailing digit is set to indicate negative by
default.

3. As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in pure
binary form. If the field is signed the number is held in its
twos-compliment form. Storage is then dependent on the number of 9's
in the PICTURE clause (see The PICTUEUE Clause in Chapter 3) and on
whether the field is SIGNed or not (see The SIGN Clause in Chapter 3).

Table 2-3 shows the storage requirements for each COMP(UTATIONAL)
PICTURE Clause.

2-10

4.

Table 2-3. Numeric Data Storage for the COMP (UTATIONAL) PICTURE
Clause.

Bytes Required
Number of Characters

Signed Unsigned

1 1-2 1-2

2 3-4 3-4

3 5-6 5-7

4 7-9 8-9

5 10-11 10-11

6 12-14 13-14

7 15-16 15-16

8 17-18 17-18

As numeric characters defined by USAGE IS COMPUTATIONAL—3 or USAGE IS
COMP-3 in packed internal. decimal form. Storage is dependent on the
nxjinber of 9's in the PICTURE clause. The decimal numbers are stored as
signed strings of variable length of 1 through 18 digits. The sign of
the packed decimal number is always stored in place of the least
significant quartet of the low order byte» Each byte contains two
decimal positions (four bits per digit) and the digits (0 - 9) are
encoded as BCD numbers (0000 - 1001). Numbers are represented in the
field as right-justified values with a + or - sign as shown in the
example below. The ^na'g^^lnllnl number of digits permitted in arithmetic
operands is 18.

EXAMPLE:

a. For COMPUTATIONAL-3 and PICTURE 9999, the number +1234 would be
stored as follows:

b..

c.

0000 0001 0010 0011 0100 1111

• t
1 byte

where F represents the non-printing plus sign.

For COMPUTATIONAL-3 and PICTURE S9999, the number +1234 would be
stored as follows:

Storage would be as in a above except that the least significant
digit would be replaced by C (1100) representing the plus sign.

For COMPUTATIONAL-3 and PICTURE S9999, the number -1234 would be
stored as follows:

Storage would be as in a above except that the least significant
byte would be replaced by D (1101) representing the minus sign.

2 - 11

Table 2-4 shows the storage requirements for each COMP-3 clause.

Table 2-4. Numeric Data Storage for the COMPUTATION-3 PICTURE Clause.

Number of Digits
Bytes Required (Signed or Unsigned)

1 1

2 2-3

3 4-5

4 6-7

5 8-9

6 10-11

7 12-13

8 • 14-15

9 16-17

10 18

Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are
associated with signed numeric data items and signed numeric literals to
indicate their algebraic properties; and editing signs, which appear on
edited reports to identify the sign of the item.

The SIGN Clause permits the programmer to state explicitly, the
location of the operational sign. The Clause is optional; if it is not used
operational signs will be represented as defined by setting bit 6 of the
trailing digit for ASCII numbers, (see above).

Editing signs are inserted into a data item through the use of the sign
control symbols of THE PICTURE CLAUSE.

Standard Alignment Rules

The standard rules for positioning data within an elementary item
depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end as
required.

b. When an assumed decimal point is not explicitly specified, the
data item is treated as if it had an assumed decimal point
immediately following its rightmost character and is aligned as in
paragraph a. above.

2. If the receiving data item is a numeric edited data item, the data
moved to the edited item is aligned by decimal point with zero fill or
truncation at either end as required within the receiving character
positions of the data item, except where editing requirements cause
replacement of the leading zeros.

2 - 12

m

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited or alphabetic, the sending data is
moved to the receiving character positions and aligned at the leftmost
character position in the data item with space fill or truncation to
the right, as required.

If the JUSTIFIED Clause is specified for the receiving item, these
standard rules are modified as described in THE JUSTIFIED CLAUSE in
Chapter 3.

Uniqueness of Reference

Subscripting

Subscripts can be used only when reference is made to an individual
element within a list or table of like elements that have not been assigned
individual data""names (see THE OCCURS CLAUSE in Chapter 4) •

The subscript can be represented either by a numeric literal that is an
integer or by a data-name. The data-name must be a numeric elementary item
that represents an integer.

The subscript may be signed and,, if signed, it must be positive. The
lowest possible subscript value is 1. This value points to the first
element of the table. The next sequential elements of the table are pointed
to by subscripts whose values are 2, 3, ».• • The highest permissible
subscript value, in any particular case, is the maximum number of
occurrences of the item as specified in the OCCURS clause..

The subscript, or set of subscripts, that identifies the table element
is delimited by the balanced pair of separators left parenthesis and right
parenthesis following the table element data—name. The table element
data-name appended with a subscript is called a subscripted data-name or an
identifier. When more than one subscript is required, they are written in
the order of successively less inclusive dimensions of the data
organization.

The format is:

data-name (subscript-1 [,'^ub8cript-2 [, subscript-3]])

Indexing

References can be made' to individual elements within a table of like
elements by specifying indexing for that reference. An index is assigned to
that level of the table by using the INDEXED BY phrase in the definition of
a table. A name given in the INDEXED BY phrase is known as an index-name
and is used to refer to the assigned index. The value of an index
corresponds to the occurrence number of an element in the associated table.
An must be initialized before it is used as a table reference.
An namg can be given an initial value by a SET statement.

Direct indexing is specified by using an index—name in the form of a
subscript. Relative indexing is specified when the index-name is followed
by the operator + or -, followed by an unsigned integer numeric literal all
delimited by the balanced pair of separators left parenthesis and right

2 - 13

parenthesis following the table element data-name. The occurrence number
resulting from relative indexing is determined by incrementing (where the
operator * is used) or decrementing (when the operator - is used), by the
value of the literal, the occurrence number represented by the value of the
index. When more than one index-name is required, they are written in the
order of successively less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed

table element, the value contained in the index referenced by the index-name
associated with the table element must neither correspond to a value less
than one nor to a value greater than the highest permissible occurrence
number of an element of the associated table. This restriction also applies
to the value resultant from relative indexing.

The general format for indexing is:

f data-name
\ condition-name

f j index-name-1
^ \ literal-1 I" literal-zj

[•
i index-name-2
\ literal—3 literal-^ Jj)

Identifier

An identifier is a term used to reflect that a data-name, if not unique
in a program, must be followed by a syntactically correct combination of
subscripts or indices necessary to ensure uniqueness.

The general formats for identifiers are:

Format 1:

data-name-1 |̂ (subscript-l subscript-2 i[, subscript-3]]lb"

Format 2:

1.-

2.

3.

data-name-1

[• {
index-name-2l

(f index-name-11 . .
\ literal-1 ; 1—»

Restrictions on subscripting and indexing are:

literal-2

A data-name must not itself be subscripted nor indexed when that
data-name is being used as an index, or subscript.

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names as data in a form
specified by the implementor. Such data items are called index data
items.

r - 14

']

rv;.

fiTiinill'• li<A ilflliiiili>'l' lYhfl if rSfiliii'ii

4. Literal-1, literal-3, literal-5, in the above format must be positive
numeric integers. Literal-2, literal-4, literal-6 must be unsigned
numeric integers.

Condition-Name

Each condition-name must be unique.

PROGRAM STRUCTURE

L.

2.

3.

4.

A CIS COBOL program consists of four divisions:

IDENTIFICATION DIVISION - An identification of the program.

ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program.

DATA DIVISION - A description of the data to be processed.

PROCEDURE DIVISION - A set of procedures to specify the operations to
be performed on the data.

Each division, is divided into sections which are further divided into
paragraphs, which in turn are made up of sentences.

THE ANSI: (ANS) COMEHER. DIRECTIVE

IF the Operator- issues: the^ ANS directive to the: compiler at compilation
tlmev. all ANSI requirements implemented in CIS COBOL are mandatoryv When it
is not set> certain ANSI requirements are optional.- In the remainder of
this Chapter these statements are marked In the remainder of the
fftflTniai a sentence is included: in the text where this feature applies

2-15

IDENTIFICATION DIVISION

GENERAL DESCRIPTION

The Identification Division must be included in every ANSI COBOL source
program. This division, identifies both the source program and the resultant
output listing. In addition, the user may include the date the program is
written, the date the compilation of the source program is accomplished and
such other information as desired under the paragraphs in the general format
shown below.

ORGANISATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs are optional and
may be included in this division at the user's choice, in order of
presentation shown by the format below.

STRUCTURE

The following is the general format of the paragraphs in the
Identification Division and it defines the order of presentation in the
source program.

General Format

fIDENTIFICATION DIVISION.

f PROGRAM-ID. program-name.

AUTHOR. [comment-entry1 .. ^
INSTALLATION. [comment-entry]

DATE-WRITTEN. [comment-entry]
ft

DATE-COMPILED. [comment-entry]

SECURITY. [comment-entry]

2-16

A

••• •

A

ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing
those aspects of a data processing problem that are dependent upon the
physical characteristics of a specific computer. This division allows
specification of the configuration of the compiling computer and the object
computer. In addition, information relating to input-output control,
special hardware characteristics and control techniques can be given.

The Environment Division must be included in every COBOL source
program.

ORGANISATION

Two sections make up the Environment Division; the Configuration
Section and the Input-Output Section.

The Configuration Section deals with the characteristics of the source
computer and the object computer. This section is divided into three
paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled; the OBJECT-COMPUTER
paragraph, which describes the computer configuration on which the object
program produced by the coii5>il®t is to be run; and the SPECIAL*^IAMES
paragraph, which relates the implemention-names used by the compiler to the
mnemonic—names used in the source program.

The Input-Output Section deals with the information needed to control
transmission and handling of data between external media and the object
pr^ogram. This section is divided into two paragraphs: the FILE—CONTROL para
graph which names and associates the files with external media; and the
I-O-CONTROL paragraph which defines special control techniques to be used in
the object program.

STRUCTURE

The following is the general format of the sections and paragraphs in
the Enviroment Division, and defines the order of presentation in the source
program.

General Format

f ENVIRONMENT DIVISION> ^

f CONFIGURATION SECTIOJJ. f

f SOURCE-COMPUTER, source-computer-entry f

f OBJECT-COMPUTER, object-computer-entry •}

[SPECIAL-NAMES, special-names-entry]

f INPUT-OUTPUT SECTION. ^

FILE-CONTROL. {file-control-entry } ...

[i-o-CONTROL. input-output-control-entry]

2 - 17

DATA DIVISION

OVERALL APPROACH

The Data Division describes the data that the object program is to
accept as input, to manipulate, to create, or to produce as output. Data to
be processed falls into three categories:

1.

2.

That which is contained in files and enters or leaves the internal
memory of the computer from a specified area or areas.

That which is developed internally and placed into intermediate or
working storage, or placed into specific format for output reporting
purposes.

3. Constants which are defined by the user.

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION

Data Division Organization

The DATA DIVISION which is one of the required divisions in a program,
is subdivided into sections. These are the File, Working-Storage and
Linkage sections.

' The FILE SECTION defines the structure of data files. Each file is
defined by a file description entry and one or more record descriptions, or
by a file description entry and one or more report description entries.
Record descriptions are written immediately following the file description
entry. The WORKING-STORAGE SECTION describes records and noncontiguous data
items which are not part of external data files but are developed and
processed internally. It also describes data items whose values are
assigned in the source program and do not change during the execution of the
object program. The LINKAGE SECTION appears in the called program and
describes data items that are to be referred to by the calling program and
the called program. Its structure is the same as the WORKING—STORAGE
SECTION.

1-18

3

A

General Format

The following gives the general format of the sections in the Data
Division, and defines the order of their presentation in the source program.

f DATA DIVISION. ^

j^FILE SECTION,
file-description-entry [record-description-entry]

^WORKING-STORAGE SECTION.
R77-level-description-entryH

record-description-entry /J

LINKAGE SECTION.

K77-level-description-entry V]
record-description-entry /J

•••]

...]

2 - 19

...]

PROCEDURE DIVISION

GENERAL DESCRIPTION

The Procedure Division must be included in every COBOL source program.
This division may contain declarative procedures.

Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the key word DECLARATIVES and followed by the key words
END DECLARATIVES. (See descriptions of the USE statement in Chapters 5, 6
and 7 and the Debug Chapter 10).

Procedures

A procedure is composed of a paragraph, or group of successive
paragraphs, or a section, or a group of successive sections within the
Procedure Division. If one paragraph is in a section, then all paragraphs
must be in sections. A procedure-name is a word used to refer to a
paragraph or section in the source program in which it occurs. It consists
of a. paragraph-name (which may be qualified), or a section-name.

The end of the Procedure Division and the physical end of the program
is that physical position in a COBOL source program after which no further
procedures appear.

A section consists of a section header followed by zero, one, or more
successive paragraphs. A section ends immediately before the next section
or at the end of the Procedure Division or, in the declaratives portion of ^
the Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragrapih-name followed by a period and a
space and by zero, one, or more successive sentences. A paragraph ends
immediateley before the next paragraph-name or section-name or at the end of
the Procedure Division or, in the declaratives portion of the Procedure
Division, at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a
period followed by a space.

A statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make
unique reference to a data item.

Execution

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in which
they are presented for compilation, except where the rules indicate some
other order.

2-20

""•"A

4'-

General Format

Procedure Division Header

The Procedure Division Is Identified by and must begin with the
following header:

PROCEDURE DIVISION USING data-name-1 [, data-name-2] *•*j '

Procedure Division Body

The body of the Procedure Division must conform to one of the following
formats:

Format I:

DECLARATIVES.

Isection-name SECTION [segment-number]. declarative-sentence

Q>aragraph-name. [sentence] J ... } .
END DECLARATIVES.

Isection-name SECTION [segment-number] .

pparagraph-name. [sentence] ... J
Format 2:

|[paragraph-name. [sentence] ••• } •••

STATEMENTS AND SENTENCES

There are three types of statements:

1. Conditional statements,
2.. Compiler directing statements,
3. Imperative statements.

There are three types of sentences:

I.. Conditional sentences,
2. Compiler directing sentences,
3. Imperative sentences.

2-21

Conditional Statement

A conditional statement specifies that the truth value of a condition
is to be determined and that the subsequent action of the object program is
dependent on this truth value.

A conditional statement is one of the following:

* An IF statement.

A RffAn statement that specifies the AT END or INVALID KEY phrase.

A WiULTE statement that specifies the INVALID KEY phrase

A START, ELEWRITE or DELETE statement that specifies the INVALID
KEY phrase.

* • An arithmetic statement (ADD, DIVIDE, MULTIPLY, SUBTRACT) that
specifies the SIZE ERROR phrase;

* A CALL statement that specifies the ON OVERFLOW phrase.

Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded
by an imperative statement, terminated by a period followed by a space.

Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb
and its operands. The compiler directing verbs are COPY, ENTER and USE (see
THE COPY STATEMENT in Chapter 9, THE ENTER STATEMENT in Chapter 3, and THE
USE STATEMENT in Chapters 5, 6 and 7). A compiler directing statement
causes the compiler to take on specified action during compilation.

Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement
terminated by a period followed by a space.

2 - 22

Tmperatlve Statement

An Imperative statement indicates a specific unconditional action to be
taken by the object program. An imperative statement is any statement that
is neither a conditional statement, nor a compiler directing statement. An
imperative statement may consist of a sequence of imperative statements,
each possibly separated from the next by a separator.

The imperative verbs are;

ACCEPT 60 SET

ADD^ INSPECT START^

ALTER MOVE STOP

CALL^ MULTIPLY^ SUBTRACT

CANCEL OPEN WRITE®

CLOSE PERFORM

delete^ READ^

REWRITE^

DISPLAY

DIVIDE^

EXIT

1 « Without the optional SIZE ERROR phrase.
2 - Without the optional INVALID KEY phrase.
3 - Without the optional ON OVERBLOW phrase.
5 • Without the optional AT END phrase or INVALID KEY phrase.
6 - Without the optional ,INVALID KEY phrase or END-OF-FAGE phrase.

When 'imperative-statement' appears in, the general format of
statements, 'imperative-statement' refers to that sequence of consecutive
imperative statements that must be ended by a period or an ELSE phrase
associated with a previous IF statement.

Imperative Sentence

An Imperative sentence is an imperative statement terminated by a
period followed by a space.

2 - 23

REFERENCE FORMT

GENERAL DESCRIPTION

The reference format, which provides a standard method for describing
COBOL source programs, is described in terms of character positions in a
line on an input-output medium. The CIS COBOL compiler accepts source
programs written in reference format and produces an output listing of the
source program input in reference format.

The rules for spacing given in the discussion of the reference format
take precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows: the
Identification Division, then the Environment Division, then the Data
Division, then the Procedure Division. Each division must be written
according to the rules for the reference format.

REFERENCE FORMAT REPRESENTATION

The reference formaf for a line is represented as in Figure 2-1.

I I
Margin
L

Margin
C

Margin
A

Margin
B

Margin
R

1 2 5 6

Sequence Number Area

Indicator Area

1 1

8 9 0 1

Area A

1 i

2 3

Area B

Margin L is immediately to the left of the leftmost character position
of a line..

Margin C is Between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character
position of a line.

The sequence number area occupies six character positions (1-6), and is
between Margin L and Margin C.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10 and 11, and is between
margin A and margin B.

Area B occupies character positions 12 through 72 inclusive; it begins
immediately to the right of Margin B and terminates immediately to the left
of Margin R.

Figure 2-1. Reference Format for a COBOL Source Line.

2-24

Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may
be used to label a source program line.

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one
line. It may be continued by starting subsequent llne(s) In area B. raese
subsequent lines are called the continuation llne(s). The line being
continued Is called the continued line. Any word or literal may be broken
In such a way that part of It appears on a continuation line.

A hyphen In the Indicator area of a line Indicates that the.
nonblank character In area B of the current line Is the successor of the
last nonblank character of the preceding line without any Intervening space.
However, If the continued line contains a nonnumerlc literal without closing
quotation mark, the first nonblank character In area B on the continuation
line must be a quotation mark, and the continuation starts with
character Immediately after that quotation mark.. All spaces at the end of
the continued line are considered part of the literal. Area A of a
continuation line must be blank.

If there Is no .hyphen In the Indicator area of a line. It Is assumed
that the last character In the preceding line Is followed by a space.

Blank Lines

A blank line Is one that Is blank from margin C to margin R, Inclusive.
A blank line can appear anywhere In the source program, except Immediately
preceding a continuation line. (See Figure 2.-1) •

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

The division header must start In area A. (See Figure 2—1).

Section Header

The section header must start In area A. (See Figure 2-1).

A section consists of paragraphs In the Environment and Procedure
Divisions and Data Division entries In the Data Division.

Paragraph Header. Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a
space and by zero, one or more sentences, or a paragraph header followed by
one or more entries. Comment entries may be Included within a paragraph.
The paragraph header or paragraph—name starts In area A of any line
following the first line of a division or a section.

2 - 25

The first sentence or entry in a paragraph begins either on the same
line as the paragraph header or paragraph-name or in area B of the next
nonblank line that is not a comment line. Successive sentences or entries
e-ither begin in area B of the same line as the preceding sentence or entry
or in area B of the next nonblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line
they may be continued as described in CONTINUATION OF LINES in this Chapter,

DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a
level-number, followed by a space, followed by its associated name (except
in the Report Section), followed by a sequence of independent descriptive
clauses. Each clause, except the last clause of an entry, may be terminated
by either the separator semicolon or the separator comma,. The last clause
is always terminatedby a period followed by a space.

There are two types of Data Division entries: those which begin with a
level indicator and those which begin with a level-number,

A level indicator is the indicator. FD (see THE FILE DESCRIPTION
-COMPLETE ENTRY SKELETON in Chapters 5,6 and 7)

In those Data Division entries that begin with a level indicator, the
level indicator begins in area A followed by a space and followed in area B
with its associated name and appropriate descriptive dLnformation,.

Those Data Division entries that begin with level-numbers are called
data description entries.

A level-number has a value taken from the set of values 1 through 49,
77, Level-numbers in the range 1 through 9 may. be written either as a
single digit or as a zero followed by a significant digit. At least one
space must separate a level-number from the word following the level-number.

In those data description entries that begin with level-number 01 or
77, the level-number begins in area A followed by a space and followed in
area B by its associated record-name or item-name and appropriate
descriptive information.

Successive data description entries may have the same format as the
first or may be indented according to level-number. The entries in the
output listing need be indented only if the input is. indented. Indentation
does not affect the magnitude of a level-number.

When level-numbers are to be indented, each- new level-number may begin
any number of spaces to the right of margin A, The extent of indentation to
the right is determined only by the width of the physical medium,

DECLARATIVES

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow, respectively, the declaratives portion of the Procedure
Division must appear on a line by itself. Each must begin in area A and be
followed by a period and a space (see Figure 2—1),

1 - 26

lit^ViViV if r t wi«*1* Afc

COMMENT LINES

A comment line is any line with an asterisk in the continuation
indicator area of the line. A comment line can appear as any line in a
sQm^ce program after the Identification Division header. Any combination of
characters from the computer's character set may be included in area A and
area B of that line (see Figure 2-1). The asterisk and the characters in
area A and area. B will be produced on the listing but serve as documentation
only. A special form of comment line represented by a stroke in the
indicator area of the line causes page ejection prior to printing the
comment.

Successive comment lines are allowed. Continuation of comment lines is
permitted, except that each continuation line must contain an in the
indicator area.

2. - 27

.. ... V -

RESERVED WORDS

A full list of reserved words Is given In Appendix A.

Z - 28

CHAPTER 3

THE NUCLEUS

FUNCTION OF THE NUCLEUS

The Nucleus provides a basic language capability for the Internal
processing of data within the basic structure of the four divisions of a
program.

IDENTIFICATION DIVISION IN THE NUCLEUS

GENERAL DESCRIPTION

The Identification Division must be Included In every COBOL source
program.- This division Identifies the source program and the resultant
output listing. In addition, the user may Include the date the program Is
written and such other Information as desired under the paragraphs In the
general format shown below.

ORGANIZATION

Paragraph headers Identify the type of Information contained In the
paragraph. The name of the program must be given In the first paragraph,
which Is the PROGRAM-ID paragraph. The other paragraphs are optional and
•may be Included in this division at the user's choice,, in the order of
presentation shown by the general format below.

Structure

The general format of the paragraphs In the Identification Division Is
given below and shows the order of presentation In the source program.

General Format

IDENTIFICATION DIVISION

PROGRAM-ID. program-name..

AUTHOR. (comment-entry]

INSTALLATION. [comment-entry]

DATE-WRITTEN. [comment-entry]

D^ro-COMPILEDv [comnent-entryl^

-ISECURITY. [comment-entry]

Syntax Rules

...]

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

3-1

2. The comoient^entry may be ai^ combination of the characters from the
computer's character set. The continuation of the comment-entry by the
use of the hyphen in the indicator area is not permitted; however, the
comment-entry may be contained on one or more lines.

THE PR0(9^-XD PARAGRAPH

Function

The PROGRAM-ID paragraph gives the name by which a program is
identified.

General Format

PRO@AM-ID. program-name.

Syntax Rules

1. The program'!-name must conform to the rules for formation of a
user-defined word.

General Rules

1. The PROGRAM—ID paragraph must contain the name of the program and must
be present in every program.

Z. The program—name identifies the source program and all listings
pertaining to a particular program. ^

THE DATE-CCMPILED PARAGRAPH

Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

DATE-COMPILJH). comment-entry •..

Syntax Rule

Ifisbst paragraph ia for dfJAnmentation:^ purpo'sea onl^.

3-2

j The SOURCE-COMPUTER Paragraph

infA... :

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled•

General Format

SOURCE COMPUTER. computer-name.

Syntax Rule

Computer—name must be one COBOL word defined by the user.

General Rules

The computer-name provides a means for identifying equipment
configuration, in which case the computer-name and its implied configuration
are specified by the user.

The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER Paragraph identifies the computer on which the
program is to be executed.

HOBDS
General Format

OBJECT-COMPUTER. computer-name , MEMORY SIZE integer "j CHARACTERS
MODULES

[.PROGRAM COLLATING SEQUENCE IS alphabet-name]

Syntax Rule

1. Computer-name must be one COBOL word defined by the user.

General Rules

1. The computer-name provides a means for identifying equipment
configuration, in which case the computer—name and its implied
configurations are specified by the user. The configuration definition
contains specific information concerning the memory size.

The implementor defines what is to be done if the subset specified by
the user is less than the minimum configuration required for running
the object program.

3-3

2. If the PROOIAM COLLATING SEQUENCE Clause is specified, the collating
sequence associated with alphabet—naine is used to determine the truth
value of any nonnumeric comparisons#

Explicitly specified in relation conditions (see Relation Condition
later in this Chapter).

3. If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native
sequence is used. Appendix B lists the full ASCII collating

sequence (native) and those characters used in COBOL

4. If the PROGRAM COLLATING SEQUENCE Clause is specified, the program
collating sequence is the collating sequence associated with the
alphabets-name specified in that Clause.

5. The PROGRAM COLLATING SEQUENCE Clause is also applied to any honnunieric
merge or sort keys.

The SPECIAL-^AMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means of relating
implementor-names to user-specified mnemonic-names and of relating
alphabet-names to character sets and/or collating sequences.

Ghneral Format

SPECIAL-NAMES.

SWITCH % IS mnemonic—name [,0N STATUS IS condition—name—1]
. - [.OFF STATUS IS condition-name-2]
Wf I —[•(STANDARD-1 fT

, alphabet-name IS | NATIVE ^ J
[. CURRENCY SIGN ^ literal-9]

[,. DECIMAL-POINT IS COMMA]

[. CONSOLE IS CRT]

[, CURSOR is data-name-1]

General Rules

1. If the implementor-name is a switch, at least one condition-name must
be associated with it. The status of the switch is specified by
condition-names and interrogated by testing the condition-names (see
Switch—Status Condition later in this Chapter).

3-4

2. The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. When
alphabet—name is referenced in the PROGRAM COLLATING SEX^UENCE clause
(see THE OBJECT-COMPUTER PARAGRAPH in this Chapter). The alphabet-name
claxwe specifies a collating sequence. When alphabet-name is

_ referenced in a CODE-SET clause in a file description entry (see The
File Description - Complete Entry Skeleton in Chapter 5), the
alphabet-name clause specifies a character code set.

a.- If the STANDARD-l phrase is specified, the character code set or
collating sequence identified is that defined in American National
Standard Code for Information Interchange, X3.4-1968. Appendix B
defines the correspondence between the characters of the standard
character set and the characters of the native character set.

b» If the NATIVE phrase is specified, the native character code set
or native collating sequence is used. The native collating
sequence is as in ANSI publication X3. 4-1968 (see Appendix B).

4., The character that has the highest ordinal position in the program
collating sequence specified is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest position in the
p-rngram collating Sequence, the last character specified.

5.. The character that has the lowest ordinal position in the program
collating sequence specified is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position in the
program collating sequence, the first character specified is associated
with the figurative constant LOW-VALUE.

6. The literal which appears in the CURRENCY SIGN IS literal clause is
used in the PICTURE clause to represent the currency symbol. The
literal is limited to a single character and must not be one of the
following characters.,

*• digits 0 thru 9;

*• alphabetic characters A, B, C, D, L, R, S, V, X, Z, or the
space;

* special characters ***, *+', '»'» *•*» *»'»
V'or

If this clause is not present, only the currency sign is used in the
PICTURE clause.

7. The clause DECIMAL-POINT IS COMMA means that the function of comma and
period are exchanged in the character-string of the PICTURE clause and
in numeric literals.

8. The clause CURSOR IS specifies the data-name to contain the CRT cursor
address as used by the ACCEPT statement (see THE ACCEPT STATEMENT later
in this Chapter).

3-5

DATA DIVISION IN THE NUCLEUS

WORKING STORAGE SECTION

The Working-Storage Section is composed of the section, header, followed ^
by data description entries for noncontiguous data items and/or record
description entries. Each Working-Storage Section record name and
noncontiguous item name must be unique.

Noncontiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical
relationship to one another need not be grouped into records, provided they
do not need, to be further subdivided. Instead, they are classified and
defined in a separate data description entry which begins with the special
level?-number, 77.

The following data clauses are required in each data descriptions
entry:

* Level-number 77

* Data-name

* The PICTURE clause or the USAGE IS INDEK clause

Other data description clauses are optional and can be used to complete
the description of the item if necessary.

Working-Storage Records

Data elements and constants in Working-Storage which bear a definite
hierarchic relationship to one another must be grouped into records
according to the rules for formation of record descriptions. All clauses
which are used in re'cord descriptions in the File Section can be used in
record descriptions in the Working—Storage Section.

Initial Values

The initial value of any item in the Working—Storage Section except an
data item is specified by using the VALUE clause with the data item.

The initial value of ai^ index data item is unpredictable.

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function

A data description enti^r specifies the characteristics of a particular
item of data.

3-6

General Format

, , / data-name-I\level-number {pnj.ER |

[; REDEFINES data-naiiie-2]

jj IPXc™^^} character-strlngj
(COMPUTATIONAL)

[USAGE ISK COM? >
(display)

[SIGN IS] Ifseparate CHARACTER]J

[[SYNCHRONIZED) (LEFT)1
* 1SYNC / 1RIGHT fJ

r (JUSTIFIED]
r \ JUST / J '

[; BLANK WHEN ZERO]

[; VALUE IS literal]

Syntax Rules

1.. The level—number in Format 1 may be any number £rom 01—49 or 77#

Z. The clauses may be written in any order with two e^cceptions: the
data-name-1 or FILLER clause must immediately follow the level-number;
the REDEFINES clause, when used, must immediately follow the
data-name—1 clause#

3#. The PICTURE clause must be specified for every elementary item except
an index data item, in which case use of this clause is prohibited#

General Rule

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must
not be specified except for an elementary data item#

3-7

THE BLANK WHEN ZERO CLAUSE

Function

The BLANK WEEN ZERO clause permits the blanking of an Item when Its
4a 'value Is zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for an elementary Item
whose PICTURE Is specified as numeric or numeric edited. (See
THE PICTURE CLAUSE later In this Chapter).

General Rules

1. When the BLANK WHEN ZERO clause Is used, the Item will contain nothing
but* spaces If the value of the Item Is zero.

2» When the BLANK WHEN ZERO clause Is used for an Item whose PICTURE Is
numeric, the category of the Item Is considered to be numeric edited.

3-8

• V;j;.
U'U... VC,

CT^ i i> *

THE DATA-NAME OR FILLER CLAUSE

Function

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary item of the logical record that cannot be
referred to explicitly.

General Foramt

i data-name

i FILLER f

Syntax Rule

1 In the File, Working-Storage, Communication and Linkage Sections, a
data^name or the key word. FILLER must be the first word following the
level—number" in each data description entry.

General Rule

1 The key word FILLER may be used to name an elementary item in a record.
Under no circumstances can a FILLER item be referred to explicitly.

3-9

THE JUSTIFIED CLAUSE

Function

The JUSTIFIED clause specifies non-standard positioning of data within
a receiving data item.

General Format

rim \

RIGHT
JUSTIFIED

JUST

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item
level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

General Rules

1. When a receiving data item is described with the JUSTIFIED clause and
the sending data item is larger than the receiving data item, the
leftmost characters are truncated. When the receiving data item is
described with the JUSTIFIED clause and it is larger than the sending
data item, the data is aligned at the rightmost character position in
the data, item with space fill for the leftmost, character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning
data within an elementairy item apply. (See Standard Alignment Rules.)

3-10

LEVEL NUMBER

Function

The level-number shows the hierarchy of data within a logical record.
In addition, it is used to identify entries for working storage items,
linkage items.

General Format

level-number

Syntax Rules

1.

2.

3.

A level-number is required as the first element in each data
description entry.

Data description entries subordinate to a File Description entry must
have level—numbers* with the values 01—49. CSee THE FILE DESCRIPTION in
-Chapter 5).

Data description entries in the Working-Storage Section and Linkage
Section must have level-numbers with the values 01-49.

General Rules

1.

2.

The level-number 01 identifies the first entry in each record
description or a report group.

The level-number 77 is assigned to identify noncontiguous working
storage data items, .noncontiguous linkage data items, and can be used
only as described by Format 1 of the data description skeleton. (See
THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in this Chapter).

3.. Multiple level 01 entries subordinate. to any given level indicator,
represent implicit redefinitions of the same area.

3 - 11

THE PICTURE CLAUSE

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary Item*

General Format

I IS character-string

Syntax Rules

1. A PICTURE clause can be specified only at the elementary Item levels

2. A character-string consists of certain allowable combinations of
characters In the COBOL character set used as symbols. The allowable
combinations determine the category of the elementary Item.

3^ Hxe tnavHTniifn number of characters allowed In the character—string Is 30.

4. The PICTURE clause must be specified for every elementary Item except
an Index data Item,. In which case use of this clause Is prohibited.

5*. PIC Is an abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the clause
BLANK WHEN ZERO may not appear In the same entry.

I

General Rules

There are five categories of data that can be described with a PICTURE
clause; alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric
edited. General rules within these categories are given below:

Alphabetic Data Rules

1*. Its PICTURE character-string can only contain the symbols 'A', 'B*; and

2. Its contents when represented In standard data format must be any
combination of the twenty-six (26) letters of the Roman alphabet and
the space from the COBOL character set.

Numeric Data Rules

PICTURE character-string can oniy contain tne synwuia
let

1. The PICTURE character-string can only contain the symbols *9',
'S*, and The number of digit positions that can be described by
the PICTURE character-string must range from I to 18 Inclusive.

2. If unsigned, the data In standard data format must be a combination of
the Arabic numerals *0', '1*, '2.', *3*, *4*, '5', *6', *7', *8 , and
*9'; If signed, the Item may also contain a *+', or other
representation of an operational sign, (see THE SIGN CLAUSE later in
this Chapter)•

3 - 12

')

Alphanuioaric Data Rules

1. The PICTURE character-string is restricted to certain combinations of
^ the symbols 'A*, *X', *9', and the item is treated as if the
^ character-string contained all X's. A PICTURE character-string which
Ih contains all A's or all 9's does not define an alphanumeric item; and

2. The contents when represented in standard data format can consist of
ax^ characters in the computer's character set«

Alphanumeric Edited Data Rules

1.. Its PICTURE character-string is restricted to certain combinations of
the following symbols: 'A', 'X', *9', 'B', '0',, and '/' as follows::

a* The character-string must contain at least one 'B' and at least
one 'X' or at least one '0' (zero) and at least one 'X' or at
least one ' /' (stroke) and at least one 'X'; or

b.. The character-string must contain at least one '0' (zero) and at
least one 'A' or at least one '1' (stroke) and at least one *A';
and

2, The contents^ when represented in standard data, format»are allowable
characters in the computer's set.

Numeric Edited Data Rules

1. Its PICTURE character-string is restricted to certain combinations of
the symbols 'B', 'P',. 'V'» '0',. '9', '+^',
'CR', 'DB',. and the currency symbol. The allowable combinations are
determined from, the order of. precedence of symbols and the editing
rules- as follows:

a.. The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive.

b. The character-string must contain at least one '0', 'B', '/'^ 'Z',
*CR', 'DB', or current^ symbol.

2. The contents pf the character positions of these symbols that are
allowed to represent a digit in standard data format,, must be one of
the numerals..

Elementary Item Size

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in standard data format,
is determined by the number of allowable symbols that represent character
positions.. An integer which is enclosed in parentheses following the sybols
'A', ',', 'X', '9', 'P', 'Z', '*', 'B', '/', '0', '-', or the currency
symbol indicates the nui^er of consecutive occurrences of the symbol. Note
that the following symbols may appear only once in a given PICTURE: 'S',
'V, '.', 'CR', and 'DB'.-

3 - 13

._:l

symbols used elementary item ate
Ihe functions of the symbols used

explained as follcws: ^tcbexplained as follo»«: ^ which
A. _ Each 'A' in the the alphabet or a space.

can contain only a ^ ^„,,ton into
-iSSS-SK 2SS"'

which the space charac -oattion and is used to

,. ^ •.• r ^ •.SiC'-S""
the locatio*^ ot a . data item* Scalii^Sspecify tne xu^ appears ia ^he data item. bcaxxiAB

fhl^fcteT-rin
5?ltf?oslST8) ^,,rn''U'a;fear:nly to the .
tSlIng position character^ ^ (to the
a continuous stri^ o implies an assume ^le. righttcSing IK^sltlen J^-^%eft^t PICTURE charact«s^ud^^^^^
left of ® PICTURE characters) • rightmost characteri£ .p'a are tigW™'®^ PI Ir <P' S»i the insertion
symbol 'V in /^^"^escription. The the same PIC^
within such a cannot hoth inversion of <iata
Character ' •' Z, operation the data item
#.haracter"'Stxing. • __-t ^Anicesentation . tp* each digit
from one form of with the "CT^ the value zero,being converted is ® rpi ig considered to c ^j,iude the digit
position described by ^ ^ considered
and the size of tne
positions so descri e . . „ indicate the presence,

but neither the repre bitten as the let™ ^grms of

i ".Lsssi,VJrs-u„js:„TS^
ss*s ;s.?-s-oss;
CHARACTER phrase. (j4.-i.e the location of the

4 . Character-string to indicate ^j,^jacter-8tring.
The 'V ia used in a c appear once in -herefore is not' - SUd decimal:Jacter positi-J"the assumed decimal
•jhe 'V does^ °°v.! of «»»® elementary "®®* ^ne string, the V is

Si,; »<«" •»"" "
redundant. represent a character

-̂ fofitiio '̂ "
character set. r K<a used to represent the

z-•»• »1 -s
•z' is counted in tne sia

3 -

n\

f ."" . *

.4 9 - Each *9* in the character-string represents a character position which
contains a numeral and is counted in the size of the item.

0 - Each '0' (zero) in the character-string represents a character position
\l " into which the numeral zero will be inserted. The is counted in

the size of the item.

/- Each V (stroke) in the character-string represents a character
position into which the stroke character will be inserted. The / is
counted in. the size of the item.

- Each (comma) in the character-string represents a character
position into which the character will be inserted. This character
position is. counted in the size of the item. The insertion character

must not be the last character in the PICTURE character—string.-

- When the character Cperiod) appears in the character-string is an
editing symbol which represents the decimal point for alignment
purposes and in addition, represents a character position into which
the character will be inserted. The character is counted in
the size of the item. For a given program the functions of the period
and comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated,
in the SPECIAL-NAMES paragraph. In this exchange the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause^ The insertion
character must not be the last character in the PICTURE
character-string.

+, CR,. DB —These symbols are used as editing sign control symbols. When
' used, they represent the character position into which the

editing sign control symbol will be placed. The symbols are
mutually exclusive in any one character-string and each
character used in the symbol is counted in determining the
size of the data item.

* - Each (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed when
the contents of that position is zero. Each is counted in the size
of the item.

cs- - The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The currency
symbol in a character-string is represented by either the currency sign
or by the single character specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted in the size of
the item..

Editing Rules

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement. There are
four types of insertion, editing available. They are:

* Simple insertion
* Special insertion
*• Fixed insertion

* Floating insertion

3-15

r-

There ere two types of suppressloa and replacement editing:
Zero suppression and replacement with spaces
Zero suppression and replacement with asteris

*

*

upon S: cIteV4
of editing may be performed upon a given category.

Table 3^1. Editing Types for Data Categories

GATEGORY TYPE OF EDITING

Alphabetic Simple ins^^r-rion 'B' only

None

Alphanumeric None

AiT>hAnumeric Edited Simple Insertion and—

l<Tiiiitw*ric Edited

Floating insertion editing and "cUulef^^toly°one'' type of-;JacSnt°^rt^^us:fiir-erfsuUSrin aPXCTDKE clause.
Simple Insertion Editing

Simple Insertion Editing. *^e ' ^^^^^^^racterst^^ insertionand V (stroke) are used as the J^«^^\„f^//p=/asent the position in
characters '̂ %U1 Lerted.
the item into which the character wixx o«

Special Insertion Editing
» The * ' (period) is used as the insertionSpecial Insertion Editing. ^ character it also represents

character. In addition to insertion character used for
the declBtal point for alignme P ^ ^ item. The use of the
the actual by the symbol 'V and the actual dec^

- •>»

as shown in the character-string.

Fixed Insertion Editing

Fixed insertion Editing. •""r\"'̂ the ^-'rti^n ^ratfe"? tX
control symbols, ~ « ,.I,e editing sign control symbols can be
one currency symbol and only one of the -CR- or 'DB' are
used in a given PICTURE 1° detaining the site of the
used they represent two =h"a=ter positive ^in^^^ positions that are
co^teT'̂ n''th^ s"e ortheu'em!' The Symbol or •->, when used, must be

3 - 16

r-'-T ' jja;

&

either the leftmost or rightmost character positioa to be counted in the
size of the item. The currency symbol must be the leftmost character

Table 3-2 Editing Symbols in PICTURE Character-Strings

EDITING SYMBOL IN

PICTURE CHARACTER-STRING

RESULT

DATA ITEM

POSITIVE OR ZERO

DATA ITEM

NEGATIVE

•
•

+ -

— space -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols or * are the
floating insertion characters and as such are mutually exclusive in a given
PICTUilE character-string.

Floating insertion editing is Indicated in a PICTURE character-string
by ueing a string of at least two of the floating insertion characters.
This string of floating insertion characters may contain any of the fixed
insertion symbols or have fixed insertion characters Immediately to the
right of this string. These simple insertion characters are part of the
floating string..

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost limit of the
floating symbols in the data item.

The second floating character from the left represents the leftmost
limit of the numeric data that can be stored, in the data item. Non-zero
numeric data may replace all the characters at or to the right of this
limit.

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. One way is to represent ai^ or all of the
leading numeric character positions on the lefr of the decimal point by the
insertion character. The other way is to represent all of the numeric
character positions in the PICTURE character-string by the insertion
character.

If the insertion characters are only to the left of the decimal point
in. the PICTURE character-string, the result is that a single floating
insertion character will be placed into the character position immediately
preceding either the decimal point or the first non—zero digit in the data
represented by the insertion symbol string, whichever is farther to the left
in the PICTURE character-string. The character positions preceding the
insertion character are replaced with spaces.

- If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the value of
the data. If the value is zero the entire data item will contain spaces.

3-17

If the value is not zero, the result is the same as when the insertion
character is only to the left of the decimal point*

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the sending
data item, plus the number of non-floating insertion characters being edited
into the receiving data item, plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeros in numeric character positions is
indicated by the use of the alphabetic character 'Z* or the character ***
Casterisk) as suppression symbols in a PICTURE character-string. These
symbols are mutually exclusive in a given. PICTURE character—string. Each
suppression symbol is counted in determining the size of the item. If *Z*
is used, the replacement character will be the space and if the asterisk is
used, the replacement character will be

Zero suppression and replacement is indicated in a PICTURE
character—strong by a string of one or more of the allowable symbols
to represent leading numeric character positions which are to be replaced
when the associated character position in the data contains a zero. Any of
the simple insertion characters embedded in the string of symbols or to the
immBdiate right of this string are part of the string.

In a PICTURE charactexr-string, there are only two ways of representing
zero suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression symbols.
The other way is to represent all of the numeric character positions in the
PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decioial
point, any leading zero in the data which corresponds to a symbol in the
string is replaced by the replacement character. Suppression terminates at
the first non-zero digit in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered first.

t

If all numeric character positions in the PICTURE character-string are
repi^esented by suppression symbols and the value of the data is not zero,
the result is the same as if the suppression characters were only to the
left of the decimal point. If the value is zero and the suppression symbol
is 'Z', the entire data item will be spaces. If the value is zero and the
suppression, symbol is **', the data item will be all except for the
actual decimal point.

The symbols *Z*, and the currency symbol, when used as
floating* replacement characters, are mutually exclusive within a given
character-string.

Precedence Rules

Table 3-3 shows the order of precedence when using characters as
symbols in a character—string. An at an intersection indicates that the
symbol(s) at the top of the column may precede, in a given character—string,
the symbol (s) at the left of the row. Arguments appearing in braces
indicate that the symbols are mutually exclusive. The currency symbol is
indicated by the symbol *cs*.

3-18

-v.. mmmm

At least one of the symbols 'A', 'X*, 'Z'. '9' or •*'. or at least two
of the symbols or 'cs* mast be present in a PICTDRE string.

Table 3-3. PICTURE Character Precedence Chart.

s

s

V Wi
\Syi

eoonc

yiiboi

vt

eol

Hon-Fleating
losartion. Syibols

Floating
Inacrtlon Syobola

Othc r Synilols

N.
L \

B 0 / •' « [3 f3
OQ
0^ ea. i9 [9 i3 GS ea- 9

A

X
S V ? p

B: x X- X X X X X X X X X X X X- X X' X

0 X. X X X X X X X X- x X- X X X X X X-

/ x X X X X X X X X X X X X X X X- X

S

!r|
» X X X X X- X X X- X X X X' X X x< X

s-
e a

«4 O
•

X X X X X- • X X X. X X

o »«
o •

*a

a X X X X X- X X X- X X X' X X X

OA

m
X X X X X X X. X X X X X X X

e»- X

•
m

<

•i
o «

w a
• o
o

lb- :e

•

e
M

(9 X X X. X: X X - X

(9 x= X; X- X X X- X X'. X X X

(!l X- X X. X x' •

X

jr] X • X X X x X X- X X X-

es X X X X X X

CSt X X- X x- X. ' X. x> X X x:

o-

t
01

ts
•>'

e

9 X X X X X ' X' X X. X X X X X X X

A

X:
X • X- X

X- X

S

7 X- X X X X X X X X X X X

P' X- X X X X X- X X- X X X X

r X X X X X

3 - 19

In Table 3-3, non-floating insertion symbols and floating
insertion symbols 'Z*, and *cs*, and. other symbol 'P* appear
twice in the PICTURE character precedence chart. The leftmost column and
uppermost row for each symbol represents its use to the left of the decimal
point position. The second appearance of symbol in the row and column
represents its use to the right of the decimal point position.

3 - 20

• »> ? : V.

. y.ir

r -w T"* - A^StiaSLSSUHi r*tl

THE REDEFINES CLAUSE

Function

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

General Format

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name—1 are shown in the above format to improve
clarity. Level—number and data—name—1 are not part of the
REDEFINES clause.

Syntax Rules

I. The REDEFINES clause, when specified, must Immediately follow
data?-name—1.

2». The level—numbers of data^name—1 and. data—name^2' must be identical.

3. This clause must not be used in. level 01 entries in the File Section.
(See General Rule 2. of TSE^ DATA. RECORDS CLAUSE in Chapter 5.

4. This clause must not be used in level 01 entries in the Communication
Section..

5, The data description entry for data-name-2 cannot contain an OCCURS
clause. Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the OCCURS clause.
(SSe THE OCCURS CLAUSE in Chapter 4).

6^ No entry having a level-ntimber numerically lower than the level-nuxnber
of data-name—2 and data-name—1 may occur between the data description
entries* of data—name-2. and data-name—1..

General Rules

1. Redefinition starts at data-name-2 and ends when a level-number less
than or* equal to that of data—name—2 is encountered..

2. When the level-number of data-name-1 is other than 01, it must specify
the same number of character positions that, the data item referenced by
data-aame-2. contains. It is Important to observe that the REDEFINES
clause specifies the redefinition of a storage area, not of the data
items occupying the area.

3. Multiple redefinitions of the same character positions are permitted.
The entries giving the new descriptions of the character positions must
follow the entries defining the area being redefined, without
intervening entries that define new character positions. Multiple
redefinitions of the same character positions must all use the
data-name of the entry that originally defined the area.

3 - 21.

4. The entries giving the new description of the character positions must
not contain any VALUE clauses.

5. Multiple level 01 entries subordinate to any given level indicator
represent Implicit redefinitions of the same area.

3-22

THE SIGN CLAUSE

Function

, i-.:; •

The SIGN clause specifies the position and the mode of representation
6 of the operational sign when It Is necessary to describe these properties

explicitly.

General Format

[SIGN I rSEPAKAIE CHARACTER]

Syntax Rules

1,. The SIGN clause may be specified only for a ntimerlc data description
entry whose PICTURE contains the character 'S*, or a group Item
containing at least one such numeric data description entry.

2, The numeric data description entries to which the SIGN clause applies
must be described as usage Is DISPLAY.

3, At most one SIGN clause may apply to any given numeric data description
entry.

4. If the CODE-SET clause Is specified, any signed numeric data
description entries associated with that file description entry must be
descrlbedwlth the SIGN IS SEPARATE clause.

General Rules

1.. The optional SIGN clause. If present, specifies the position and the
mode of representation of the operational sign for the numeric data
description entryto which It applies, or for each numeric data
description entry subordinate to the group to which It applies. The
SIGN clause applies only to numeric data description entries whose
PICTURE contains the character 'S'; the 'S' Indicates the presence of,
but neither the representation nor, necessarily, the position of the
operational sign.

2. A numeric data description entry whose picture contains the character
'S*,. but to which no optional SIGN clause applies, has an operational
sign,, but neither the representation nor, necessarily, the position of
the operational sign Is specified by the character 'S*. In this
(default) case, general rules 3 through 5 do not apply to such signed
numeric data Items.

3.. If the optional SEPARATE CHARACTER phrase Is not present, then:

a. The operational sign will be presumed to be associated with the
leading (or, respectively, trailing) digit position of the
elementary numeric data Item.

b. The letter *S' in a PICTURE character-string is not counted in
determining the size of the Item (in terms of standard data format
characters).

\

3 - 23,

S"'

4. If the optional SEPARATE CHARACTER phrase Is present, then:

a. The operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary
numeric data Item; this character position Is not a digit
position.

b.. The letter 'S' In a PICTURE character-string Is counted in
determining the size of the Item (In terms of standard data format
characters).

c. The operational signs for positive and negative are the standard
data format characters '-h* and respectively.

5. Every numeric data description entry whose PICTURE, contains the
character 'S' Is a signed numeric data description entry. If a SIGH
clause applies to such an entry and conversion is necessary for
purposes of computation or con^arlsons, conversion takes place
automatlcal ly.

3-24

THE S7NCHR0NIZED CLAUSE

Function

The SYNCHRONIZED clause specifies the aligmnent of an elementary item
on the natural boundaries of the computer memory (see ITEM ALIGNMENT FOR
INCREASED OBJECT-CODE EFFICIENCY in Chapter 2).

General Format

i SYNCHRONIZED if/ L^ \]
1SYNC / f) RIGHT (J

Syntax Rules

1.- This clause may only appear with an elementary item.

2«. SYNC is an abbreviation for SYNCHRONIZED*

General Rules

1*. tais:: da^entatd^o^.purpaHS^^^^

2. This clause specifies that the subject data item is to be aligned in
the computer such that no other data item occupies any of the character
positions between the leftmost and rightmost natural boundaries
delimiting this data item. If the number of character positions
required to store this data item is less than the number of character
positions between those natural boundaries, the unused character
positions (or portions thereof) must not be used for anjr other data
item. Such unused character positions, however, are included in:

a. The size of any group item(s) to which the elementary item
belongs;, and

b.. The character positions redefined when this data, item is the
object, of a REDEFINES clause..

3.. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such
a way as to effect efficient utilizatipn of the elementary data item.

4. SYNCHRONIZED LEFT specifies that the elementary item is to be posi
tioned such that it will begin at the left character position of the
natural boundary in which the elementary item is placed.

5.. SYNCHRONIZED RIGHT species that the elementary item is to be posi
tioned such that it will terminate on the right character position of
the natural boundary in which the elementary item is placed.

6. Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in
determining ai^ action that depends on size, such as justification,
truncation or overflow.

3 - 25

''4_.

7. If the data description of an item contains the SYNCHRONIZED clause and
an operational sign, the sign of the item appears in the normal
operational sign position, regardless of whether the item is
SYNCHRONIZED LEFT or SYNCHRONIZED EaCHT.

8. When the SYNCHRONIZED clause is specified in a data description entry
of a data item that also contains an OCCURS clause, or in a data
description entry of a data item subordinate to a data description
entry that contains an OCCURS clause, then:

a* Bach occurrence of the data item is SYNCHRONIZED*

b. kny implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data items

9* This clause is hardware dependent*

3-26

y^T.'

«y%

(T

»rifti rfi*<V<>,tri?.rtf» ;YYii^?&Aoea.aL.X^>

THE USAGE CLAUSE

Fuactlon

The USAGE clause specifies the format of a data Item In the computer
storage.

General Format

COMPUTATIONAL

[USAGE IS] COMP

COMPUTATIONAL-3

C(MP-3

Syntax Rules

I, The PICTURE character-string of a COMPUTATIONAL or CCMPUTATIONAL-3 item
can contain only *9*s, the operational sign character *S', the Implied
decimal point character 'V# one or more 'P's.- (See THE PICTURE CLAUSE
earlier In this Chapter).

2.. COMP Is an abbreviation for COMPUTATIONAL.

General Rules

1.

2.

3.

4..

The USAGE clause can be written at any level. If the USAGE clause Is
written at group level. It applies to each elementary Item In the
group.. The USAGE clause of an elementary Item cannot contradict the
USAGE clause of a group to' which the Item belongs.

This, clause specifies the manner In which a data Item Is represented In
the storage of a computer. It does not affect the use of the data
Itaa, although the specifications for some statements in the Procedure
Division may restrict the USAGE clause of the operands referred to.
The USAGE clause may affect the radix or type of character
representation of the Item.

A C(»1PUTAII0NAL or CCMPUTATIONAL-3 Item Is capable of representing a
value to be used. In computations and must be numeric. If a group Item
Is described as COMPUTATIONAL (-3), the elementary Items in the group
are. COMPUTATIONAL(-3). The group Item Itself Is not COMPUTATIONAL(-3)
and cannot be used In computations.

The USAGE IS DISPLAY clause Indicates that the format of the data Is a
standard data format.

If the USAGE clause Is not specified for an elementary Item, or for any
group to which the Item belongs, the usage is Implicitly DISPLAY.

Space requirements for the various USAGE storage options are given
under Selection of Character Representation and Radix In Chapter 2.

3-27

THE VALUE CLAUSE

Function

The VALUE clause defines the value of constants, the initial value of
working storage items, the initial value of data items in the Communication
Section.

General Format

VALUE is literal

Syntax Rules

1. The VALUE clause cannot be stated for any items whose size is variable.
(See THE OCCURS CLAUSE in Chapter 4).

2. A signed numeric literal must have associated with it a signed numeric
PICTURE character-string.

3.. All numeric literal in a VALUE clause of an item must have a value
which is within the range of values indicated by the PICTURE clause,
and must not have a value which would require truncation of nonzero
digits. Nonnumeric literals in a VALUE clause of an item must not
exceed the size indicated by the PICTURE clause.

General Rules

1. The VALUE clause must not conflict with other clauses in the data _
description of the Item or in the data description within the hierarchy J2Q
of the item. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE
clause must, be numeric. If the literal defines the value of a
working storage item, the literal is aligned in the data item
according to the standard alignment rules. (See Standard
Alignment Rules in Chapter 2).

b. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited or numeric edited, all literals in the VALUE •
clause must be nonnumeric literals. The literal is aligned in the

• data item as if the data item had been described as alphanumeric.
(See STANDARD ALIGNMENT RULES in Chapter 2). Editing characters
in the' PICTURE clause are included in determining the size of the
data item (see THE PICTURE CLAUSE earlier in this Chapter) but
have no effect on Initialization of the data item. Therefore, the
VALUE for an edited item is presented in an edited form.

c» Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

3-28

Data Description Entries other than Coadltloti-ilame8

Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

I, The VALUE clause cannot be used in the File Section. In the File
Section, the VALUE clause may be used only in condition-name entries.

2. In the Working-Storage Section, the VALUE clause may be used to specify
the initial value of a data item; in which case the clause causes the
item to assume the specified value at the start of the object program.
If the VALUE clause is not used in an item's description, the initial
value is undefined.

3. The VALUE clause cannot be used in the Linkage Section. In the Linkage
Section, the VALUE clause may be used only in condition-name entries.

4. The VALUE clause may be stated in a data description entry that
contains an OCCURS clause, but not in an entry that is subordinate to

. an entry containing an OCCURS clause. (See THE OCCURS CLAUSE in
Chapter 4).

5. The VALUE clause must not be stated in a data description entry that
contains a REDEFINES clause, or in an entry that is subordinate to an
entry containing a REDEFINES clause.

6. If the VALUE clause is used in an entry at the group level, the literal
must be a figurative constant or a nonnumeric literal, and the group
area is initialized without consideration for the individual elementary
or group items contained within this group. The VALUE clause cannot be
stated at the subordinate levels within this group.

7. The VALUE clause must not be written for a group containing items with
descriptions, including JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY).

3-29

PROCEDURE DIVISION IN THE NUCLEUS

CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable
the object program to select between alternate paths of control depending
upon the truth value of the condition. Conditional expressions are
specified in the IP, PERFORM and SEARCH statements. There are two
categories of conditions associated with conditional expressions; simple
conditions and relation conditions. Each may be enclosed within any number
of paired parentheses, in which case its category is not changed*

Simple Conditions

The simple conditions are the relation, class, switch-status,
conditions. A simple condition has a truth value of 'true* or 'false*. The
inclusion in parentheses of simple conditions does not change the simple
truth value*

Relation. Condition

A relation condition causes a comparison of two operands, each of which
may be the data item referenced by an identifier, a literal* A relation
condition has a truth value of 'true' if the relation exists between the
operands. Comparison of two numeric operands is permitted regardless of the
formats specified in their respective USAGE clauses. However, for all other
comparisons the operands must have the same usage. If either of the
operands is a group item,, the nonnumeric comparison rules apply.

The general format of a relation condition is as follows;

(identifier-1\
\ literal-1)

' IS [NOT]
IS [NOT]
IS [NOT]
IS [NOT]
IS [NOT]
IS [NOT]

GREATER THAN '
LESS THAN

EQUAL TO
>

<

[identifier-2\
\ literal-2 ;

NOTE; The required relational characters '<*, *>', and '=*' are not
underlined to avoid confusion with other symbols such as >
(Greater than or equal to)

The first operand (identifier-1 or literal-I) is called the subject of
the condition; the second operand (identifier-2 or literal—2) is called the
object of the condition. The relation condition must contain at least one
reference to a variable*

The relational operator specifies the type of comparison to be made in
a_ relation condition, a space must precede and follow each reserved word
comprising the relational operator. When used, 'NOT' and the next key word
or relation character are one relational operator that defines the
comparison to be executed for truth value; e.g., 'NOT EQUAL' is a truth test
for an 'unequal*.

3 - 30

.

Comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less'
comparison. The meaning of the relational operators is as shown in Table
3-4.

Table 3-4. Relational Operators,

Meaning Relational Operator

Greater than or not greater than IS NOT GREATER THAN

IS NOT >

Less than or not less than IS NOT LESS THAN

IS NOT <

Equal to or not equal to IS NOT EQUAL TO

IS NOT -

The required relational characters snd are not
underlined to avoid confusion with other symbols such as '>'
(Greater than or equal to).

Comparison of Numeric Operands: For operands whose class is numeric a
conq>arison is made with respect to the algebraic value of the operands. The
length of the literal in terms of number of digits represented, is not
significant. Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

Comparison of Nonnumeric Operands: For nonnumeric operands, or one numeric
and one nonnumeric operand, a comparison is made with respect to a specified.
collating sequence of characters (see The OBJECT—COMPUTER Paragraph in this
Chapter). If one of the operands is specified as numeric, it must be an
integer data item or an integer literal and:

1. If the nonnumeric operand, is an elementary data item or a nonnumeric
literal, the numeric operand is treated as though it were moved to an
elementary alphanumeric data item of the same size as the numeric data
item (in terms of standard data format characters), and the contents of
this alphanumeric data item were then compared to the nonnumeric
operand. (See THE MOVE STATMENT in this Chapter, and the PICTURE
Character 'P' under the Reading Symbols Used earlier in this Chapter).

If the nimieric operand, is a group item, the nxuneric operand is treated
as though it were moved to a group item of the same size as the numeric
data item (in terms of standard data format characters), and the
contents of this group item were then compared to the nonnumeric
operand. (See THE MOVE STATEMENT in this Chapter, and the PICTURE
character 'P' under the Heading Symbols Used earlier in this Chapter).

A non—integer numeric operand cannot be compared to a nonnumeric
operand.

3 - 31

The size o£ an operand is the total number of standard data format
characters in the operand. Numeric and nonnumeric operands may be compared
only when their usage is the same.

There are two cases to consider:

1. Operands of equal size - If the operands are of equal size, comparison
effectively proceeds by comparing characters in corresponding character
positions starting from the high order end and continuing until either
a pair of unequal characters is encountered or the low order end. of the
operand is reached, whichever comes first. The operands are determined
to be equal if all pairs of characters compare equally through the last
pair, when the low order end is reached.

The first encountered pair of unequal characters is coiiq>ared to deter
mine their relative position in the collating sequence. The operand
that contains the character that is positioned higher in the collating
sequence is considered to be the greater operand.

2m, Operands of unequal size - If the operands are of unequal size,
comparison proceeds as though the shorter operand were extended on the
right by sufficient spaces to make the operands of equal size.

Class Condition

The class condition determines whether the operand is numeric, that is,
consists entirely of the characters '0', '1*, '2', *3', '9', with or
without the operational sign, or alphabetic, that is, consists entirely of
the characters *A', *B', 'C', ...-, 'Z', space. The general format for the
class condition Is as follows:

identifier IS [NOT] ŜllrTr 1

The usage of the operand being tested must be described as display.
When used, *NOT' and the next key word specify one class condition that
defines the class test to be executed for truth value; e.g. *NOT NT3MERIC*
is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary
items whose data description indicates the presence of operational sign(s).
If the data, description of the item being tested does not indicate the
presence of an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and an operational sign is not
present. If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be numeric only
if the contents are numeric and a valid operational sign is present. Valid
operational signs for data items described with the SIGN IS SEPARATE clause
are the standard data format characters, and ,

The ALAPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only :Lf the contents consist of any combination of the alphabetic
characters 'A' through 'Z* and the space.

3-32

C

Switch-Status Condition

A switch-status condition determines the *on* or 'off* status of an
or 'off*implementor-defined switch. The implementor-name and the

value associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format for the
switch—status condition is as follows:

'on'

condition-name

The result of the test is true if the switch is set to the specified
position corresponding to the condition—name.

3 - 33

COMMON PHRASES AMD GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear
frequently: the ROUNDED phrase, the SIZE ERROR phrase.

These are described below. A resultant-identifier is that identifier
associated with a result of an arithmetic operation.

The Rounded Phrase

If, after decimal point alignment, the number of places in the fraction
of the result of an arithmetic operation is greater than the number of
places provided for the fraction of the resultant-identifier, truncation is
relative to the size provided for the resultant-identifier. When rounding
is requested the absolute value of the resultant-identifier is increased by
one whenever the most significant digit of the the excess is greater than or
equal to five.

When the low-order integer positions in a resultant-identifier are
represented by the character 'P* in the PICTURE for the
resultant-identifier,, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

The Size Error Phrase

If^ after decimal point alignment, the absolute value of a result
exceeds the largest value that can be contained in the associated
resultant-identlJcier a size error condition exists. Division by zero always
causes a size error condition. The size error condition applies only to the
final results, except in MULTIPLY and DIVIDE statements, in which case the
size error condition applies to the intermediate results as well. If the
ROUNDED phrase is specified rounding takes place before checking for size
error. When such a size error condition occurs, the subsequent action
depends on whether or not the SIZE ERROR phrase is specified as follows;

SIZE ERROR Phrase Not Specified

When a size error condition occurs, the value of those
resultant-identifier(s) affected is undefined. Values of
resultant^identifier(s) for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifier(s)
during execution of this operation.

SIZE ERROR Phrase Specified

When a size error condition occurs, then the values of
resultant-identi:Eier(s) affected by the size errors are not altered. After
completion of the execution of this operation, the Imperative statement in
the SIZE ERROR phrase is executed.

3-34

Arithmetic Statements

The arithmetic statemeats are the ADD, DIVIDE, MULTIPLY, and SUBTRACT
statements. Common features are as follows:

1. The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment are supplied
throughout the calculation..

2. The size of each operand is 18 decimal digits. The composite
of operands, which is a hypothetical data item resulting from the
superlmposition of specified operands in a statement aligned on their
decimal points (See THE ADD STATEMENT, THE DIVIDE STATEMENT, THE
MULTIPLY STATEMENT and THE SUBTRACT STATEMENT later in this Chapter).

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an
INSPECT, MOVE, SET, statement share a part of their storage areas, the
result of the execution of such a statement is undefined.

Incompatible Data

Except for the class condition (See Class Condition in this Chapter),
when the contents of a data item are referenced in the Procedure Division
flnH the contents of that data item are not compatible with the class
specified for that data item by its PICTURE clause, then the result of such
a reference is undefined»

CRT Devices

The CRT is driven directly by the run time system via a buffer. The
COBOL programmer moves data into and out of this buffer by means of ACCEPT
and DISPLAY statements. Each ACCEPT or DISPLAY action is relative to the
start of the CRT buffer unless POSITION is specified.. The syntax is limited
to inputting^ to or outputting from a single data name. The data name may be
a group item and several such group items may redefine the same area of
storage.

The use of FILLER data items in record descriptions used for input or
output to a CRT device is subject to special rules. On output, any FILLER
item ia a record, results in suppression of output for the character
positions it defines. On input, any FILLER item suppresses operator keying
into the character positions it defines.

3-35

THE ACCEPT STATEMENT

Function

The ACCEPT statement causes data keyed at the CRT console to be made
available to the program In a specified data item

General Formats

Format 1

ACCEPT identifier [FROM CONSOLE]

Format 2

-s--ri*
immmMsKi-

General Rules

1. Format 1 is the standard ANSI ACCEPT statement

Format 2 is the ^tended ACCEPT format.

The two formats are distinguished by their FROM phrases and the default
assumes FROM CONSOLE. The default can, however, be changed by
specifying CONSOLE IS CRT in the SPECIAL-NAMES clause so that FROM CRT
becomes the defaults This changed default is not shown in the syntax
above-

Format 1

2. The ACCEPT statement reads one line of input data from the system
consol device. This input data replaces the contents of the data item
named by the identifier.

I

3. The line of. input is line-edited according to the operating system
rules for line-editing (see Operating Systems User Guide). The line is
terminated by pressing the CR (Carriage Return) key or by exceeding 120
characters :Ln length-

4. If the input line is of the same size as the receiving data item, the
transferred data is stored in the receiving data item.

5. If the input line is not of the same size as the receiving data item,
then:

a. If the size of the receiving data item exceeds the size of the
input line, the transferred data is stored aligned to the left in
the receiving data item and the data item is filled with trailing
spaces»

b. If the size of the transferred data exceeds 120 bytes, only the
first 120 characters of the input line are stored in the receiving
data item. The remaining characters of the input line which do
not fit into the receiving data item are ignored.

3-36

^dart»-aainer--L isv tafcen. as. > dfes£DiiLt±on. of:, tte .aoreea. acesi- fc wiidSBte"
>' ftjainS' cocEaspoad? to -aarsas?" oar t&a stsraoa. lato vlil6$b th:^
- - operator can bay^ miEIL iaelds^ceaaBspon^^ txy area® on^ the aexeeoL ohfch

a<r«» InaccessehTe to- the apeEatoa^«r^ ^ ^ ^ >> " ^
^ ,. 'i' ' ,-,«i ->-'•>y -v •>., •• - A •*«,•;-•» f '

EleneittaTy: /fa.t:a; •r-tncwa.- wdhUh: '̂;^ (feitaa-BBame^l^ al^phamnneriCy^ ±nteget:
^ ^ lYtitmoflr't <r^ QE' Whanf*<iH.g ixsiBst a!C6> tseaitsdr as-* two" sepecate^

"fnateg^ fields.^ aai tasBated '̂a® alphaauineEie:
„ Medidst except: as: dessa^ed. ^'cute ^^ 1'v

:r ' ~ -T . - - '
ASL datas-name-ST or iSEtera^brL dieSaaes ^.t&e'posdfJLom oik the scceem
^ftmost <^ii«ragf;e.g\<^-, th^ E£th^ foEBK nMfft. refer to^ afESDST 99-99^ ,

vJ. ^^TvP. TSier oQSiti sdignlftha^ 99^ Is:' taken, ae e line oouxEtr ±n the range
- to the -max±muiit> llaee on ^e- user sereeni^ The least: sdigyPfi,rant. 99^

•fi^!: falwyiT as* & chacactexr posditlon >fn the range one tn the mascistoie.
poeiitions: allowed: hyr the axsreenwdtdtiit o£: the user. GR£[L' •-^^ ^

IQ^r detas-oaine—1 may refer, te a: reeprd^ groi^ or eleinentaTy lm.t ft may :.
XBOt Be subscripted:.. REDEEEENQ^ may be as€&d^ wilthfe. d^tamaiaes-lv. in whiclr - <
case tl^ first fesedp-tdLon: the usexh^ and^ snhse^iaeat
^jftarrr-fyfefinniy:- a£e:< l^gnoEextk.: ' 6G6$®S-. aoxl nested- GUCUbS^ los^ also -bevused:-.

...ndSt^^ fee effeet that the repeated dhtar-itecr ±a> expanded, iota*, the felX
Buaibeas of ttme® fe:: fmidf «ne^ dft-ffTiitioa- is thus antaiDatica-lly • . i

. . - ' . '
Immediatdy upon esecutton of fee ACGBEI- statement' e cursor,
displayed in the 6K£r location corresponding: to the leftmost non-FBH^ER/ '
character: position in d^^nax&e:!^..:, A^ CURSOEt is- .
specified in fee SBBCEAErirAMBS' para^aphv the cursor displays at. the '
position held in the CURSOR dhtornsmie,. Th^ Is stored

. in GUSSOR. datar-name in the s^EUBe fermat as .the screen position is held
in ^ta-name-Z^ rf the data^nfflnes^Z has the- value SEAC^ or ZBEtOi, the
effect is as. if .CURSOR: was not apecifiedv

t2!i. If FR^ CRX is not speclfledV the default ist FROM: GONSOIR (see rule I
;.v3;:|ahov:e^,.. ": • ; -. /o:

ISw An the opexatoir keys diaracters». the cursor moves to the right one
. c position- at e tfmfr in locations corresponding to data f ields•=

ihts the current cursor positloiu. At the end
./ of a. BIhe the cursor moves down one ^ andvto thev leflmrast non-EIIliER

' •'• ^•ebaaeac:t&t: position... .. 4:V . '' '

14.^ If the data itent is fiiteger numeric^ only numeric characters (0 9)
will be accepted into that itesu. Keying the decimal point, character C-
or ,, as specified in the DECIMAl POINT phrase) when accepting a numeric
Item: causes the- item to be right jwtified and zero^filled from, the

' ' left..

15.- When, the cursor location reaches a position corresponding to: a FILLER
item^ in a datar-name» it immediately skips- to the; next non-FXLLER
character position, or if there is no such position, remaining in the
portion of fee CRT specified by the data-name,, it remains In its-
current position..

3-37

. « /m;; ^

B^otce^; Goixtn^' tm\

ehax:^;tesi^: 0'tp' 9v+•» ->. • or ^ aad,
••:y-:^':.>:-^':^}\v.-bdclc thiC:: DuineEjjGired^tBdY f^Brlldx wdLthi the: ^SE:. ETCinBiE

aTt«i^Kf^f|n<y^hTi«i: iiZt^ 1sa;b(^mXEBi "•v: . .

vascSes. aecismd^ng: ta thfe CRa^.tised: an# they way- ifc la configured
^ 0iE>eBa±±n3e

EBy633tQN?r -y. X . '̂;: •. * • •* rj ' c
' • •, ••,'.• .- . li , 1 >••' *^ -o. , V »< ,1- »- J
»• . z^-: , •• ^•.'/ - t--••\V'* ./iT'^-^-'^"*"'.♦yvf-v'-rr= •- '•-^ v..»'v--'-^ ^V; v. .i • /.'.•:
•»'••. .. ••. s •;>•,..• • "V • • V•• . . ^ • •v.-'-TX" •.' >;>• ^ •• .. :: \SV'.; • ./•;.••*• 's'<^ "• --M .,>♦••..."■'•%:■•. /•v. ' .'.•••• • - • • • •

i

'••- Baekias- up- .the- curaoir-onei positljoiiib* - •
. - J

E-<- ',v-^- :; -rT 'o
^]^x3ke up the cursor: ta the- start of the- r i
r nsnrEELLBEt fLeid prforr to? the» current cursor ., :;.^ \
• pQgfction;^ . - ^ - t. ' , • ,
V-'-•' •• • iv;,. ,• : '•;-. .. ••^•'-:' -l!:'' •'••'' ••'••

i Moves, the cursor on ta the start of the next
1 non-EEEEBU field: In advance of titie current
r cursor pasltdion-.
•...*'

I

• A*s " ' ••

v...;^=..:.4 -. • ... -;.••••• . •• • • ...-.••.••v.

^ Moves the cursor on. one posdition without
^ overwriting existing contents^ ^ •

, \ V' - ' 5'-^''
^ Moves the cursor back, to- tifc start,.of,.the flxst.
1 noor-EiaiLER fleld:^^^ the GKET aree corresponding
: to^ data>!-aame-l«^

3-38

^ •--> >«

THE ADD STATEMENT

Function

The ADD statement causes two or more numeric operands to be summed and
the result to be stored.

General Format

Format I

. / identifier-1) fAidentifier-2H ,j,q
•^iliteral-l ^ \literal-2 —

r, ldentl£ler-n fROONDEDlJ ..• [;
Identlfler-m [ROUNDED]

ON SIZE ERROR Imperative-statement]

Format 2

ADD
/ identifier-l\ , [identifier-2) f,(identifier-31 | •••
\literal-l / \literal-2 / [^/\literal-3 ;J

GIVING identifier-m [ROUNDED] identifier-n [ROUNDED] J ...
C; ON SIZE ERROR imperative-statement]

Syntax Rules

1.. In Formats 1 and 2, each identifier must refer to an elementary numeric
item, except that in Format 2 each identifier following the word GIVING
must refer to either an elementary numeric item or aa elementary
numeric edited item.

2. Each literal must be a numeric literal.

3.. The composite of operands must not contain more than 18 digits (see The
Arithmetic Statements in this Chapter).

a. In Format 1 the composite of operands is determined by using all
of the operands in a given statement.

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that
follow the word GIVING.

General Rules

1. See THE ROUNDED PHRASE, THE SIZE ERROR PHRASE, THE ARITHMETIC
STATEMENTS and OVERLAPPING OPERANDS in this Chapter.

3 - 39

If Format Is used, the values of the operands preceding the vord TO
are added together, then the sum is added to the current value of
identifler-m storing the result immediately into identifier-m.

If Format 2 is used, the value of the operands preceding the word
GIVING are added together, then the sum is stored as the new value of
identifier-Q, the resultant identifiers.

The compiler ensures that enough places are carried so as not to lose
any significant digits during execution.

3-40

O

:.-i^i:<)t ^ .W*X'-f^ i'^

THE ALTER STATEfilENT

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

AT.Ty.Ti procedure-name->l ^ PROCEED TO procedure-name-2.

Syntax Rules

1. Each procedure™name—1, is the name of a paragraph that contains a
single sentence consisting of a GO TO statement without the DEPENDING
phrase.

2. Each procedure-naine-2, is the name of a paragraph or section in the
Procedure Division.^

General Rule

Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure—name**l, so that subsequent executions of the
modified GO TO statements cause transfer of control to procedure-name-2.
Modified GO TO statements in independent segments may, under some
circumstances, be returned to their Initial states (see Independent Segments
in Chapter 8)•

3 - 41

THE DISPLAY SXATIMENT

Function r~ ~

The DISPLAY statement causes data to be transferred from specified data
items to the CRT screen.

General Formats

Format 1

DISPLAY

Format 2

(identifier-1

I literal-l

(identifiet'-Z

Iiteral-2M ...] [UPON CONSOLE]

r j:' . '; I: -; • ' .. I'
., ; fcfe • -fcMteraM^ --- K

Syntax Rules

1. Each literal may be any figurative constant, except ALL.

2.

3.

4..

If the literal is numeric, it must be an unsigned integer.

mus'rtr.Be xFphanumestcv I£te3?;^-4i muast: Ber^

data-name^E mayr gcoup or eXememt^i^ itemv buS
anistLr noir hsb^ subs^ •«;

General Rules

Format 1 is the standard ANSI DISPLAY statement.

Format 2 is the extended DISPLAY format.

The two formats are distinguished by their UPON phrases and the default
assumes UPON CONSOLE. The default can, however, be changed by
specifying CONSOLE IS CRT in the SPECIAL~NAMES clause so that UPON CRT
becomes the default. This, changed default is not shown in the syntax
above.

Format 1

2. The DISPLAY statement causes the contents of each operand to be
transferred to the CRT in the order listed as one line of output data.

3. The size of the data transfer can be up to 132 bytes.

4. If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

3 - 42

5, If the CRT is capable of displaying data of the same size as the data
item being output, the data item is transferred.

6. If the CRT is not capable of displaying data of the same size as the
data item being transferred, one of the following applies.

(a) If the size of the data item being displayed exceeds the size of
the data that the CRT is capable of receiving in a single
transfer, the data beginning with the leftmost character is stored
aligned to the left in the receiving CRT.

(b) If the size of the data item that the CRT is capable of receiving
exceeds the size of the data being transferred, the transferred
data is stored aligned to the left in the receiving CRT.

7.. When a DISPLAI statement contains more than one operand, the size of
the sending item is the sum of the sizes associated with the operands,
and the values of the operands are transferred in the sequence in yhich
the operands are encountered.

Format Z

used!^ to^ output: late 6EII^A
lawra* ..''s -- :>• . .

^

of the scteen. aree intch

that- .area^.dit the sdceee; are movedf.. EILLEK fieldy^^
•cfflBCcespond to" aresai-odK-^the-screeat tntob ididjc& daite iS; not-Etoved.^ ^

; •• •.•. •, 4 ^ v . -1 ^v.

EEEemiMieaagp:';: dstarnanm^ may^-l^^falphamniBric^r
mnaecic,. mimette ot edLtedv • •;'*

-» . .. »• ••-••*•••••. « •

Elw A5E ddtas-name^Z IiiteraiL-4» diefines the po8±tic«r on; the'scieett of^ taie;^
~ leftmost of the t^aw Ehthetr-ferm* must refiaar to- e EIC 999ft iv
. .field* The .most: significaict 99< ±st tskem ae a^,line count in the rsmgp.\.!

: ' one to^ t?he • r^rnnho^^ of: Hiaee. pe tdie iiset screenw leaattX'-
' ffil^gnificant'dft i» aa a cfiaraet^wgositlon. inu the:; range one te th®^
maacclmu^of charaeterss^ pet I£ne& on. the. us^. screen* > - ^ a. a

rv-- data-name—t may r^fecr tn a records g^oup^ on: elementary item,, bnt it may
• ' Tyg* ' pdmgffTWRff.. may be. used,, in. whidt case the first.

nf••• the&;- .{.(fetas-.;.-,'.us.ed' ^andi." subsequent descrlptipne are
OCGORS «»d nested OCCnRft may also be used wdtir the effect that.

jSgfr..' ^p«ndp-<fe ijotm the fin. numbec of times it
J^-l'rfocena^A and one.- <$ef£ndt±ott:» is. ^aa» automatically. repeated fat^many

13^ DIISEliil: SFACE has tfiei e^ the screen: at run time' (i^e..
the* whole spaces^* DlSPtAT' *' * (one space

character) however,, displaya only one space character*

14*. The^THINDiEB; p^ase cdxses; ;t^^ Items moved to the CRT to^ be
fH'q|tTrayorf< mTHiv ttrwf^r-T '̂tnt*^ f^aafrtrrer present* Thls: feature^ iS
dependent on the CRT hardware fimcttons and: is not available on ailT

. make® of CRT Csee the CIS'CQBdt Opeiatlng: Guide) * , ^

3 - 43

. .. .*. >. ff*-.

THE DIVIDE STATEMENT

Function

im I.* •

The DIVIDE statement divides one numeric data item into others and sets
the values of data items equal to the quotient*

General Format

Format 1

DIVIDE Iliteralidentifier-2 [ROUNDED]

j^, identifier-aj [ROUNDED] [;0N SIZE ERROR imperative-statement]

Format 2

(identifier!) (identifier-2VDIVIDE I iiteral-1 / I literal-2 j

GIVING identifier-3 [ROUNDED] ,identifier-4 [ROUNDED] j ...
[;0N SIZE ERROR imperative-statement]

Format 3

„„„„„ /identlfler-n <ldentifler-2)SHiSE \ literal-! / ^ t literal-2 /

GIVING identifier—3 rRODNDEDl f , identifier-4 [ROONDED]J
[jON SIZE ERROR imperative-statement]

Syntax Rules

1. Each ident:Lfier must refer to an elementary numeric item, except that
any identifier associated with the GIVING phrase must refer to either
an elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

General Rules

1. See The Rounded Phrase, The Size Error Phrase, The Arithmetic Statemeats
and Overlapping Operands in this Chapter for a description of these
functions.

2. When Fomnit L is used, the value of identifier-! or j
divided into the value of identifier-2. The value of the dividend
(identifie:c-2) is replaced by this quotient.

3 - 44

c?

(T

3. When Format 2 is used, the value of Identifier-I or literal-1 is
divided into identifier-2 or literal-2 and the result is stored in
identifier's.

4. When Format 3 is used, the value of identifier-1 or literal-1 is
divided by the value of identifier-2 or literal-2 and the result is
stored in identifier-3.

3-45

THE ENTER STATEMENT

Function

The ENTER statement provides a means of allowing the use of more than
one language In the same program.

General Format

enter language—name [routine-name] •

Syntax Rule

1. TSa^c

General Rule

1.. Access to other languages can be achieved by means of CALL.

3-46

the exit statement

Function

The EXIT statement provides a common end point for a series of
procedures.

fS

General Format

EXIT

STNTAX HOLES

1, The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

General Rule

An EXIT statement serves only to enable the user to assign a
procedure-name to a given point in a program. Such an EXIT statement
has no other effect on the compilation or execution of the program.

3 - 47

THE GO TO STATEM2NT

Function

The GO TO statement causes control to be transferred from one part of
the Procedure Division to another.

General Format

Format 1

GO TO [procedure-name—1]

Format?-2

GO TO procedure-name-1 [, procedure-aame-2] ••• [, procedure-name-n]

DEPENDI3JG ON identifier

Simtax Rules

1.^ Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph
can consj^t only of a paragraph header followed by a Format 1 GO TO
statement.. Q

3.- If a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it appears as the
last statement in that sequence.

General Rules

1. When a GO TO statement, represented by Format 1 is executed, control is
transferred to procedure-name—1 or to another procedure—name if the GO
TO stateiBent has been modified by an ALTER statement.

2. When a GO TO statement represented by Format 2 is executed, control is
transferred to procedure-name—1, procedure-name-2, etc., depending on
the value of the identifier beijig 1, 2, ..., n. If the value of the
identifier is anything other than the positive or unsigned integers I,
2,. n, then no transfer occurs and control passes to the next
statement in the normal sequence for execution.

3-48

(P

THE IF STATEMENT

Function

The IF statement causes a condition (see CONDITIONAL EXPRESSIONS In
this Chapter). The subsequent action of the object program depends on
whether the value of the condition Is true or false.

General Format

.. . i statement-I > j ; ELSE statement-2 1^ condition; | NEXT SENTENCE / \ ; ELSE NEXT SENTENCE /

Syntax Rules

1. Statement-'l and statementr-2 represent either an imperative statement or
a conditional statement, and either may be followed by a conditional
statement.

2. The ELSE NEXT SENTENCE phrase may be omitted If It Immediately precedes
the terminal period of the sentence.

General Rules

I. When an IF statement la executed, the following transfers of control
occurr

a- If the condition Is true, statement-1 Is executed If specified. If
statement-! contains a procedure branching oir conditional
statement, control Is explicitly transferred In accordance with
the rules of that statement. If statement-I does not contain a
procedure branching or conditional statement, the ELSE phrase. If
specified. Is Ignored and control passes to the next executable
sentence.

b- If the condition Is true and the NEXT SENTENCE phrase Is specified
instead, of statement-l, the ELSE phrase. If specified. Is Ignored
and control passes to the next executable sentence.

c. If the condition Is false, statement-1 or Its surrogate NEXT
SENTENCE Is Ignored,, and statement-2. If specified,. Is executed.
If statemenf?-2 contains a procedure branching or conditional
statement, control Is explicitly transferred In accordance with
the rules of that statement. If statement-2 does not contain a
procedure branching or conditional statement, control passes to
the nexT executable sentence. If the- ELSE statement—2 phrase Is
not specified, statement-! Is Ignored and control passes to the
next executable sentence..

d. If the condition Is false, and the ELSE NEXT SENTENCE phrase Is
specified, statement-! Is Ignored, If specified, and control
passes to the next executable sentence.

3 - 49

2. Statement-l and/or stataneiit-2 may coatain an IF statement,
case the IF statement is said to be nested.

In this

IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the Immediately preceding IF that has
not been already paired with an ELSE.

3-50

-iiz-k;.

THE INSPECT STATEMENT

Function

The INSPECT statement provides the ability to tally (Format I), replace
(Format 2), or tally and replace (Format 3) occurrences of single characters
in a data item.

General Format

Format I

INSPECT identifier-! TALLYING

, identifier--^los .j&aa-fayl
f CHARACTERS

Format 2

INSPECT identifier-I !IEPLACING

CHARACTERS

Format 3

ir
INSPECT. identifier-I TALLYING

tidentifier-sV |identifier-6V
\literal-3 / — \literal-4 f

[{S} {sssfr'O

l/identifier-3\/BEF0RE\ tmtttat /i<ientifier-4)LEADING Xiiteral-1 HAFTER j \literal-2)
CHARACTERSrr characters'

REPLACING

(identifier-6Vch&baciers [

V /Identlfier-S) „ /identifier-6>
'{llteral-3 ?^|uteral-4]

Tf BEFORE > TXTTmTAT i identifiers?
L-5

3 - 51

AFTER J't literalr'}]

Syntax Rules

All Fonoats

1.

2.

3.

4.

Identlfier-1 must reference either a group item or any category of
elementary item, described (either emplicitly or explicitly) as usage
is DISPLAY.

Identifier-3 ... identifier-n must reference either an elementary
alphabetic, alphanumeric or numeric item described (either implicitly
or explicitly) as usage is DISPLAY.

Each literal must be nonnumeric and may be any figurative constant,
except ALL.

In Level 1,. literal-l, literal-2, literal-3, literal-4, and literal-5,
and the data items referenced by identifier-3, identifier^,
identifier-'5, identifier-6, and identifier-7 must be one character in
length.

Formats 1 and 3 Only

5.. Identifier-2 must reference an elementary numeric data item.

6.. If either literal-1 or literal-2. is a figurative constant, the
figurative constant refers to an Implicit one character data item.

Formats 2 and 3 Only

7.

8.

9.

The size of the data referenced by literal-4 or identifier-6 must be
equal to the size of the data referenced by literal-3 or identifier-5..
When a figurative constant is used as literal-4,. the size of the
figtirative constant is equal to the size of literal—3 or the size of
the data item referenced by identifier-5.

When the CHARACTERS phrase is used, literal-4, literal-5, or the size
of the data item referenced by identifier-6, identifier-7 must be one
character in length.

When a figurative constant is used as literal-3, the data referenced by
literal-4 or identifier-6 must be one character in length.

General Rules

All Formats

Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for
tallying and/or replacing) begins at the leftmost character position of
the data item referenced by identifier-1,. regardless of its class, and
proceeds from left to right to the rightmost character position as
described in general rules 4 through 6.

For use in the INSPECT statement, the contents of the data item
refer-enced by identifier-1, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier—7 will be treated as follows;

3-52

a. If any of identifier-l, identifier-3, Identifier-4, Identifier-5,
identlfier-6 or identlfier-7 are described as alphanumeric, the
INSPECT statement treats the contents of each such Identifier as a
character-strIng..

b. If ai^ of identifler^l, Identifler-3, Identifler-4, Identifler-5,
Identifier-^ or Identifler-7 are described as alphanumeric edited,
numeric edited or unsigned numeric, the data Item Is Inspected as
though It had been redefined as alphanumeric (see general rule 2a)
and the INSPECT statement had been written to reference the
redefined, data. Item*.

cv If any of the Identifler-1, Identifler-3, Identifler-4,
Identifler-5, Identifler-6 or Identifler^7 are described as signed
numeric,, the data Item Is Inspected as though It had been moved to
an. unsigned numeric data Item of "the same length and then the
rules In general rule 2b had been applied. (See THE ^VE STATEMENT
later in this Chapter).

3.. In general rules 4 through 11 all references to llteral-1, llteral-2,
lltetal-3^ llteral-4, and. literal-5 apply equally to the contents of
the data Item referenced, by Identifler-3, Identifler-4, Identifler—5,.
Identifler-6„ and Identifier-7, respectively..

4. During Inspection of the contents of the data Item referenced by
Identifler-1, each properly matched occurrence of llteralr-l Is tallied
(Formats 1 and 3) and/or each properly matched occurrence of literal-3
Is replaced by literal-4 (Formats 2 and 3).

The comparison operation to determine the occurrences of literal—1 to
be tallied and/or occurrences of ltteral-3 to be replaced, occurs as
follows:.

a.. The operands of the TALLYING and REPLACING phrases are considered
In the order they are specified In the INSPECT statement from left-
to right. Ther first llteral-1,. llteral-3 la compared to an equal
number of contiguous characters, starting with the leftmost
character position In the data item, referenced, by Identifler-1.
Llteral-l.,. llteral-3 and that portion of the contents of the data
Item referenced by Identifler-1 match If,, and only If,, they are
equal,: character for character..

b.. If no match occurs In the comparison of the first llteral-1,
literal—3, the comparison Is repeated with each successive
literal-1, literal-3,. If any, until, either a match Is found or

.. there Is no next successive literal—1, literal—3. When there Is
no next successive literal—1,. literal—3, the- char—acter position
In the data Item; referenced, by ldentlfler-1 Immediately to the
right of the leftmost character position considered in the last
conparlson cycle Is considered as the leftmost character position,
and the comparison cycle begins again with the first literal—1,
llteraL-3.

c.^ Whenever, a match occurs,, tallying and/or replacing takes place as
described in general rules 8 through 10. The character position
In the data Item referenced by Identifier-1 Immediately to the
right of the rightmost character position that participated In the

3 -53

..

match is now considered to be the leftmost character position of
the data item referenced by identifier-I, and the comparison cycle
starts again with the first literal-1, literal—3.

d. The comparison operation continues until the rightmost character
position of the data item referenced by identifier-1 has
participated in a match or has been considered as the leftmost
character position. When this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an Implied one character
operand participates in the cycle described in paragraphs 5a
through 5d above, except that no comparison to the contents of the
data Item referenced by identifier-1 takes place. This implied
character is considered always to match the leftmost character of
the contents of the data item referenced by identifier-l
participating in the current conqparison cycle.

6. The compar:Lson operation defined in general rule 5 is affected by the
BEFORE and AFTER phrases as follows:

a.. If the BEFORE or AFTER phrase is not specified, literal-!,
literal—3 or the Implied operand of the CHARACTERS phrase
participates in the comparison operation as described in general
rule 5.-

b. If the BEFORE phrase is specified, the associated literal-1,
literal—3 or the implied operand of the CHARACTERS phrase
participates only in those comparison cycles which involve that
portion of the contents of the data item referenced by
identifier-1 from its leftmost character position up to,, but not
including, the first occurrence of literal-2, literal—5 within the
contents of the data item referenced by identifier-1. The
position of this first occurrence is determined before the first
cycle of the comparison opera-tion described in general rule 5 is
begun. If, on any comparison cycle,^ literal-1, literal-3 or the
iBipl5.ed operand of the CHARACTERS phrase is not eligible to
participate, it is considered not to match the contents of the
data item referenced by identifier-1. If there is no occurrence
of]J.teral—2 literal-5 within the contents of the data item
referenced by identifier-1, its associated literal-1, literal-3,
or the implied operand of the CHARACTERS phrase participates in
the comparison operation as though the BEFORE phrase had not been
specified*

c.. If the AFTER phrase is specified, the associated literal—1,
literal—3 or the implied operand of the CHARACTERS phrase may
participate only in those comparison cycles which Involve that
portion, of the contents of the data item referenced by
identifier-1 from the character position Immediately to the right
of the rightmost character position of the first occurrence of
literal—2, literal-5 within the contents of the data item
referenced by iden-tifier-1 and the rightmost character position
of the data item referenced by identifier-1. The position of this
first occurrence is determined before the first cycle of the
comparison operation described in general rule 5 is begun. If, on

- ai^ conq)arison cycle, literal—1, literal-3 or the implied operand
of the CHARACTERS phrase is not eligible to participate, it is

3-54

rr^r

•••i

(r^

Format 1

considered not to match the contents of the data item referenced
by ideatifier-1. If there is no occurrence of I±teral-2,
literal-5 within the contents of the data item referenced by
identifier-l. Its associated Ilteral-1, literal-3, or the implied
operand of the CHARACTERS phrase is never eligible to participate
in the comparison operation.

7. The contents of the data item referenced by identifier-2 is not
initialized by the execution, of the INSPECT statement.

8. The rules for tallying are. as follows:

a. If the ALL phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each
occurrence of literal~l matched within the contents of the data
Item referenced by identifier—1.

b.- If the LEADING phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each
contiguous occurrence of literal—1 matched within' the contents of
the data item refer-enced. by identifier-l, provided that the
leftmost such occurrence is at the point where comparison began in
the first comparison cycle in which literal—1 was eligible to
participate..

c.- If the CHARACTERS phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one for each
character matched,, in the sense of general rule 5e, within the
contents of the data item referenced by identifier-l.

Format 2

9.. The required words ALL,. LEADING,, and FIRST are adjectives.

10. The rules for replacement are as follows:

a..

b.

c..

dv

When the CHARACTERS phrase is specified, each character matched;
in the sense of general rule 5e, in the contents of the data item
referenced by identifier-l is replaced by literalr4.

When the adjective ALL is specified,, each occurrence of literal-3
matched in: the contents of the data item referenced by
identifier-l is replaced by literal-4..

When the adjuective LEADING is specified,, each contiguous
occurrence of literal-3 matched in the contents of the data item
ijefietenced- by iden'tifier—1 is replaced by literal—4, provided that
the leftmost occurrence is at the point where comparison began in
the first comparison cycle in which literal—3 was eligible to
participate.

When the adjective FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item referenced
by identifier-l is replaced by literal-4.

3 - 55

Format 3

11, A Format 3 IINSPECT statement Is interpreted and executed as though two
successive ASPECT statements specifying the same identifier-1 had been
written with one statement being a Format. 1 statement with TALLYING
phrases identical to those specified in the Format 3 statement, and the /
other, statement being a Format 2 statement with REPLACING phrases
identical to those specified in the Format 3 statement. The general
rules, given for matching and counting apply to the Format 1 statement
and the general rules given for matching and replacing apply to the
Format 2 st<itement.

mNPLES

Six. examples of the use of the INSPECT statement follow:

INSPECT word TAII.YING count FOR LEADING '*L" BEFOEIE INITIAL "A", count-1 FOR
LEADING "A" BEFORE INITIAL "L".

Where word » LARGE, count » 1, count-l 0.
Where word. » ANALYST, count • 0, count-1 =» 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E" AFTER
INITIAL "L.".

Where word » CALLAR, count <* 2, word * CALliAR.
Where word » SALAMI, count "1, word » SALEMI.
Where word • LATTER, count « 1,. word • LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word » ARXAX, word « GRXAX».
Where word » HANDAX, word » HGND^.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL
"A" BY "B" '

Where word » ADJECTIVE, count >"6,. word » BDJECTIVE.
Where word » JACK, count "3, word «• JBCK.
Where word » JUJMAB,. count =*5, word >* JUJMBB.

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL
"R".

Where word » RXXBQWY, word - RYYZQQY.
Where word » YZACDWBR, word =« YZACDWZR.
Where word =• RAWRXEB, word = RAQRYEZ.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 12 XZABCD

word after: BBBBBABCD

3-56

c

) ' '

'TAIEMENT

iVE statement transfers data, in accordance with the rules of
:o one or more data areas.

al Format
,/

^rmat 1

MOVE
(identifier-l\
(literal / —

Identifier—2 [• identlfier-3

Syntax Rules

1. Identifier-1 and literal represent the sending area; identifier-2,
identlfler-3, ...» represent the receiving area..

2. An index data item cannot appear as an operand of a MOVE statement.
(See THE USAGE CLAUSE in this Chapter).

General Rules

1. The data designated by the literal or identifier-l is moved first to
identifier-2, then to identifier-3, The rules referring to
identifier-2 also apply to the other receiving areas. Aiqr subscripting
or indexing associated with identifier—2, •••» is evaluated Immediately
before the data is moved to the respective data item.

Any subscripting or indexing associated with identifier-1 is evaluated
only once, immediately before data is moved to the first of the
receiving operands. Ihe result of the statement:

MOVE a (b) TO b, C (b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the
implementor.

3-57

2. Any MOVE in which the sending and receiving items are both elementary
items is an elementary move. Eveigr elementary item belongs to one of
the following categories: numeric, alphabetic, alphanumeric, numeric
edited, alphanumeric edited. These categories are described in the
PICTURE cliiuse. Numeric literals belong to the category numeric, and \
nonnumeric literals belongs to the category alphanumeric^- The ^
figurative constant ZERO belongs to the category numeric. The
figurative constant SPACE belongs to the category alphabetic. All
other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these
categories:

a. The f jlgurative constant SPACE, alphanumeric edited, or alphabetic
data item must not be moved to a numeric or numeric edited data
item.

b. A nuDHiric literal, the figurative constant ZERO, a numeric data
item or a numeric edited data item must not be moved to an
alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data item
must not be moved to an alphanumeric or alphanumeric edited data
item.

d. All other elementary moves are legal and are performed according
to the rules given in general rule 4^

3. Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary moves,
along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling takes place as
defined under STANDARD ALIGNMENT ROLES in this Chapter. If the
size of the sending item is greater than the size of the receiving
item, the excess characters are truncated on the right after the
receiving item is filled. If the sending item is described as
being signed numeric, the operational sign will not be moved; if
the operational sign occupies a separate character position (see
THE SIQJ CLAUSE in this Chapter), that character will not be moved
and the size of the sending item will be considered to be one less
than its actual size (in terms of standard data format
characters).

b. When a numeric or numeric edited item is the receiving item,
alignment by decimal point and ar^ necessary zero—filling takes
place as defined under the STANDARD ALIGNMENT RULES in Chapter 2,
except where zeroes are replaced because of editing requirements.

When a signed numeric item is the receiving item, the sign of the
sending item is placed in the receiving item. (See THE
SIQJ CLAUSE in this Chapter). Conversion of the representation of
the sign takes place as neces-sary. If the sending item is
unsigned, a positive sign is generated for the receiving item.

3-58

}

When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is
generated for the receiving item.

When a data item described as alphanumeric is the sending item»
data is moved as if the sending item were described as an unsigned
numeric integer.

c. When a receiving field is described as alphabetic, justification;
and any necessary space—filling takes place as defined under the
STANDAJO) ALIGNMENT RULES in Chapter 2. If the size of the sending,
item is greater than the size of the receiving item, the e^ccess
characters are truncated on the right after the receiving item is
fUled.

4. Any move that is not an elementary move is treated exactly as if it
were an alphanumeric to alphanumeric elementary move, except that there
is no conversion of data from one form of internal representation to
another. In such a move, the receiving area will be filled without
consideration for the individual elementary or group items contained
within either the sending or receiving area, except as noted in general
rule 4 of the OCCURS clause.

5. Data in Table 3-6 summarizes the legality of the various types of MOVE
Statements. The general rule reference indicates the rule that
prohibits the move or the behavior of a legal move.

Table 3-6. MOVE Statement Data Categories.

Category of Sending
Data Item

Category Of Receiving Data Item^

Alphabetic Alphanumeric
Edited

Alphanumeric

Numeric Integer
Numeric Non-Integer
Numeric Edited

ALPHABETIC Yes/3c Yes/3a No/2a

ALPHANUMERIC Yes/3c Yes/3a Yes/3b

ALPHANUMERIC EDITED Yes/3c Yes/3a No/2a

NUMERIC
INTEGER No/2b Tes/3a Yes/3b

NON-INTEGER No/2b No/2c Yes/3b

NUMERIC EDITED No/2b Yes/3a Ye8/2a

1 —The relevant rule number is quoted in these columns

3 - 59

THE MULTIPLY ST^iTEMENT

Function

The MULTIPLY statement causes numeric data Items to be multiplied and N
sets the values of data Items equal to the results. -

General Format

Format 1

MULTIPLY {xitcr^^l'̂ "^} ldentlfler-2 [ROUNDED]

ldentifier-3 [ROUNDED]j ... [; ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY /identlfler-lV /Wentlfler-2| qxvinG ldentlfler-3 [ROUNDED]
—— [literal-1 f — \llteral-2]

Identlfler-4 [ROUNDED] J . [; ON SIZE .ERROR Inperatlve-statement]

Syntax Rules

1. Each Identifier must refer to a numeric elementary ltem» except that In
Format 2 each Identifier following the word GIVING must refer to either
an elementary numeric Item or an elementary numeric edited Item.

2. Each literal must be a numeric literal.

General Rules

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, The Arithmetic'
Statements, and Overlapping Operands in this Chapter.

2. When Format I Is used, the value of ldentlfler-1 or Uteral-l Is
multiplied by the value of Identlfler-Z. The value of the multiplier
(Identlfler-2) Is replaced by this product; simllaxly for ldentlfler-1
or literal-1 and Identlfler-3, etc.

3. When Format 2 Is used, the value of ldentlfler-1 or llteral-I Is
multiplied by ldentlfler-2 or literal—2 and the result Is stored In
Identlfler-3, Identlfler-4, etc.

3-60

A".'.-V?

THE PERFORM STATEMENT

Function

The PERFORM statement is used to transfer control explicitly to one or
more procedures and to return control implicitly whenever execution of the .
specified procedure is complete.

General Format

Format 1

PERFORM procedure-name-1 j" procedure-naine?-2j

Format 2 •: ' . • '
t • • •

,r(THROUGH) , /identifier-!) «-nkfi?ePERFORM procedure-name-l||:^g 1procedure-name-2j i^teger-l j

Format 3

PERFORM procedure—name-lD procedure-name-2.J UNTIL condition—I

Syntax Rules

1. Each identifier represents a numeric elementary item described in the
Data Division. In Format 2, identlfier-1 must be described as a
numeric integer.

2. The words THRU and THROUGH are equivalent.

3. Where procedure—name—1 and procedure—name—2 are both specified and
either is the of a procedure in the declarative section of the
program then both must be procedure-names in the same declarative
section.

General Rules

1. When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name—1 (except as
indicated in general rules 4b, 4c, and 4d). This transfer of control
occurs only once for each execution of a PERFORM statement. For those
cases where a transfer of control to the named procedure does take
place, an implicit transfer of control to the next executable statement
following the PERFORM statement is established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of
procedure-name-1.

3-61

b» If procedure-name-1 Is a sectlon-naine and procediire-name-2 is not
specified, then the return is after the last statement of the last
paragraph in procedure-name—1,.

c. If procedure-name-2 is specified and it is a paragraph-name, then
the r€itum is after the last statement of the paragraplu ^

d. If procedure-name-2 is specified and it is a section-name, then
the return is after the last statement of the last paragraph in
the section.

2. There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations is to
be executed beginning at the procedure named procedure-name-l and
ending with the execution of the procedure named procedure-name-2.. In
particular., GO TO and PERFORM statements may occur between
procedure-aame-1 and the end of procedure-name-2. If there are two or
more logical paths to the return point, then procedure-name-2 may be
the Tiamp of a paragraph consisting of the EXIT statsnent, to which all
of these paths must lead.

3. If control passes to these procedures other than via a PERFORM
statement the procedures are executed right through to the next
executable statement in the main program as if they were just part of
the main program.

4. The PERFORM statements operate as follows with rule 5 above applying to
all formats:

a. Format I is the basic PERFORM statement. A procedure referenced
by this type of PERFORM statement is executed once and then
control passes to the next executable statement following the
PERFORM statement.

b. Format 2 is the PERFORM...TIMES. The procedures are performed the
number of times specified by integer-1 or by the initial value of
the clata item referenced by identifier-1 for that execution. If.,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identifier-1 is equal to zero or is
negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the
procedures the specified number of times, control is transferred
to the next executable statement following the PERFORM statement.

During execution of the PERFORM statement, references to identi
fier-! cannot alter the number of times the procedures are to be
executed from that which was indicated by the initial value of
identifier-1.

c. Forma.t 3 is the PERFORM.. .UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true, control is transferred to the

- next executable statement after the PERFORM statement. If the

condj.tion is true when the PERFORM statement is entered, no
transfer to procedure-name-1 takes place, and control is passed to
the next executable statement following the PERFORM statement.

3-62

o

(r^

5. If a sequence of statements referred to by a PERFORM statement includes
another PEEIFORM statement, the sequence of procedures associated with
the included PERFORM must itself either be totally included in, or
totally excluded from, the logical sequence referred to by the first
PERFORM. Thus, an active PERFORM statement, whose ^ecution point
begins within the range of another active PERFORM statement, must not
allow control to pass to the exit of the other active PERFORM
statement; furthermore, two or more such active PERFORM statements may
not have a common exit. See Figure 3-1.

d

f

j

m

a

f

m

j

PERFORM a THRU m

PERFORM f THRD j

PERFORM a THRU m

PERFORM a THRU m

d PERFORM f THRD j

h

B I

f

j

d PERFORM f THRD j

Fig. 3-1. PERFORM Statement in Sequence.

1

6. A PERFORM statement that appears in a section that is not an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range, only
one of the following:

a.

b.

Sections and/or paragraphs wholly contained in one or more
non-independent segments.

Sections and/or paragraphs wholly contained in a
independent segment.

3 - 63

single

I'-irfi iiw 'rSj-'-rr^

7. A PERFORM statement that appears in an independent segment can have
within its range, in addition to ax^ declarative sections whose
execution is caused within that range, only one of the following;:

a.

b.

Sections and/or paragraphs wholly contained in one or mote
non-independent segments.

Sections and/or paragraphs wholly contained
independent segment as that PERFORM statement.

3-64

in the same

'--D,

V

-.5-
THE STOP STATEMENT

Function

- - a-;-'"7.

The STOP statement causes a permanent or temporary suspension of the
(^ execution of the object program*

General Format

iSE {S„J

Syntax Rules - '

1. The literal may be numeric or non-numeric or may be any figurative
constant, except ALL.

2. If the literal is numeric, then it must be an unsigned integer*

3* If a STOP RON statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement in
that sequence*

General Rules

1* If the RUN phrase is used, then the operating system ending procedure
is instituted*

2* If STOP literal is specified, the literal is communicated to the
operator. Continuation of the object program begins with the execution
of the next executable statement in sequence*

3-65

•' " -.'li

THE SUBTRACT STATEMENT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric data Items from one or more Items, and set the values of one
or more Itens equal to the results.

General Format

Format 1

i Identlfler-1 , (Identlfler-2 \SOBTRACI |itteral-l {uteral-B f - •

Format 2

identifier-IB [ROUNDED] F, identifier-n [ROUNDED] J ...
[; ON SIZE ERROR lii?)eratlve-statement]

iMMSl{"ter"-r"'} - 252M identifier-B.

GIVING identifier-n [ROUNDED] F, identifier-o [ROUNDED]j
[; ON SIZE ERROR Imperative-statement]

Syntax Rules

1. Each Identifier must refer to a numeric elementary Item except that In
Format 2, each Identifier following the word GIVING must refer to
either an elementary numeric Item or an elementary numeric edited Item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. (See
The Arithmetic Statements In this Chapter).

a. In Format 1 the composite of operands Is determined by using all
of the operands In a given statement.

b. In Format 2 the composite of operands Is determined by using all
of the operands In a given statement excluding the data Items that
follow the word GIVING.

3-66

-M

GENERAL RULES

1, See The Rounded Phrase, The Size Error Phrase, The Arithmetic Statement
and Overlapping Operands in this Chapter,

2, In Format I, all literals or Identifiers preceding the word FRCM are
added together and this total Is subtracted from the current value of
Identlfler-m storing the result Immediately Into Identlfler-m, and
repeating this process respectively for each operand following the word
FROSi.

3. In Format 2, all literals or Identifiers preceding the word FROM are
added together, the sum Is subtracted from llteral-m or Identlfler-m
and the result of the subtraction Is stored as the new value of
Identlfler-n, Identlfler-n, etc.

4, The compiler ensures enough places are carried so as not to lose
significant digits during execution.

3-67

.• V-.-J;

CHAPTER 4

TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE

The Table Handling module provides a capability for defining tables of
contiguous data items and accessing an item relative to its position in the
table. Language facilities are provided for specifying how maiqr times an
item is to be repeated. Each item may be identified through use of a
subscript or an index (see Chapter 2).

Table Handling provides a capability for accessing items in variable
length tables of multiple dimensions. The maximum number of multiple
dimensions if the ANS switch is on (see Chapter 2) is restricted to three.

DATA DIVISION IN THE TABLE HANDLING MODULE

THE OCCURS CLAUSE

Function

The OCCURS clause eliminates the need for separate entries for repeated
data items and supplies information required for the application of
subscripts or indices.

General Format

OCCURS integer-2 TIMES

[INDEXED BY index-name-1 [, index-name-2]]

Syntax Rules

1. An INDEXID BY phrase is required if the subject of this entry, or an
entry subordinate to this entry, is to be referred to by indexing. The
index-name identified by this clause is not defined elsewhere since its
allocation and format are dependent on the hardware, and not being
data, cannot be associated with any data hierarchy.

2. The OCCURS clause cannot be specified in a data description entry that
has 01 or 77 level-number (If:JAN% diacea^^

3. Index-name-I, index-name-2, ... must be unique words within the
program.

4-1

v.-

General Hules

1. The OCCURS clause is used in defining tables and other homogenous sets
of repeated data items. Whenever the OCCURS clause is used, the
data-name which is the subject of this entry must be either subscripted
or indexed whenever it is referred to in a statement other than USE FOR
DEBUGGING. Further, if the subject of this entry is the name of a
group item, then all data-names belonging to the group must be
subscripted or indexed whenever they are used as operands, except as
the object of a REDEFINES clause. (See under headings Subscripting,
Indexing and Identifier in Chapter 2).

2. Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS clause
apply to each occurrence of the item described. (See restriction in
general rule 2 under Data Description Entries Other Than Condition
Names in Chapter 3).

3. The number of occurrences of the subject entry is defined as the value
of integer-2 representing the exact number of occurrences.

4-2

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the computer
storage.

General Format

[USAGE IS] INDEX

Syntax Rules

1. An index data item can be referenced explicitly only in a SET
statement, a relation condition^ the USING phrase, of a Procedure
Division header, or the USING phrase of a CALL statement. -

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items described with the
USAGE IS INDEX clause.

General Rules *

1. The USAGE clause can be written at any level. If the USAGE clause is
written at a group level, it applies to each elementary item in the
groups The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs.

2. A" elementary item described with the USAGE IS INDEX, clause is called
an index data item and contains a value which must correspond to an
occurrence number of a table element. The elementary item cannot be a
conditional variable. The compiler will allocate a 2 byte binary field.
If a. group item is described with the USAGE IS INDEX clause the
elementary items in the group are all index data items. The group
itself is not an index data item and cannot be used in the SET
statement or in a relation condition.

3. An ^T1f^Pv data item can be part of a group which is referred to in a
MOVE or input-output statement, in which case no conversion will take
place.

4-3

A •-

-•j'
I,:',-

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

RELATION CONDITION

Compaxlsons Involving Index—Names And/or Index Data Items

Relation tests may be made between the following data items:

* Two index-names. The result is the same as if the corresponding
occurrence numbers were compared.

An index-name and a data item (other than an index data itiem) or
literal. The occurrence number that corresponds to the value of
the i nd'^y-compared to the data item or literal.

An index data item and an index-name or another index data item.
The actual values are compared without conversion..

The result of the comparison of an index data item with any data
item or literal not specified above is undefined.

OVERLAPPING OPERANDS

When a sending and a receiving item in a SET statement share a part of
their storage areas» the result of the execution of such a statement is
undefined.

THE SET STATEMENT

Function

The SET statement establishes reference points for table handling
operations by setting index-names associated with table elements..

General Format

Format 1

SET
/ identifier-1
\ index-name-1

Format 2

[, identifier-2]
[, index-name-2]

SET index-name-4 [, index-name-5]

Syntax Rules

•••\ TO
.. .j

identifier-4

integer-2 }(UP ^ W
1 DOWN BY n

1, All references to index—name—1, identifier—1, and index—name—4 apply
equally to index-name-2, identifier-2, and index-name-5, respectively.

4-4

2. Identlfier-l and identifler-3 must name either index data items, or
elementary items described as an integer.

3. Identifier"4 must be described as an elementary numeric integer..

4, Integer-1 and integer-2 may be signed. Integer-1 must be positive.

General Rules

1. Index-names are considered related to a given table and are defined by
being specified in the INDEXED BY clause.

2. If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence number
of an element in the associated table. • —

If index-name-4, index-name-5 is specified, the value of the index both
before and after the execution of the SET statement must correspond to an
occurrence number of an element in the associated table. If index—name—1,
index-name-2 is specified, the value of the index after the execution of the
SET statement must correspond to an occurrence number of an element in the
associated table. The value of the index associated with an index-name
after the execution' of a PERFORM statement may be undefined. (See THE
PERFORM STATEMEIilT in Chapter 3) ,

3. In Format I, the following action occurs:

Index-name-1 is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table element
referenced by index-name-3, identifier-3, or integer-1.. If ^
identtfier-3 is an index data item, or if index-name-3 is related
to the same table as index-name 1, no conversion takes place.

b. If identifier-1 is an index data item, it may be set equal to
either the contents of index-name-3 or identifier—3 where
identifier-3 is also an index item; no conversion takes place in
either case.

c. If identifier—1 is not an index data item, it may be set only to
an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor integer-1 can be used in
this case.

d. The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time the value of index-name-3 or identifier-3 is
used as it was at the beginning of the execution of the statement.
Aiqr subscripting or indexing associated with identifier-I, etc.,
is evaluated immediately before the value of the respective data
item is changed.

4. In Format 2, the contents of index-name-4 are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of integer-2 or identifier-4;
thereafter, the process is repeated for index—name—5, etc. Each time
the value of identifier—4 is used as it was at the beginning of the
execution of the statement.

4-5

5. Data in Table 4-1 represents the validity of various operand
combinations in the SET statement. The general rule reference
indicates the applicable general rule.

Table 4-1. SET Statement Valued Operand Combinations,

Sending Item Receiving Item^
Integer Data Item Index-Name Index Data Item

Integer Literal No/3c Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/3c Valid/3a VaUd/3b^

Index Data Item No/3c Valid/3a^ Valld/3b^

1 • Rule numbers under General Rules above are referred to.
2 "No conversion takes place

4-6

tttt:

CHAPTER 5

SEQUENTIAL INPUT AND OUTPUT

INTRODUCTION TO THE SEQUENTIAL I-O MODULE

The SequenHial I-O module provides a capability to access records of a
file in established sequence. The sequence is established as a result of
writing the records to the file. It also provides for the specification of
re—run points and the sharing of memory areas among files.

LANGUAGE CONCEPTS

Organizarion

Sequential files are organized such that each record in the file except
the first has•a unique predecessor record, and each record except the last
has a unique successor record. These predecessor-successor relationships
are established by the order of WRITE statements when the file, is created.
Once establishetd, the predecessor-successor relationships do not change
except in the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally written.

Current Record Pointer

The current record pointer is a conceptual entity used in this document
to facilitate specification of the next record to be accessed within a given
file. The concept of the current record point has no meaning for a file
opened in the output mode. The setting of the current record pointer is
affected only by the OPEN and READ statements.

1-0 Status

If the FILE STATUS clause is specified in a file control entry, a value
is placed into the specified two-character data item during the execution of
an OPEN, CLOSE, READ, WRITE, or REWRITE statement and before any applicable
USE procedure is executed, to indicate to the COBOL program the status of
that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is known
as Status Key 1 and is set to indicate one of the following conditions upon
completion of the input-output operation.

'0* - indicates Successful Completion
1 - indicates At End
'3' - indicates Permanent Error
'9* - indicates an Operating System Error Message

5-1

The meaning of the above indications are as follows:

0 - Successful Completion. The input-output statement was
successfully executied.

1 - At End. The sequential READ statement was unsuccessfully
executed either as a result of an attempt to read a record
when no next logical record exists in the file

3 - > Permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary violation
for a sequential file or as the result of an input-output
error, such as data check parity error, or transmission
error.

9 - Operating System Error Message. The input-output statement
was unsuccessfully executed as a result of a condition that
is specified by the Operating System Error Message. This
value is used only to indicate a condition not indicated by
other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known
as Status Key 2 and is used to further describe the results of the
input-output operation. This character will contain a value as follow:

* If no further information is available concerning the input-output
operation, then status key 2 contains a value of *0'.

* When status key 1 contains a value of *3* an irrecoverable error
has occurred. This is treated as a fatal error by the Operating
System.

* When status key 1 contains a value of '9', the value of status key
2 is the Operating System Error Message number.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and
status key 2 are shown in the following table. An at an intersection
indicates a valid permissible combination.

Status Key 2
No Further

Status Key 1 Information

(0)

Successful Completion (0) X

At End (1) X

Permanent Error (3) X

Impleraentor Defined (9) 0/S Error Number

5-2

•'.ri*• • •% ~ V;"

The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see THE READ
STATEMENT later in this Chapter.

5-3

o

o

••r

fT litt ittl fIVi Ti iVVri^ iftf"f l3*iWaiiifcaaf^Wftatil3ri^ ^ ;'-gWz..

ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information. (See also Appendix I in this manual).

General Format

FILE-CONTROL. f ile-control-entry

The FILE CONTROL Entry

Function

The file control entry names a file and may specify other file-related
information.

General Format

SELECT file-name

ASSIGN TO n (extemal-file-name-literal
(f ile-identifier .)L t ^ile-identifier

I"; ORGANIZATION IS {l^^SnTXAl}]
[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. Each file specified
in the file control entry must have a file description entry in the
Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

4. Data-name-1 must be defined in the Data Division as a two-character

data item of the category alphanumeric and must not be defined in the
File Section.

5. Data-name-1 may be qualified.

5-4

6. When the ORGANIZATION IS SEQUENTIAL clause is not specified, the
ORGANIZATION IS SEQUENTIAL clause is implied.

General Rules

1. The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium. See Appendix F in the CIS COBOL Operating
Guide. The f irst asaigQmeBt takas e£fec;t. Subsequent assignaents,
within ai^ one ASSIGN claxsse are for documentation pui^oses only*

2. The ORGANIZATION clause specifies the logical structure of a file. The
file organization is established at the time a file is created and
cannot subsequently be changed.

When LINE SEQ.U1NTIAL ORl^IZATION is specifled, the f lie is treated as j
consisting of variable length records* CR LF characters separate ti^ ^
records. Tliese control charaeteas aaje exchanged by the Run Time Systffla:
for padding with spaces on record ii^ut. Conversely, trailing spaces^;
•f n records are replaced by CR LF on record output*: '
(See Appendix B for CR, LF) -: .

4. Records in the file are accessed in the sequence dictated by the file
organization. This sequence is specified by predecessor-successor
record relationships established by the execution of WRITE statements
when the file is created or extended.

5. When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-1 after the
execution of every statement that references that file either
explicitly or implicitly. This value indicates the status of execution
of the statement (See I-O STATUS in this Chapter).

5-5

ti7;^ •

The I-O-CONTROL Paragraph

Fuaction

The I-O CONTROL paragraph specifies the points at which re-run is to be
established, the memory area which is to be shared by different files, an
the location of files on a multiple file reel*

General Format

I-O-CONTROL.

RERUN l^ON {file-name-1
implementor-name0EVERY

REEL\)
UNIT f

RECORDS

integer-2 CLOCK-UNITS
condition-name

{[end of] I
integer-1

SAME AREA FOR file-name-3 j, file-name-41 ...]

OF f ile-name-Zi.

Syntax Rules

1. The I-O-CONTROL paragraph is optional. The whole clause is , for*
documentation only when presents

2, File—name—1 must be a sequentially organized file.

3 The END OF REEL/UNIT clause may only be used If file-name-E is a
sequentially organized file and is for documentation purposes only.

4. When either the integer-1 RECORDS clause or the integer-2 (XOCK-DNIK
clause is specified, Implementor-name must be given in the RERUN
clause.

5. More than one RERUN clause may be specified for a given file-name-2.

6. The files referenced in the SAME AREA clause need not all have the same
organization or access.

General Rules

1, The RERUN clause is treated as for documentation pui^oses only.

2. The SAME AREA clause is treated as for documentation purposes onlym

5-6

DATA DIVISION IN THE SEQUENTIAL I-O MODULE

FILE SECTION

In a CIS COBOL program the file description entry (FD) represents the
highest level of: organisation in the File Section. The File Section header
is followed by a file description entry consisting of a level indicator
(FD), a file-name and a series of independent clauses. The FD clauses
specify the sixe of the logical and physical records, the presence or
absence of label records, the value of implementor-defined label items, the
names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries
which describe the characteristics of a particular record. Each data
description entiry consists of a level-number followed by a data-name if
required, followed by a series of independent clauses as required. A record
description has a hierarchical structure and therefore the clauses used with
an entry may var^ considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record description is defined in
CONCEPT OF LEVELS in Chapter 2, while the elements allowed in a record
description are shown in the Data Description - Complete Entry Skeleton in
Chapter 3. '

5-7

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON —- -

Function

The file description furnishes information concerning the physical
A ; structure, identification, and record names pertaining to a given file.

General Format

FD file-name[(RECORDS)1; BLOCK CONTAINS integer-2 | CHARACTERS/J

[; RECORD CONTAINS integer-3 TO integer-4 CHARACTERS]

(RECORD IS \ (STANDARD]; records are / 1 OMITTED (

VALUE OF data-name-1 IS literal-1

[, data-name-2 IS literal-2] •••]
r > „ / RECORD IS) 11^; DALA ^ records are/ data-name-3 [, data-name-4] ...J

; CODE-SET IS alphabet-name

Syntax Rules

1. The level indicator FD identifies the beginning of a file description
and must precede the file-name.

2. The clauses which follow the name of the file are optional in many
cases, and their order of appearance is Immaterial. All clauses are
optional when the ANS switch is unset (See Chapter 2).

3. One or more record description entries must follow the file description
entry.

5-8

THE BLOCK CONTAIWS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record,

General Format

{RECORDS 1
CHARACTERS)

General Rule

•EhdiS eianisa is requised ^for documeixtaitioii pua^oees oolyj,*

THE CODE-SET CLAUSE

Function

The CODE-SET clause specifies the character code set used to represent
data on the external media.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1, When the CODE-SET clause is specified for a file, all data in that file
must be described as usage is DISPLAY and any signed numeric data must
be described with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

3. The CODE-SET clause may only be specified for non-disk files.

General Rule

The CODE—SIET clause is specified for doctuaentation purposes tmrly^

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of
data records with their associated file.

General Format

DATA ' "
RECORDS ARE

I data-name-1 [, data-name-2] ...

5-9

Syntax Rule

Data-name-1 and data-name-2 are the names of data records and must have

01 level-number record descriptions, with the same names, associated
with them.

General Rule

The DATA RECORDS clause is specified for documentation purposes only.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format .

^M^_IS__j|STANDAIU)l
RECORDS AREj \ OMITTED /

Syntax Rule

This clause is required in every file description entry, ^ea;
swirch is aelu

General Rule

l^is clause is used for documeatatrion purposes only.

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS integer-1 ^ integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record
description entry, therefore this clause is never required. The RECOEH)
CONTAINS clause is specified for documentation purposes only.

5-10

'•-5

THE VALUE OF CLAUSE

Function

The VALUE OF clause specialises the description of an item in the label
records associated with a file.

General Format

VALUE OF data-name-1 IS literal-1

[, dataname2 IS literal-2] •••

General Rules

1. This clause is used for doGisoenl^tibn pus^eses oa3^*

2. A figurative constant may be substituted in the format above wherever a
literal is specified.

5-11

PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE

THE CLOSE STATEMEaJT

Function

The CLOSE stateioent terminates the processing of fUes.

General Format

CLOSE f ile-name-1

Syntax Rule

The REEL or UNIT phrase must only be used for sequential file,
feswr

General Rules-
•.

1. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if the file is in the open mode when a STOP RUN
statement is executed is to close the file. The action taken for a file
that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is to
leave the file open.

3. If a CLOSE statement has been executed for a file, no other statement
can be executed that references that file, either explicitly or
implicitly, unless an intervening OPEN statement for that file is
executed.

4. Following the successful execution of a CLOSE s^at^ent the record area
associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the
record area undefined.

5-12

THE OPEN STATEIIENT

Function

The OPEN statement initiates the processing of files. It also performs
checking and/or writing of labels and other input-output operations. -

General Format

OPEN

INPUT file-name-1

OUTPUT file-name-3

I-O file-name-5

EXTEND file-name-7

file-name-2] ..D

[, file-name-A] ...

[, f ile-name-6] ...

^[, f ile-name-8] ^

K. • •

Syntax Rules

1. The 1-0 phrase can be used only for disk files.

2. The EXTEND phrase can be used only for sequential files.

General Rules

1. The successful execution of an OPEN statement determines the avail
ability of the file and results in the file being in an open mode,

2. The successful execution of an OPEN statement makes the associated
record area available to the program.

3. Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, either
explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution
of any of the permissible input—output statement. In Table 5—1» *X* at
an intersection indicates that the specified statement, used in the
sequential access mode, may be used wxth the sequential file
organization and open mode given at the top of the column.

5-13

f''^.

Taile 5-1. Petmissable Combinatioms of Statements and OPEN Modes for
Sequential I/O. . ~

Statement Open Mode ;

Input Output Input—Output^ Extend

read X X

WRITE X X

REWRITE X

1 - This OPEN mode is not supported for ORGANIZATION line sequential files.

5.

6.

7.

8.

9.

10.

11.

12.

A file may be opened with the INPUT, OUTPUT, EXTEND and I-O phrases in
the same program. Following the initial execution of an OPEN statement
for a file, each subsequent OPEN statement execution for that same file
must be preceded by the execution of a CLOSE statement, for that file*

Execution of the 0PM statement does not obtain or release the first
data record.

The ASSIGNed name in the SELECT statement for a file is processed as
follows:

b.

When the INPUT phrase is specified, the execution of the OPEN
statement causes the ASSIGNed name to be checked in accordance
with the operating system conventions for opening files for input.

When the OUTPUT" phrase is specified, the execution of the 0PM
statement causes the ASSIGNed name to be written in accordance
with the operating system conventions for opening files for
output.

The file description entry for file-name-1, file-name-5, must be
equivalent to that used when this file was created.

If the storage medium for the file permits rewinding, execution of the
0PM statement causes the file to be positioned at its beginning*

For files being opened with the INPUT or 1-0 phrase, the 0PM statement
sets the current record pointer to the first record currently existing
within the file. If no records exist in the file, the current record
pointer is set. such that the next executed READ statement for the file
will result in an AT END condition. If the file does not exist, 0PM
INPUT will cause an error status.

When the EXTMD phrase is specified, the 0PM statement positions the
file immediately following the last logical record of that file.
Subsequent WRITE statements referencing the file will add records to
the file as though the file had been opened with the OUTPUT phrase.

The 1-0 phrase permits the opening of a disk file for both input and
output operations except for files in ORGANIZATION LINE SEQUENTIAL.
Since this phrase implies the existence of the file, it cannot be used
if the mass storage file is being Initially created. If the file does
not exist it will be created.

5-14

iv..

13. Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file
contains no data records. If a file of the same name exists it will be
deleted. If write-protected on error will occur.

5-15

c

THE READ STATEMENT

Function

The READ statement makes available the next logical record from a file.

General Fonnat

RMP file-name RECORD [INTO identifier] [; AT Ea«) imperative-statement]

Syntax Ryiles

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions.
The storage area associated with identifier and the record area
associated with file-name must not be the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure is
specified for file-name.

*.

General Rules

1. The associated file must be open in the INPUT or I-O mode at the time
this statement is executed. (See THE OPEN STATEMENT in this Chapter).

2. The record to be made available by the READ statement is determined as
follows:

a. If the current record pointer was positioned by the execution of
the OPEN statement, the record pointed to by the current record
pointer is made available.

b. If the current record pointer was positioned by the execution of a
previous statement, the current record pointer is updated to
point to the next existing record in the file and then that record
is made available*

3. The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0
STATUS in this Chapter).

4. Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record
is available to the object program prior to the execution of any
statement following the READ statement.

5. When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current
data record axe undefined at the completion of the execution of the
READ statement.

5-16

^.-^'-•»v,^V.'h...r-.^--«.*«21>'^i.^'g^iaj^,iirfx->sifr-*tiy^

6. If the IOT.0 phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the
rules specified for the MOVE statement.. The implied MOVE does not
occur if the execution of the READ statement was unsuccessful. Any
subscripting or indexing associated with identifier is evaluated after
the record has been read and immediately before it is moved to the data
item.

7, When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with
identifier..

8.. If, at the time of execution of a READ statement, the position of
current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful..

9. If the end of a reel or unit is recognized during the execution of a
READ statement, an end-of-file status condition exists..

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

11. If, at the time of the execution of a READ statement, no next logical
record exiLsts in the file, the AT END condition occurs, and the .
execution of the READ statement is considered unsuccessful. (See I-O
STATUS).

12. When the AT END condition is recognized the following actions are taken
in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an AT END condition. (See 1-0 STATUS).

b. If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END
imperative—statement. Any USE procedure specified for this file
is not executed.

c. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file and
that procedure is executed.

When the AT END condition occurs, execution of the input-output
statement, which caused the condition is unsuccessful.

13. Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the current
record pointer are undefined.

14. When the AT END condition has been recognized, a READ statement for
that file must not be executed without first executing a successful
CLOSE statement followed by the execution of a successful OPEN
statement for that file.

5-17

THE REWRITE STATEsIBNT

Eumctip®

The REWRITE statement logically replaces a record existing in a disk

General Eormat

REtraCCTE record-nfflne [.EROM identifier]

Syntax Rules

1, Record-name and identifier must not refer to the same storage area.

2, Record—name is the name of a logical record in the File Section of the
Data Division and may be qualified.

General Rules

1.. The file associated with record—name must be a disk file and must be
open in the I-O mode at the time of execution of this statement. (See
THE OPEN STATEMENT in this Chapter).

2. The last input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a successfully
executed READ statement. The operating system logically replaces the
record that was assessed by the READ statement.

3. The number of character positions in the record referenced by
record—name must be equal to the number of character positions in the
record being replaced.

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area.

5. The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution oft

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the execution of the
REWRITE statement.

6. The current record pointer is not affected by the execution of a
REWRITE statement.

7. The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
1-0 STATUS in this Chapter).

8. The REWRITE statement cannot be used with line sequential files

5-18

USE STA.T0MI:

FutiG^ipn

, • T I •. -yr . •. i*c'—. -.r.-L ^ • - r. 5/^ ""w . .

The USE stateraent specifies proced\ires for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

General Format

file-name-1)
INPUT

gSE AFTER STMOABDi ^bob"""" } PROCEDDRE OMjonTPOT
\ ' / I T«Hi^

^TMB

Syntax Rules

1, A USE statement, when present, must immediately follow a section header
in the declaratives section and must be followed by a period followed ^
by a space.. The remainder of the section must consist of zero, one or
more procedural paragraphs that define the procedure to be used.

2. The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

General Rules

1. If the AT END phase has not been specified in the input-output O
statement, the designated procedures are executed by the input-output
system after completing the standard input-output error routine upon
recognition of the AT END condition

2. After execution of a USE procedure, control is returned to the invoking
routine.

3. Within a USE procedure, there must not be any reference to any non-
declarative procedures. Conversely, in the nondeclarative portion
there must be no reference to procedure-names that appear in the
declarative portion, except that PERFORM statements may refer to a USE
stateraent or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any state
ment that would cause the execution of a USE procedure that had
previously been invoked and had not yet returned control to the
invoking routine.

5-19

THE WRITE STATEMiaiT

Function

Tlie WRITE statement releases a log-teal reeord for an output file. Xtcan also be used for vertical positioning of jlines within alogical page.
General Format

WRITE record-name Identifler-1]

advancing
] AFTER 7

1},
integ-er L\L3^S|J j

SyntMc Rules

1. Record-name and identifier-1 must not reference the same storage area.

2..

3.

4.

The record—name is the name of a logical record in the File Section of
the Data Division.

Integer may be zero.

General Rules

1. The associated file must be open in the OUTPUT mode at the time of the
execution of this statement. (See THE OPEN STATEMENT in this Chapter}.

2. The logical record released by the execution of the WRITE statement is
no longer available in the record area unlessthe execution of the WRITE
statement was unsuccessful due to a boundary violation.

3. The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a. The statement:

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement, followed
by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

5-20

AfEt'Sr eissGutioia o£ ttie WRIIOE stiGf&eiBffifict iis eoapljsl^, the
irat^oEinatioa in t-he area refereneeii by idenrtifier-l is available,
even though the iiif-onBa-tloti in the area referenced by reGord-Tname
may^ not be. (See general rule 2.)

4. The current record pointer is unaffected by the execution of a WR.I3!E
statement.

5. The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
I-O STATUS in this Ghapter).

6. The mMimum record size for a file is established at the time the file
is created and must not subsequently be changed^

7. The number of character positions on a disk required to store a logical
record in a file may or may not be equal to the number of character
positions defined by the logical description of that record in the
program.

8. The execution of the WRITE statement releases a logical record to the
operating systenu

9. The ADVMCXN6 phrase allows control of the vertical positioning of each
line on a representation of a printed page.

If the ADVANCING phrase is used,
advancing is provided as follows;

a. If integer is specified, the representation of the printed page is
advanced the number of lines equal to the value of integer.

b. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rule a
above.

c. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to rule
above.

d. If PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used) the device is
repositioned to the next logical page.

10. When an attempt is made to write beyond the externally defined bound
aries of a sequential file, an exception condition exists and the
contents of the record area are unaffected. The following action takes
place:

a. The value of the FILE STATUS data item, if any, of the associated
file is set to a value indicating a boundary violation. (See 1-0
STATUS in this Chapter).

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file, that declarative procedure will
then be executed.

5-21

If a USE AFTER STANDARD EXCEPTION declarative is not eacplicitly or
implicitly specified for the file, the result is undefined.

5-22

GM^m:6

BsEMiT^;^ MBM: A®51) <D0g^Pil^

IN:lRQBf]GTa;:a)?g IQ 'I^- RinkATW^ I^.

The Relative I-O module provid'eis a Gapabilil^ to aGeess resGOtriis of a mss
storage file in either a ran^m or sequetitiai maimeT^ Baeh reeord tn a
relative file isi uniquely identified by. an integer value greater than zero
which specifies the record's ordinal position in the file.

LM6UA&E CONCEPTS

Relative file organization is permitted only on disk devices, A relative
file consists of records which are identified by relative^ record nua&ers..
The file may b€5 thought of as composed of a serial string of areas, each
capable of holding a logical record. Each of these areas is denominated by
a relative record number. Records are stored and retrieved based on this
nuo^er. For exampleT^ the tenth record area^ whether or not records have
been written in the first through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are accessed is
the ascending order of the relative record numbers of all records which
currently exist within the file.

In the random access mode, the. sequence in which records are accessed Is
controlled by the programmer. The desired record is accessed by placing its
relative record numbe,r in a relative key data item.

In the dynamic access mode, the programmer may change at will from
sequential access -to random access using appropriate forms of input—output
statements.

Current Record Pointer

The current record printer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given
file. The concept of the current record pointer has no meaning for a file
opened in the output mode. The setting of the current record pointer is

ffected only by the OPEN, START and READ statements.

Status

^LE STATUS clause is specified in a file control entry, a value is
the specified two-character data item during the execution of an

\ READ, WRITE, REWRITE, DELETE or START statement and before any
procedure is executed, to indicate to the COBOL program the
input-output operation.

6 - 1

Status Key I

' The leftmost chajsactar position of the FILE STATUS data item is known as
Sitatus key 1 and is set to indicate one of the following conditions upon
completion of the input-output operation.

c

w

*"0' - indicates Successful Completion
*1 * - indicates At End
*2' - indicates Invalid Key
'3* — indicates Permanent Error
9 - indleates an Operating System Error Message

The meaning of the above indications are as follows:

^ Successful Completion. The input-output statement was
* successfully ^ecuted.

'1* - At End. The Format 1 READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

*2' - Invalid Key. The input-output statement was unsuccessfully
executed as a result of one of the following:

*• Duplicate Key
* No Record Found

Boundary Violation

'3* —Permanent Error. The input-output statement was unsuccessfully
executed as the reult of an input-output error, such as data
cheeky parity error or transmission error.

'9* - Operating System Error Message. The input-output statement was
unsuccessfully executed as the result of a condition that is
specified by the Operating System. This value is used only to
indicate a condition not indicated by other defined values of
status key 1, or by specified combinations of the values of status
key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known
as status key 2 and is used to further describe the reults of the
input-output operation. This"character contains a value as follows:

If no further information is available concerning the input-output
operation, then status key 2 contains a value of '0*

6-2

•y.

status key 1 eoatasta® a v^ue of '2* indiGating aui IWA^ID
KM cotidit±0m>. s-tatus key 2 is used to designate the cause of that,
eondition by the following values:

Ihdiealres a duf»llea1re key value.. An attewpt has been
made to- write a record that would create, a duplicate key
in a relative f ile..

Indieates. no reeord found. An attenrpt has been made to
access a record, identified by a key, and that record
does not e:^st in the file*.

Indicates a boundary violation. An attempt has been
made to write beyond the externally-defined boundaries
of a. relative file. This is normally treated as a fatal
error by the Operation System.

V^en status key 1 contains a value of '9' the value of status key
2 is the Operating System Error Message nundaer.-

Valid. GoHflainations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and
status key2 are shown in the table. An at an intersection indicates a
valid per^ssible combination.

Status Key 1 Status Key 2

No Further

Information

(0)

Duplicate
Key

(2)

No Record

Found

(3)

Boundary
Violation

(4-)

Successful

Completion. (0) X X X X

At End (I) X

Invalid Key (2) X X X

Permanent

Error (3) X

Implementor
Defined (9) Operating System Error Message Number

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START,
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the
condition, see The START Statement, The READ Statement, The WRITE Statement,
The REWRITE Statement, and The DELETE Statement later in this chapter.

6-3

o

Wfeen the. INVM^ID KEY condition is recogiiised, the Operating System takes
these actions in the following order:

1. A value is placed into the FILE STATUS data, item, if specified for this
file, to indicate an INVALID KEY condition. (See I-O Status in this
Chapter).

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or Implicitly, for this file, that
procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output
statement which recognised the condition is unsuccessful, and the file is
not affected.

The AT END Condition

The AT MD condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see The READ
Statement later in this chapter.

6-4

piyjSIQM IN RSLATI^^. L-O MDIULE

INPIJT-QIJTPUT SECTION

Tfee glle^CoiitrQl Pax^mp^h

Fua^tlon

The FLLEriCOMTROL paragraph names each file and allows specification of
other flier-related Information. (See also Appendix F In the CIS COBOL
OperatIng Guide).

General Format

glLB-CONTRiOL (file-Kiontrol-entry) ...

The File Gantrol Entry

Funetioa

The file control entry names a file and may specify other file—related
Information*

General Format

SELECT f ile-name

ASSIGN TO (extemal-flle-name-llteral)
IfUe-ldentlfler ^[I external-flie-name—literal jl

• «flle-ldentlfler U

ORGANIZATION IS RELATIVE

SEQUENTIAL ,RELATIVE KEY IS data-name

; AC^.;^ MODE IS j | J- .RELATIVE KEY IS data-name-1

[; FHi-ff STATUS IS data-name-2].

Syntax Rules

1. The SELECT clause must be specified first In the file control entry.
The clauses which follow the SELECT clause may appear In any order.

2:» Each file described In the Data Division must be named once and only
once as file-name In the FILEr-CONTROL paragraph. Each file specified
In the file control entry must have a file description entry in the
Data Division.

3. If the ACCESS MODE clause Is not specified, the ACCESS MODE IS
SEQUENTIAL clause Is Implied..

4. Data-name—2 must be defined In the Data Division as a two-character ^
data Item of the category alphanumeric and must not be defined In the
File Section, the Report Section, or the Communication Section.

6-5

5.

6.

Da-tafrnasi®"! must not be dieflued in a. record description, entry
associated with that file-naae,.

The data item referenced by data^^-name-l must be defined as an unsigned
integer.

General Rules

1.

4.

5.

6.

7.

8.

The ASSIGN clause specifies the association of the file referenced by
file—name to a storage medium. See Appendix F in the CIS COBOL
Operating Guide.

The 0R6ANIZATIGN clause specifies^c.the logical structure of a file. The
file organisation is establishedr^at the time a file is created and
cannot subsequently be changed..

When the access mode is sequential, records in the file are accessed in
the sequence dictated by the file organisation. This sequence is the
order of ascending relative record numbers of existing records in the
file.

When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data—name—2 after the
execution of every statement that references that file either
explicitly or implicitly. This value indicates the status of execution
of the statement. (See I-O Status in this Chapter).

If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

When the access made is dynamic, records in the file may be assessed
sequentially and/or randomly. (See .General Rules 3 and 5).

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given record
specifies the record's logical ordinal position in the file. The first
logical record has a relative record number of I, and subsequent
logical records have relative record numbers of 2, 3, 4,

The data item specified by data-name—1 is used to communicate a
relative record number between the user and the Operating System.

6 - 6

It*

The I-O-GONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and. the memory area which is to be shared by different files.

General Format

r-O-CONTROL.

RERUN ON | file-name-l

implementor-name

integer—1 RECORDS OF file—name—2
EVERY {integer-2 CLOCK-UNITS I]

1.

2..

3.

4»

5...

(condition-name

CrSAME AREA FOR file-name-3 |, file-name-4 } ...]

Syntax Rules

The I-O-CONTROL paragraph is optional. The whole clause is for
documentation purposes only when present

File-name—1 must be a sequentially organized file.

When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified,, implementor-name must be given in the RERUN
clause.. '

More than one RERUN clause may be specified for a given file-name-2,
subject to the following restriction:

When multiple integer-1 !IEC0RDS clauses are specified, no two of
them may specify the same file—name—2.

Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

6.. More than one SAME clause may be included in a program but file-name
must not appear in more than one SAME AREA clause.

7. The files referenced in the SAME AREA clause need not all have the same
organization or access.

General Rules

1. ThA» PtTSBTnTi as .feir docvonei^at^ozi pu^oses: only-

2.. Tfier ia^e^ed' asi^ dociaBentatioiL purposes^ onl^..

6-7

liiiliiiiaiiiai

n\
J

n

DATA DIVISION IN THE RELATIVE I-O MODULE

FILE SECTION

In a CIS COBOL program the file description entry (FD) represents the
highest level or organization in the File Section. The File Section header
is followed by a file description entry consisting of a level indicator
(FD), a file^name and a series of independent clauses. The FD clauses
specify the size of the logical and physical records, the presence or
absence of label records, the value of implementor-defined label items, and
the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description
entry consists of a level-number followed, by a data-name if required,
followed by a series of independent clauses as required. A record
description has a hierarchical structure and therefor the clauses used with
an entry may vary considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record description is defined in
CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a record
description are shown in the DATA DESCRIPTION-COMPLETE ENTRY SKELETON in
Chapter 3.

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

Function

The file description furnishes information concerning the physical
structure, identification, and record names pertaining to a given file.

General Format

FD file-name

; BLOCK CONTAINS integer-2 (RECORDS \\
VCHARACTERSfj

[; RECORD CONTAINS integer-3 TO integer-4 CHARACTERS]

t

LABEL (RECORD IS \ (STANDARD)
IYRECORDS AREr \ OMITTED /

[;. VALUE OF implementor-name-l IS literal-1
^ Timplementor-name-2 IS literal-2] ...

[; DATA {RECORD IS) data-name—3 [, data-name-4]
1 RECORDS ARE f

6-8

Syntax Rules

1. The level indicator FD identifies the beginning of a file descripton
and must precede the file-name.

2, The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

,wh(»v the uasc^.^

3. One or more record description entries must follow the file description
entry.

THE BLOCK CONTAIlfS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS integer-2 (RECORDS \
\ CHARACTERS)

General Rules

1.. required: foir daeumentatidm. purpose# o^^f^

THE DATA RECORDS CLAUSE

Function

The DATA ElECORDS clause serves only as documentation for the names of
data, records with their associated file.

General Format

DATA (RECORD IS) data-name-I [, data-name-2]
RECORDS ARE j{

Syntax Rule

Data-name-1 and data-name-2 are the names of data records and must have
01 level-number record descriptions, with the same names, associated
with them.

General Rule

The DMA RECORDS clause is specifi,^ for documentatioe purposes onl^l

6-9

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL (RECORD IS WSTANDARD)
) RECORDS ARE))OMITTED /

Syntax Rule

This clause is required in every file description entry,

General Rule

used: forr.

THE RECORD CONTAINS CLAUSE

Function

purposes:

The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS integer-1 m integer-2 CHARACTERS

General Rule

The- size of each data record is completely defined within the record
description entry, therefore this clause is never required.

Th:<& REQOBD CONTAINS clausei is specified: for documentation purposes

6 - 10

7 sc?-.'.

a

THE VALUE OF CLAUSE

Punction-

The VAT.TTn: of clause specialises the description of an item in the label
records associated, with a file.

General Format

VALUE OF data-name-l IS literal-1

[,data-name—1 IS literal-2]

Syntax Rules

1. Data-name-l, data-name-2, etc, should be qualified when necessary, but
cannot be subscripted or indexed, nor can they be items described with
the USAGE IS INDEX, clause

2.. Data^name-1, data-name-2 etc, must be in the Working-Storage Section

General Rules

I . : dfagrirTi^a1ria.lrtQnr pMSPpina^' •

2. A. figurative constant may be substituted in the format above wherever a
literal is specified.

6 - II

PROCEDURE DIVISION IN THE RELATIVE I-O MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files, t^lC. dfe

General. Format

CLOSE file-name-1 [WITH LOCK] |̂ ,file-name-2 [WITH LOCK] j ...
Syntax Rule

Th.e files referenced in the CLOSE statement need not all have the same
organisation or access.

General Rules

1.. A CLOSE statement may only be executed for a file in an open mode..

2. The action, taken if a file is in the open mode when e STOP RUN
3-tatement is executed is to close the file» The action taken for a
file that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for the program is
to close the file.

If a CLOSE statement has been executed for a file, no other statement
can be executed that references that file, either explicitly or
Implicitly,, unless an intervening OPEN statement for that file is
executed..

4.- Following the successful execution of a CLOSE statement, the record
area associated with file-name is no longer available. The
unsuccessful execution of such a CLOSE; statement leaves the
availability of the record area undefined.

6-12

•• - -

y-

THE DELETE STATEIdENT

Function

The DELETE statement logically removes a record from a mass storage
file.

General Format

pTT.RTT?. file-name RECORD [;INVALID KEY imperative-statement]

Syntax Rules

1, The INVALHi KEY phrase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

2, The INVALID KEY phrase must be specified for 2 DELETE statement which
references 2 file which is not in sequential access mode and for which
an applicable USE procedure is not specified

General Rules

1. The associcited file must be open in the I-O mode at the time of the
execution of this statement. (See THE OPEN STATEMENT later in this
Chapter)

2. For files in the sequential access mode, the last input-output
statement executed for file—name prior to the execution of the DELETE
statement must have been a successfully executed READ statement. The
Operating System logically removes from the file the record that was
accessed by that READ statement.

3. For a filci in random or dynamic access mode, the Operating System
logically removes from the file that record identified by the contents
of the RELATIVE KEY data item associated with file-name. If the file
does not contain the record specified by the key,, an INVALID key
condition exists, (See The INVALID KEY Condition in this Chapter).

4. After the succesful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be
accessed.

5. The execution of a DELETE statement does not affect the contents of the
record area associated with file-name.

6. The current record pointer is not affected by the execution of a DELETE
statement.

7. The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, associated with the file-name to be
updated. See 1-0 STATUS in this chapter.

6-13

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs
^ checking and/or writing of labels and other input-output operations.

General Format

OPEN

Syntax Rule

{INPUT file-name-l [,file-name-2. ...]|
OUTPUT file-name-3 [,file-name-4 ...] f •••
I-O file-name-5 [,.f ile-name-6 ...] ;

The files referenced In the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated
record area available to the program.

3. Prior to the successful execution of an OPEN statement for a given
file, no statement can be executed that references that file, either
explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution
of any of the permissible inout-output statements. In Table 6—1, *X
at an intersection indicates that the specified statement,, used in the
access mode given for that row, may be used with the relative file
organisation and the open mode given at the top of the column.

6 - 14

1. . ^ . ut

Table 6-1* Permissible Combinations of Statements and Open Modes for
Relative I/O

File Access

Mode Statcsment

open Mode
Input Output Input-Output

Sequential lUEAD X X

IJRITE X

RENRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

^WRITE X X

REWRITE X

START X X

DELETE X

5. A file may be opened with the INPUT, OUTPUT, AND I-O phrases In the
same program. Following the Initial execution of an OPEN statement for
a file, each subsequent execution for that same file must be preceded
by the execution of a CLOSE statement, for that file.

6. Execution of the OPEN statement does not obtain or release the first
data record.

7. The file description entry for flle-name-1, flle-name-2, file-name—5 or
file—name-6 must be equivalent to that used when this file was created.

8- For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record
currently existing within the file. If no records exist In the file,
the current: record pointer Is set such that the next executed Format 1
READ statement for the file will result In an AT END condition. If the

file does not exist, INPUT will cause an error status.

9. The"1-0 phicase permits the opening of a file for both Input and output
operations. Since this phrase Implies the existence of the file. It

6-13

«v «* ' <

m

10.

cannot be used If the file Is being initially created,
does not exist, it will be created

If the file

Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At the time the associated
file contains no data records. If a file of the same number exists it
will be deleted. If write protected, an. error status occurs.

6 - 16

THE READ STATEME^IT

Function

For sequential access,, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a disk file.

General Format

Format 1

READ file—name [NEXT] RECORD [INTO identifier] [; AT END Imperative—statement]

Format 2

READ file—n£ime RECORD [INTO identifier] [^INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the record area associated
with file-n£tme must not be the same storage area*

2. Format I must be used for all files in sequential access mode.

3.< The NEXT phrase must be specified for files in dynamic access mode,
when records are to be retrieved subsequentially.

4. Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly.

5. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

General Rules

1. The associated files must be open in the INPUT or I-O mode at the time
this statement is executed. ' See THE OPEN STATEMENT in this Chapter

2*. The record to be made available by a Format 1 READ statement is
determined as follows:

a.

b..

The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned
by the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the
record is no longer accessible, which may have been caused by the
deletion of the record, the current record pointer is updated to
point to the next existing record in the file and that record is
then ma.de available.

If the current record, pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file and then that record
is made available.

6-17

............ .

7^,

cT*

THE USE STATEMENT

Function

The USE statement specified procedures for Input-output error handling that
are In addition to the standard procedures provided by the Input-output
control system.

General Format

EXCEPTION

USE AFTER STANDARD

ERROR

PROCEDURE ON

flle-name-I

INPUT

OUTPUT

I-O

Syntax Rules

1.

2.

A USE statement, when present, must Immediately follow a section header
In the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or
more procedural paragraphs that define the procedures to be used.

The USE statement Itself Is never executed; It merely defines the
conditions calling for the execution of the USE procedures.

General Rules

1.

2.

3.

4.

If the INVALID KEY or AT END phrases have not been specified In the
Input-output staement, the designated procedures are executed by the
Input-output system after completing the standard Input-output error
routine, or upon recognition of the INVALID KE7 or AT END conditions.

After execution of a USE procedure, control Is returned to the Invoking
routine.

Within a USE procedure, there must not be any reference to any
nondeclaratlve procedures. Conversely, In the nondeclaratlve portion
there must no reference to procedure-names In the delcaratlve portion,
except that PERFORM statements may refer to a USE statement or to the
procedures associated with such a USE statement.

Within a USE procedure, there must not be the execution of any
statement that would cause the execution of a USE procedure that had
previously been Invokved and had not yet returned control to the
Invoking routing.

6-24

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output or input-output
file.

General Format

Vro.ITE record-name LFROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not reference the same storage area.

2. The record-name is the name of a logica record in the File Section of
the Data Division.

3. The INVALID KEY phrase must be specified if an applicable USE procedure
is not specified for the associated file.

General Rules

1.

2.

3.

4.

The associated file must be open in the OUTPUT or I-O mode at the time
of the execution of this statement. (See THE OPEN STATEMENT Chapter).

The logical record released by the execution of the WRITE statement is
no longer available in the record area unless the execution of the
WRITE stateiaent is unsuccessful due to an INVALID KEY condition.

The results of the execution of the WRITE statement with the .FROM
phrase is equivalent, to the execution of

The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed
by:

b.. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

After execution of the WRITE statement is complete, the
information in the area referenced by Identifier is available,
even though the information in the area referenced by record-name
may not be. (See general rule 2 above).

The current record pointer is unaffected by the execution of a WRITE
statement.

6 - 25

v.-

5.

6.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
I~0 Status in this Chapter).

The maximum record slxe for a file is established at the time the file
is created and must not subsequently be changed.

7 The number of character positions on a mass storage device required to
store a logical record In a file may or may not be equal to the
of character positions defined by the logical description of that
record in the program.

8. The execution of the WRITE statement releases a logical record to the
operating system.

9. When a file is opened in the output mode, records may be placed into
the file by one of the following:

a. If the access mode Is sequential, the WRITE statement will ca^e a
record to be released to the Operating System. %e
will haue a relative record number of one and subsequent "co'
released will have relative record numbers of 2, 3,
relative key data item has been specified in the file con ro
entry for the associated file, the relative record number of the
rec^d just released will be placed into
item by the Operating System during execution of the WRITE
statement.

h If the access mode is random or dynamic, prior to the execution of
statement the value of the RELATIVE KEY data »u8t

be initialised in the program with the relative record number
^ be associated with the record in the record area. That ®

then released to the Operating System by execution of the WRITE
Statement.

10. When a fUe is opened in the I-O mode and the ^ ^f^lue
records are to be inserted in the associated file, xne vaxue

of the RELATIVE KEY data item must be initialised by the program wt
the relative record number to be associated with the record in the
record area. Execution of a WRITE statement then causes the, contents
of the record area to be released to the Operating System.

11. The INVALID KEY condition exists under the following circumstances.
a When the access mode is random or dynamic, and the R^TIVE KEY

data item specifies a record which already exists in the file, o

b. When an attempt is made to write beyond the externally defined
boundaries of the file.

12. When the IMVALID KEY condition is recognised. are
WRITE statement Is unsuccessful, the contents of - .Sected. and the FILE STATUS data Item, if any. of the
file is set to a value indicating the cause of the condition.
Execution of the program proceeds according to the

- INVALID KEY Condition in this Chapter see also 1-0 Status in this
Chapter).

6-26

^ I t "I--- U-

chapter 7

indexed input and output

.v^onnnrTTOM TO THE INDFTO) I-O MODPl-EinUCTIOt. TO ^

The Indexed 1-0 module provides a nanner. Each record inr3r,r.'".ss,-jss^' ;r- —- -«- -
within that record.

lahgoage concepts

nr^anlsatlon

TfUe whose organisation Is Indexed Is a^^ss I'̂ ^^^orfdefrl^ion
date records may be i®ems each of which Is associated with an
my include one or more key ^ " jj, to the data records "ladex. Each wltW^ each record which Is the record key
the contents of a nara it«u
that index.

The data Item "ned in '̂ ® '̂̂ °™y'̂ dr ^Xt °Ule! "por purposes of

Access Modesla Modes

the sequence In which records are
In the sequential record key values. The order of

accessed Is the o®®®""^,^® ^t of records having duplicate record key
rafuer^ t4 wt^^^he records were written Into the set.S IS une

la the random access m^. 'recor^J^^^^^
i^he-:rL°ritt rf:,rrbirra re^rd^key data Item.alue ot ii-o

the progranimer may change at will from
aequentla?%ctr^to faX access using appropriate forms of Input-ou pu
Statements.

Current Record Pointer

The current record pointer Is ®^rr:rd\:XLre:Xw^X agiven
riirxx"orrcX^^ r crrrrnrxXomter
tnXS oVby XoPE^ siART and READ statements.

7 - 1

-T'!MV-T-r'W7-. xr^-

3.

4.

5.

6.

8.

9.

The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See I-O
Status in this Chapter).

Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record
is available to the object program prior to the execution of any
statement following the READ statement.

When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalant to an Implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current
data record are undefined at the completion of the execution of the
READ statement.

If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the
rules specified for the MOVE statement without the CORRESPONDING
phrase. The implied MOVE does not occur if the execution of the READ
statement was unsuccessful. Any subscripting or indexing associated
with identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with
identifier.

If, at the time of execution of a Format 1 READ statement,, the position
of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

If, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file,, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful. (See 1-0
Status in this Chapter)..

10.. When the AT END condition is recognised the following actions are taken
in the specified order:

a.

b.

c..

A value is placed into the FILE STATUS data item, if specified for
this file, to^ indicate an AT END condition. (See 1-0 Status in
this Chapter)

If the AT END phrase is specified in the statement causing the
condition,. control is transferred to the AT END
imperative-statement.. Any USE procedure specified for this file
is not executed.

If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file, and
that procedure is executed.

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful.

6 - 18

11, Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the current
record pointer are undefined.

12. When the i^T END condition has been recognised, a Format 1 ElEAD
statement for that file must not be executed without first executing
one of the following:

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful START statement for that file.

c.. A successful Format 2 READ statement for that file.

13. For a file for which dynamic access mode is specified, a'Format 1 READ
statement with the NEXT phrase specified causes the next logical record
to be retrieved from the file as described in general rule 2.

14". If the RELATIVE KET phrase is specified, the execution of a Format 1
pig'An statement updates the contents of the RELATIVE KEY data item such
tiiat it contains the relative record number of the record made
available. -

15. The execution of a Format 2 READ statement sets the current record
pointer to, and makes available, the record whose relative record
number is contained in the data item named in the RELATIVE KEY
condition exists and execution of the READ statement is unsuccessful.
(See The INVALID KEY Condition in this Chapter).

6 - 19

J

U.

THE. REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing In a disk file.c

General Format

rewrite record-name [FROM Identifier] [; INVALID KEY imperative-statement]

Svnlax. Rules

1. Record-name and Identifier must not refer to the same storage area.

2. Record-name Is the name of a logical record In the File Section of the
Data Division.

3. The INVALID KEY phrase must be specified In the REWRITE statement for
files In the random or dynamic access mode for which an appropriate USE
procedure Is not specified.

General Rules

1.. The file associated with record-name must be open In the I-O mode at
the time of execution of this statement. (See THE OPEN STATEMENT In
this Chapter).

2. For files In the sequential access mode, the last Input-output
statement executed, for the associated file prior to the execution of
the REWRITE statement must have been a successfully executed READ
statement. The Operating System logically replaces the record that was
accessed by the READ statement.

3. The number of character positions in the record referenced by
record—name must be equal to the number of character positions In the
record being replaced.

4.. The logical record released by a successful execution of the REWRITE
statement Is no longer available In the record area.

5., The execution of a REWRITE statement with the FROM phrase Is equivalent
to the execution of:

MOVE Identifier TO record-name

followed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of
the Implicit MOVE statement have no effect on the execution of the
REWRITE statement..

6. The current record pointer Is not affected by the execution of a
REWRITE statement..

6-20

The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
L-0 STATUS in this Chapter).

For a. file accessed in either random or dynamic access mode, the
Operating System logically replaces the record specified by the
contents of the RELATIVE KEY data item associated with the file. If
the file does not contain the record specified by the key, the INVALID
KEY condition exists. (See THE INVALID KEY CONDITION in this Chapter).
The updating operation does not take place and the data in the record
area is unaffected..

6-21

n

THE STAKI STATQIENT

Function

' The START statement provides a basis for logical positioning within a
relative file, for subsequent sequential retrieval of records.

General Format

r f ' \ 1
KEY < IS > > data-name

L (IS ^ <) J
START file-name

[; INVALID KEY imperative-statement]

NOTE: The required relational characters *>', and '<* and
are not underlined to avoid confusion with other symbols
such as *>' (greater than or equal to).

Syntax. Rules

1. File-name must be the of a file with sequential or dynamic access..

2. Data—name may be qualified.

3.. The INVALID KEY phrase must be specified if no applicable USE procedure
is specified for file—name.

4-. Data—name, if specified, must be the data item specified in the
RELATIVE KEY phrase of the associated file control entry.

General Rules

File—name must be open in the INPUT or I—0 mode at the time that the
START statement is executed. (See THE OPEN STATEMENT in this Chapter).

2.- If the KEY phrase is not specified the relational operator 'IS EQUAL
TO' is implied.

3. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file
mfarenced by file—name and a data item as specified in general Rule 5.

a. The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

b. If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, the execution of the START statement
is unsuccessful, and the position of the current record pointer is
undefined. (See The INVALID KEY Condition in this Chapter).

6 - 22

mm

...... • - . - . -

4. The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See
I-O STATUS in this Chapter).

5. The comparison described in general rule 3 uses the data item
referenced by the RELATIVE KEY clause associated with file-name.

i

'/ •

6-23

I-O Status

If the FILE STATUS clause is specified in a file control entry, a value
is placed into the specified two-character data item during the execution of
an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE or START statement and before
any applicable USE procedure is executed, to indicate to the COBOL program
the status of that input-output operation.

Status Key 1

leftmost character position of the FILE STATUS data item is known
as status key 1 and is set to indicate one of the following conditions upon
completion of the input-output operation.

*0' - Successful Completion
' 1' - At End
'2' - Invalid Key
'3' - Permanent Error
*9» Operating System Error Message

The meaning of the above indications are as follows;

0 - Successful Completion. The input-output statement was
successfully executed.

• 1 - At End. The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next logical
record exists in the file.

2 - Invalid Key. The input-output statement was unsuccessfully
executed as a result of one of the following;

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

3 - Permanent Error. The input-output statement was unsuccessful as
the result of an input-output error, such as data check, parity
error, or transmission error.

9 — Operating System Error Message. The input—output statement was
unsuccessfully executed as a result of a condition that is
specified by the Operating System Error Message number. This
value is used only to indicate a condition not indicated by other
defined values of status key 1, or by specified combinations of
the value of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known
as status key 2 and is used to further describe the results of the
input-output operation. This character will contain a value as follows:

If no further information is available concerning the input-output
operation, then status key 2 contains a value of '0'.

7-2

- • ••• • - • '.V . ' rtTV"'"

When status key 1 contains a value of *0' indicating a successful
completion, status key 2 may contain a value of '2' indicating a
duplicate key. This condition indicates one of two possibilities^

1. For a REiU) statement, the key value for the current key of
reference is equal to the value of that same key in the next
record within the current key of reference.

For a WRITE or REWRITE statement, the record just written created
a duplicate key value for at least one alternate record key for
which duplicates are allowed.

3. When status key 1 contains a value of '2' indicating an INVALID
KEY condition, status key 2 contains values to designate the cause
of that condition as follows-t-

Indicates a sequence error for a sequentially accessed
indexed file. The ascending sequence requirements of
successive record key values have been violated (see The
WRITE Statement later in this Chapter, or the prime record
key value has been changed by the COBOL program between the
successful execution of a READ statement and the execution of

the next REWRITE statement for that file.

Indicat6>.s a duplicate key value. An attempt has been made to
write or rewrite a record that would create a duplicate key
in an indexed file.

Indicates no record found. An attempt has been made to
access a record, identified by a key, and that record does
not exist in the file.

Indicates a boundary violation. An attempt has been made to
write beyond the externally defined boundaries of an indexed
file. This is usually treated as a fatal error by Operating
Systems.

When status key 1 contains a value of '9' the value of status key 2 is
the Operating System Error Message number.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and
status key 2 are shown in the following table. An 'X* at an intersection
indicates a valid permissible combination.

7-3

Status Key I Status Key 2

No Further
Information

(0)

Sequence
Error

(1)

Duplicate
Key
(2)

No Record

Found

(3)

Boundary
Violation

(4)

Successful
Completion (0)

X X
-

At End (1) X

Invalid Key (2) X X X X

Permanent

Error (3) X

Implementor
Defined (9) Operating System Error Message Number

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the ex^ution of a
START, READ, WRITE, REWRITE or DELETE statement. For details fit the causes
of the condition see THE START STATEMENT, THE READ STATEMMT, THE WRITESTATEMENT, and THE DELETE STATEMENT later in this Chapter. ^ ^

When the INVALID KEY condition is recognised, the Operating System
takes these actions in the following order;

1.

2.

A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an INVALID KEY condition. (See I-O Status).

If the INVALID KEY phrase is specified in the statement ^^using the
condition, control is transferred to the INVALID KEJ^ imperative
statement. Any USE procedure specified for this file is/not-executed.

When the INVALID KEY condition occurs, execution of/the input-output
statement which recognised the condition is unsuccessful and the file
is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see THE READ
STATEMENT later in this Chapter.

7-4

environment division in the indexed i-o module

INPUT-OUTPUT SECTION

The File Control Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information. (See also appendix F in the CIS COBOL
Operating Guide).

General Format

FILE-CONTROL, j file-control-entry}...

The File Control Entry

Function

The file control entry names a file and may specify other file-related
information.

General Format

SELECT file-name

ASSIGN TO j extemal-file-name-literal)
1file-identifier _

r t extemal-file-name-literal I
t file-identifier U

; ORGANISATION IS INDEXED

SEQUENTIAL ^ 1[•; ACCESS MODE IS (j]
L I RANDOM)J
; ElECORD KEY IS data-name-1

[; FILE STATUS IS data-name-3]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only
once as file-name in the FILE-CONTROL paragraph. Each file specified
in the file control entry must have a file description entry in the
Data Division.

3, If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

7-5

.4^

o

4.

5.

6.

Data-name-3 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not be defined in the
File Section, the Report Section, or the Communication Section.

The data items referenced by data—name—1 must each be defined as a data
item of the category alphanumeric within a record description entry
associated with that file—name.

Neither data-name-1 can describe an item whose size is variable. (See
THE OCCURS CLAUSE in Chapter 4).

General Rules

1.

2.

3.

4.

6-

7.

8.

9.

The ASSIGN clause specifies the association of the file referenced by
file-name to a storage medium. See Appendix F in the CIS COBOL
Operating Guide. The first assignment takes effect. Subsequent
assignments within any one ASSIGN clause are for documentation purposes
only.

The ORGANISATION clause specifies the logical structure of a file. The
Pile; orgatiisation is established at the time a file is created and
cannot subsequently be changed.

When the access mode is sequential, records in. the file are accessed in
the sequence dictated by the file organisation. For indeed files this
sequence is the order of ascending record key values within a given key
of reference.

When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name—3 after the
execution of every statement that references that file either
explicitly or implicitly. This value indicates the status of execution
of the statement. (See I-O STATUS in this Chapter)♦

If the access mode is random, the value of the record key data item
indicates the record to be accessed.

When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See general rules 4 and 6).

The RECORD KEY clause specifies the record key that is the prime record
key for the file. The values of the prime record key must be unique
among records of the file. This prime record key provides an access
path to records in an indexed file.

The data description of data-name—1 as well as relative locations
within a record must be the same as that used when the file was
created.

7-6

•vv- • ' , • • A. ^

The Control Paragraph

Function

The IrO-CONTROL paragraph specifies the points at which rerun Is to be
established and the memory area which Is to be shared by different flies.

. General Format

I-Q-CONTROL

[; ilERUN ON /flle-name-1 VEVERY (lnteger-1 RECORDS OF flle-name-2)"[
\ Implementor-name/ <Integer—2 CLOCK—UNITS / I

(condition-name }J

^; SAME AREA FOR flle-name-3 ,|flle-name-4 j-... j ...
Syntax Rules

1. The I-O-CONTROL paragraph Is optional. The whole clause Is for
documentation purposes only when,present.

2. Flle-name-1 must be a sequentially organised file.

3» When either the lnteger-1 RECORDS clause or the lnteger-2 CLOSE-UNITS
clause Is specified, implementor-name must be given .In the RERUN
clause.

4. When multiple lnteger-1 RECORDS clauses are specified, no two of them
may specify the same flle-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be
specifIced.

6. More than one SAME clause (SAME AREA) may be Included In a program but
a file-name must not appear In more than one SAME AREA clause.

7. The files referenced In the SAME AREA clause need not all have the same
organisation or access.

General Rules

1. -The RERUN clause Is treated as far documentation purposes only^

2. The^ S^ffi AREA, clause Is treated as for documentation purposes only.

7-7

DATA DIVISION IN THE INDEXED 1-0 MODULE

FILE SECTION

In a COBOL program the file description entry (FD) represen^ the
highest level of organisation in the File Section. The File Section header
is followed by a file description entry consisting of a level indicato
(FD) a file-name and a series of independent clauses. The FD clauses
specify the size of the logical and physical
absence of label records, the value of implementor-defin^ label items, and
the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries
which describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data-name if
required, followed by a series of independent clauses as required. A
description has a hierarchical structure and therefore the elates used with
an entry may vary considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record description is defined in
CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a J^eoord
description are shown in THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON in
Chapter 3..

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

Function

The file description furnishes information concerning the physical
structure, identification, and record names pertaining to a given file.

General Format

FD file-name

f; BLOCK CONTAINS integer-2 (RECORDS \"]
L \CHARACTERS/J

[RECORD CONTAINS [integer-3 TOjinteger-4 CHARACTERS]

;LABEL (RECORD IS \ (STANDARD)
i RECORDS ARE /) OMITTED (

;VALUE OF data-name-1 IS literal-1

[,data-name—2 IS literal-2] ...

DATA (RECORD is \ data-name-3 [,data-name-4] ...
\ RECORDS are /

Syntax Rules

1. The level indicator FD identifies the beginning of a file description
and must precede the file—name,

7-8

2. The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

3. One or more record description entries must follow the file description
entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS integer-2/RECORDS \
\CHARACTERS/

General Rule

reiSredErSE-&#e^^

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of
data, records with their associated file.

General Format ^

DATA (RECORD IS I data-name-1 [, data-name-2] ...
1 RECORDS ARE /

Syntax Rules

Data-name-I and data-name-2 are the names of data records and must have
01 level-number record descriptions, with the same names, associated
with them.

General Rules

1. The presence of more than one data—name indicates that the file
contains more than one type of data record. These records may be of
differing sizes, different formats, etc. The order in which they are
listed is not significant.

2.. Conceptually, all data records within a file share the same area. This
is in no way altered by the presence of more than one type of data
record within the file. ^

7-9

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are presents

General Format

LABEL i RECORD IS \ / STANDARD)
1 RECORDS ARE) 1 OMTTED /

General Rule

THE RECORD CONTAINS CLAUSE

Function

icuBeitotation purposes^'

The RECORD CONTAINS clause specifies the size of data records.

General Format

record CONTAINS [integer-1 ^3 integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record
description entry, therefore this clause is never required. The ^
e@N(pMMB,<^iise is? apecified; fhir d^ocumentat±Ott purposes^ only..

THE VALUE OF CLAUSE

Function

The VALUE OF clause specialises the description of an item in the label
records associated, with a file.

General Format

VAL.UE OF data-namel IS literal-l
[.,dataname2 IS literal-2] ...

General Rules

1» ,,This- clause is; used fbir documentation purposes onIy».

2. A figurative constant may be substituted in the format above wherever a
literal, is specified.

7 - 10

• .. 'i. 1., > - • I, - i. . *

PROCEDURE DIVXSION IN THE INDEXED I-O MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files. The EOGK,.
phasase'is: fo# ^eW^lsaition gurpps^ only^^.,!

General Format

CLOSE file-name-1 [WITH LOCK] , file-name-2 [WITH LOCK] j
Syntax Rule

The files referenced in the CLOSE statement need not all have the same
organisation or access.

General Rules

1.. A CLOSE statement may only be executed for a file in an open mode.

Z..

3.

4.

The action taken if a file is in the open mode when a STOP RUN
statement is executed is to close the file. The action taken for a file
that has been opened in a called program and not closed in that program
pfiojc to the execution of a CANCEL statement for that program is to
close the file

If a CLOSE statement has been executed for a file, no other statement
be executed that references that file, either explicitly or

implicitly, unless an intervening OPEN statement for that file is
executed.

Following the successful execution of a CLOSE statement, the record are
associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the
record area undefined.

7 - 11

- s 'iC

the delete STATSIENT

Futiction

^ The DELETE statement logically removes a record from a mass storage
O file.

General Format

DBT.btf. file-name RECORD [; INVALID KEI Imperative-statement]

Syntax Rules

1 The INVALID BCEY phase must not be specified for a D^ETE statement
which, references a file which is in sequential access mode.

Z, The INVALID KEY phrase must be specified for a DELETE stat^ent which
references a file which is not in sequential access mode and for which
an applicable USE procedure is not specified.

General Rules

1. The associated file must be open in I-O mode at the time of the
execution of this statement- (See THE OPEN STATEMENT Uter in this
Chapter).

2- For fUes in the sequential access mode, the last
statement executed for file-name prior to the execution of the DELKE

/.fc statement must have been a successfully executed READ statement. The
. j MSGS logically removes from the file the record that was accessed by

that READ statement.

3^ a, file in random or dynamic access mode, the MSGS logically removes
from the file the record identified by the contents of the prime record
key data item associated with file-name. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See
THE INVALID KEY CONDITION in this Chapter).

4^ ^j^er the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be
accessed*

5.. The execution of a DELETE statement does not affect the contents of the
record area associated with file—name.

6. The current record pointer is not affected by the execution of a DELETE
statement.

7.. The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, associated with file-name to be updated.
(See 1-0 STATUS in this Chapter).

7 - 12

THE OPEN STATEMENT

Function

The OPEN statement Initiates the processing of files. It also performs
checking and^r writing of labels and other input-output operations. ^

General Format

OPEN

/ INPUT file-name-1 [,file-name-2] ...)
/ OUTPUT file-name-3 [,file-name-4] ...V...
I I-Q file-name-5 [,file-name-6] ...)

Syntax Rules

1. The files referenced in the OPEN statement need not all have the same
organisation or access.

General Rules

1. The successful execution of the OPEN statement determines the
availability of the file and results in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated
record area available to the program.

3.. Prior to the successful execution of an OPEN statement for a given
f-f 1 no statement can be executed that references that file, either
^cpllcitly or implicitly.

4, An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 2,
Permissible Statements, 'X' at an intersection indicates that the
specified statement, used in the access mode given for that row, may be
used with the indexed file organisation and the open mode given at the
top of the column.

r^

7-13

'•'-rz—i——••— u

Table 7-1. Peraissable Combinations of Statements and Open Modes for Indexed
I/O.

File Access

Open Mode

Mode Statement Input Output Input-Output

Sequential READ X X

WRITE X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X X

START X X

DELETE X

5. A file may be opened with the INPUT, OUTPUT and I-O phrases in the same
program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must
be preceded by the execution of a CLOSE statement for that file.

6. Execution of the OPEN statement does not obtain or release the first
data record.

7.. The assigned name in the select statement for a file is processed as
follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the assigned name to be checked in accordance
with the operating system conventions for opening files for Input.

b» When the OUTPUT phrase Is specified, the execution of the OPEN
statement causes the assigned name to be written In accordance

. with the operating system conventions for opening files for
output.

8. The file description entry for flle-name-1, flle-name-2, flle-name-5,
or file—name—6 must be equivalent to that used when this file was
created..

9". For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record currently existing
within the file. For Indexed files, the prime record is established as
the key of. reference and is used to determine the first record to be
accessed. If no records exist In the file, the current record pointer
is set such that the next executed Format I READ statement for the file
will result In an AT END condition. If the file does not exist, INPUT
will cause an error status.

7 - 14

10. The I-O phrase permits the opening of a file for both input and output
operations. Since this phrase implies the ^istence of the file, it
cannot be used if the file is being initially created. If the file
does not exist, it will be created.

11. Upon successful execution of an OPEN statement with the output phrase
specified, a file is created. At that time the associated file
contains no data records. If a file of the same name exists it will be
deleted. If write protected, an error status occurs.

7 15

rS

THE READ STATEMENT

Function

c Fot ss^ucntinl ncccss^ th© READ ststsnisnt omlcss avnilnbl© th© n©xt
logical record from a fil©« For random access, the READ statement makes
available a specified record from a mass storage file.

General Format

Format 1

read file-name [NE2CT] RECORD [INTO identifier]

[;AT END imperative-statement]

Format 2

vBAn file-name RECORD [INTO identifier]

[;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions.
The storage area associated with identifier and the storage area which
is the record area, associated with file-name must not be the same
storage area.

2. Format 1 must be used for all files in sequential access mode.

3.. Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly.

4. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

General Rules

1... The associated file must be open in the INPUT or I—0 mode at the time
this statement is executed. (See THE OPEN STATEMENT in this Chapter)..

2. The record to be made available by a Format 1 READ statement is
determined as follows:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned
by the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the
record is no longer accessible, which may have been caused by the
deletion of the record. The current record pointer is updated to
point to the next existing record within the established key of
reference and that record is then made available.

7 - 16

......

3.

4.

5.

6.

8.-

9.

J'*

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file with the established
key of reference and then that record is made available.

The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See I-O
Status in this Chapter).

Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record
is available to the object program prior to the execution of any
statement following the READ statement.

When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalent to an Implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current
data record are undefined at the completion of the execution of the
READ statement.

If the INTO phrase is specified, the record being read is moved from
rhe record area to the area specified by identifier according to the
rules specified, for the MOVE statement.. The Implied MOVE does not
occur if the execution of the READ statement was unsuccessful. Any
subscripting or indexing associated with identifier is evaluated after
rhe record has been read and immediately before it is moved to the data
item.

When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with
identifier.

If, at the time of execution of a Format 1 READ statement, the position
of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

If,, at the time of the execution of a Format 1 READ statement, no next
logical record exists in the file, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful. (See 1-0
Status in this Chapter).

10. When the AT END condition is^ recognised the following actions are taken
in the specified order:

a.

b.

c..

^ value is placed into the FILE STATUS data item, if specified for
this file, to indicate an AT END condition. (See 1-0 STATUS in
this Chapter).

If the AT END phrase is specified in the statement causing the
condition, control is transferred to the AT END imperative
statement. Any USE procedure specified for this file is not
executed.

If the AT END phrase is not specified, then a USE procedure must
be specified, either explictly or implicitly, for this file, and
that procedure is executed.

¥ ^ ••'x •••••
_> .'v-^

7 - 17

.... , ' Vf' .

When the AT END condition occurs, execution of the input-output
stetement which caused the condition is unsuccessful.

11, Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the current
record pointer are undefined. For indexed files the key of reference
is also undefined.

12. When the AT END condition has been recognised, a Format 1 READ
statement for that file must not be executed without first executing
one of the following;

a.. A succesfful CLOSE statement followed, by the execution of a
successful OPEN statement for that file.

b.- A successful START statement for that file.

A successful Format 2 READ statement for that file.c.

13. For a file which dynamic access mode is specified, a Format 1 READ
statement with the NEXT phrase specified causes the next logical record
to be retrieved from that file as described in general rule 2 above»

14. For an indexed file being sequentially accessed, records having the
same duplicate value in an alternate record key which is the key of
P0f-erence are made available in the same order in which they are
released by execution of WRITE statements, or by execution of rewrite
statements which create such duplicate values.

15, xf the KEY phrase is not specified in a Format 2 READ statement, the
- i— -is —£ for thisprime record key is established as the key of reference

retrieval.- Xf the dynamic access mode is specified, this key of
reference is also used for retrievals by any subsequent executions of
Format 1 READ statement for the file.

16.- Execution of a Format 2 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding
data item of the stored records in the file, until the first record
having an equal value is found. The current record pointer is
positioned to this record which is then made available. If no record
can: be so identified, the INVALID KEY condition exists and execution of
the PTiAn statement is unsuccessful. (See The INVALID KEY Condition in
this Chapter).

7-18

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a mass
storage file.

General Format

REWRITE record-name [FROM identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to the same storage area.

Record-name is the name of a logical record in the File Section of the
Data Division.

3. The INVALID iCEY phrase must be specified in the REWRITE statement for
files for which appropriate USE procedure is not specified»

General Rules

1 The file associated with record-name must be open in the I-O mode at
the time of execution of this statement. (See THE OPEN STATEMENT in
this Chapter).

2. For files in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution of
the REWRITE statement must have been a successfully executed READ
statement.- The Operating System logically replaces the record that was
accessed by the READ statement.

3.. The number of character positions in the record referenced by
record-name must be equal to the number of character positions in the
record being replaced.

4.- The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area.

5. The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of;

• MOVE identifier TO record-name

fo3J.owed by the execution of the same REWRITE statement without the
FROM phrase. The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the execution of the
REWRITE statement.

6.- The current record pointer is not affected by the execution of a
REWRITE statement.

7-19

7. The execution of the REWRITE statement causes the value of the TOE
STATUS data item, if any, associated with the file to be updated. (See
I-O Status).

8. For a file in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the
REWRITE statement is executed the value contained in the prime record
key data item of the record to be replaced must be equal to the value
of the prime record key of the last record read from this file*

9. For a file in the random or djniamic access mode, the record to be
replaced is specified by the prime record key data item.

10. The INVALID KEY condition exists when;

a. The access mode is sequential and the value contained* in the prime
record key data item of the record to be replaced is not equal to
the value of the prime record key of the last record read from
this file or,

b. ^ The value contained in the prime record key data item does not
equal that of aiqr record stored in the file, or

The updating operation does not take place and the data .in the
record area is unaffected. (See The INVALID KEY Condition in this
Chapter).

c.

7-20

THE START STATEMENT

Function.

The START statement provides a basis for logical positioning within an
indexed file, for subsequent sequential retrieval of records.

General Format

[key I is > > data-name1
L (IS NOT <) -1

START file-name

;INVALID KEY imperative-statement

NOTE: The required relational characters *>', and are not
underlined to avoid confusion with other symbols such as >
(greater than or equal to).

Syntax Rules

1, File-name must be the name of an indexed file.

Z. File-name must be the name of a file with sequential or dynamic access.

3. Data—name may be qualified.

4. The INVALID KEY phrase must be specified if no applicable USE procedure
is specified for file—name.

5. If file—name is the name of an indexed file, and if the KEY phrase is
specified, data-name may reference a data item specified as a record
key associated with file-name, or it may reference any data item of
category alpanumeric subordinate to the data—name of a data item
specified as a record key associated with file-name whose leftmost
character position corresponds to the leftmost character position of
that record key data item.

General Rules

File—name must be open in the INPUT or I—0 mode at the time that the
START statement is executed. (See THE OPEN STATEMENT in this Chapter).

2. If the KEY phrase is not specified the relational operator *IS EQUAL
TO' is implied.

3.. The t3rp6 of comparison specified by the relational operator in the KEY
phrase- occurs between a key associated with a record in the file
pefgrenced by file—name and a data item as specified in general rule 5.
If file—name references an indexed file and the operands are of unequal
size, comparison proceeds as though the longer one were truncated on
the right such that its length is equal to that of the shorter. All
other nonnumeric comparison rules apply except that the presence of the
PROGRAM COLLATING SEQUENCE clause will have no effect on the
comparison. (See Comparison of Nonnumeric Operands).

7 - 21

rS)

c

a* The current record pointer Is positioned to the first logical
record currently existing in the file whose key satisfies the
comparison.

b. If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, the execution of the START statement
is unsuccessful, and the position of the current record pointer is
undefined, (See The INVALID KEY Condition in this Chapter)

4. The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated. (See
I-O Status).

5. If the KEY phrase is specified, the comparison described in general
rule 3 uses the data item referenced by data-name.

6. If the KEY phrase is not specified, the comparison described in general
rule 3 uses the data item referenced in the RECORD KEY clause
associated with file-name.

7. Upon completion of the successful execution of the START statement, a
key of reference is established and used in subsequent Format 1 READ
statements as follows: (See THE READ STATEMENT in this Chapter).

a.. If the KEY phrase is not specified, the prime record key specified
for file—name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a
record key for file-name, that record key becomes the key of
reference.

c.. if the KEY phrase is specified, and data-name is not specified as
a record key for file-name, the record key whose leftmost
character position corresponds to the leftmost character position
of the data item specified, by data-name, becomes the key of
reference.

8.- If the execution of the START statement is not successful, the key of
reference is undefined.

7 - 22

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

General Format

USE AFTER STANDARD

f EXCEPTION)
\ ERROR / PROCEDURE ON

file-name-1

INPUT

OUTPUT

I-O

Syntax Rules

1.. A USE statement, when present, must immediately follow a section header
in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or
more procedural paragraphs that define the procedures to be used.

The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

General Rules

1. If the INVALID KEY phrase on the AT END phrase have not been specified
in the input-output statements the designated procedures are executed
by the input-output system after completing the standard input-output
routine upon recognition of the INVALID KEY or AT END condition..

2. After execution of a USE procedure, controlis returned to the invoking
routine.

3. Within a USE procedure, there must be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion
there must be no reference to procedure-names that appear in the
declarative portion, except that PERFORM statements may refer to a USE
statement or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the excecution of any
statement that would cause the execution of a USE procedure that had
previously been invoked and had not yet returned control to the
invoking routine.

7-23

o

c

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output or
input-output file.

General. Format

HrIIE record-name FROM Identifier ; INVALID KET imperative-statement

1. Record-name and identifier must not reference the same storage area.

2. The record-name is the name of a logical record in the File Section of
the Data Division.

3. The INVALID KEY phrase must be specified if an applicable USE procedure
•Ta not specified, for the associated file.

General Rules

t The associated file must be open, in the ODTPDT or 1-0 mode at the ttae
of the execution of this statenent. (See THE OPEN STATEMENT in this
Chapter).

2. The logical record released by the execution of the WRITE statement is
no longer available in the record area unless the execution of
WRITE statement is unsuccessful due to an INVALID KEY condition.

.3. The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of:

a.. The statement:

MOVE identifier TO record-name

according, to the rules specified for the MOVE statement, followed
byr

b. The same WRITE statement wLthout the FROM phrase.

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

After execution of the WRITE statement is COTplete, the
information in the area referenced by identifier is available,
even though the information in the area referenced by record-name
may not be. (See general rule 2 above).

4. The current record pointer is unaffected by the execution of a WRITE
statement.

7 - 24

5.

6.

7.

8.

9.

10.

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
I"0 Status in this Chapter).

The maximum record size for a file is established at the time the file
is created and must not subsequently be changed.

The number of character positions on a mass storage device required to
store a logical record in a file may or may not be equal to the number
of character positions defined by the logical description of that
record in the program.

The execution of the WRITE statement releases a logical record to the
operating system.

Execution of the WRITE statement causes the contents of the record area
to be released. The Operating System utilizes the content of the
record keys in such a way that subsequent access of the record may be
made based upon any of those specified record keys.

The value of the prime record key must be unique within the records in
the file.

11. The data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE
statement.

12. If sequential access mode is specified for the file, records must be
released to the Operating System is ascending order of prime record key
values.

13. If random or dynamic access mode is specified, records may be released
to the Operating System in any program-specified order.

14, The INVALID KEY condition exists under the following circumstances:

a-

b.

c.

When sequential access mode is specified for a file opened in the
output mode, and the value of the prime record key is not greater
than the value of the prime record key of the previous record, or

When the file is opened in the output or I-O mode, and the value
of the prime record key is equal to the value of a prime record
key of a record already existing in the file, or

When an attempt is made to write beyond the externally defined
boundaries of the file.

15. When the INVALID KEY condition is recognised the execution of the WRITE
statement is unsuccessful, the contents of the record area are
unaffected and the FILE STATUS data item, if any, associated with
file—name of the associated file is set to a value indicating the cause
of the condition. Execution of the program proceeds according to the
rules stated under THE INVALID KEY CONDITION (See also 1-0 Status in
this Chapter).

7-25

mmmmmmmmm

CHAPTER 8

SEQIENTATION

INTRODUCTION TO THE SEGMENTATION MODULE

The Segmentation module provides a capability to specify object program
overlay requirements.

Segmentation provides a facility for specifying permanent and
independent segments.. All sections with the same segment-number must be
contiguous in the source program. All segments specified as permanent
segments must be contiguous in the source program.

GENERAL DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that provides a means by which the
user may communicate with the compiler to specify object program overlay
requirements

COBOL segmentation deals, only with segmentation of procedures. As
such,, only the Procedure Division is considered in determining segmentation
requirements for an object program.

ORGANIZATION

Program Segments

Although it is not mandatory, the Procedure Division for a source
program is usually written as a consecutive group of sections, each of which
is composed of a series of closely related operations that, are designed to
collectively perform a particular function. However, when segmentation is
used,, the entire Procedure Division must be in sections. In addition, each
section must be classified as belonging either to the fixed portion or to
one of the independent segments of the object program.

Fixed Portion

The- fixed portion is defined as that part of the object program which
is logically treated as if it were always in memory. This portion of the
program is composed of fixed permanent segments.

^ fixed permanent segment is a segment in the fixed portion which
cannot be overlaid by any other part of the program.

Independent Segments

An independent segment is defined as part of the object program which
overlay, and can be overlaid by another independent segment. An

independent segment is in its initial state whenever control is transferred
(either implicitly or explicitly) to that segment for the first time during
rVit* execution of a program. On subsequent transfers of control to the
segment, an independent segment is also in its initial state when:

8 - 1

1. Control is transferred to that segment as a result of the Implicit
transfer of control between consecutive statements from a segment with
a different segment-number.

2. Control is transferred explicitly to that segment from a segment with a
different segment-number (with the exception noted in paragraph 2
below) •

On subsequent transfer of control to the segment^ an independent
segment is in its last-used state when;

1. Control is transferred implicitly to that segment from a segment with a
different segment—number (except as noted in paragraph 1)•

2. Control is transferred explicitly to that segment as the result of the
execution of an EXIT PROGRAM statement.

SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system of
segment—numbers and the following criteria:

1. Logic Requirements - Sections which must be available for reference at
all times, or which are referred to very frequently, are normally
classified as belonging to one of the permanent segments; sections
which are used less frequently are normally classified as belonging to
one of the independent segments, depending on logic requirements.

2. Frequency of Use - Generally, the more frequently a section is referred
to, the lower its segment-number, the less frequently it, is referred
to, the higher its segment-number.

3. Relationship to Other Sections - Sections which frequently communicate
with one another should be given the same segment-numbers

SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control. Control may be
transferred within a source program to any paragraph in a section; that is.
It is not mandatory to transfer control to the beginning of a section.

8-2

STRUCTURE OF PROGRAM SEGMENTS

SEGMENT-NUMBERS

Section classification is accomplished by means of a system of
segment-numbers. The segment-number is included in the section header.

GENERAL FORMAT

section-name SECTION [segment-number]

SYNTAX RULES

1, The segment-number must be an integer ranging in value from 0 through
99.

2.^ Ijf the segment—number is omitted from the section header« the
segment—number is assumed to be 0. .

3.. Sections in the declaratives must contain segment-numbers less than 50.

GENERAL RULES

(1) All sections which have the same segment-number constitute a program
segment. All sections which have the same segment-number must be together
in the source program.

(2) Segments with segment-number 0 through 49 belong to the fixed portion
of the object program. All sections with segment-number 0 through 49 must
be together in the source program.

(3) Segments with segment-number 50 through 99 are independent segments.

8-3

y-.

RESTRICTIONS ON PROGRAM FLOW

When segmentation Is used, the following restrictions are placed on the
ALTER and PERFORM statement.

THE ALTER STATEMENT

A 60 TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with
a different segment-number.

THE PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarative sections whose execution is caused within that range, only one
of the following:

* Sections and/or paragraphs wholly contained in one or more
non-independent segments.

* Sections and/or paragraph wholly contained in a single•independent
segmen-t.

A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

b. Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

8-4

CHAPTER 9

LIBRARY

INTRODUCTION TO THE LIBRARY MODULE

The Library module provides a capability for specifying text that is to
be copied from a source user-library file. This is usually created using
any suitable source text editor

CIS COBOL libraries consist of disk files that contain source to be
made available to the compiler. The effect of the interpretation of the
COPY statement is to insert text into the source program, where it will be
treated by the compiler as part of the source program.

9 - 1

THE COPY STATEMENT

FUNCTION

The COPY statement, incorporates text into a CIS COBOL source program.

GENERAL FORMAT

COPY "text-name"

SYNTAX RULES

1. Ti^t—name must be a unique standard operating system file name.

2. The COPY statement must be preceded by a space and terminated by the
separator period,

3. A COPY statement may occur in the source program anywhere a
character-string or a separator may occur except that, a COPY statement
must not occur within a COPY statement.

GENERAL RULES

1. The compilation of a source program containing COPY statement is
logically equivalent to processing all COPY statements prior to the
processing of the resulting source program.

2. The effect of processing a COPY statement is that the library text
associated with text-name is copied into the source program, logically
replacing the entire COPY statement, beginning with the reserved word
COPY and ending with the punctuation character period, inclusive.

3. The library text is copied unchanged.

4. If the unit identifier is not explicitly specified, default is to the
drive from which the compiler is loaded.

9-2

-V'S

GENERAL DESCRIPTION

CHAPTER 10

DEBUG AND INTERACTIVE DEBUGGING

COBOL debugging provides a means by which the user can describe the
conditions under which data items or procedures are to be monitored during
the execution of the object program.

The decisions of what to monitor and what information to display are
explicitly in the domain of the user. The COBOL Debug facility simply
provides a convenient access to pertinent information.

The features of COBOL that support the debug facility are; a compile time
swltch-DEBUGGING IflDDE and debugging lines.

COMPILE-TIME SWITCH

The DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph in the Environment Division.. It serves as a compile—time switch
over debugging statements written in the program.

When; the DEBUGGING MODE, is not specified in a program,, all the debugging
lines are compiled as if they were comment lines and their syntax is not
checked..

DEBUGGING LINES

A debugging line is any line with a "D**^ in the indicator area of the line.

The contents of a debugging line must be such that a syntactically correct
program is formed with or without the debugging lines considered as comment
lines-.

A debugging line is considered to have the characteristics of a comment line
if the DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

If DEBUGGING MODE is specified, debugging lines are compiled as normal
source lines.

Successive debugging lines are allowed.

A debugging line is only permitted in the program after the OBJECTMJOMPUTER
paragraph ^ the Environment Division..

Continuation of debugging lines is not permitted..

RUNHmiE DEBUG

Iheret-is: a Run-Time;.Debug, Pacfeaga to provide break-point facilities- ia the^
user's progranu Ptbgrams. may be run from the start until a specified
breaic^point: is^ reachedl,, when. controL. is passed back to the. user.. At this
pointy data axeast mayr bet inspected^ or changed»

10 - 1.

-A-, v. •_i:L 'z

.irtii

OSke d^iig paefcage is ^terad as aii optiott "^: is
: l^eajL t^ed liae by 1M4^ paia^aph by para^iapli and so on as requdxed. The
eommaacfe' to^ the pacfcaigW can neietenae prooe^ Stat^erats and da-ta axeas by

A--F. 'a> -;fecadeclmal coda output: by ^te con^iler against ^ liii^UBCaUCtO- "f . MAJkpfc'fc t'l wii -^-w. •"• •. - • . • •- • ^ • • w • .

^ ^Qwerfui m eomnahds cm be used to giye:^?
l-aated dabdggin^/fac^-i^^^ The ptecise details for using the

^vTy agnording to the host operating system.

O

10 - 2

"'• - •., • ..:. '• ^•

CHAPTER 11

INTERPROGRAM COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

The Inter-Program Communication module provides a facility by which a
program can communicate with one or more programs. This provides a
programmer with a modular programming capability. Each module when CALLed
is loaded dynamically by the Run Time System. Communication is provided by:

The ability to transfer control from one program to another within
a run unit

The ability for both programs to have access to the same data
items.

data DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION

The. Linkage Section in a program is meaningful if and only if the object
program is to function under the control of a CALL statement» and the CALL
statement in the calling program contains a USING phrase.

The Linkage Section is used for describing data that is available through
the calling program but is to be referred to in both the calling and the
called program. No space is allocated in the program for data items
referenced by data—names in the Linkage Section of that program. Procedure
Division references to these data items are resolved at object time by
equating the reference in the called program to the location used in the
calling program. In the case of index—names, no such correspondence is
established. Index-names in the called and calling program always refer to
separate indices.

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if they
are specified as operands of the USING phrase of the Procedure Division
header or are subordinate to such operands, and the object program is under"
the control of a CALL statement that specifies a USING phrase.

The structure of the Linkage Section is the same as that previously
described for the Working-Storage Section, beginning with a section header,
followed by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must be unique
within the called program, since it cannot be qualified. Data items defined
in the Linkage Section of the called program must not be associated with
data items defined in the Report Section of the calling program.

Of those items defined in the Linkage Section only data-name-1, data-name-2,
... in the USING phrase of the Procedure Division header, data items
subordinate to these data-names, and condition-names and/or

11-1

. V

Index-names associated with such data-names and/or subordinate data Itans,
may be referenced In the Procedure Division.

Noncontiguous Linkage Storage

Items In the Linkage Section that bear no hierarchic relationship to one
another need not be grouped Into records and are classified and defined as
noncontiguous elementary Items. Each of these data Items Is defined In a
separate data description entry which begins with the special level-number
77.

The following data clauses are required In each data description entry:

* Level-number 77

* Data-name

* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of the Item If necessary.

11 - 2

c

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER

The Procedure Division is identified by and must begin with the following
header:

PROCEDURE DIVISION [USING data-name-l [, data-name-2] ...]

The USING phrase is present if and only if the object program is to function
under the control of a CALL statement, and the CALL statement in the calling
program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header
must be defined as a data item in the Linkage Section of the program in
which this header occurs, and it must have a 01 or 77 level-number.

Within a called program. Linkage Section data items are processed according
to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if
data-name-1 of the Procedure Division header in the called program and
data-name-1 in the USING phrase of the CALL statement in the calling program
refer to a single set of data that is equally available to both the called
and calling programs. Their descriptions must define an equal number of
character positions; however they need not be the same name. In like
manner, there is an equivalent relationship between data-name-2, ..., in the
USING phrase of the called program and data-name-2, ..., in the USING phrase
of the CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the Procedure Division header of the
called program; however, a given data—name may appear more than once in the
same USING phrase of a CALL statement.

11-3

THE CALL STATEMENT

Function

The CALL statement causes control to be transferred from one object program
to another, within the run unit.

General Format

CALL identifier-1 f uSING data-name-1 [, data-name-2] ...]
literal-1 ^

Syntax Rules •

1. Literal-1 must be a nonnumeric literal.

2. The USING phrase is included in the CALL statement only if there is a
USING phrase in the Procedure Division header of the called program and
the number of operands in each USING phrase must be identical.

3.. Each of the operands in the USING phrase must have been defined as a
data item in the File Section, Working-Storage Section, Communication
Section, or Linkage Section, and must have a level-number of 01 or 77.

General Rules

1. The program whose name is specified by the value of literal-1 is the
called program; the program in which the CALL statement appears is the
calling program.

2. The execution of a CALL statement causes control to pass to the called
program.

3. A called program is in its initial state the first time it is called
within a run unit.

On all other entries into the called program, the state of the program
remains unchanged from its state when last existed. This includes all
data fields, the status and positioning of all files, and all alterable
switch settings.

4. If during the execution of a CALL statement, it is determined that the
available portion of run-time memory is incapable of accomodating the
program specified in the CALL statement, an operating system error is
generated.

5. Called programs may contain CALL statements. However, a called program
must not contain a call statement that directly or indirectly calls the
calling program.

6. The data—names, specified by the USING phrase of the CALL statement,
indicate those data items available to a calling program that may be
referred to in the called program. The order of appearance of the
data—names in the USING phrase of the CALL statement and the USING

11-4

phrase in the Procedure Division header is critical. Corresponding
data-names refer to a single set of data which is available to the
called and calling program. The correspondence is positional, not by
name. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program always
refer to separate indices.

11-5

THE CANCEL STATEMENT

Function

The CANCEL statement releases the memory areas occupied by the referred to
program.

General Format

r.AXTr,r.T / identifier-1 \ f ,/identifier-2)"l\ literal-1 / [\literal-2 /J

Syntax Rules

1. Literal-1, literal-2, must each be-a nonnumeric literal.

2. Identifier-1, identifier-2, must each be defined as an
alphanumeric data item such that its value can be a program name.

General Rules

1, Subsequent to the execution of a CANCEL statement, the program referred
to therein ceases to have any logical relationship to the run unit in
which the CANCEL statement appears, A subsequently executed CALL
statement naming the same program will result in that program being
initiated in its initial state. The memory areas associated with the
named programs are released so as to be made available for disposition
by the operating system.

2, A program named in the CANCEL statement must not refer to any program
that has been called and has not yet executed an EXIT PROGRAM
statement.

3, A logical relationship to a cancelled subprogram is established only by
execution of a subsequent call statement.

4, A called program is cancelled either by being referred to as the
operand of a CANCEL statement or by the termination of the run unit of
which the program is a member.

5. No action is taken when a CANCEL statement is executed naming a program
that has not been called in this run unit or has been called and is at
present cancelled. Control passes to the next statement.

11-6

G

THE EXIT PROGRAM STATEMENT

Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM

Syntax Rules

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the paragraph.

General Rule

An execution of an EXIT PROGRAM statement in a called program causes control
to be passed to the calling program. Execution of an EXIT PROGRAM statement
in a program which is not called behaves as if the statement were an EXIT
statement. (See THE EXIT STATEMENT in Chapter 3).

11-7

CHAPTER 12

PROGRAMMING TECHNIQUES AND SIZING

PROGRAMMING TECHNIQUES

Although COBOL is written in an essentially free form, the user will
nevertheless reap mai^ advantages from a few self-imposed disciplines. It is
suggested that these should include the following:

1. Use of the first 256 bytes of working-storage for variables which are
frequently referenced will produce more compact and efficient code.

2. Use subscripts as sparingly as possible because each subscript has a
storage requirement approximately equal to the size of a normal
instruction.

3. For ACCEPT and DISPLAY the compiler generates one instruction per
elementary item of the data-name being displayed/accepted. Therefore
redefine a group of fields as a single field for DISPLAY whenever
possible and avoid unnecessary numbers of small fields in ACCEPT.

4. Use FILLER instead of a data-name for any elementary field not
referenced explicitly because the word FILLER is compacted to one
character in the Data Dictionary.

5. Keep the number of digits in numeric fields as small as possible.

6. Whenever possible move a group instead of several elementary moves.

SIZING

GENERAL DESCRIPTION

There are three aspects to sizing a program; the source code, the Data
Dictionary and the compiled code.

The maximum number of source statements per program is limited, firstly by
the space available for the compiler's data dictionary and secondly that
available to load the generated program.

The Data Dictionary contains an entry for every user-defined name in the
program. Detailed information is contained in the next section.

The maximum number of bytes available for the user's program and work space
for any given configuration, can be found in the appropriate Operating
Guide. A guide for calculating the size of the generated program is as
follows:

12 - 1

A

The sum of the Record size for each file in bytes
+ the Record size for each Working-Storage record in bytes
+ the number of characters in all Procedure Division literals
+ 60 bytes per File
+ 300 bytes control area
+ 6 bytes per COBOL instruction with the following qualifiers:

for an ACCEPT/DISPLAY statement add 3 bytes per elementary item within
the Accepted/Displayed data-name.

for every subscript used in a statement add 7 bytes

for a comparision add 6 bytes

for an implicitly generated comparison e.g. PERFORM UNTIL, READ AT
END - add 6 bytes

DATA DICTIONARY

The Data Dictionary is constructed as the program is compiled. Its size
depends on the host operating system. Each user defined name will have an
entry in this dictionary. The number of bytes required for each entry is
given in Table 12-1 below

Table 12-1. Data Dictionary Entry Sizing

User-defined name Number of Bytes

File-name 18 + n

Record-name 8 + n

Key-name 8 + n

Status-name 8 + n

Paragraph-name 6 + n

Data-name Group 8 + n

Alphanumeric 32 characters 7 + n

Alphanumeric 32 characters 8 + n

Numeric integer 7- t a
Numeric non integer 8 + n

Numeric edited 7 + n + X

n t number of characters in user-defined name.

For a FILLER, n = 1.

X » number of characters in Picture, after coalescing repetitions.

e.g. 9999.9 ='3 bytes
9 (4) .9 » 3 bytes
Z (2) 9 (4) . 9 (3)" 4 bytes

Subtract I byte if item is in the first 256 bytes of
Working-Storage.

Add 4 bytes if item has an OCCURS clause associated with it.

Add 2 bytes if item is subordinate to an item described with
OCCURS.

12-2

APPENDIX A

RESERVED WORD LIST 0

This appendix contains a full list of COBOL and CIS COBOL reserved
words. A shaded reserved word is a CIS COBOL extension to ANSI COBOL.

The / symbol denotes that the text up to that point is a reserved word,
as is the whole word.

e.g.. In INDEX/ED, INDEX and INDEXED are reserved words IN SPACE/S,
SPACE and SPACES are reserved words.

O

A - 1

ACCEPT

ACCESS

ADD

ADVANCING

AFTER

ALL

ALPHABETIC

ALTER

AND

ARE

AREA

ASSIGN

AT

AUTHOR

BEFORE

BLANK

BLOCK

BY

CALL

CANCEL

CHAEACTER/S
CLOCK-UNITS

CLOSE

COBOL

CODE-SET

COLLATING

COMMA

COMP-M

COMP-N

COMP-3

C0MP/UTATI0NAL/-3
CONFIGURATION

CONSOLE

CONTAINS

COPY

CRTT

GET-UNDER

CURRENCY

CURSOR

DATA

DATE-COMPILED

DATE-WRITTEN

DEBUGGING

DECIMAL-POINT

DECLARATIVES

DELETE

DISPLAY

DIVIDE

DIVISION

DOWN

DYNAMIC

ELSE

END

ENTER

ENVIRONMENT

EQUAL
ERROR

EVERY

EXCEPTION

EXCESS-3

EXIT

EXTEND

FD

FILE

FILE-CONTROL

FILTER

FIRST

FOR •

FROM

GIVING

GO

GREATER

HIGH-VALUE/S

I-O/-CONTROL
IDENTIFICATION

IF

INDEX/ED
INITIAL

INPUT/-ODTPUT
INSPECT

INSTALLATION

INTO

INVALID

IS

JUST/IFIED

KEY

LABEL

LEADING

LEFT

LESS

LIMIT/S
LINE/S
LINKAGE

LOCK

LOW-VALUE/S

MEMORY

MODE

MODULES

MOVE

MULTIPLY

NATIVE

NEGATIVE

NEXT

NOT

NUMERIC

OCCURS

OFF

OMITTED

OPEN

OR

ORGANIZATION

OUTPUT

OVERFLOW

PAGE

PERFORM

PIC/TURE
POSITIVE

PROCEED

PRODEDURE/S
PROGRAM-ID

QUOTE/S

RANDOM

RD

READ

RECORD/S
REDEFINES

REEL

RELATIVE

REMAINDER

REPLACING

RERUN

REWRITE

RIGHT

ROUNDED

RUN

SAME

SECTION

SECURITY

SEGMENT

SELECT

SENTENCE

SEPARATE

SEQUENCE
SEQUENTIAL

SET

SIGN

SIZE

SOURCE-COMPUTER

SPACE/S
SPECIAL-NAMES

STANDARD-1

START

STATUS

STOP
SUBTRACT

SYNC/HRONIZED

A - 2

TAB

TABLE

TALLYING

THAN

THEN

THRU

TIMES

TO

TRAILING

TYPE

UNIT

UNTIL

UP

UPON

USAGE

USE

VALUE/S
VARYING

WEEN

WITH

WORDS

WORKING-STORAGE

WRITE

ZERO/ES or S

. (period)
(

.)

CIS COBOL system name
figurative constant
optional work

APPENDIX B

CHARACTER SETS AND COLLATING SEQUENCE

ASCII HEX COBOL ASCII HEX COBOL

character character <:haracter character

NUL 00 X space 20

SOH 01 X 1 21 X

STX 02 X
If 22

ETX 03 X # 23 X

EOT 04 X $ 24

ENQ 05 X % 25 X

ACK ^6 X & 26 X

BEL 07 X
1 27 X

BS 08 X (28

HT 09 X) 29

LF 0A X * 2A

VT 0B X + 2B

FF 0C X t 2C

CR 0D X - 2D

SO 0E X • 2E

SI 0F X / 2F

DLE 10 X 0 30

DCI 11 X 1 31

DC2 12 X 2 32

DC3 13 X 3 33

DC4 14 X 4 34

NAK 15 X 5 35

STN 16 X 6 36

ETB 17 X 7 37

CAN 18 X 8 38

EM 19 X 9 39

SUB lA X
•
• 3A X

ESC IB X
«

9 3B

FS IC X < 3C

GS ID X a 3D

RS IE X > 3E

US IF X 3F X

$ 40 X 60 X

A 41 a 61

B 42 b 62

C 43 c 63

D 44 d 64

E 45 e 65

F . 46 f 66

G 47 S 67

H 48 h 68

I 49 i 69

J 4A j 6A

K 4B k 6B

L 4C 1 6C

M 4D m 6D

N 4E n 6E

0 4F 0 6F

P 50 P 70

B - 1

0

ft

ft

ft

Q 51 q 71

R 52 r 72

S 53 s 73

T 54 t 74

U 55 u 75

V 56 V 76

W 57 w 77

X 58 X 78

Y 59 y 79

Z 5A z 7A

5B X 7B X

5C X 7C X

5D X 7D X

5E X 7E X

5F X DEL 7F X

B - 2

-rp-fTTT^

APPENDIX C

GLOSSARY

INTRODUCTION

The terms in this Chapter are defined in accordance with their meaning as
used in this document describing iCIS COBOL and may not have the same
meaning for other languages.

These definitions are also intended to be either reference material or
introductory material to be reviewed prior to reading the detailed language
specifications that are contained in this manual. For this reason, these
definitions are, in most instances, brief and do not include detailed
syntactical rules.

DEFINITIONS

Access Mode. The manner in which records are to be operated upon within a
file

Actual Decimal Point. The physical representation, using either of the
decimal point characters . (period) or , (comma) of the decimal
point position in a data item.

Alphabet-Name. A user-defined word in the SPECIAL-NAMES paragraph of the
Environment Division that assigns a name to a specific character
set and/or collating sequence.

Alphabetic Character. A character that belongs to the following set of
letters: A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y.Z and ^
the space. Also a,b,.c,d,e,f^,g,h,i,j ,k,l,m,n,o,p,q,.r,s,t
u,v»w,x,y and z which are converted to their upper case
equivalents.

Alphanumeric Character. Any character in the computer's character set.

Arithmetic Expression. An arithmetic expression can be an identifier or a
numeric elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by a arithmetic operator, or—an arithmetic
expression enclosed in parentheses.

Arithmetic Operator. A single character, or a fixed two-character combin
ation, that belongs to the following set:

Character Meaning
+ Addition

- Subtraction

* Multiplication
/ Division
** Exponentiation

Ascending Key. A key upon the values of which data is ordered starting with
the lowest value of key up to the highest value of key in
accordance with the rules for comparison of the data items.

C - 1

A

Assumed Decimal Point. A decimal point position which does not involve the
of an actual character in a data item. The assumed

decimal point has logical meaning but no physical representation.

At End Condition. A condition caused in one of two circumstances;

1. During the execution of a READ statement for a sequentially
accessed file.

2. During the execution of a RETURN statement when no next
logical record exists for the associated sort or merge file.

Called Program. A program which is the object of a CALL statement combined
at run time with the calling program to produce a run unit.

CaXling Progr«"^- A program which executes a CALL to another program,

Character. The basic indivisible unit of the language.

Character Set (CIS COBOL). The complete CIS COBOL character set consists
of all characters listed below:

Character

0,1,...,9
A,B,... ,Z
a,.b,•z

I

(
)
>

<

Meaning
Numeric digit
Uppercase alphabetic
Lowercase alphabetic.
Space (Blank)
Plus Sign
Minus Sign
Asterisk

Stroke (Virgule or Slash)
Equal Sign
Currency Sign
Comma

Semicolon

Period (Decimal Point, Fullstop=
Quotation Mark
Left Parenthesis
Right Parenthesis
Greater Than Symbol
Less Than S3rmbol

Character Position. A character position is the amount of physical storage
required to store a single standard data format character
described as usage in DISPLAY. Further characteristics of the
physical storage are defined by the implementor.

Character—String. A sequence of contiguous characters which form a
CIS COBOL word, a literal, a PICTURE character-string or a
c omment-entry.

Class Condition. The proposition, for which a truth value can be determined,
that the content of an item is wholly alphabetic or is wholly
numeric.

C - 2

clause. A clause is an ordered set of consecutive iCIS COBOL character-
strings whose purpose is to specify an attribute of an entry.

Collating Sequence. The sequence in which the characters that are
acceptable in a computer are ordered for purposes of sorting,
merging and or comparing.

Column. A character position within a print line. The columns are
numbered from one, by one, starting at the left-most character
position of the print line and extending to the right-most
character position of the print line.

Comment Entry. An entry in the Identification Division that may be any
combination of characters from the computer character set.

Coniiw*ant Line. A source program line represented by an asterisk in the
"indicator area of the line and any characters from the computer's
character set in area A and area B of that line. The comment line
serves only for documentation in a program. A special form of
comment line represented by a stroke (/) in the indicator area of
the line and any characters from the computer's character set in
area A and area B of that line causes page ejection before
printing the comment.

Compile Time. The time at which an iCIS COBOL source program is translated
by the compiler to an iCIS COBOL intermediate code program.

Compiler-Directing Statement. A statement,
compiler-directing verb, that causes
specific action during compilation.

beginning
the compiler

with

to take

Complex Condition. A condition in which one or more logical operators act
upon one or more conditions. (See Negated Simple Condition.

Computer-Name. A system-name that identifies the computer upon which the
program is to be compiled or run.

Condition. A status of a program at execution time for which a truth value
can be determined. Where the term "condition" (conditioh-1,
condition-2,...) appears in these language specifications in or in
reference to "condition" (condition-1, condition-2, ...) of a
general format, it is a conditional expression consisting of
either a simple condition optionally parenthesised, or a negated
simple condition.

Conditional Expression. A simple condition or a complex condition specified
in an IF, or PERFOEIM. (See Simple Condition and Complex
Condition.)

Conditional Statement. A conditional statement specifies that the truth
value of a condition is to be determined, and that the subsequent
action of the run-time program is dependent on this truth value.

Configuration Section. A section of the Environment Division that describes
overall specifications of source and run computers.

C - 3

•v-v;

•r'S

Connective. A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or
text-name with its qualifier.

2. Link two or more operands written in a series.
3. Form conditions (logical connectives). (See Logical

Operator.)

Contiguous Items. Items that are described by consecutive entries in
the Data Division, and that bear a definite hierarchic
relationship to one another.

Counter. A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number, or to be changed or reset to zero
or to an arbitrary positive or negative value.

CRT. An interactive input/output device comprising a cathode ray tube
by which an Operator can enter and receive visual data^

Currency Sign. The character "$" (dollar sign) in the iCIS COBOL character
set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in
an iCIS COBOL source program, the currency symbol is identical to
the currency sign.

Current Record. The record which is available in the record area associated
with the file.

Current Record Pointer. A conceptual entity that is used in the selection
of the nextrecord.

Cursor* The indicator on a CRT screen that marks the line and character
• position which the input/output control is currently referencing.

Data Clause. A clause that appears in a data description entry in the Data
Division and provides information describing a particular
attribute of a data item.

Data Description Entry. An entry in the Data Division that is composed of a
level—number followed by a data—name, if required, and then
followed by a set of data clauses as required.

Data Dictionary. A dictionary file of user defined names constructed by the
Compiler containing the number of bytes for each entry.

Data Item. A character or set of contiguous characters (excluding in either
case literals) defined as a unit of data by the iCIS COBOL
program.

Data-name. A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats, "data-name" represents a word which can neither be
subscripted, nor indexed unless specifically permitted by the
rules for that format.

C - 4

Debugging Line. A debugging line is any line with "D" in the indicator area
of the line.

Declaratives. A set of one or more special purpose sections written at the
beginning of the Procedure Division, the first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing
sequence, followed by a set of associated paragraphs (0 or more).

Declarative-Sentence. A compiler-directing sentence consisting of a single
USE statement terminated by the separator period (.).

Default Disk. The disk from, which the compiler on run-time system is loaded
and from which, in the absence of a specific drive identifier, any
copy file or called code will be loaded if required.

Delimiter. A character (or sequence of contiguous characters) that
identifies the end of a string of characters, and separates that
string of characters from the following string of characters. A
delimiter is not part of the string of characters that it
delimits.

Descending Key. A key upon the values of which data is ordered starting
with the highest value of key down to the lowest value of key, in
accordance with the rules for comparing data items.

Digit Position. A digit position is the amount of physical storage
required to store a single digit. This amount varies depending on
the usage of the data item describing the digit position. Further
charactersitics of the physical storage are defined by the
implementor.

Division. A set of sections or paragraphs (0 or more) that are formed and
combined in accordance with a specific set of rules are called a
division body. There are 4 divisions in an iCIS COBOL program:
Identification, Environment, Data and Procedure.

Division Header. A combination of words followed by a period and a space
that indicate the beginning of a division. The division headers
are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION USING data-name-1 data-name-2

Dynamic Access. An access mode in which specific logical records can be
obtained from or placed into a disk file in a non-sequential
manner (see Random Access) and obtained from a file in a
sequential manner (see Sequential Access) during the scope of the
same OPEN statement.

Editing Character. A single character or a fixed two character combination
belonging to the same set:

C - 5

Pi

Character Meaning
B Space
0 Zero
+ Plus

Minus

OR Credit
DB Debit
Z Zero Suppress
* Check Protect

$ Currency Sign
^ Conuna

Period (Decimal Point)
/ Stroke (Virgule, Slash)

Elementary Item. A data item that is described as not being further
logically subdivided*

End of Procedure Division. The physical position in a CIS COBOL source
program after which no further procedures appear.

Entry. Any descriptive set of consecutive clauses terminated by a
period (.(and written in the Identification Division, Environment
Division or Data Division of an CIS COBOL source program.

Environment Clause. A clause that appears as part of an Environment
Division entry.

Extend Mode. With the EXTEND phrase specified, the state of a file after
execution of an OPEN statement, and before the execution of a
CLOSE statement for the file.

Figurative Constant. A compiler-generated value referenced through the use
of certain reserved words.

File. A collection of records.

File Clause. A clause that appears as part of any of the following Data
Division entries:

File Description (FD)

FILE-CONTROL. The name of an Environment Division paragraph in which the
data files for a given source program are declared.

File Description Entry. An entry in the File Section of the Data Division
that is composed of the level indicator FD, followed by a
file-name, and then followed by a set of file clauses as required.

File-Name, A user-defined word that names a file described in a file
description entry or a sort-merge file description entry within
the File Section of the Data Division.

File Organization. The permanent logical file structure established at the
time that a file is created.

File Section. The section of the Data Divisionthat contains file
description entries together with their associated record
descriptions.

C - 6

Format. A specific arrangement of a set of data.

FORMS Program. A screen formatting .program that automatically generates
CIS COBOL CRT input/output coding from actual screen layout.

Group Item. A named contiguous set of elementary or group items.

High Order End. The leftmost character of a string of characters.

I-O-CONTROL. The name of an Environment Disvision paragraph in which
object program requirements for specific input/output techniques,
rerun points, sharing of same areas by several data files, and
multiple file storage on a single input/output device are
specified.

1-0 Mode. The state of a file after execution of an OPEN statement, with the
I-O phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Identifier. A data-name, followed as required, by the syntactically
correct combination of subscripts and indices necessary to make
unique reference to a data item.

Imperative Statement. A satement that begins with an Imperative verb and
specifies an unconditional action to be taken. An imperative
statement may consist of a sequence of Imperative statements.

Implementor-Name. A system-naii» that refers to a particular feature avail
able on the implementors computing system.

Index. A computer storage position or register, the contents of which
represent the identification of a particular element in a table.

Index Data Item. A data item in which the value associated with an
index-name can be stored in a form specified by the Implementor.

Indexed File. A file with indexed organizaton.

Indexed Organization. The permanent logical file structure in which each
record is identified by the value of one or more keys within that
record.

Indicator Area. The leftmost parameter position of a CIS COBOL source
record that indicates the use of the record.

Input File. A file that is opened in the input mode.

Input Mode. The state of a file after execution of an OPEN statement, with
the INPUT phrase specified, for that file and before the execution
of a CLOSE statement for that file.

Input-Output File. A file that is opened in the I-O mode.

Input-Output Section. The section of the Environment Division that names
the files and the external media by a program and which provides
information required for transmission and handling of data during
execution of the run-time program.

C - 7

: ')

Integer. A numeric literal or a numeric data item that does not
include any character positions to the right of the assumed
decimal point. Where the ter *integer* appears in general
formats, integer must not be a numeric data item, and must not be
signed, nor zero unless explicitly allowed by the rules of that
format.

Intermediate Code. The code produced by the CIS COBOL compiler from the
source code entered, and which the Run Time System *fast loads*
for execution.

Invalid Key Condition. A condition, at object time, caused when a specified
value of the key associated with an indexed or relative file is
determined to be invalid.

Issue Disk. The flexible diskette or which the CIS COBOL software is
supplied to users.

A data item which identifies the location of a record, or a set of
data items which serve to identify the ordering of data.

Key of Reference. The key currently being used to access records within an
indexed file.

Key Word. A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Level-Number. A user-defined word which indicates the position of a data
Item in the hierarchical structure of a logical record or which
indicates special properties of a data description entry. A
level-number is expressed as a one or two digit number.
Level-numbers in the range 1 through 49 indicate the position of a
data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit.
Level-number 77 identifies special properties of a data
description entry.

Library—Name. A user-defined word that names a CIS COBOL library
intermediate file that is to be used by the compiler for a given
source program compilation.

Library-Text. A sequence of character-strings and/or separators in a
COBOL library.

Line Sequential File Organization. A sequential file containing variable
length records separated by the C/R (carriage return) and L/F
(line feed) characters.

Linkage Section. The section in the Data Division of the called program
that describes data items available from the calling program.
These data items may be referred to by both the calling and called
program.

Literal. A character-string whose value is Implied by the ordered set of
characters comprising the string.

C - 8

Logical Operator* The reserved word *NOT*. It can be used for logical
negation.

Logical Record. The most inclusive data item. The level-number for a
record is 01.

Low Order End. The rightmost character of a string of characters.

Mnemonic-Name. A user-defined word that is associated in the Environment
Division with a specified implementor-name.

Native Character Set. The implementor-defined character set associated with
the computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-defined collating sequence
associated with the computer specified in the OBJECT-COMPUTER
paragraph.

Negated Simple Condition. The 'NOT' logical operator immediately followed
by a simple condition.

Next Executable Sentence. The next sentence to which control will be
transferred after execution of the current statement is complete.

Next Executable Statement. The next statement to which control will be

transferred after execution of the current statement is complete.

Next Record. The record which logically follows the current record of a
file.

Noncontiguous Items. Elementary data items, in the Working-Storage and
Linkage Sections, which bear no hierarchic relationship to other
data items.

Nonnumeric Item. A data item whose description permits its contents to be
composed of any combination of characters taken from the
computer's character set. Certain categories of nonnumeric items
may be formed from more restricted character sets.

Nonnumeric Literal. A character-string bounded by quotation marks. The
string of characters may include any character in the
computer's character set. To represent a single quotation mark
character within a nonnumeric literal, two contiguous quotation
marks must be used.

Numeric Character. A character that belongs to the following set of digits:
0. 1. 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its contents to a
value represented by characters chosen from the digits '0' through
'9'; if signed, the item may also contain a '+', '-', or other
representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that
also may contain either a decimal point, or an algebraic sign, or
both. The decimal point must not be the rightmost character. The
algebraic sign, if present, must be the leftmost character.

C - 9

O

o

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the
computer environment, within which the run-time program is
executed, is described.

Open Mode. The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, I-O or EXTEND.

Operand. Whereas the general definition of operand is *that component which
is operated upon*, for the purposes of this publication, any
lowercase word (or words) that appears in a statement or entry
format may be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or
a numeric literal, to indicate whether its value is positive or
negative.

Optional Word. A reserved word that is included in a specified format only
to improve the readability of the language and whose presence is
optional to the user when the format in which the word appears is
used in a source program.

Output File. A file that is opened in either the output mode or extend
mode.

Output-Mode. The state of a file after execution of an OPEN statement, with
the OUTPUT or EXTEND phrase specified for that file and before the
execution of a CLOSE statement for that file.

Paragraph. In the Procedure Division, a paragraph-name followed by a period
and a space and optionally by one, or more sentences. In the
Identification and Environment Divisions, a paragraph header
followed by zero, one, or more entries.

Paragraph Header. A reserved word, followed by a period and a space that
indicates the beginning of a paragraph in the Identification and
Environment Divisions. The perraissable paragraph headers are:

In the Identification Division:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

In the Environment Division:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

C - 10

Paragraph-Name. A user-defined word that identifies and begins a paragraph
in the Procedure Division.

Phrase. A phrase is an ordered set of one or more consecutive COBOL ' •^
character-strings that form a portion of a CIS COBOL procedural
statement or of a COBOL clause.

Prime Record Key. A key whose contents uniquely identify a record within an
indexed file.

Procedure. A paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections, within the
Procedure Division.

Procedure-Name. A user-defined word which is used to name a paragraph or
section in the Procedure Division. It consists of a
paragraph-name or a section-name.

Punctuation Character. A character that belongs to the following set:

Character Meaning

, comma

; semicolon
, period
" quotation mark
) left parenthesis
(right parenthesis

space

a equal sign

Random Access. An access mode in which the program-specified value of a key
data item identifies the logical record that is obtained from,
deleted from or placed into a relative or indexed file.

Record. (see Logical Record)

Record Area. A storage area allocated for the purpose of processing the
record described in a record description entry in the File
Section.

Record Description. (See Record Description Entry)

Record Description Entry. The total set of data description entries
associated with a particular record.

Record Key. A key, either the prime record key or an alternate record key,
whose contents identify a record within an indexed file.

Record-Name. A user-defined word that names a record described in a record
description entry in the Data Division.

Reference—Format. A format that provides a standard method for describing
COBOL source programs.

C - 11

r^

Relation. (See Relational Operator)

Relation Character. A character that belongs to the following set:

Character Meaning

> greater than
< less than
s equal to

Relation Condition. The proposition, for which a truth value can be
determined, that the value of an arithmetic expression or data
Item has a specified relationship to the value of another
arithmetic expression or data Item. (See Relational Operator).

Relational Operator. A reserved word, a relation character, a group of
consecutive reserved words, or a group of consecutive reserved
words and relation characters used In the construction of a
relation condition. The permlssable operators and their meaning
are:

Relational Operator Meaning

IS NOT GREATER THAN Greater than or not greater

IS NOT >

IS NOT LESS THAN Less than or not less than

IS NOT <

IS NOT EQUAL TO Equal to or not equal to
IS NOT SB

Relative File. A file with relative organization.

Relative Key. A key whose contents Identify a logical record In a relative
file.

Relative Organization. The permanent logical file structure In which each
record Is uniquely Identified by an Integer value greater than
zero, which specifies the record's logical ordinal position In the
file.

Reserved Word. A COBOL word specified In the list of words which may be
used In COBOL source programs, but which must not appear In the

•programs as user—defined words or system—names.

Routine-Name. A user-defined word that Identifies a procedure written In a
language other than COBOL

Run-Time Debug. An option available to CIS COBOL programmers entered as a
user option enabling break-point facilities In run-time programs.

Run-T-fmp. The time at which the Intermediate code produced by the compiler
Is Interpreted by the Run Time System for execution.

C - 12

Run-Ttme-System-CRTS). The software that interprets the intermediate code
produced by the CIS COBOL conq)iler and enables it to be executed -
by providing interfaces to the operating system and CRT.

Run Unit. Aset of one or nore intermediate code programs which function, at /Q
""""""" run time, as a unit to provide problem solutions.

Section. A set of none, one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body.

Section Header. A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment, Data and
Procedure Division.

In the Environment and Data Divisions, a section header is composed of
reserved words followed by a period and a space. The permissible section
headers are:

In the Environment Division:

CONFIGURATION SECTION

INPUT-OUTPUT SECTION

In the Data Division:

FILE SECTION

WORKING-STORAGE SECTION

LINKAGE SECTION

In the Procedure Division, a section header is composed of a section-name,
followed by the reserved word SECTION, followed by a segment-number
(optional), followed by a period and a space.

Section-Namta^ A user-defined word which names a section in the Procedure
Division.

Segment-Number. A user-defined word which classifies sections in the
Procedure Division for purposes of segmentation. Segment-numbers
may contain only the characters *0*, *!*» •••» '9'. A
segment-number may be expressed either as a one or two digit
number, and is checked for syntax only.

Sentence. A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

Separator. A punctuation character used to delimit character-strings.

Sequential Access. An access mode in which logical records are obtained from
or placed into a file in a consecutive predecessor-to-successor
logical record sequence determined by the order of records in the
file.

Sequential File. A file with sequential organization.

C - 13

Sequential Organization. The permanent logical file structure in which a
record is identified by a predecessor-successor relationship
established when the record is placed into the file.

Sign Condition. The proposition, for which a truth value can be determined,
that the algebraic value of a data item or an arithmetic
expression is either less than, greater than, or equal to zero.

Simple Condition. Any single condition chose from the set;

relation condition

class condition
switch-status condition
sign condition
(simple-condition)

SOURCE-COMPUTER. The name of an Environment Division paragraph in which
the computer environment, within which the source program is
compiled, is described.

Source Program. Although it is recognised that a source program may be
represented by other forms and symbols, in this document it always
refers to a syntactically correct set of COBOL statements
beginning with an Identification Division and ending with the end
of the Procedure Division. In contexts where there is no danger
of ambiguity, the word *program* alone may be used in place of the
phrfiise *source program*.

Special Character. A character that belongs to the following set:

Character

(
)
>

<

Meaning

plus sign
minus sign
asterisk

stroke (virgule, slash)
equal sign
currency sign
comma (decimal point) '
semicolon

period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

Special-Character Word. A reserved word which is an arithmetic operator or
a relation character.

SPECIAL-NAMES. The name of an Environment Division paragraph in which
implementor-names are related to user specified mnemonic-names.

Special Registers. Compiler generated storage areas whose primary use Is to
store information produced in conjunction with the user of
specified COBOL features.

C - 14

; t l-U

standard Data Format. The concept used in describing the characteristics of
data in a COBOL Data Division under which the characterstics or
properties of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite length and
breadth, rather than a form oriented to the manner in which the
data is stored internally in the computer, or on a particular
external medium.

Statement. A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb.

Subprogram. (See Called Program).

Subscript. An integer whose value identifies a particular element in a
table.

Subscripted Data-ilame. An identifier that is composed of a data-name
followed by one or more subscripts enclosed in parenthesis.

Switch-Status Condition. The proposition, for which a truth value can be
that an implementor-defined switch, capable of being

set to an *on' or *off* status, has been set to a specified
status.

Symbol Function. The use of specified characters in the PICTURE clause to
represent data types.

System-Name. A COBOL word which is used to communicate with the operating
environment.

Syntax. The order in which elements must be put together to form a
program.

Table. A set of logically consecutive item^ of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items
comprising a table.

Text-Name. A user-defined word wich identifies library text.

Text-Word. Any character-string or separator, except space, in a COBOL
library or in pseudo-text.

Unary Operator. A plus (+) or a minus (-) sign, wich precedes a variable or
a left parenthesis in an arithmetic expression and which has the
effect of multiplying the expressing of +1 or -1 respectively.

User-Defined Word. A COBOL word that must be supplied by the user to
satisfy the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb. A word that expresses an action to be taken by a COBOL compiler or
run time program.

C - 15

Word. A character-string of not more than 30 characters which forms a
user-defined word, a system-name, or a reserved word.

Working-Storage Section. The section of the Data Division that describes
working storage data items, composed either of noncontiguous items
or of working storage records or of both.

77 Level-Description-Entry. A data description entry that describes a
noncontiguous data item with the level-number 77.

C - 16

APPENDIX D

COMPILE-TIME ERRORS

The error descriptions that correspond to error numbers as printed on
listings produced by the CIS COBOL compiler are as follows:

ERROR DESCRIPTION

01 Compiler Error
02 Bad lexical item: data-name
03 Bad lexical item: literal
04 Bad lexical item: character
05 data-name declared twice
06 Dictionary overflow
07 Illegal character in column 7
08 Nested COPY or unknown file
09 CIS COBOL extension used with ANS directive
10 Wrong area A/B
21 missing
22 'DIVISION' missing
23 'SECTION' missing
24 'IDENTIFICATION' missing
25 'PROGRAM-ID' missing
26 'AUTHOR' missing
27 'INSTALLATION' missing
28 'DATE-WRITTEN' missing
29 'SECURITY' missing
30 'ENVIRONMENT' missing
31 'CONFIGURATION' missing
32 'SOURCE-COMPUTER' missing
33 MEMORY SIZE/COLLATING SEQUENCE in error
34 'OBJECT-COMPUTER' missing
36 'SPECIAL-NAMES' missing
37 SWITCH Clause in error
38 DECIMAL-POINT Clause in error
39 CONSOLE Clause in error
40 Illegal currency symbol
41 '.' missing
42 'DIVISION' missing
43 'SECTION' missing
44 'INPUT-OUTPUT' missing
45 'FILE-CONTROL' missing
46 'ASSIGN' missing
47 'SEQUENTIAL' or 'INDEXED' or 'RELATIVE' missing
48 'ACCESS' missing on indexed/relative file
49 'SEQUENTIAL/DYNAMIC' missing
50 Illegal combination ORGANIZATION/ACCESS/KEY
51 SELECT Clause phrase unrecognised
52 RERUN Clause syntax error
53 SAME AREA Clause syntax error
54 file-name missing
55 'DATA DIVISION' missing
56 'PROCEDUEIE DIVISION' missing or unknown statement
61 - ' missing
62 'DIVISION* missing ^

D - 1

63 'SECTION* missing
64 file-name is not selected
65 Record size integer missing
66 Illegal level number)01-49» or 01 level required
67 FD qualification contains syntax error
68 'WORKING-STORAGE' missing
69 'PROCEDURE DIVISION' missing or unknown statement
70 Data Description Qualifier or '.' missing
71 SIGN/USAGE illegal with COMP data-item or unsigned

PICTURE data or incompatible with other qualifier
72 BLANK is illegal with non-numeric data-item
73 PICTURE clause too long (Numberic 18 Numeric

Edited 512 Alphanumeric 8192)
74 VALUE clause on non-elementary data-item, or truncation,

or wrong data type
75 'VALUE* in error or illegal for PICTURE type
76 FILLER/SYNCHRONIZED/JUSTIFIED/BLANK non-elementary

item

77 Level 0 or level with more than 8192 bytes
78 REDEFINES of unequal fields or different levels.
79 Data storage exceeds 64K bytes
80 'DYNAMIC' only allowed in non-ANS and at level 01
81 Data Description Qualifier inappropriate or repeated
82 REDEFINES data-name not declared
83 USAGE must be COMP, DISPLAY or INDEX
84 SIGN must be LEADING or TRAILING
85 SYNCHRONIZED must be LEFT or RIGHT
86 JUSTIFIED must be RIGHT
87 BLANK must be ZERO
88 OCCURS must be numeric, non-zero and unsigned
89 VALUE must be a literal, numeric literal or

figurative constant
90 PICTURE string has illegal precedence or illegal

character

91 INDEXED data-name missing or already declared
92 numeric edited PICTURE string is too large

101 Unrecognised verb
102 If ... else mismatch
103 Wrong data-type
104 Paragraph name declared twice
105 Paragraph name same as data-name
106 Name required
107 Wrong combination of data types
108 Conditional imperative statement
109 Malformed subscript
110 ACCEPT/DISPLAY wrong
111 Bad I/O Syntax
116 Ifs nested too deep
117 Bad skeletal structure of Procedure Division
118 Obligatory Reserved Word missing
119 Subscript vector overflow
120 Intermediate code output buffer overflow
140 Inter-segment procedure name check
142 If ... mismatch at end of Source Input
143 Wrong data-type
144 Paragraph name undeclared
145 Index-name declared twice

D - 2

f

146 Bad cursor control
147 KEY declaration missing
148 STATUS declaration missing
149 Bad STATUS record
151 PROCEDURE DIVISION in error
152 USING parameter not declared in linkage section
153 USING parameter is not leve 01 or 77
154 USING parameter used twice in parameter list
156 I-O Error on auxiliary segmentation files
157 Bad skeletal structure of Procedure Division
160 Intermediate Code Output buffer overflow

D - 3

APPENDIX E

RUN-TIME ERRORS

Rub—Time error loesseges are preceded by the name and segment number of the
currently executing Intermediate code file.

Run-time errors can be either recoverable or fatal, as described below:

RECOVERABLE ERRORS

Recoverable error handling is programmed by the CIS COBOL programmer using
the file STATUS reserved word, A decision can be made to terminate or
recover from the error.

FATAL ERRORS

All run-time errors that are not handled as recoverable errors are fatal.
They can arise from the operating system or from the Run-Time System, Fatal
gyyors cause a message to be output to the sceen that includes a 3—digit
error code and a reference to the CIS COBOL statement in which it occurred.
Fatal errors can be of two types, as follows:

1. Exceptions

2.

These cover arithmetic overflow, subscript out of range, too many
levels of perform nesting.

I/O errors.

These exclude those for which STATUS is not selected as above.

ERROR

151
152

153

154

155

156

157

158

159

160

161

163

164

165

170

171

172

173

180

181

DESCRIPTION

Random read on sequential file
REWRITE on file not open for I/O
Subscript out of range
Perform nesting excees 22 levels
Illegal command line
Invalid file operation
Object file too large
REWRITE on line-sequential file
Malformed line-sequential file
Overlay loading error
Illegal intermediate code
AT cursor position is off screen
Specified code not found
Incompatible releases of compiler and run-time system
Illegal operation in indexed Sequential
Attempt to read I-S record in output/extend mode
Attempt to delete I-S record in non I/O mode
Attempt to write I-S record in input mode
COBOL file malformed

Fatal file malformation

E - 1

APPENDIX F

SYNTAX SUMMARY

All the syntax for CIS COBOL Is summarised below.

E denotes that the feature is a CIS COBOL extension to ANSI COBOL.

D denotes that the feature is documentary only in CIS COBOL,

GENERAL FOFMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION,

PROGRAM-ID, program name

AUTHOR, [comment entry],,.

INSTALLATION. [comment entry] ...

DATE-WRITTEN. [comment entry] .,,

DATE-COMPILED, [comment entrjQ .,,

SECURITY. [comment entrj^-. •.,

F - 1

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER, source-computer-entry

OBJECT-COMPUTER, object-computer-entry

[(WORDS y
.MEMORY SIZE integer ' CHARACTERS \

I MODULES)

[.PROGRAM COLLATING SEQUENCE IS alphabet-name] .
SPECIAL-NAMES

0 I
. >[^ mnemonic-name]
• I

7)

ON STATUS ^ condition-name-1

[OFF STATUS condition-name-2]J
.CURRENCY SIGN literal-sj

".DECIMAL-POINT IS COMMA

.CURSOR IS data-name-I

'.CONSOLE IS CR^

SWITCH

•j^INPUT-OUTPUT SECTION.
FILE-CONTROL.KUt.. -|

Ifile-control-entry}... J .

j^^-O-CONTROL
r» rerun [ON ffile-name.-l 1"1
L L \ implementor-name f J

(END OF (REEL \)
< \UNIT / >
(integer-1 tlECORDS)EVERY (1 integer-
integer-2 CLOCK-UNITS
condition-name

OF file-name-2

SAME AREA FOR file-name-1 {,file-name-2f....] .

F - 2

•A ^ -v:

GENERAL FORMAT FOR FILE-CONTROL ENTRY

Sequential SELECT:

SELECT file-name

ASSIGN TO (external-file-name-literal
}file-identifier

;ORGANISATION SEQUENTIAL
LINE SEQUENTIAL'(J

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS data-name] .

Relative Select:

SELECT file-name

1 [•!,f external-file-name-literalM
file-identifier

ASSIGN TO j external-file
«file-identifier

-name-literal) f, <extemal-file-name-literal)"!
er ' I <file-identifier U

ORGANISATION IS RELATIVE

(. SEQUENTIAL

;ACCESS MODE IS ^ / RANDOM \
I) dynamic j

[;FILE STATUS IS data-name]

Indexed Select:

SELECT file-name

.RELATIVE KEY IS data-name)

.RELATIVE KEY IS data-nameV

ASSIGN TO jextemal-file-name-literalJ j",! external-file-name-literal)."|
f ile-identifier

;ORGANISATION IS INDEXED

f ile-identifier

(SEQUENTIAL >
;ACCESS MODE IS < RANDOM >

}DYNAMIC)

;RECORD KEY IS data-name

[;FILE STATUS IS data-name]

F - 3

GENERAL FORMAT FOR THE DATA DIVISION

DATA DIVISION.

FILE SECTION.

FD file-name

P,
ft RECORD CONTAINS [integer-1 integer-2- CHARACTERS]

BLOCK CONTAINS integer (RECORDS Vl
>CHARACTERS | J

C (RECORD IS) (STANDARD!; LABEL f RECORDS AREj YOMITTED ;

VALUE OF data-name-l IS literal-l
data-name—2 IS literal-2

r DATA I RECORD IS

RECORDS ARE.
data-name-l[, data-aame-2]

[; CODE-SET IS alphabet-name]

Qrecord-descript ion-entry]

WORKING-STORAGE SECTION
77-level-description-entryl
record-description-entry J

LINKAGE SECTION

•]•

...]

^77-level-description-entry'l ^̂ J
record-description-entry J

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

level-number data-name

FILLER

[;REDEFINES data-name]

r |̂̂ 22M}is picture-string
ICOMPUTATIONAL

COMP

;USAGE IS
COMPUTATIONAL-3

COMP-3

DISPLAY

INDEX

"i

D

D

D

D

; SIGN IS] [SEPARATE CHARACTERlj
OCCURS integer TIMES INDEXED BY index-name-1 [, index-name-2] ...]

fd SYNCHRONIZED) f LP"!]]
[ISYNC ; 1RIGHT (j
fu JUSTIFIED] RIGHT
[_i JUST j
[;BLANK WHEN ZERO]

[;VALUE IS literal] .
F - 4

]

GENERALFORMATFORPROCEDUREDIVISION

Declarativeformat:

PROCEDUREDIVISION[uSINGdata-name-1[,data-aame-2]...].

DECLARATIVES.

section-aameSECTIONsegment-number,declarative-sentence
paragraph-name,[sentence]

ENDDECLARATIVES.

Isection-nameSECTION[segment-number]
^paragraph-name[sentence]•••J.

Non-declarativeformat:

PROCEDUREDIVISION[USINGdata-name-1[,data-name-2]...].
Iparagraph-name[sentence]

GENERALFORMATFORVERBS

I'I^Q^C'I

FROMCRT acceptdataname-l|j]
ACCEPTidentifier[FROMCONSOLE]

ADD[identifier-l\/identifier-2^...TOidentifier[ROUNDED] \literal-1nliteral-2

[;ONSIZEERRORimperative-statement]

/identifier-l)/identifier-2\;/identifier-3\
literal-1/\literal-2(lliteral-3

GIVINGidentifier[ROUNDED]

[;ONSIZEERRORimperative-statement]

CALLfj[USINGdata-name-1[,data-name-2]...] \literal-1/
DDD

CLOSEfile-name[WITHLOCK],file-name[WITHLOCK]

DELETEfile-nameRECORD;INVALIDKEYimperative-statement

2^SMl{utera"r"^}'"•CONSOLE]
Avi/data-name-2)1UPONfCRT]^ DISPLAY|j^j^teral-3/[iliteral-4/J1CRT-UNDERf

F-5

DIVIDEINTOidentifier-2[ROUNDED] •—\literal-!}—

[;0NSIZEERRORimperative-stateiuent]

DIVIDE{uteral-"'̂}identifiet-2[ROUNDED] literal-

[;0NSIZEERRORimperative-statement]

identifier-!Iidentifier-2
DIVIDE

/identifier-Hidentifier-2cxviNGidentifier-3[ROUNDED]
\literal-!/—literal-2

[;0NSIZEERRORImperative-statement]

enterlanguage-nameroutine-name.

E3QT.

GOTOprocedure-name.

GOTOprocedure—name—1|»procedure—name—2[•••
DEPENDINGONidentifier

(statement-!)/;ELSEstatement-2] condition;|j^g^TSENTENCE/\;ELSENEXTSENTENCEf

INSPECTidentifier-1TALLYING
lilfLI(
.OLEADINGf<:
tCHARACTERS»^
/identifier-4)lI[
\literal-3jJ****"

identifier-2POR

BEFORE BEFORE)

nAFTER/
INITIAL

INSPECTidentifier-!REPLACING

identifier-6

|[,]LEADING1,I (FIRST)^

{S}•»""{ssr'}

identifier-5

literal-3}^{

'identifier-3

literal-2
>1

identifier-6

literal-4}

INSPECTidentifierTALLYINGtally-clauseREPLACINGreplacing-clause

fidentifier-lj,identifier-2[,identifier-3] MOVE
literal-

F-6

v.

MULTIPLYi<lentifier-2[ROUNDED]

[;ONSIZEERRORimperative-statement]

MULTIPLYI}®^{uteral-r"^}Identifler-3[ROnNDED]
[;ONSIZEERRORimperative-statement]

OPEN

INPUT

OUTPUT

I-O

EXTEND

file-name-1file-name-z],

(THROUGH^
PERFORMprocedure-name-1^J-procedure-name-2

(THROUGH)j«/identifier-1) 1procedure-name-2jf

PERFORMprocedure-name-Iprocedure-name-2UNTILcondition

RKAnfile-name[NEXT]RECORD[INTOidentifier]

[;ATENDimperative-statement]

READfile-nameRECORD[INTOidentifier]

[;INVALIDKEYimperative-statement]

REWRITErecord-name[FROMidentifier]

[;INVALIDKEYimperative-statement]

TIMES

SET{identifier- index-name

-1\/[identifier-2])ii?by1
:-l;\[index-name-2]/''*

uisi;il L(ISNOT<)J

Iidentifier-
<index-name-

(integer-l

STARTfile-namedata-name

[;INVALIDKEYImperative-statement]

F-7

•A

STOP

SUBTRACT

i RUN)
\ literal/

/ identifer-1 If, / identifier-2)l
tliteral-1 / [\ literal-2 fj'" FROM identifier-3 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

SUBTRACT
(identifier-1 rjidentifier-2\l [identifier-3)
iliteral-1 [iliteral-2 I^tliteral-3 /

GIVING identifier-4 [ROUNDED]

[; ON SIZE ERROR Imperative-statement]

USE AFTER STANDARD | } PROCEDURE ON

WRITE record-name [FROM identifier]
integer

BEFORE
advancing^ AFTER f i PAGE)

1 TAB /

WtULTE record-name FROM identifier

BLINE (
LINESf

[;INVALID KEY imperative-statement]

GENERAL FORM FOR COPY STATEMENT

COPY 'text-name

F - 8

file-name

INPUT

OUTPUT

I-O

EXTEND

^ -•

APPENDIX G

SUMMARY OF EXTENSIONS TO ANSI COBOL

CIS COBOL is oriented to microcomputer users with the system close at hand
and usually with a CRT. CIS COBOL therefore provides extensions for
interactive working, program control of files, text file handling and rapid
development and testing. These facilities are summarised below.

SCREEN FORMATTING AND DATA ENTRY

THE ACCEPT STATEMENT

An additional format for the ACCEPT statement is provided as follows:

Format

ACCEPT dataname-l

data-name-2

data-name-1

literal-1

allows the start of screen to be changed dynamically. It
refers to a PIC 9999 field where the most significant 99 is a
line count 1-25 and the least significant 99 is a character
position 1-80.

refers to a record, group or elementary item but may not be
subscripted.

is in alphanumeric literal

NOTE: See Chapter 3 for description.
Environment Division changes.

See also Appendix H for

THE DISPLAY STATEMENT

An additional format for the DISPLAY statement is provided as follows:

Format

DISPLAY

literal-3

dataname-l

dataname-2

NOTE:

/data-name-
\literal

fdatan.me-2n ^fCRT |
Iliteral-1 /J 1cht-under /

is an alphanumeric literal

refers to a record, group or elementary item but may not be
subscripted

defines the left-most position on the screen. It refers to a
PIC 9999 field where the most significant 99 is a line count
1-25 and the least significant 99 is a character position
1-80.

See Chapter 3 for description.

G - 1

. -.,1

DISK FILES

Two extensions are offered by CIS COBOL file processing, these are as
follows:

1.

2.

Line sequential files
Run time input of filenames

LINE SEQUENTIAL FILES

When LINE SEQUENTIAL ORGANIZATION is specified in the FILE CONTROL
paragraph ORGANIZATION is entry, the file is treated as consisting of
variable length records separated by C/R L/F characters. Trailing spaces in
output records are replaced by C/R L/F records.

RUN TIME INPUT OF FILENAMES

The ASSIGNed name in the SELECT statement for a file is processed on
OPENing as follows:

When the INPUT or OUTPUT phrase is specified, execution of OPEN causes
checking of the files names in accordance with the operating system
connections for opening on input or output file. The full operating system
features for file reallocation and device control are therefore available to
the CIS COBOL program.

LOWER CASE CHARACTERS

The full alphanumeric lower case a to zis available in CIS COBOL.
Reserved and user word characters are read as their upper case equivalents
(A to Z).

hexadecimal VALUES

Hexadecimal binary values can be attributed to non—numeric literals in
CIS COBOL by expressing them as X "xx", where x is a hexadecimal character
in the set 0-9, A-F; xx can be repeated up to 120 times, but the number of
hexadecimal digits must be even.

INTERACTIVE DEBUGGING

There is a Run-Time Debug Package to provide break-point facilities in
the user@s program. Programs may be run from the start until a specified
|)reak—point is reached, when control is passed back to the user. At this
point, data areas may be inspected or changed.

The debug package is entered as an option by the user and the user
program is then tested line by line, paragraph by paragraph and so on as
required. The commands to the package can reference procedure statements
and data areas by means of a 4 digit hexadecimal code output by the compiler
against each line of the compilation listing. Powerful macros of commands
can be used to give very sophisticated debugging facilities. The precise
details for using the package vary according to the host operating system
and are described in the appropriate Operating Guide.

G - 2

APPENDIX H

SYSTEM DEPENDENT LANGUAGE FEATURES

This Appendix summarises those parts of a COBOL program that need to be
changed to run them as CIS COBOL programs and those parts that do not need
changing specifically but are ignored by the CIS COBOL compiler when
generating the object program.

MANDATORY CHANGES

ENVIRONMENT DIVISION

The only statements in the environment
specialised for CIS COBOL are shown below;

Configuration Section

SPECIAL-NAMES, special names entry

special names entry must include the following:

CURSOR IS data-name-1

division that must be

The CURSOR IS data-name-1 clause specifies the data-name which will contain
the CRT cursor address as used by ACCEPT statements. Data—name-1 must be
declared in the Working-Storage section as a 4 character item. The
interpretation of the 4 characters is given in the ACCEPT statement
description.

Input-Output Section

File names must be as described in Appendix F of the CIS COBOL
Operating Guide.

STATEMENTS COMPILED AS DOCUMENTATION ONLY

COBOL programs not specifically written for compilation as CIS COBOL on
microcomputers can still be compiled. Statements using features that are
not available are treated as documentary only, and are not compiled. A
summary of these features follows:

ENVIRONMENT DIVISION

I-O-Control Paragraph

The clauses that refer to a real time clock and magnetic tape in this
paragraph are ignored by the compiler during compilation but do not cuase
compile times errors. These clauses are as follows:

m 0^(11} of file-name-2 (no magnetic tape)

H - 1

-1^

integer-2 CLOCK UNITS

DATA DIVISION

File Description Paragraph

(no clock)

The following complete statements in the file description are ignored
by the compiler during compilation but do not cause compile time errors:

BLOCK CONTAINS integer-1 TO integer-2

7 RECORDS I
(CHARACTERS/

CODE-SET IS alphabetic-name

LABEL {
RECORD IS)
RECORDS ARE/

STANDARD)
OMITTED /

value of implementor-name-1 IS literal-1
[,implementor-name-2 IS literal-2] •••

PROCEDURE DIVISION

CLOSE Statement

The following phrases in the CLOSE statement are ignored by the
compiler during compilation but do not cause compiler-time errors;

/ REEL V
1 UNIT f

(No magnetic tape)

fl - 2

APPENDIX I ^

LANGUAGE SPECIFICATION

CIS COBOL is ANSI COBOL as given in "American National Standard Programming
Language COBOL" (ANSI X3.23 1974). CIS COBOL implements both levels of
ANSI COBOL. The following modules are fully Implemented at Level 1:

Nucleus

Table Handling
Sequential. Input and Output
Relative Input and Output
Indexed Input and Output
Segioantation
Library
Inter-Program Communication

In addition many Level 2 features are implemented such as:

, Nucleus —Nested IF, PERFORM UNTIL
Table Handling - Multiple dimensions of variable length table

handling.
Relative and Indexed sequential I/O - START statement

. Inter-Program Communication —Fully implemented

This appendix specifies the implementation of Version 4.2 CIS COBOL. The
implementation of each of the eight standard COBOL modules listed above is
given under the following headings as applicable:

Level 1 Implementation
Level 2 Implementation
CIS COBOL Extensions

Appendix F in this manual is a CIS COBOL syntax summary.

I - 1

NOCLEOS

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

1. DATE-COMPILED in the Identification Division is accepted for
documentation purposes only.

2. Up to 49 Level Numbers are permitted and 1-9 can be a single digit.

3. The characters , and ; are permitted as separators

4. The character '>*, and '<* are permitted in relative conditions.

5. The PERFORM ... THROUGH ... UNTIL feature is implemented.

6. Plural forms of the figurative constants can be used.

7. IF statements can be nested.

8. Mnemonic names are permitted in ACCEPT and DISPLAY statements (See
CIS COBOL extensions 6 and 7 below).

9. Procedure names can be all digits.

10. REDEFINES clauses can be nested.

11. Non-nximeric operands can be compared.

CIS COBOL Extensions

1. Lower case letters a to z are read as upper case letters A to Z.

2. Hexadecimal binary values can be attributed to non-numeric values by
expressing literals as X"nn".

3. Reserved word SPACE can be used to clear the whole CRT screen.

4. ANS switch not set enables omission of certain ANSI required "red tape"
paragraphs and statements.

5. COMPUTATIONAL-3 or COMP-3 can be specified in the USAGE clause to
specify packed internal decimal storage, (BCD).

6. ACCEPT data-na»e-l [aI {li^eraH'̂ }]

gives enhanced CRT input features

1-2

7. display I/[^^\literal-2 /J "^°^tcRT-UNDER/

gives enhanced CRT output facilities.

8. 'CURSOR IS data-name' can be specified in SPECIAL-NAMES and 'data-name'
in WORKING-STORAGE section to specify CRT cursor address for ACCEPT
statements

SEQUENTIAL, RELATIVE AND INDEXED I-O

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

1. - The START statement is fully supported for Relative and Indexed files.

2. In sequential files, EXTEND is supported.

3. In OPEN and CLOSE statements:

(reel)
\unit/

are accepted for documentation purposes only.

4. LOCK in the CLOSE statement is treated as documentary only.

5. Dynamic access mode and READ NEXT are supported for relative and
indexed files.

6. Only the first assignment in each ASSIGN is actioned, others are
treated as documentary only at compilation.

7. The I-O-CONTROL paragraph is treated as documentary only as are its
RERUN and SAME AREA clauses.

8. The following are treated as documentary only in the FD clause:

BLOCK CONTAINS

CODE-SET

DATA RECORDS

LABEL RECORDS

RECORDS CONTAINS

VALUE OF

CIS COBOL Extensions

1. Run Time allocation of file—names. See Appendix F in Operating Guide.

1-3

• •;

2. LINE SEQUENTIAL is an additional file type.

3. All File Description (FD) clauses are optional when ANS switch is
unset.

4. Tabbing is available, specified by TAB in the WRITE statement.

TABLE HANDLING

Level One Implementation

Fully implemented to Level One.

CIS COBOL Extensions -;J

1, Items can be. accessed in tables up to 49 dimensions. This extension is
restricted to three dimensions if the ANS switch is set.

r

SECaiENTATION

Level One Implementation

Fully Implemented to Level One

LIBRARY

Level One Implementation

Fully implemented to Level One

DEBUG

Level One Implementation

Implemented as a subset of Level 1, but with an additional Run—Time Debug
package. Only Compile-time switch and Debugging lines are implemented of
the standard COBOL Debug.

1-4

CIS COBOL Extensions ^
A powerful Run-Time Debug package is available. See Chapter 3 in the
CIS COBOL Operating Guide.

t.

\.r .

INTER-PROGRAM COMMUNICATION

Level Two Implementation

Fully implemented to Level Two.

7^
V

1-5

A
ACCEPT Statement, 3-36
Access Mode, 5-1,6-1,7-1
ADD Statement, 3-39
Algebraic Signs, 2-12
Alignment Rules, Standard,

2-12

Alphabetic Data Rules, 3-12
Alphanumeric Data Rules,

3-13
Alphanumeric Edited Data

Rules, 3-13
ALTER Statement, 3-41,8-4
ANSI (ANS) Compiler

Directive, 2-15
Area, Indicator, 1-4
Arithmetic Statements, 3-45
AT END Condition, 5-3, 6-4

7-4

Blank Lines, 2-25
BLANK WHEN ZERO Clause, 3-8
BLOCK CONTAINS Clause, 5-9,

6-9, 7-9
Body, Procedure Division,

2-21

CALL Statement, 11-4
CANCEL Statement, 11-5
Character Representation and

Radix, Selection of, 2-10

Character Sets, 2-1
Character Strings, 2-3
Character Strings, PICTURE

2-8

CIS COBOL, What It Is, 1-1
Class Condition, 3-32

ALPHABETIC INDEX

Classes of Data, Concepts,
2-9

Classification, Segmentation,
8-2

Clause, BLANK WHEN ZERO, 3-8
Clause, BLOCK CONTAINS, 5-9,

6-9,7-9
Clause, CODE-SET, 5-9
Clause, DATA-NAME or. FILLER,

3-9

Clause, DATA RECORDS,: 5-8,h j6-9,
7.9 - -

Clause, JUSTIFIED,
Clause, LABEL RECORDS, 5-10,

6-10, 7-10
Clause, OCCURS, 4-1
Clause, PICTURE, 3-11
Clause, RECORD CONTAINS, 5-9

6-10, 7-10
Clause, REDEFINES, 3-21
Clause, SIGN, 3-21
Clause, SYNCHRONISED, 3-25
Clause, USAGE, 3-27, 4-3
Clause, VALUE, 3-28
Clause, VALUE OF, 5-11, 6-10,

7-10

CLOSE Statement, 5-12, 6-12
7-11

COBOL Words, 2-3
CODE-SET Clause, 5-9
Comment Lines, 2-27
Comment Entries, 2-8
Comparison Involving Index

Names and/or Index Data
Items, 4-4

Comparison of Nonnumeric
Operands, 3-31

Comparison of Numeric
Operands, 3-31

Compile Time Switch, 10-1
Compiler Directives, ANS,

2-15

COMP(UTATIONAL)(-3) PICTURE
Clause, 2-10

Computer Independent Data
Description, Concept of,

2-8

Index - 1

Concept, Classes of Data,
2-9

Concepts, Computer
Independent Data
Description, 2-8

Concepts, Language, 2-1
Concepts, Levels, 2-9
Condition-Name, 2-4, 2-14
Condition-Name Rules 3-18
Conditional Expressions,

3-30
Conditions, AT END, 5-3, 6-4

7-4

Conditions,
Condltionis,

Class., 3-32
INVALID KEY, 5-3

6-3, 7-4
Conditioi^,. Relation, 3-30,

4|^
Conditions, Simple, 3-30
Conditions, .Switch-Status,
, V3-33 .

CONFIGURATION SECTION, 3-3
Connectives, 2-5
Constants, Figurative, 2-5
Continuation of _Lines,,2-25
COPY Statement, 9-2
CRT Devices, 3-35
Current Record Pointer, 5-1

6-1, 7-1

Data Description, Computer
Independent, Concept of,

2-8

Data Description, Entries
Other Than Condition-Names

3-29
Data Description, Entry

Skeleton, 3-6
Data Dictionary, 12-2
Data Division Entries, 2-26
Data Division in Indexed T-O

Module, 7-8
Data Division in

Interprgo.ram Communication
Module, 11-1 .

Data Division in Nucleus, *

' "3-6 , •
Data Division in'Relative"

I-O Module, 6-8
Data Division in Sequential

1-0 Module, 5-7

Data, Incompatable, 3-35
DATA-NAME or FILLER Clause, 3-9
DATA RECORDS Clause, 5-7, 6-9

7-9

DATE-COMPILED Paragraph, 3-2
Debug, 10-1
Debugging Lines, 10-1
Debug, Run Time, 10-1
Declarations, 2-20
Declaratives, 2-26
DELETE Statement, 6-13, 7-1
DISPLAY Statement, 3-42
DIVIDE Statement, 3-44
Division Format, 2-25
Division Header, 2-25

Editing Symbols, 3-17
Editing Types for Data

Categories, 3-16
Elementary Item Size Rules,

3-13

Elements, 1-3
ENTER Statement, 3-46
Entries, Comment, 2-8.
Entry, FILE-CONTROL, 5-4, 6-5,

7-5

Environment Division in

Indexed 1-0 Module, 7-5
Environment Division in

Nucleus, 3-3
Environment Division in

Relative 1-0 Module, 6-5
Environment Division in

Sequential 1-0 Module, 5-4
Execution, Procedure Division

2-20

EXIT Statement, 3-47
EXIT PROGRAM Statement, 11-6
Expressions, Conditional,

3-30

Figurative Constants, 2-5
Figurative Constant Values,

2-7

File Description Entry
Skeleton, 5-8, 6-8, 7-8

FILE SECTION, 5-7, 6-8, 7-8
FILE-CONTROL Entry, 5-4, 6-5, 7-5

Index - 2

• ^

s.

FILE-CONTROL Paragraph, 5-4,
6-5, 7-5

FILLER or DATA-NAME Clause
3-9

Fixed Insertion Editing
Rules, 3-16

Fixed Portion, 8-1
Formats, Division, 2—25
Formats, General, 1—3
Formats, Paragraph, 2-25
Formats, Reference, 2-24
Formats, Section, 2—25
Foists, Source, 1-4

General Formats, 1-3
GO TO Statement, 3-48

H

Header, Division, 2-25
Header, Paragraph, 2-25
Header, Procedure Division

2-25

Header, Section, 2-25

Identification Division,
2-16

Identification Division, in
Nucleus, 3-1

Identifier, 2-14
IF Statement, 3-49
Incompatible Data, 3-35
Independent Segments, 8—1
Indexed 1-0 Module, 7-1
Indexed 1-0 Module, Data

Division in, 7-8
Indexed 1-0 Module,

Environment Division in,

7-5

Indexed 1-0 Module,
Procedure Division in,

7-11

Indexing, 2-13
Index Data Items, 4-4
Index-Names, 4-4

Indicator Area, 1-4
Input-Output Section, 5-4, 6-5,

7-5
Input-Output Status, 5—1,'6—1,

7-2

Insertion Editing Rules,- - '
Fixed, 3-16

Insertion Editing Riiles^^, ' -
Floating, 3-17 ' '' ""^"

Insertion Editing Rules,
Simple, 3-16 ^ .

Insertion Editing RiilW,- ' • '
Special, 3-16 \

INSPECT Stat'em^Tttt,
Inter Program" Copmundtcati^^^

Module, 11-1.
Inter Program CommunicartoTi: ••

Module, Data .Division in, ,
11-1 • V

Inter Program Communicatioh
Module, Procedure piyisipn
in, 11-3 ' -

INVALID KEY Condition, 5-3;-"
6-3, 7^:. ;

I-O Control" Paragraph6 j "
6-7, 7-7;" . . w..

. c.£:: :

JUSTIFIED Clause, 3-10

K •

Keys, Status, 5-1, 6-2, 7-12

^ --c ^

•-.i

label RE^^OEbs ci'aus.e^ 3
•"(S-ib, "7-10

Language Concepts, '2-1,^
. .6r-i.,. 7-^ .

Language 'Structure, 2-1
LeveIs, .Conceptt'2-8'."
Levels, Number, 2-9,'3-
Lil^icary Module, 9-1
Lines," Blank; 2-25
Lines, Comment, 2-27
Lines, Continuation of.
Lines, Debugging, 10-1

• j

It

2-25

Index - 3

Linkage Section, 11-1
Literals, Nonnumeric, 2-6
Literals, Numeric, 2-6

M

Mnemonic-Name, -2-4
Mode, Access,' 5-1, 6-1, 7-1
MOVE Statement, 3-57
MULTIPLY Statement, -3-60

N

Name, Conditionj-2-4
Name, Mnemonic, 2-4
Name, Paragraph, 2-4
Name, Section, 2-4
Name, System, 2-4
Name,'User-Defined, 2-4
Nonnumeric Literals, 2-6
Nucleus, Environment Division

in, 3-3
Nucleus, Function, 3-1
Nucleus, Identification

Division in, 3-1
Nucleus, Organisation, 3-1
Nucleus, Procedure Division

in, 3-30
Nucleus, Structure, 3-1
Number, Level-, 2-9,-3-11
Number, Sequence, 1-4, 2-25
Numeric Data Division in,

3-6

Numeric Data Rules, 3-13
Numeric Edited Data .Rules,

3-13

Numeric Literals, 2-6
Numeric Operands, Comparison •

of, 3-31 -- -

OBJECT-COMPUTER-Paragraph '- ?•
3-3 • • -

OCCURS Clause, 4-1 ^
OPEN Statement, 5-13, 6-iSj

7-13

Operand Comparison, 3-31
Operand, Overlapping 3-35

4-4

Organisation Data Division,
2-18

Organisation Environment
Division, 2-17

Organisation Identification
Division, 2-16

Organisation, Indexed Input-
Output Module, 7-1

Organisation, Nucleus, 3-1
Organisation, Procedure

Division, 2-20
Organisation, Relative Input-

Output Module, 6-1
Organisation, .Segmentation,

8-1

Organisation, Sequential
Input-Output Module, 5-1
Overlapping Operands, 3-35,

4-4

- Paragraph, DATA-COMPILED,
3-2

Paragraph, FILE-CONTROL, 5-4
• 6-5, 7-5

Paragraph Format, 2-25
Paragraph, I-O CONTROL, 5-6,

6-7, 7-7
Paragraph-Name, 2-4
Paragraph, OBJECT-COMPUTER,

3-3

Paragraph, PROGRAM-ID, 3-2
Paragraph,- SOURCE-COMPUTER,

3-3

Paragraph, SPECIAL^AMES, 3-4
PERFORM Statement, 3-61, 8-4
Phrase, ROUNDED, 3-34
Phrase, SIZE ERROR, 3-34
PICTURE Character Strings, 2-8
PICTURE Clause, 3-12
Portion, Fixed, 8t1
Precedent Rules, 3-18
Procedures, 2-20
Procedure Division, 2-21
Procedure Division, Body, 2-21
Procedure Division,

Declarations, 2-20
Procedure Division, Execution,

2-20

-Procedure Division, General
Format, 2-21

Procedure Division Header,
2-21, 11-3

Index - 4

.-x

s-

Procedure Division in the
Indexed I-O Module, 7-11

Procedure Division in the
Interprogram Conmunication
Module, 11-3

Procedure Division in the
Nucleus 3-30

Procedure Division in the
Relative 1-0 Module, 6-12

Procedure Division in the
Sequential 1-0 Module, 5—11

Procedures, 2-20
PROGRAM-ID Paragraph,. 3-^2
Programing Techniques, i2-l
Program Segments, 8-1 ' - •
Program Structure, -l-2, -2-'15

8-3 •!- 'T

R

READ Statement, 5-16, 6-17,
7-16

RECORD CONTAINS Clause, 5-10,
6-10, 7-10

Record Description Format,
2-24

Record Description Structure,
5-7, 6-8, 7-8 •:

-Record Pointer, Current, 5-1,
6-1, 7-1

REDEFINES Clause,' 3-21
Reference, Uniqueness of,

2-12 -• • '
Relation Condition, 3-30
Relation Condition, Table

Handling, 4-4
Relative Input-Output Module,:

Data Division in, 6-8
Relative Input-Output Module,

Environment Division in:

6-5 '
Relative Input-Output Module,

Procedure Division in, 6-12
Reserved Words, 2-28
REWRITE Statement,"5^18, 6-20

7-19 .

ROUNDED Phrase, 3-34 -
Rules, Alignment, Standard 2-12

Rules, Alphabetic Data,. 3-12 -
Rules, Alphanumeric Data, 3-13j-
Rules, Alphanumeric Edited .

Data, 3-13
Rules, Editing, 3-15
Rules, Editing, Fixed ,

Insertion, 3-16
Rules, Editing, Floating

Insertion, 3-17 .
Rules, Editing, SimpXe..^

Insertion, 3-16..
Rules, Editing, Spec'^i

Insertion, 3-16
Rules, Editing, Zero

Suppression, 3-18
Rules, Elementary Item Size,

3-13

Rules, General,•, _• ^..v:
Rules, Numeric Data,. 3-^
Rules, Numeric Edited Data. , m

3-13

Rules, Precedence, 3-18. .
Rules, Symbols Used,-3714 —-I '-
Rules,Syntax,- 1-3 -
Run'Time Debug, 10-1

SECTION, CONFIGURATION,, .3r3"." •
SECTION. FILE, 5-7, 6-8, '
Section Fom^t, 2-25 .
Section Input-Output 5-4,,

7-5-
Section, Linkage, 11-1
Section Name, 2-4
SECTION, WO RKING-STORAGE,-^ A76
Segmentation, 8-1 . .'..r-. i;
Segmentation Classification,

8-2

Segmentation Control, 8-Zv
Segmentation Organisation,^^8-1
Segments, Program, 8-1
Segments, Independent, 8-1
Selection of Character

Representation and Dadix
2-10

Sentences, 2-21 ' •
Separators, 2-1
Separators, Compiler

Directing, 2-22 , .
Separators, Conditionajj 2-22

Index - 5

Separators, Imperative, 2-23
Sequenee/Number,.1-4, 2*25•
Sequential Input^utput'

Module, 5-1
Sequential Input-Output

Module, Data Division in,
5-7

Sequential InputrOutput
Module, Environment
Division in, 5-4

Sequential Input-Output
Module, Procedure Division
in, 5-12

SET Statement, 4*4
SIGN Clause,. 3-21
Signs, Algebraic, 2-12
Simple Conditions, 3-30
Simple Insertion Editing

Rules, 3-16
SIZE ERROR Phrase, 3-34
Sizing, 12-1
SOURCE-COMPUTER Paragraph,

3-3

Source Format, 1-4
Special Inserticm Editing

Rules, 3-16
SPECIAL-NAMES Paragraph, 3-4
Standard Alignment Rules,

2-12

START Statement, 6-22, 7-21
Statement, ACCEPT, 3-36
Statement, ADD, 3-39
Statement, ALTER, 3-41,
Statement, CALL, 11-4
Statement, CANCEL, 11-5
Statement, CLOSE, 5-12,

8-4

6-12

7-11

Statement, COPY, 9-2
Statement, DELETE, 6-13,
Statement, DISPLAY, 3-42
Statement, DIVIDE, 3-44
Statement, ENTER, 3-46
Statement, EXIT, 3-47
Statement, EXIT PROGRAM, 3-48
Statement, GO TO, 11-6
Statement, IF, 3-49

7-12

Statement, INSPECT, 3-51
Statement, MOVE, 3-57
Statement, MULTIPLY,. 3-60
Statement, OPEN, 5-13, 6-14, 7-13

Statement, PERFORM, 3-61, 3-4
Statement, READ, 5-16, 6-17,

7-16

Statement, REWRITE, 5-18, 6-20
7-19

Statement, SET, 4-4
Statement, START, 6-22, 7-21
Statement, STOP, 3-65
Statement, SUBTRACT, 3-66
Statement, USE, 5-19, 6-24

7-23

Statement, WRITE, 5-20, 6-25
7-24 •

Statements, Arithmetic, 3-35
Statements, Compiler

Directing, 2-22
Statements, Conditional,. 2-22
Statements, Imperative,' 2-23
Status, Input-tOutput, 5-1, 6-1

7-2

Status Keys 5-1, 6-2, 7-2
STOP Statement, 3-65
Structure, Data Division,' 2-18
Structure, Environment

Division, 2*17
Structure, Identification

Division, 2-16
Structure, Language, 2-1
Structure, Nucleus, 3-1
Structure, Procedure

Division, 2-20
Structure, Program, 1-2, 2.-15
Sructure, Program Segments,

8-3,
Structure, Record Description

5-7* 6-8, 7-8,
Subscripting, 2-13 •
SUBTRACT Statement, 3-66
Suppression Editing, Zero,

3-18

Switch, Compile Time, 10-1
Switch Status- Condition, 3-33
Symbols Used Rules, 3-14
SYNCHRONISE!) Clause, 3-25
Syntax Rules, 1-3
Syntax Rules, in Nucleus, 3*1
System-Name, 2-4

Index - 6

—

