
CIS COBOL Language
Reference Manual

Version 4.5

CIS COBOL Language Reference Manual: Version 4.5
Copyright © 1978, 1980, 1982, 1983 Micro Focus Limited

Neither the whole nor any part of the information contained in, or the product described in, this manual may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous development and improvement. All information
of a technical nature and particulars of the product and its use (including the information and particulars in this manual) are given by Acorn
Computers in good faith. However, it is acknowledged that there may be errors or omissions in this manual. A list of details of any amendments
or revisions to this manual can be obtained upon request from Acorn Computers Technical Enquiries. Acorn Computers welcome comments
and suggestions relating to the product and this manual.

All correspondence should be addressed to:

Micro Focus Limited
26 West street
Newbury Berkshire
RG13 1JT

CIS COBOL, LEVEL II COBOL, FORMS-2 ANIMATOR and FILESHARE are trademarks of Micro Focus Ltd

CP/M® and CP/M-86® are registered trademarks of Digital Research Inc

Z80® is a registered trademark of Zilog Inc

ADM-3A™ is a trademark of Lear Siegler Inc

8080® is a registered trademark of Intel Corp

iii

Acknowledgements
COBOL is an industry language and is not the property of any company or group of companies, or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the Univac® I and II,
Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

iv

v

Table of Contents
PREFACE .. xxiii

AUDIENCE ... xxiii
MANUAL ORGANIZATION ... xxiii
RELATED PUBLICATIONS .. xxiv
NOTATION IN THIS MANUAL .. xxiv

1. Introduction .. 1
WHAT IS CIS COBOL? .. 1

PROGRAM STRUCTURE ... 2
FORMATS AND RULES .. 2

GENERAL FORMAT .. 2
SYNTAX RULES ... 2
GENERAL RULES ... 2
ELEMENTS ... 2

SOURCE FORMAT .. 3
SEQUENCE NUMBER ... 3
INDICATOR AREA .. 3

2. COBOL Concepts .. 5
LANGUAGE CONCEPTS .. 5

CHARACTER SET ... 5
LANGUAGE STRUCTURE ... 5

Separators .. 5
Character-Strings ... 6

COBOL Words ... 6
Literals .. 8
Figurative Constant Values ... 9
PICTURE Character-Strings .. 10
Comment-Entries ... 10

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION 11
Concept of Levels ... 11

Level-Numbers .. 11
Concept of Classes of Data ... 11
Selection of Character Representation and Radix 12
Algebraic Signs ... 13
Standard Alignment Rules ... 14
Uniqueness of Reference ... 14

Subscripting .. 14
Indexing ... 14
Identifier .. 15
Condition-Name .. 15

PROGRAM STRUCTURE .. 15
THE "ANSI SWITCH" COMPILER DIRECTIVE .. 16

IDENTIFICATION DIVISION .. 16
GENERAL DESCRIPTION .. 16
ORGANISATION ... 16
STRUCTURE ... 16

General format .. 16
ENVIRONMENT DIVISION .. 17

GENERAL DESCRIPTION .. 17
ORGANIZATION ... 17
STRUCTURE ... 17

General Format ... 17
DATA DIVISION ... 17

OVERALL APPROACH .. 17
PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION 18

Data Division Organization ... 18

CIS COBOL Language Reference Manual

vi

General Format ... 18
PROCEDURE DIVISION ... 18

GENERAL DESCRIPTION .. 18
Declaratives .. 18
Procedures .. 18
Execution ... 19
General Format ... 19

Procedure Division Header .. 19
Procedure Division Body .. 19

STATEMENTS AND SENTENCES ... 19
Conditional Statement .. 20
Conditional Sentence .. 20
Compiler Directing Statement .. 20
Compiler Directing Sentence ... 20
Imperative Statement .. 20
Imperative Sentence ... 21

REFERENCE FORMAT .. 21
GENERAL DESCRIPTION .. 21
REFERENCE FORMAT REPRESENTATION ... 21

Sequence Numbers .. 22
Continuation of Lines ... 22
Blank Lines .. 22

DIVISION, SECTION, PARAGRAPH FORMATS ... 22
Division Header .. 22
Section Header .. 22
Paragraph Header, Paragraph-Name and Paragraph 22

DATA DIVISION ENTRIES ... 22
DECLARATIVES ... 23
COMMENT LINES ... 23

RESERVED WORDS .. 23
3. THE NUCLEUS ... 25

FUNCTION OF THE NUCLEUS .. 25
IDENTIFICATION DIVISION IN THE NUCLEUS .. 25

GENERAL DESCRIPTION .. 25
ORGANIZATION ... 25

Structure .. 25
General Format ... 25
Syntax Rules ... 25

THE PROGRAM-ID PARAGRAPH ... 25
Function ... 25
General Format ... 26
Syntax Rules ... 26
General Rules ... 26

THE DATE-COMPILED PARAGRAPH ... 26
Function ... 26
General Format ... 26
Syntax Rule .. 26
General Rule ... 26

ENVIRONMENT DIVISION IN THE NUCLEUS .. 26
CONFIGURATION SECTION .. 26

The SOURCE-COMPUTER Paragraph ... 26
Function ... 26
General Format ... 26
Syntax Rule .. 26
General Rules ... 27

The OBJECT-COMPUTER Paragraph .. 27
Function ... 27
General Format ... 27

CIS COBOL Language Reference Manual

vii

Syntax Rules ... 27
General Rules ... 27

The SPECIAL-NAMES Paragraph ... 27
Function ... 27
General Format ... 27
General Rules ... 28

DATA DIVISION IN THE NUCLEUS ... 29
WORKING STORAGE SECTION ... 29

Noncontiguous Working-Storage .. 29
Working-Storage Records ... 29
Initial Values .. 29

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON 29
Function ... 29
General Format ... 30
Syntax Rules ... 30
General Rule ... 30

THE BLANK WHEN ZERO CLAUSE ... 30
Function ... 30
General Format ... 30
Syntax Rules ... 30
General Rules ... 30

THE DATA-NAME OR FILLER CLAUSE ... 30
Function ... 30
General Format ... 31
Syntax Rule .. 31
General Rule ... 31

THE JUSTIFIED CLAUSE ... 31
Function ... 31
General Format ... 31
Syntax Rules ... 31
General Rules ... 31

LEVEL NUMBER ... 31
Function ... 31
General Format ... 31
Syntax Rules ... 32
General Rules ... 32

THE PICTURE CLAUSE ... 32
Function ... 32
General Format ... 32
Syntax Rules ... 32
General Rules ... 32

Alphabetic Data Rules .. 32
Numeric Data Rules ... 33
Alphanumeric Data Rules ... 33
Alphanumeric Edited Data Rules .. 33
Numeric Edited Data Rules ... 33
Elementary Item Size ... 33
Symbols Used ... 33

Editing Rules .. 35
Simple Insertion Editing ... 36
Special Insertion Editing ... 36
Fixed Insertion Editing ... 36
Floating Insertion Editing .. 36
Zero Suppression Editing .. 37

Precedence Rules ... 37
THE REDEFINES CLAUSE ... 39

Function ... 39
General Format ... 39

CIS COBOL Language Reference Manual

viii

Syntax Rules ... 39
General Rules ... 39

THE SIGN CLAUSE ... 39
Function ... 40
General Format ... 40
Syntax Rules ... 40
General Rules ... 40

THE SYNCHRONIZED CLAUSE ... 41
Function ... 41
General Format ... 41
Syntax Rules ... 41
General Rules ... 41

THE USAGE CLAUSE .. 42
Function ... 42
General Format ... 42
Syntax Rules ... 42
General Rules ... 42

THE VALUE CLAUSE .. 42
Function ... 42
General Format ... 42
Syntax Rules ... 42
General Rules ... 43
Data Description Entries ... 43

PROCEDURE DIVISION IN THE NUCLEUS .. 43
CONDITIONAL EXPRESSIONS ... 43

Simple Conditions ... 44
Relation Condition ... 44

Comparison of Numeric Operands: ... 44
Comparison of Nonnumeric Operands: 45

Class Condition ... 45
Switch-Status Condition .. 46

COMMON PHRASES AND GENERAL RULES FOR STATEMENT
FORMATS ... 46

The Rounded Phrase .. 46
The Size Error Phrase .. 46

SIZE ERROR Phrase Not Specified .. 46
SIZE ERROR Phrase Specified .. 47

Arithmetic Statements .. 47
Overlapping Operands .. 47
Incompatible Data .. 47
CRT Devices .. 47

THE ACCEPT STATEMENT ... 47
Function ... 47
General Formats .. 47
Syntax Rule .. 48
General Rules ... 48

THE ADD STATEMENT ... 49
Function ... 50
General Format ... 50
Syntax Rules ... 50
General Rules ... 50

THE ALTER STATEMENT ... 50
Function ... 50
General Format ... 50
Syntax Rule .. 51
General Rule ... 51

THE DISPLAY STATEMENT .. 51
Function ... 51

CIS COBOL Language Reference Manual

ix

General Formats .. 51
Syntax Rules ... 51
General Rules ... 51

THE DIVIDE STATEMENT ... 52
Function ... 52
General Format ... 52
Syntax Rules ... 53
General Rules ... 53

THE ENTER STATEMENT ... 53
Function ... 53
General Format ... 53
Syntax Rule .. 53
General Rule ... 53

THE EXIT STATEMENT .. 53
Function ... 54
General Format ... 54
Syntax Rules ... 54
General Rule ... 54

THE GO TO STATEMENT .. 54
Function ... 54
General Format ... 54
Syntax Rules ... 54
General Rules ... 54

THE IF STATEMENT ... 54
Function ... 55
General Format ... 55
Syntax Rules ... 55
General Rules ... 55

THE INSPECT STATEMENT ... 55
Function ... 55
General Format ... 55
Syntax Rules ... 56
General Rules ... 56

THE MOVE STATEMENT .. 59
Function ... 59
General Format ... 60
Syntax Rules ... 60
General Rules ... 60

THE MULTIPLY STATEMENT ... 62
Function ... 62
General Format ... 62
Syntax Rules ... 62
General Rules ... 62

THE PERFORM STATEMENT ... 62
Function ... 62
General Format ... 62
Syntax Rules ... 63
General Rules ... 63

THE STOP STATEMENT .. 65
Function ... 65
General Format ... 65
Syntax Rules ... 65
General Rules ... 65

THE SUBTRACT STATEMENT ... 65
Function ... 65
General Format ... 65
Syntax Rules ... 66
General Rules ... 66

CIS COBOL Language Reference Manual

x

4. TABLE HANDLING .. 67
INTRODUCTION TO THE TABLE HANDLING MODULE 67
DATA DIVISION IN THE TABLE HANDLING MODULE 67

THE OCCURS CLAUSE .. 67
Function ... 67
General Format ... 67
Syntax Rules ... 67
General Rules ... 67

THE USAGE CLAUSE .. 68
Function ... 68

General Format ... 68
Syntax Rules ... 68
General Rules ... 68

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE 68
RELATION CONDITION .. 68

Comparisons Involving Index-Names And/or Index Data Items 68
OVERLAPPING OPERANDS ... 69
THE SET STATEMENT .. 69

Function ... 69
General Format ... 69
Syntax Rules ... 69
General Rules ... 69

5. SEQUENTIAL INPUT AND OUTPUT ... 71
INTRODUCTION TO THE SEQUENTIAL I-O MODULE .. 71

LANGUAGE CONCEPTS .. 71
Organization ... 71
Access Mode .. 71
Current Record Pointer ... 71
I-O Status ... 71

Status Key 1 ... 71
Status Key 2 ... 72
Valid Combinations of Status Keys 1 and 2 72
The AT END Condition ... 72

ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE 72
INPUT-OUTPUT SECTION ... 72

The FILE-CONTROL Paragraph .. 72
Function ... 72
General Format ... 73

The FILE CONTROL Entry .. 73
Function ... 73
General Format ... 73
Syntax Rules ... 73
General Rules ... 73

The I-O-CONTROL Paragraph .. 73
Function ... 74
General Format ... 74
Syntax Rules ... 74
General Rules ... 74

DATA DIVISION IN THE SEQUENTIAL I-O MODULE 74
FILE SECTION .. 74
RECORD DESCRIPTION STRUCTURE .. 74
THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 74

Function ... 75
General Format ... 75
Syntax Rules ... 75

THE BLOCK CONTAINS CLAUSE .. 75
Function ... 75
General Format ... 75

CIS COBOL Language Reference Manual

xi

General Rule ... 75
THE CODE-SET CLAUSE ... 75

Function ... 75
General Format ... 75
Syntax Rules ... 75
General Rule ... 75

THE DATA RECORDS CLAUSE ... 76
Function ... 76
General Format ... 76
Syntax Rule .. 76
General Rules ... 76

THE LABEL RECORDS CLAUSE .. 76
Function ... 76
General Format ... 76
Syntax Rule .. 76
General Rule ... 76

THE RECORD CONTAINS CLAUSE .. 76
Function ... 76
General Format ... 76
General Rule ... 76

THE VALUE OF CLAUSE .. 77
Function ... 77
General Format ... 77
General Rules ... 77

PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE 77
THE CLOSE STATEMENT .. 77

Function ... 77
General Format ... 77
Syntax Rule .. 77
General Rules ... 77

THE OPEN STATEMENT ... 77
Function ... 77
General Format ... 78
Syntax Rules ... 78
General Rules ... 78

THE READ STATEMENT ... 79
Function ... 79
General Format ... 79
Syntax Rules ... 79
General Rules ... 79

THE REWRITE STATEMENT ... 80
Function ... 80
General Format ... 80
Syntax Rules ... 81
General Rules ... 81

THE USE STATEMENT .. 81
Function ... 81
General Format ... 81
Syntax Rules ... 81
General Rules ... 82

THE WRITE STATEMENT .. 82
Function ... 82
General Format ... 82
Syntax Rules ... 82
General Rules ... 82

6. RELATIVE INPUT AND OUTPUT ... 85
INTRODUCTION TO THE RELATIVE I-O MODULE .. 85

LANGUAGE CONCEPTS .. 85

CIS COBOL Language Reference Manual

xii

Organization ... 85
Access Modes ... 85
Current Record Pointer ... 85
I-O Status ... 85

Status Key 1 ... 85
Status Key 2 ... 86
Valid Combinations of Status Keys 1 and 2 86
The INVALID KEY Condition .. 87
The AT END Condition ... 87

ENVIRONMENT DIVISION IN THE RELATIVE I-O MODULE 87
INPUT-OUTPUT SECTION ... 87

The File-Control Paragraph ... 87
Function ... 87
General Format ... 87

The File-Control Entry ... 87
Function ... 87
General Format ... 87
Syntax Rules ... 88
General Rules ... 88

The I-O-CONTROL Paragraph .. 88
Function ... 89
General Format ... 89
Syntax Rules ... 89
General Rules ... 89

DATA DIVISION IN THE RELATIVE I-O MODULE ... 89
FILE SECTION .. 89
RECORD DESCRIPTION STRUCTURE .. 89
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON 90

Function ... 90
General Format ... 90
Syntax Rules ... 90

THE BLOCK CONTAINS CLAUSE .. 90
Function ... 90
General Format ... 90
General Rules ... 90

THE DATA RECORDS CLAUSE ... 90
Function ... 90
General Format ... 90
Syntax Rule .. 91
General Rules ... 91

THE LABEL RECORDS CLAUSE .. 91
Function ... 91
General Format ... 91
Syntax Rule .. 91
General Rule ... 91

THE RECORD CONTAINS CLAUSE .. 91
Function ... 91
Format ... 91
General Rule ... 91

THE VALUE OF CLAUSE .. 91
Function ... 91
General Format ... 91
Syntax Rules ... 92
General Rules ... 92

PROCEDURE DIVISION IN THE RELATIVE I-O MODULE 92
THE CLOSE STATEMENT .. 92

Function ... 92
General Format ... 92

CIS COBOL Language Reference Manual

xiii

Syntax Rule .. 92
General Rules ... 92

THE DELETE STATEMENT ... 92
Function ... 92
General Format ... 92
Syntax Rules ... 93
General Rules ... 93

THE OPEN STATEMENT ... 93
Function ... 93
General Format ... 93
Syntax Rule .. 93
General Rules ... 93

THE READ STATEMENT ... 94
Function ... 95
General Format ... 95
Syntax Rules ... 95
General Rules ... 95

THE REWRITE STATEMENT ... 96
Function ... 96
General Format ... 97
Syntax Rules ... 97
General Rules ... 97

THE START STATEMENT .. 97
Function ... 97
General Format ... 97
Syntax Rules ... 98
General Rules ... 98

THE USE STATEMENT .. 98
Function ... 98
General Format ... 98
Syntax Rules ... 98
General Rules ... 99

THE WRITE STATEMENT .. 99
Function ... 99
General Format ... 99
Syntax Rules ... 99
General Rules ... 99

7. INDEXED INPUT AND OUTPUT ... 101
INTRODUCTION TO THE INDEXED I-O MODULE .. 101

LANGUAGE CONCEPTS .. 101
Organization .. 101
Access Modes ... 101
Current Record Pointer ... 101
I-O Status ... 101

Status Key 1 ... 101
Status Key 2 ... 102
Valid Combinations of Status Keys 1 and 2 103
The INVALID KEY Condition .. 103
The AT END Condition .. 103

ENVIRONMENT DIVISION IN THE INDEXED I-O MODULE 103
INPUT-OUTPUT SECTION .. 103

The File Control Paragraph .. 103
Function ... 103
General Format .. 104

The File Control Entry .. 104
Function ... 104
General Format .. 104
Syntax Rules ... 104

CIS COBOL Language Reference Manual

xiv

General Rules .. 104
The I-O Control Paragraph .. 105

Function ... 105
General Format .. 105
Syntax Rules ... 105
General Rules .. 105

DATA DIVISION IN THE INDEXED I-O MODULE ... 105
FILE SECTION ... 105
RECORD DESCRIPTION STRUCTURE .. 105
THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 106

Function ... 106
General Format .. 106
Syntax Rules ... 106

THE BLOCK CONTAINS CLAUSE .. 106
Function ... 106
General Format .. 106
General Rule ... 106

THE DATA RECORDS CLAUSE .. 106
Function ... 106
General Format .. 107
Syntax Rules ... 107
General Rules .. 107

THE LABEL RECORDS CLAUSE .. 107
Function ... 107
General Format .. 107
General Rule ... 107

THE RECORD CONTAINS CLAUSE .. 107
Function ... 107
General Format .. 107
General Rule ... 107

THE VALUE OF CLAUSE ... 107
Function ... 107
General Format .. 107
General Rules .. 108

PROCEDURE DIVISION IN THE INDEXED I-O MODULE 108
THE CLOSE STATEMENT .. 108

Function ... 108
General Format .. 108
Syntax Rule .. 108
General Rules .. 108

THE DELETE STATEMENT .. 108
Function ... 108
General Format .. 108
Syntax Rules ... 108
General Rules .. 109

THE OPEN STATEMENT .. 109
Function ... 109
General Format .. 109
Syntax Rules ... 109
General Rules .. 109

THE READ STATEMENT ... 111
Function ... 111
General Format .. 111
Syntax Rules ... 111
General Rules .. 111

THE REWRITE STATEMENT .. 112
Function ... 112
General Format .. 113

CIS COBOL Language Reference Manual

xv

Syntax Rules ... 113
General Rules .. 113

THE START STATEMENT .. 114
Function ... 114
General Format .. 114
Syntax Rules ... 114
General Rules .. 114

THE USE STATEMENT .. 115
Function ... 115
General Format .. 115
Syntax Rules ... 115

THE WRITE STATEMENT .. 115
Function ... 115
General Format .. 115
Syntax Rules ... 115
General Rules .. 116

8. SEGMENTATION .. 119
INTRODUCTION TO THE SEGMENTATION MODULE 119
GENERAL DESCRIPTION OF SEGMENTATION .. 119

ORGANIZATION .. 119
Program Segments ... 119
Fixed Portion .. 119
Independent Segments .. 119

SEGMENTATION CLASSIFICATION ... 120
SEGMENTATION CONTROL .. 120

STRUCTURE OF PROGRAM SEGMENTS .. 120
SEGMENT-NUMBERS .. 120
GENERAL FORMAT .. 120
SYNTAX RULES .. 120
GENERAL RULES .. 120

RESTRICTIONS ON PROGRAM FLOW .. 121
THE ALTER STATEMENT .. 121
THE PERFORM STATEMENT ... 121

EXTRA INTERMEDIATE CODE FILES .. 121
9. LIBRARY .. 123

INTRODUCTION TO THE LIBRARY MODULE .. 123
THE COPY STATEMENT ... 123

FUNCTION .. 123
GENERAL FORMAT .. 123
SYNTAX RULES .. 123
GENERAL RULES .. 123

10. DEBUG AND INTERACTIVE DEBUGGING ... 125
INTRODUCTION .. 125
CIS COBOL RUN-TIME DEBUG EXTENSION .. 125
STANDARD ANSI COBOL DEBUG ... 125

COMPILE TIME SWITCH ... 125
COBOL DEBUG OBJECT TIME SWITCH ... 125
ENVIRONMENT DIVISION IN COBOL DEBUG ... 126

The WITH DEBUGGING MODE Clause .. 126
Function ... 126
General Format .. 126
General Rules .. 126

PROCEDURE DIVISION IN COBOL DEBUG .. 126
The USE FOR DEBUGGING Statement .. 126

Function ... 126
General Format .. 126
Syntax Rules ... 126
General Rules .. 127

CIS COBOL Language Reference Manual

xvi

DEBUGGING LINES ... 128
11. INTERPROGRAM COMMUNICATION .. 131

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE 131
DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 131

LINKAGE SECTION ... 131
Noncontiguous Linkage Storage ... 131

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION
MODULE ... 132

THE PROCEDURE DIVISION HEADER ... 132
THE CALL STATEMENT .. 132

Function ... 132
General Format .. 132
Syntax Rules ... 133
General Rules .. 133

THE CANCEL STATEMENT ... 133
Function ... 134
General Format .. 134
Syntax Rules ... 134
General Rules .. 134

THE EXIT PROGRAM STATEMENT ... 134
Function ... 134
General Format .. 134
Syntax Rules ... 134
General Rule ... 134

12. PROGRAMMING TECHNIQUES ... 135
PROGRAMMING TECHNIQUES .. 135
USEFUL HINTS ... 135

A. RESERVED WORD LIST .. 137
B. CHARACTER SETS AND COLLATING SEQUENCE ... 139
C. GLOSSARY .. 141

INTRODUCTION .. 141
DEFINITIONS .. 141

D. COMPILE-TIME ERRORS .. 157
E. RUN-TIME ERRORS .. 161
F. SYNTAX SUMMARY .. 163

GENERAL FORMAT FOR IDENTIFICATION DIVISION 163
GENERAL FORMAT FOR ENVIRONMENT DIVISION .. 163
GENERAL FORMAT FOR FILE-CONTROL ENTRY .. 163
GENERAL FORMAT FOR THE DATA DIVISION ... 164
GENERAL FORMAT FOR DATA DESCRIPTION ENTRY 164
GENERAL FORMAT FOR PROCEDURE DIVISION .. 165
GENERAL FORMAT FOR VERBS ... 165
GENERAL FORM FOR COPY STATEMENT ... 167

G. SUMMARY OF EXTENSIONS TO ANSI COBOL ... 169
SCREEN FORMATTING AND DATA ENTRY ... 169

THE ACCEPT STATEMENT .. 169
THE DISPLAY STATEMENT .. 169

DISK FILES ... 169
LINE SEQUENTIAL FILES ... 169
RUN TIME INPUT OF FILENAMES ... 170

LOWER CASE CHARACTERS .. 170
HEXADECIMAL VALUES .. 170
INTERACTIVE DEBUGGING .. 170

H. SYSTEM DEPENDENT LANGUAGE FEATURES .. 171
MANDATORY CHANGES .. 171

ENVIRONMENT DIVISION ... 171
Configuration Section ... 171
Input-Output Section .. 171

CIS COBOL Language Reference Manual

xvii

STATEMENTS COMPILED AS DOCUMENTATION ONLY 171
ENVIRONMENT DIVISION ... 171

I-O-Control Paragraph .. 171
DATA DIVISION .. 172

File Description Paragraph .. 172
PROCEDURE DIVISION ... 172

CLOSE Statement .. 172
I. LANGUAGE SPECIFICATION ... 173

NUCLEUS .. 173
Level One Implementation .. 173
Level Two Implementation .. 173
CIS COBOL Extensions .. 174

SEQUENTIAL, RELATIVE AND INDEXED I-O .. 174
Level One Implementation .. 174
Level Two Implementation .. 174
CIS COBOL Extensions .. 175

TABLE HANDLING ... 175
Level One Implementation .. 175
CIS COBOL Extensions .. 175

SEGMENTATION ... 175
Level One Implementation .. 175

LIBRARY .. 175
Level One Implementation .. 175

DEBUG ... 176
Level One Implementation .. 176
CIS COBOL Extensions .. 176

INTER-PROGRAM COMMUNICATION ... 176
Level Two Implementation .. 176

Index ... 177

xviii

xix

List of Figures
1.1. Sample Program Listing Showing Source Format ... 4
2.1. Reference Format for a COBOL Source Line. .. 21
3.1. PERFORM Statement in Sequence. .. 64

xx

xxi

List of Tables
2.1. Figurative Constants and their Reserved Words .. 9
2.2. Data Levels, classes and categories ... 12
2.3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE Clause. 12
2.4. Numeric Data Storage for the COMPUTATION-3 PICTURE Clause. 13
3.1. Editing Types for Data Categories .. 35
3.2. Editing Symbols in PICTURE Character-Strings ... 36
3.3. PICTURE Character Precedence Chart. ... 38
3.4. Relational Operators .. 44
3.5. Cursor Repositioning Keys .. 49
3.6. MOVE Statement Data Categories. ... 61
4.1. SET Statement Valid Operand Combinations. ... 70
5.1. Permissable Combinations of Statements and OPEN Modes for Sequential I/O. 78
6.1. Permissible Combinations of Statements and Open Modes for Relative I/O 94
7.1. Permissible Combinations of Statements and Open Modes for Indexed I/O 110
12.1. Data Dictionary Entry Sizing ... 136

xxii

xxiii

PREFACE
This manual describes the Compact Interactive Standard COBOL (CIS COBOL) language for
programming microcomputers. CIS COBOL is based on the ANSI COBOL standard X3.23 (1974)
(see Acknowledgement). It also describes the additional CIS COBOL features that exploit the
capabilities of microprocessors.

Each release of CIS COBOL is characterized by a two-digit code in the form of

"Version number". "Release number within version"

AUDIENCE
This manual is intended for programmers already familiar with COBOL on other equipment.

MANUAL ORGANIZATION
Chapters 1 through 4 of the manual apply to all users and describe basic features of the language.
Chapters 5 through 7 describe language features for programming the three file organization formats
supported: sequential, relative and indexed.

Chapters 8 through 11 apply to all users and describe additional features and facilities available with
the standard language. The appendices supply reference information pertinent to all systems.

The manual contains the following chapters and appendices:

"Chapter 1. Introduction", which gives a general description of the language, including a broad outline
of ANSI COBOL features included and omitted and additional features of CIS COBOL.

"Chapter 2. COBOL Concepts", which describes general concepts of the COBOL language including
program structure, and details of statement components and notation.

"Chapter 3. Nucleus", which describes the nucleus of all COBOL programs and the layout of each
program division in the nucleus.

"Chapter 4. Table Handling", which describes the handling of data tables in the Data and Procedure
divisions of a COBOL program.

"Chapter 5. Sequential Input and Output", which describes the programming of input and output of
data in files with sequential format.

"Chapter 6. Relative Input and Output", which describes the programming of input and output of data
in files with relative format.

"Chapter 7. Indexed Input and Output", which describes the programming of input and output of data
in files with indexed format.

"Chapter 8. Segmentation", which describes the facility for specifying permanent and independent
object program segments.

"Chapter 9. Library", which describes the source library maintenance feature of COBOL.

"Chapter 10. Debug and Interactive Debugging", which describes the basic and interactive debugging
features available in CIS COBOL.

"Chapter 11. Interprogram Communication", which describes the ability of CIS COBOL programs to
interface during running and to access common data, enabling modular programming.

PREFACE

xxiv

"Chapter 12. Programming Techniques and Sizing", which describes the means available for CIS
COBOL programmers to estimate object program size and includes programming techniques in CIS
COBOL.

"Appendix A. Reserved Word Table", which lists words reserved for CIS COBOL functions within
a program.

"Appendix B. Character Set and Collating Sequence", which lists all characters available and their
collating sequence.

"Appendix C. Glossary", which lists specific terms used in CIS COBOL.

"Appendix D. Compile - Time Errors", which lists all errors that can be signalled during program
compilation.

"Appendix E. Run-Time Errors", which lists all errors that can be signalled during program execution.

"Appendix F. Syntax Summary", which summarizes the syntax used in CIS COBOL programming.

"Appendix G. Summary of Extensions to ANSI COBOL", which summarizes all extensions to ANSI
COBOL provided by CIS COBOL.

"Appendix H. System Dependent Language Features", which describes the system dependent CIS
COBOL entries for use with microcomputers and those features not included because of hardware
requirements.

"Appendix I. Language Specification", which is an overall specification of the CIS COBOL language.

RELATED PUBLICATIONS
No discussion of operating the CIS COBOL Compiler or Run-Time system is incorporated in this
manual. Please refer to document:

CIS COBOL Operating Guide (for use with the relevant Operating System)

NOTATION IN THIS MANUAL
Throughout this manual, the following notation is used to describe the format of COBOL statements:

1. All words printed in capital letters which are underlined must always be present when the functions
of which they are a part are used. An error printout will occur during compilation if the underlined
words are absent or incorrectly spelled. The underlining is not necessary when writing a COBOL
source program.

2. All words printed in capital letters which are not underlined are used for readability only. They
may be written, or not, as the programmer wishes.

3. All words printed in small letters are generic terms representing names which will be devised by
the programmer.

4. When material is enclosed in braces { } , a choice must be made from the options within them.

5. When material is enclosed in square brackets [], it is an indication that the material is an option
which may be included or omitted as required.

6. When material is enclosed in square brackets crossed [], it is an indication that the material is
mandatory when the ANSI switch is set (see Chapter 2) but optional otherwise.

7. Language features that are shaded in the text are language extensions which exceed the ANSI
standard.

PREFACE

xxv

8. In text, the ellipsis (...) shows the omission of a portion of a source program or a sequence. This
meaning becomes apparent in context.

In the general formats, the ellipsis represents the position at which repetition may occur at the user's
option. The portion of the format that may be repeated is determined as follows:

Given ... in a clause or statement format, scanning right to left, determine the { or [immediately to
the left of the ...; continue scanning right to left and determine the logically matching } or]; the ...
applies to the words between the determined pair of delimiters.

9. The term identifier means either a data-name or a subscripted data-name. An identifier takes the
following form:

data-name-1 [({data-name-2 | literal-1})]

data-name-2 or literal-1 must be a positive integer in the range 1 to the number of elements in the
table.

Headings are presented in this manual in the following order of importance:

CHAPTER N Chapter Heading TITLE ORDER ONE HEADING ORDER TWO HEADING Order
Three Heading Text two lines down Order Four Heading Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters, e.g. one.

Numbers ten (10) upwards are written in text as numbers, e.g. 12.

The phrase "For documentation purposes only" in the text of this manual means that the associated
coding is accepted syntactically by the Compiler, but is ignored when producing the object program.

xxvi

1

Chapter 1. Introduction
WHAT IS CIS COBOL?

COBOL (COmmon Business Oriented Language) is the most widely and extensively used language
for the programming of commercial and administrative data processing.

CIS COBOL is a Compact, Interactive and Standard COBOL Language System which is designed for
use on microprocessor-based computers and intelligent terminals.

It is based on the ANSI COBOL given in "American National Standard Programming Language
COBOL" (ANSI X3.23 1974). The CIS COBOL implementation has been selected from both levels
of ANSI COBOL. The following modules are fully implemented at Level 1:

• Nucleus
• Table Handling
• Sequential Input and Output
• Relative Input and Output
• Indexed Input and Output
• Segmentation
• Library
• Inter-Program Communication
• Debug

In addition many Level 2 features are implemented such as:

• Nucleus - Nested IF, PERFORM UNTIL
• Relative and Indexed sequential I/O - START statement
• Inter-Program Communication - CANCEL statement

This manual is intended as a reference work for COBOL programmers and material from the ANSI
language standard document is included.

The package has been proved to meet and exceed the COBOL ANSI standard X3.23 and has been
certified by the Federal Compiler Testing Center (FCTC) under the direction of the General Services
Administration (GSA) as validated at Federal Low Intermediate Level. The GSA Validation Summary
Report is available under the reference CCVS74-VSR685.

Along with the ANSI implementation CIS COBOL also contains several language extensions
specifically oriented to the small computer environment. These enable a CIS COBOL program to
format CRT screens for data input and output (DISPLAY and ACCEPT), READ and WRITE text
files efficiently and define external file names at run time.

The programmer wishing to transport an existing COBOL program to run under CIS COBOL must
check that the individual language features he has used are supported by CIS COBOL. The COBOL
SECTION statements in the Segmentation feature can be performed using the PERFORM statement.

A compile time ANSI switch can be set that makes certain COBOL source mandatory, whereas if not
set it is optional. (See Chapter 2).

The CIS COBOL compiler is designed to enable programs to be developed in a 48K machine.
The Compiler supports sequential, relative and indexed sequential files, as well as interactive
communications via the ACCEPT and DISPLAY verbs.

The CIS COBOL System also contains a powerful utility called FORMS-2 that enables the Operator
to define screen layouts from a screen “module” and produce automatically the data description for
direct inclusion in a CIS COBOL program. This is described in the CIS COBOL Operating Guide.

CIS COBOL programs are created using a conventional text editor, The Compiler compiles the
programs and the Run-Time system links with the compiled output to form a running user program. A

Chapter 1. Introduction

2

listing of the CIS COBOL program is provided by the Compiler during compilation. Error messages
are inserted in the listing. Interactive Debugging facilities are provided for run-time use, and these are
described in the CIS COBOL Operating Guide.

CIS COBOL is designed to be interfaced easily to any microprocessor operating system. Detailed
operating characteristics are dependent on the particular host operating system used and are defined
in the appropriate Operating Guide.

PROGRAM STRUCTURE
A COBOL program consists of four divisions:

1. IDENTIFICATION DIVISION - An identification of the program

2. ENVIRONMENT DIVISION - A description of the equipment to be used to compile and run the
program

3. DATA DIVISION - A description of the data to be processed

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be performed on the
data

Each division is divided into sections which are further divided into paragraphs which in turn are made
up of sentences.

Within these subdivisions of a COBOL program, further subdivisions exist as clauses and statements.
A clause is an ordered set of COBOL elements that specify an attribute of an entry, and a statement
is a combination of elements in the Procedure Division that include a COBOL verb and constitute a
program instruction.

FORMATS AND RULES

GENERAL FORMAT
A general format is the specific arrangement of the elements of a clause or a statement, Throughout this
document a format is shown adjacent to information defining the clause or statement. When more than
one specific arrangement is permitted, the general format is separated into numbered formats. Clauses
must be written in the sequence given in the general formats. (Clauses that are optional must appear in
the sequence shown if they are used). In certain cases, stated explicitly in the rules associated with a
given format, the clauses may appear in sequences other than that shown. Applications, requirements
or restrictions are shown as rules.

SYNTAX RULES
Syntax rules are those rules that define or clarify the order in which words or elements are arranged
to form larger elements such as phrases, clauses, or statements. Syntax rules also impose restrictions
on individual words or elements.

These rules are used to define or clarify how the statement must be written, i.e., the order of the
elements of the statement and restrictions on what each element may represent.

GENERAL RULES
A general rule is a rule that defines or clarifies the meaning or relationship of meanings of an element
or set of elements. It is used to define or clarify the semantics of the statement and the effect that it
has on either execution or compilation.

ELEMENTS

Chapter 1. Introduction

3

Elements which make up a clause or a statement consist of uppercase words, lowercase words, level-
numbers, brackets, braces, connectives and special characters (see Chapter 2).

SOURCE FORMAT
The COBOL source format divides each COBOL source record into 72 columns. These columns are
used in the following way:

Columns 1 - 6 Sequence number

Column 7 Indicator area

Columns 8 - 11 Area A

Columns 12 -72 Area B

SEQUENCE NUMBER
A sequence number of six digits may be used to identify each source program line.

INDICATOR AREA
An asterisk * in this area marks the line as documentary comment only. Such a comment line can
appear anywhere in the program after the Identification Division header. Any characters from the
ASCII character set can be included in Area A and Area B of the line.

A stroke /, in the indicator area acts as a comment line above but causes the page to eject before
printing the comment.

A "D" in the indicator area represents a debugging line. Areas A and B may contain any valid COBOL
sentence.

A "-" in the indicator area represents a continuation line.

Section names and paragraph names begin in Area A and are followed by a period and a space. Level
indications FD, 01 and 77 begin in Area A and are followed in Area B by the appropriate file and
record description.

Program sentences may commence anywhere in Area A or Area B. More than one sentence is permitted
in each source record.

Note that TAB characters are not permitted in CIS COBOL source.

Figure 1-1 shows the source format of a typical program.

** CIS COBOL V4.5 STOCK.CBL PAGE: 0001
**
** OPTIONS SELECTED :
** FORM(72)
**
000010 IDENTIFICATION DIVISION. 0118
000020 PROGRAM-ID. STOCK-FILE-SET-UP. 0118
000030 AUTHOR. MICRO FOCUS LTD. 0118
000040 ENVIRONMENT DIVISION. 0118
000050 CONFIGURATION SECTION. 0118
000060 SOURCE-COMPUTER. 0118
000070 OBJECT-COMPUTER. 0118
000075 SPECIAL-NAMES. CONSOLE IS CRT. 0118
000080 INPUT-OUTPUT SECTION. 0118
000090 FILE-CONTROL. 0118
000100 SELECT STOCK-FILE ASSIGN "STOCK.IT" 0184
000110 ORGANIZATION INDEXED 0186

Chapter 1. Introduction

4

000120 ACCESS DYNAMIC 0186
000130 RECORD KEY STOCK-CODE. 0186
000140 DATA DIVISION. 01BE
000150 FILE SECTION. 01BE
000160 FD STOCK-FILE: RECORD 32. 01BE
000170 01 STOCK-ITEM. 01BE
000180 02 STOCK-CODE PIC X(4). 01BE
000190 02 PRODUCT-DESC PIC X(20). 01C2
000200 02 UNIT-SIZE PIC 9(4). 01D6
000210 WORKING STORAGE SECTION. 01DC
000220 01 SCREEN-HEADINGS. 01DC 00
000230 02 ASK-CODE PIC X(21) VALUE "STOCK CODE < >". 01DC 00
000240 02 FILLER PIC X(59). 01F3 15
000250 02 ASK-DESC PIC X(16) VALUE "DESCRIPTION <". 022C 50
000260 02 SI-DESC PIC X(21) VALUE " >". 023C 60
000270 02 FILLER PIC(43). 0251 75
000280 02 ASK-SIZE PIC X(21) VALUE "UNIT SIZE < >". 027C A0
000290 01 ENTER-IT REDEFINES SCREEN-HEADINGS. 01DC 00
000300 02 FILLER PIC X(16). 01DC 00
000310 02 CRT-STOCK-CODE PIC X(4). 01EC 10
000320 02 FILLER PIC X(76). 01F0 14
000330 02 CRT-PROD-DESC PIC X(20). 023C 60
000340 02 FILLER PIC X(60). 0250 74
000350 02 CRT-UNIT-SIZE PIC 9(4). 028C B0
000360 02 FILLER PIC X. 0290 B4
000370 PROCEDURE DIVISION. 0000
000380 SR1. 001C 00
000390 DISPLAY SPACE. 001D
000400 OPEN I-O STOCK-FILE. 0020
000410 DISPLAY SCREEN-HEADINGS. 0024
000420 NORMAL-INPUT. 0038 00
000430 MOVE SPACE TO ENTER-IT. 0039
000440 DISPLAY ENTER-IT. 003F
000450 CORRECT-ERROR. 0056 00
000460 ACCEPT ENTER-IT. 0057
000470 IF CRT-STOCK-CODE = SPACE GO TO END-IT. 006E
000480 IF CRT-UNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR. 0078
000490 MOVE CRT-PROD-DESC TO PRODUCT-DESC. 0081
000500 MOVE CRT-UNIT-SIZE TO UNIT-SIZE. 0087
000510 MOVE CRT-STOCK-CODE TO STOCK-CODE. 008F
000520 WRITE STOCK-ITEM INVALID KEY GO TO CORRECT-ERROR. 0095
000530 GO TO NORMAL-INPUT. 00A1
000540 END-IT. 00A4 00
000550 CLOSE STOCK-FILE. 00A5
000560 DISPLAY SPACE. 00A9
000570 DISPLAY "END OF PROGRAM". 00AC
000580 STOP RUN. 00BD
** CIS COBOL V4.5 REVISION 4 URN AA/0000/AA
** COMPILER COPYRIGHT (C) 1978,1982 MICRO FOCUS LTD
** ERRORS=00000 DATA=00768 CODE=00256 DICT=00409:20662/21071 GSA FLAGS= OFF
<---->|<--><---><---->
 | | | | Inserted by Compiler---+
 | | | +-- Columns 12-72 - Area B
 | | +-- Columns 8-11 - Area A
 | +-- Column 7 - Indicator Area
 +-- Columns 1-6 - Sequence Number

Figure 1.1. Sample Program Listing Showing Source Format

5

Chapter 2. COBOL Concepts
LANGUAGE CONCEPTS

CHARACTER SET
The most basic and indivisible unit of the language is the character. The set of characters used to form
CIS COBOL character-strings and separators includes the letters of the alphabet, digits and special
characters. The character set consists of the characters defined below:

0 to 9

A to Z

a to z (Reserved and User-defined Word Characters read as: A to Z)

Space

+ Plus sign

- Minus sign or hyphen

* Asterisk

/ Oblique Stroke/Slash

= Equal sign

$ Dollar sign

. Full stop or decimal point

, Comma or decimal point

; Semicolon

" Quotation mark

(Left Parenthesis

) Right Parenthesis

> Greater than symbol

< Less than symbol

The CIS COBOL language is restricted to the above character set ,but the content of non-numeric
literals, comment lines and data may include any of the characters from the ASCII character set. See
Appendix B.

LANGUAGE STRUCTURE
The individual characters of the language are concatenated to form character-strings and separators.
A separator may be concatenated with another separator or with a character-string. A character-string
may only be concatenated with a separator. The concatenation of character-strings and separators
forms the text of a source program.

Separators

A separator is a string of one or more punctuation characters. The rules for formation of separators are:

1. The punctuation character space is a separator. Anywhere a space is used as a separator, more than
one space may be used.

2. The punctuation characters comma, semicolon and period, when immediately followed by a
space, are separators. These separators may appear in a COBOL source program only where
explicitly permitted by the general formats, by format punctuation rules (see FORMATS AND

Chapter 2. COBOL Concepts

6

RULES in Chapter 1), by statement and sentence structure definitions (see STATEMENTS AND
SENTENCES in this Chapter), or reference format rules (see REFERENCE FORMAT in this
Chapter).

3. The punctuation characters right and left parenthesis are separators. Parenthesis may appear only in
balanced pairs of left and right parentheses delimiting subscripts, indices, arithmetic expressions,
or conditions.

4. The punctuation character quotation mark is a separator. An opening quotation mark must be
immediately preceded by a space or left parenthesis; a closing quotation mark must be immediately
followed by one of the separators space, comma, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when the
literal is continued. (See CONTINUATION OF LINES in this Chapter).

5. The separator space may optionally immediately precede all separators except the following:

a. As specified by reference format rules see REFERENCE FORMAT in this Chapter.

b. The separator closing quotation mark. In this case, a preceding space is considered as part of
the nonnumeric literal and not as a separator.

6. The separator space is optional and can immediately follow any separator except the opening
quotation mark. In this case, a following space is considered as part of the nonnumeric literal and
not as a separator.

Any punctuation character which appears as part of the specification of a PICTURE character-string
(see Chapter 3) or numeric literal is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or numeric literal. PICTURE character-
strings are delimited only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters which comprise
the contents of nonnumeric literals, comment-entries, or comment lines.

Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a CIS COBOL
word, a literal, a PICTURE character-string, or a comment-entry. A character-string is delimited by
separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms a user defined word,
a system-name, or a reserved word. Within a given source program these classes form disjoint sets; a
COBOL word may belong to one and only one of these classes.

User-Defined Words: A user-defined word is a COBOL word that must be supplied by the user to
satisfy the format of a clause or statement. Each character of a user-defined word is selected from the
set of characters 'A', 'B', 'C', ... 'Z', 'a', 'b', 'c', ... 'z', '0', ... '9', and '-', except that the '-' may not appear
as the first or last character. The exception to this rule is an external file-name-literal which must be
a normal alphanumeric literal.

User-defined word types which are implemented are as follows:

alphabet-name
condition-name
data-name
external-file-name-literal
file-name
index-name

Chapter 2. COBOL Concepts

7

level-number
mnemonic-name
paragraph-name
program-name
record-name
section-name
segment-number
text-name

Within a given source program, ten of these 12 types of user-defined words are grouped into nine
disjoint sets. The disjoint sets are:

alphabet-names
condition-names, data-names, and record-names
file-names
index-names
mnemonic-names
paragraph-names
program-names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong to one and only one
of these disjoint sets. Further, all user-defined words within a given disjoint set must be unique. (See
UNIQUENESS OF REFERENCE in this Section).

With the exception of paragraph-name, section-name, level-number and segment-number, all user-
defined words must contain at least one alphabetic character. Segment-numbers and level-numbers
need not be unique; a given specification of a segment-number or level-number may be identical to
any other segment-number or level-number and may even be identical to a paragraph-name or section-
name.

Condition-Name: A condition-name is a name which is assigned to a specific value, set of
values, or range of values, within a complete set of values that a data item
may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-
NAMES paragraph within the Environment Division where a condition-
name must be assigned to the ON STATUS or OFF STATUS, or both, of
the run time switches.

A condition-name is used only in the RERUN clause or in conditions as an
abbreviation for the relation condition; this relation condition posits that the
associated conditional variable is equal to one of the set of values to which
that condition-name is assigned.

Mnemonic-Name: A mnemonic-name assigns a user-defined word to an implementor-name.
These associations are established in the SPECIAL-NAMES paragraph of
the Environment Division. (See SPECIAL-NAMES in Chapter 3).

Paragraph-Name: A paragraph-name is a word which names a paragraph in the Procedure
Division. Paragraph-names are equivalent if, and only if, they are composed
of the same sequence of the same number of digits and/or characters.

Section-Name: A section-name is a word which names a section in the Procedure Division.
Section names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits and/or characters.

Other User-Defined
Names:

See the glossary in Appendix C for definitions of all other types of user-
defined words.

Chapter 2. COBOL Concepts

8

System-Names: A system-name is a COBOL word which is used to communicate with the
operating environment. Each character used in the formation of a system-
name must be selected from the set of characters 'A', 'B' , 'C', ... 'Z', 'a','b', ... 'z',
'0' ... '9' and'-', except that the '- ' may not appear as the first or last character.

There are three types of system-names:
1. computer-name
2. implementor-name
3. language-name

Within a given implementation these three types of system-names form
disjoint sets; a given system-name may belong to one and only one of them.
The system-names listed above are individually defined in the glossary in
Appendix C.

Reserved Words: A reserved word is a COBOL word that is one of a specified list of words
which may be used in COBOL source programs, but which must not appear
in the programs as user-defined words or system-names. Reserved words can
only be used as specified in the general formats. (See Appendix A).

There are six types of reserved words:
1. Key words
2. Optional words
3. Connectives
4. Special registers
5. Figurative constants
6. Special-character words

Key Words: A key word is a word whose presence is required when the format in which
the word appears is used in a source program. Within each format, such words
are uppercase and underlined.

Key words are of three types:
1. Verbs such as ADD, READ, and ENTER.
2. Required words, which appear in statement and entry formats.
3. Words which have a specific functional meaning such as NEGATIVE,

SECTION, etc.

Optional Words: Within each format, uppercase words that are not underlined are called
optional words and may appear at the user's option. The presence or absence
of an optional word does not alter the semantics of the COBOL program in
which it appears.

Connectives: Series connectives link two or more consecutive operands: , (separator
comma) or ; (separator semicolon).

Figurative Constants: Certain reserved words are used to name and reference specific constant
values. These reserved words are specified under Figurative Constant Values
in this chapter.

Literals

A literal is a character-string whose value is implied by an ordered set of characters of which the literal
is composed or by specification of a reserved word which references a figurative constant. Every literal
belongs to one of two types, nonnumeric or numeric.

Nonnumeric Literals A nonnumeric literal is a character-string delimited on both ends
by quotation marks and consisting of any allowable character in the
computer's character set. Allowed are nonnumeric literals of 1 through
128 characters in length. To represent a single quotation mark character

Chapter 2. COBOL Concepts

9

within a nonnumeric literal, two contiguous quotation marks must be
used. The value of a nonnumeric literal in the object program is the
string of characters itself, except:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

 All other punctuation characters are part of the value of the nonnumeric literal rather than separators;
all nonnumeric literal are category alphanumeric. (See the section called “THE PICTURE CLAUSE”
in chapter 3). In addition, hexadecimal binary values can be attributed to non-numeric literals by,
expressing literals as: X"nn", where n is a hexadecimal character in the set 0-9 A-F; nn may be repeated
up to 128 times, but the number of hex digits must be even.

Numeric Literals A numeric literal is a character-string whose characters are selected from
the digits '0' through '9', the plus sign, the minus sign, and/or the decimal
point. The implementation allows for numeric literals of 1 through 18 digits
in length. The rules for the formation of numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. If the literal is
unsigned, the literal is positive.

3. A literal must not contain more than one decimal point. The decimal
point is treated as an assumed decimal point, and may appear anywhere
within the literal except as the rightmost character. If the literal contains
no decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric literals, but
is enclosed in quotation marks, it is a nonnumeric literal and it is treated
as such by the compiler.

4. The value of a numeric literal is the algebraic quality represented by
the characters in the numeric literal. Every numeric literal is category
numeric. (See the section called “THE PICTURE CLAUSE” in Chapter
3). The size of a numeric literal in standard data format characters is
equal to the number of digits specified by the user.

Figurative Constant Values

Figurative Constant Values are generated by the compiler and referenced through the use of the
reserved words given below. These words must not be bounded by quotation marks when used as
figurative constants. The singular and plural forms of figurative constants are equivalent and may be
used interchangeably.

The figurative constant values and the reserved words used to reference them are shown in Table 2-1.

Table 2.1. Figurative Constants and their Reserved Words

CONSTANT REPRESENTATION

ZERO

ZEROS

ZEROES

Represents the value '0', or one or more of the
character '0' depending on context.

SPACE

SPACES

Represents one or more of the character space from
the computer's character set.

Chapter 2. COBOL Concepts

10

CONSTANT REPRESENTATION

HIGH-VALUE

HIGH-VALUES

Represents one or more of the character that has
the highest ordinal position in the program collating
sequence.

LOW-VALUE

LOW-VALUES

Represents one or more of the character that has
the lowest ordinal position in the program collating
sequence.

QUOTE

QUOTES

Represents one or more of the character ' " '. The
word QUOTE or QUOTES cannot be used in place
of a quotation mark in a source program to bound a
nonnumeric literal. Thus, QUOTE ABD QUOTE is
incorrect as a way of stating the nonnumeric literal
"ABD".

ALL literal Represents one of more repetitions of the single
character comprising the literal (literal may not be
more than one character in length). The literal must
be either a nonnumeric literal or a figurative constant
other than ALL literal. When a figurative constant
is used, the word ALL is redundant and is used for
readability only.

When a figurative constant represents a string of one or more characters, the length of the string i s
determined by the compiler from context according to the following rules:

1. When a figurative constant is associated with another data item, as when the figurative constant is
moved to or compared with another data item, the string of characters specified by the figurative
constant is repeated character by character on the right until the size of the resultant string is equal
to the size in characters of the associated data item. This is done prior to and independent of the
application of any JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not associated with another data item, as when the figurative constant
appears in a DISPLAY or STOP statement, the length of the string is one character. DISPLAY
SPACE is, of course, an exception.

A figurative constant may be used wherever a literal appears in a format, except that whenever the
literal is restricted to having only numeric characters in it, the only figurative constant permitted is
ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program,
the actual character associated with each figurative constant depends upon the program collating
sequence specified. (See THE OBJECT-COMPUTER PARAGRAPH, and THE SPECIAL-NAMES
PARAGRAPH in Chapter 3).

Each reserved word which is used to reference a figurative constant value is a distinct character-string
with the exception of the construction 'ALL literal' which is composed of two distinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters in the COBOL character
set used as symbols. See the section called “THE PICTURE CLAUSE” for the PICTURE character-
string and for the rules that govern their use.

Any punctuation character which appears as part of the specification of a PICTURE character-string
is not considered as a punctuation character, but rather as a symbol used in the specification of that
PICTURE character-string.

Comment-Entries

Chapter 2. COBOL Concepts

11

A comment-entry is an entry in the Identification Division that may be any combination of characters
from the computer's character set.

CONCEPT OF COMPUTER INDEPENDENT DATA
DESCRIPTION

To make data as computer independent as possible, the characteristics or properties of the data are
described in relation to a standard data format rather than an equipment-oriented format. This standard
data format is oriented to general data processing applications and uses the decimal system to represent
numbers (regardless of the radix used by the computer) and the remaining characters in the CIS
COBOL character set to describe nonnumeric data items.

Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises from the need
to specify subdivisions of a record for the purpose of data reference. Once a subdivision has been
specified, it may be further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are called elementary
items; consequently, a record is said to consist of a sequence of elementary items, or the record itself
may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into groups. Each
group consists of a named sequence of one or more elementary items. Groups, in turn, may be
combined into groups of two or more groups, etc. Thus, an elementary item may belong to more than
one group.

Level-Numbers

A system of level-numbers shows the organization of elementary items and group items. Since records
are the most inclusive data items, level-numbers for records start at 01. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater in value than 49. A maximum
of 49 levels in a record is allowed. There is a special level-number, 77, which is an exception to this
rule (see below). Separate entries are written in the source program for each level-number used.

A group includes all group and elementary items following it until a level-number less than or equal
to the level-number of that group is encountered. All items which are immediately subordinate to a
given group item must be described using identical level-numbers greater than the level-number used
to describe that group item. Note that group items must not exceed 8192 Bytes in length.

Two types of entries exist for which there is no true concept of level. These are:

1. Entries that specify noncontiguous working storage and linkage data items

2. Entries that specify condition-names.

Entries that specify noncontiguous data items, which are not subdivisions of other items, and are not
themselves subdivided, have been assigned the special level-number 77.

Concept of Classes of Data

The five categories of data items (see the section called “THE PICTURE CLAUSE” in Chapter
3) are grouped into three classes : alphabetic, numeric, and alphanumeric. For alphabetic and
numeric, the classes and categories are synonymous. The alphanumeric class includes the categories
of alphanumeric edited, numeric edited and alphanumeric (without editing). Every elementary item
except for an index data item belongs to one of the classes and to one of the categories. The class
of a group item is treated at object time as alphanumeric regardless of the class of elementary items

Chapter 2. COBOL Concepts

12

subordinate to that group item. Table 2-2 depicts the relationship of the class and categories of data
items.

Table 2.2. Data Levels, classes and categories

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

Numeric Numeric
Elementary

Alphanumeric
Numeric Edited

Alphanumeric Edited
Alphanumeric

Non-Elementary Group Alphanumeric

Alphabetic
Numeric

Numeric Edited
Alphanumeric Edited

Alphanumeric

Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form, depending on
the equipment. In addition, there are several ways of expressing decimal. Since these representations
are actually combinations of bits, they are commonly called binary-coded decimal forms. The four
standard formats used for storing numeric data in CIS COBOL are as follows:

1. As alphanumeric characters stored one per byte in ASCII representation.

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause in Chapter 3)
one per byte in ASCII representation. If they are signed and the sign is specified as INCLUDED, bit
6 of the leading or trailing byte of the field is set for negative, depending on the field definition. If
a SEPARATE sign is specified as a one byte ASCII + or -, a sign is added as the leading or trailing
byte. If no SIGN clause is specified, bit 6 of the trailing digit is set to indicate negative by default.

3.
As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in pure binary form.
If the field is signed the number is held in its twos-complement form. Storage is then dependent
on the number of 9's in the PICTURE clause (see the section called “THE PICTURE CLAUSE”
in Chapter 3) and on whether the field is SIGNed or not (see The SIGN Clause in Chapter 3).

Table 2-3 shows the storage requirements for each COMP(UTATIONAL) PICTURE Clause.

Table 2.3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE
Clause.

Number of CharactersBytes Required

Signed Unsigned

1 1-2 1-2

2 3-4 3-4

3 5-6 5-7

4 7-9 8-9

5 10-11 10-12

6 12-14 12-14

7 15-16 15-16

8 17-18 17-18

Chapter 2. COBOL Concepts

13

4. As numeric characters defined by USAGE IS COMPUTATIONAL-3 or USAGE IS COMP-3 in
packed internal decimal form. Storage is dependent on the number of 9's in the PICTURE clause.
The decimal numbers are stored as signed strings of variable length of 1 through 18 digits. The
sign of the packed decimal number is always stored in place of the least significant quartet of the
low order byte. Each byte contains two decimal positions (four bits per digit) and the digits (0 - 9)
are encoded as BCD numbers (0000 - 1001). Numbers are represented in the field as right-justified
values with a + or - sign as shown in the example below. The maximum number of digits permitted
in arithmetic operands is 18.

EXAMPLE:

a. For COMPUTATIONAL-3 and PICTURE 9999, the number +1234 would be stored as follows:

 ... 0 1 2 3 4 F
 0000 0001 0010 0011 0100 1111
 +---------+
 1 byte

where F represents the non-printing plus sign.

b. For COMPUTATIONAL-3 and PICTURE S9999, the number +1234 would be stored as
follows:

Storage would be as in a above except that the least significant digit would be replaced by C
(1100) representing the plus sign.

c. For COMPUTATIONAL-3 and PICTURE S9999, the number -1234 would be stored as follows:

Storage would be as in a above except that the least significant byte would be replaced by D
(1101) representing the minus sign.

Table 2-4 shows the storage requirements for each COMP-3 clause.

Table 2.4. Numeric Data Storage for the COMPUTATION-3 PICTURE
Clause.

Bytes Required Number of Digits
(Signed or Unsigned)

1 1

2 2-3

3 4-5

4 6-7

5 8-9

6 10-11

7 12-13

8 14-15

9 16-17

10 18

Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric
data items and signed numeric literals to indicate their algebraic properties; and editing signs, which
appear on edited reports to identify the sign of the item.

Chapter 2. COBOL Concepts

14

The SIGN Clause permits the programmer to state explicitly, the location of the operational sign. The
Clause is optional; if it is not used operational signs will be represented as defined by setting bit 6 of
the trailing digit for ASCII numbers. (see above).

Editing signs are inserted into a data item through the use of the sign control symbols of THE
PICTURE CLAUSE.

Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category of the
receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character positions with zero
fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it had
an assumed decimal point immediately following its rightmost character and is aligned as in
paragraph a. above.

2. If the receiving data item is a numeric edited data item, the data moved to the edited item is aligned
by decimal point with zero fill or truncation at either end as required within the receiving character
positions of the data item, except where editing requirements cause replacement of the leading
zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric
edited or alphabetic, the sending data is moved to the receiving character positions and aligned at
the leftmost character position in the data item with space fill or truncation to the right, as required.

If the JUSTIFIED Clause is specified for the receiving item, these standard rules are modified as
described in THE JUSTIFIED CLAUSE in Chapter 3.

Uniqueness of Reference

Subscripting

Subscripts can be used only when reference is made to an individual element within a list or table
of like elements that have not been assigned individual data-names (see THE OCCURS CLAUSE in
Chapter 4). The subscript can be represented either by a numeric literal that is an integer or by a data-
name, The data-name must be a numeric elementary item that represents an integer. The subscript
may be signed and, if signed, it must be positive. The lowest possible subscript value is 1. This value
points to the first element of the table. The next sequential elements of the table are pointed to by
subscripts whose values are 2, 3, The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is delimited by the balanced
pair of separators left parenthesis and right parenthesis following the table element data-name. The
table element data-name appended with a subscript is called a subscripted data-name or an identifier.
When more than one subscript is required, they are written in the order of successively less inclusive
dimensions of the data organization.

The format is:

data-name (subscript-1 [, subscript-2 [, subscript-3]])

Indexing

References can be made to individual elements within a table of like elements by specifying indexing
for that reference. An index is assigned to that level of the table by using the INDEXED BY phrase in

Chapter 2. COBOL Concepts

15

the definition of a table. A name given in the INDEXED BY phrase is known as an index-name and
is used to refer to the assigned index. The value of an index corresponds to the occurrence number
of an element in the associated table. An index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by a SET statement.

Direct indexing is specified by using an index-name in the form of a subscript. Relative indexing is
specified when the index-name is followed by the operator + or -, followed by an unsigned integer
numeric literal all delimited by the balanced pair of separators left parenthesis and right parenthesis
following the table element data-name. The occurrence number resulting from relative indexing is
determined by incrementing (where the operator + is used) or decrementing (when the operator - is
used), by the value of the literal, the occurrence number represented by the value of the index. When
more than one index-name is required, they are written in the order of successively less inclusive
dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table element, the value contained in
the index referenced by the index-name associated with the table element must neither correspond to a
value less than one nor to a value greater than the highest permissible occurrence number of an element
of the associated table. This restriction also applies to the value resultant from relative indexing.

The general format for indexing is:

{ data-name | condition-name } ({ index-name-1 | literal-1 | [{ + | - } literal-2
]}
[, { index-name-2 | literal-3 } [{ + | - | literal-4 }] [, { index-name-3 | literal-5
| [{ + | - } literal-6]}]])

Identifier

An identifier is a term used to reflect that a data-name, if not unique in a program, must be followed
by a syntactically correct combination of subscripts or indices necessary to ensure uniqueness.

The general formats for identifiers are:

Format 1:

data-name-1 [(subscript-1[, subscript-2[, subscript-3]] (]

Format 2:

data-name-1 ({ index-name-1 | literal-1 } [{ + | - } literal-2]
[, { index-name-2 | literal-3 } [{ + | - } literal-4] [, { index-name-3 | literal-5 } [{ + | - } literal-6]]]

Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is being used as an
index, or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM statements. Data items
described by the USAGE IS INDEX clause permit storage of the values associated with index-
names as data in a form specified by the implementor. Such data items are called index data items.

4. Literal-1, literal-3, literal-5, in the above format must be positive numeric integers. Literal-2,
literal-4, literal-6 must be unsigned numeric integers.

Condition-Name

Each condition-name must be unique.

PROGRAM STRUCTURE

Chapter 2. COBOL Concepts

16

A CIS COBOL program consists of four divisions:

1. IDENTIFICATION DIVISION - An identification of the program.

2. ENVIRONMENT DIVISION - A description of the equipment to be used to compile and run the
program.

3. DATA DIVISION - A description of the data to be processed.

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be performed on the
data.

Each division, is divided into sections which are further divided into paragraphs, which in turn are
made up of sentences.

THE "ANSI SWITCH" COMPILER DIRECTIVE
Some of the 'red-tape' statements required by a strict ANSI interpretation, are optional under CIS
COBOL. It is possible to force the compiler to insist on a strict ANSI interpretation by using the
"FLAG" directive. In the remainder of this Chapter these statements are marked []. Elsewhere in this
manual a reference is made to the ANSI switch when this applies.

If the operator enters the FLAG directive at compile time ANSI requirements implemented in CIS
COBOL are mandatory depending on their level as specified by the Federal Compiler Testing Center
under the direction of the General Services Administration (GSA). See the description of the Compiler
FLAG directive in the CIS COBOL Operating Guide.

IDENTIFICATION DIVISION

GENERAL DESCRIPTION
The Identification Division must be included in every ANSI COBOL source program, This division
identifies both the source program and the resultant output listing. In addition, the user may include
the date the program is written, the date the compilation of the source program is accomplished and
such other information as desired under the paragraphs in the general format shown below.

ORGANISATION
Paragraph headers identify the type of information contained in the paragraph. The name of the
program must be given in the first paragraph, which is the PROGRAM-ID paragraph. The other
paragraphs are optional and may be included in this division at the user's choice, in order of
presentation shown by the format below.

STRUCTURE
The following is the general format of the paragraphs in the Identification Division and it defines the
order of presentation in the source program.

General format

[IDENTIFICATION DIVISION.]
[PROGRAM-ID. program-name.]
[AUTHOR. [comment-entry]...]
[INSTALLATION. [comment-entry]...]
[DATE-WRITTEN. [comment-entry]...]
[DATE-COMPILED. [comment-entry]...]
[SECURITY. [comment-entry]...]

Chapter 2. COBOL Concepts

17

ENVIRONMENT DIVISION
GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing those aspects of a data processing
problem that are dependent upon the physical characteristics of a specific computer. This division
allows specification of the configuration of the compiling computer and the object computer. In
addition, information relating to input-output control, special hardware characteristics and control
techniques can be given.

The Environment Division must be included in every COBOL source program.

ORGANIZATION
Two sections make up the Environment Division: the Configuration Section and the Input-Output
Section.

The Configuration Section deals with the characteristics of the source computer and the object
computer. This section is divided into three paragraphs: the SOURCE-COMPUTER paragraph,
which describes the computer configuration on which the source program is compiled; the OBJECT-
COMPUTER paragraph, which describes the computer configuration on which the object program
produced by the compiler is to be run; and the SPECIAL-NAMES paragraph, which relates the
implementation-names used by the compiler to the mnemonic-names used in the source program.

The Input-Output Section deals with the information needed to control transmission and handling of
data between external media and the object program. This section is divided into two paragraphs: the
FILE-CONTROL paragraph which names and associates the files with external media; and the I-O-
CONTROL paragraph which defines special control techniques to be used in the object program.

STRUCTURE
The following is the general format of the sections and paragraphs in the Environment Division, and
defines the order of presentation in the source program.

General Format

[ENVIRONMENT DIVISION.]
[CONFIGURATION SECTION.]
[SOURCE-COMPUTER. source-computer-entry]
[OBJECT-COMPUTER. object-computer-entry]
[SPECIAL-NAMES. special-names-entry]
[INPUT-OUTPUT SECTION.]
[FILE-CONTROL.] {file-control-entry}...
[I-O-CONTROL. input-output-control-entry]

DATA DIVISION
OVERALL APPROACH

The Data Division describes the data that the object program is to accept as input, to manipulate, to
create, or to produce as output, Data to be processed falls into three categories:

1. That which is contained in files and enters or leaves the internal memory of the computer from a
specified area or areas.

2. That which is developed internally and placed into intermediate or working storage, or placed into
specific format for output reporting purposes.

Chapter 2. COBOL Concepts

18

3. Constants which are defined by the user.

PHYSICAL AND LOGICAL ASPECTS OF DATA
DESCRIPTION

Data Division Organization

The DATA DIVISION which is one of the required divisions in a program, is subdivided into sections.
These are the File, Working-Storage and Linkage sections.

The FILE SECTION defines the structure of data files. Each file is defined by a file description
entry and one or more record descriptions, or by a file description entry and one or more report
description entries. Record descriptions are written immediately following the file description entry.
The WORKING-STORAGE SECTION describes records and noncontiguous data items which are
not part of external data files but are developed and processed internally. It also describes data items
whose values are assigned in the source program and do not change during the execution of the
object program. The LINKAGE SECTION appears in the called program and describes data items
that are to be referred to by the calling program and the called program. Its structure is the same as
the WORKING-STORAGE SECTION.

General Format

The following gives the general format of the sections in the Data Division, and defines the order of
their presentation in the source program.

[DATA DIVISION.]
[FILE SECTION.
[file-description-entry [record-description-entry]...]...]
[WORKING-STORAGE SECTION.
[{ 77-level-description-entry | record-description-entry }]...]
[LINKAGE-SECTION.
[{ 77-level-description-entry | record-description-entry }]...]

PROCEDURE DIVISION

GENERAL DESCRIPTION
The Procedure Division must be included in every COBOL source program. This division may contain
declarative procedures.

Declaratives

Declarative sections must be grouped at the beginning of the Procedure Division preceded by the key
word DECLARATIVES and followed by the key words END DECLARATIVES. (See descriptions
of the USE statement in Chapters 5, 6 and 7 and the Debug Chapter 10).

Procedures

A procedure is composed of a paragraph, or group of successive paragraphs (the first paragraph-name
is optional), or a section, or a group of successive sections within the Procedure Division. If one
paragraph is in a section, then all paragraphs must be in sections. A procedure-name is a word used
to refer to a paragraph or section in the source program in which it occurs. It consists of a paragraph-
name (which may be qualified), or a section-name.

The end of the Procedure Division and the physical end of the program is that physical position in a
COBOL source program after which no further procedures appear.

Chapter 2. COBOL Concepts

19

A section consists of a section header followed by zero, one, or more successive paragraphs. A section
ends immediately before the next section or at the end of the Procedure Division or, in the declaratives
portion of the Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more
successive sentences. A paragraph ends immediately before the next paragraph-name or section-name
or at the end of the Procedure Division or, in the declaratives portion of the Procedure Division, at
the key words END DECLARATIVES.

In CIS COBOL paragraph names may be entirely omitted. If paragraph names are used then they
may be mixed with section names as required, in any order. Note that is is not possible to GO TO or
PERFORM a piece of code unless it has either a section or a paragraph name.

A sentence consists of one or more statements and is terminated by a period followed by a space.

A statement is a syntactically valid combination of words and symbols beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make unique reference to a data item.

Execution

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements
are then executed in the order in which they are presented for compilation, except where the rules
indicate some other order.

General Format

Procedure Division Header

The Procedure Division is identified by and must begin with the following header:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2]...] .

Procedure Division Body

The body of the Procedure Division must conform to one of the following formats:

Format 1:

[DECLARATIVES. { section-name SECTION [segment-number] . declarative-sentence
[paragraph-name. [sentence]...]... }...
END DECLARATIVES.]
{ [section-name SECTION [segment-number]]
[[paragraph-name] [sentence]...] }

Format 2 :

{ [paragraph-name] [sentence]... }...

STATEMENTS AND SENTENCES
There are three types of statements:

1. Conditional statements,
2. Compiler directing statements,
3. Imperative statements.

There are three types of sentences:

1. Conditional sentences,
2. Compiler directing sentences,
3. Imperative sentences.

Chapter 2. COBOL Concepts

20

Conditional Statement

A conditional statement specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:

• An IF statement.

• A READ statement that specifies the AT END or INVALID KEY phrase.

• A WRITE statement that specifies the INVALID KEY phrase.

• A START, REWRITE or DELETE statement that specifies the INVALID KEY phrase.

• An arithmetic statement (ADD, DIVIDE, MULTIPLY, SUBTRACT) that specifies the SIZE
ERROR phrase.

• A CALL statement that specifies the ON OVERFLOW phrase.

Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an imperative statement,
terminated by a period followed by a space.

Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its operands. The compiler
directing verbs are COPY, ENTER and USE (see THE COPY STATEMENT in Chapter 9, THE
ENTER STATEMENT in Chapter 3, and THE USE STATEMENT in Chapters 5, 6 and 7). A compiler
directing statement causes the compiler to take a specified action during compilation.

Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement terminated by a period followed
by a space.

Imperative Statement

An Imperative statement indicates a specific unconditional action to be taken by the object program.
An imperative statement is any statement that is neither a conditional statement, nor a compiler
directing statement. An imperative statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator.

The imperative verbs are:

ACCEPT DIVIDE1 READ4

ADD1 EXIT REWRITE2

ALTER GO SET
CALL3 INSPECT START2

CANCEL MOVE STOP
CLOSE MULTIPLY1 SUBTRACT1

DELETE2 OPEN WRITE5

DISPLAY PERFORM

1. Without the optional SIZE ERROR phrase.
2. Without the optional INVALID KEY phrase.
3. Without the optional ON OVERFLOW phrase.
4. Without the optional AT END phrase or INVALID KEY phrase.
5. Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

Chapter 2. COBOL Concepts

21

When 'imperative-statement' appears in the general format of statements, 'imperative-statement' refers
to that sequence of consecutive imperative statements that must be ended by a period or an ELSE
phrase associated with a previous IF statement.

Imperative Sentence

An imperative sentence is an imperative statement terminated by a period followed by a space.

REFERENCE FORMAT
GENERAL DESCRIPTION

The reference format, which provides a standard method for describing COBOL source programs,
is described in terms of character positions in a line on an input-output medium. The CIS COBOL
compiler accepts source programs written in reference format and produces an output listing of the
source program input in reference format.

The rules for spacing given in the discussion of the reference format take precedence over all other
rules for spacing.

The divisions of a source program must be ordered as follows: the Identification Division, then the
Environment Division, then the Data Division, then the Procedure Division. Each division must be
written according to the rules for the reference format.

REFERENCE FORMAT REPRESENTATION
The reference format for a line is represented as in Figure 2-1.

Figure 2.1. Reference Format for a COBOL Source Line.

| | | | |
Margin Margin Margin Margin Margin
L C A B R
| | | 1 1| 1 1 . . . |
| 1 2 3 4 5 6| 7 | 8 9 0 1| 2 3 |
<------------------------> <----> <---------------> <------------------->
 Sequence Number Area ^ Area A Area B
 |
 Indicator Area

Margin L is immediately to the left of the leftmost character position of a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character position of a line.

The sequence number area occupies six character positions (1-6), and is between Margin L and Margin
C.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10 and 11, and is between margin A and margin B.

Area B occupies character positions 12 through 72 inclusive; it begins immediately to the right of
Margin 8 and terminates immediately to the left of Margin R.

Chapter 2. COBOL Concepts

22

Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may be used to label a source program
line.

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line, it may be continued by
starting subsequent line(s) in area B. These subsequent lines are called the continuation line(s). The
line being continued is called the continued line. Any word or literal may be broken in such a way
that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank character in area B of the current
line is the successor of the last nonblank character of the preceding line without any intervening space.
However, if the continued line contains a nonnumeric literal without closing quotation mark, the first
nonblank character in area B on the continuation line must be a quotation mark, and the continuation
starts with the character immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the last character in the preceding
line is followed by a space.

Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line can appear
anywhere in the source program, except immediately preceding a continuation line. (See Figure 2-1).

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

The division header must start in area A. (See Figure 2-1).

Section Header

The section header must start in area A. (See Figure 2-1).

A section consists of paragraphs in the Environment and Procedure Divisions and Data Division entries
in the Data Division.

Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one or more
sentences, or a paragraph header followed by one or more entries. Comment entries may be included
within a paragraph. The paragraph header or paragraph-name starts in area A of any line following
the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the paragraph header or
paragraph-name or in area B of the next nonblank line that is not a comment line. Successive sentences
or entries either begin in area B of the same line as the preceding sentence or entry or in area B of the
next nonblank line that is not a comment line.

Note that in CIS COBOL program sentences may commence anywhere in Area A or Area B.

When the sentences or entries of a paragraph require more than one line they may be continued as
described in CONTINUATION OF LINES in this Chapter.

DATA DIVISION ENTRIES

Chapter 2. COBOL Concepts

23

Each Data Division entry begins with a level indicator or a level-number, followed by a space,
followed by its associated name (except in the Report Section), followed by a sequence of independent
descriptive clauses. Each clause, except the last clause of an entry, may be terminated by either the
separator semicolon or the separator comma. The last clause is always terminated by a period followed
by a space.

There are two types of Data Division entries: those which begin with a level indicator and those which
begin with a level-number.

A level indicator is the indicator: FD (see THE FILE DESCRIPTION - COMPLETE ENTRY
SKELETON in Chapters 5, 6 and 7)

In those Data Division entries that begin with a level indicator, the level indicator begins in area
A followed by a space and followed in area B with its associated name and appropriate descriptive
information.

Those Data Division entries that begin with level-numbers are called data description entries.

A level-number has a value taken from the set of values 1 through 49, 77. Level-numbers in the range
1 through 9 may be written either as a single digit or as a zero followed by a significant digit. At least
one space must separate a level-number from the word following the level-number.

In those data description entries that begin with level-number 01 or 77, the level-number begins in
area A followed by a space and followed in area B by its associated record-name or item-name and
appropriate descriptive information.

Successive data description entries may have the same format as the first or may be indented according
to level-number. The entries in the output listing need be indented only if the input is indented.
Indentation does not affect the magnitude of a level-number.

When level-numbers are to be indented, each new level-number may begin any number of spaces to
tile right of margin A. The extent of indentation to the right is determined only by the width of the
physical medium.

DECLARATIVES
The key word DECLARATIVES and the key words END DECLARATIVES that precede and
follow, respectively, the declaratives portion of the Procedure Division must each appear on a line by
themselves, Each must begin in area A and be followed by a period and a space (see Figure 2-1).

COMMENT LINES
A comment line is any line with an asterisk in the continuation indicator area of the line. A comment
line can appear as any line in a source program after the Identification Division header. Any
combination of characters from the computer's character set may be included in area A and area B of
that line (see Figure 2-1). The asterisk and the characters in area A and area B will be produced on
the listing but serve as documentation only. A special form of comment line represented by a stroke
in the indicator area of the line causes page ejection prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is permitted, except that each
continuation line must contain an '*' in the indicator area.

RESERVED WORDS
A full list of reserved words is given in Appendix A.

24

25

Chapter 3. THE NUCLEUS

FUNCTION OF THE NUCLEUS
The Nucleus provides a basic language capability for the internal processing of data within the basic
structure of the four divisions of a program.

IDENTIFICATION DIVISION IN THE NUCLEUS

GENERAL DESCRIPTION
The Identification Division must be included in every COBOL source program. This division identifies
the source program and the resultant output listing. In addition, the user may include the date the
program is written and such other information as desired under the paragraphs in the general format
shown below.

ORGANIZATION
Paragraph headers identify the type of information contained in the paragraph. The name of the
program must be given in the first paragraph, which is the PROGRAM-ID paragraph. The other
paragraphs are optional and may be included in this division at the user's choice, in the order of
presentation shown by the general format below.

Structure

The general format of the paragraphs in the Identification Division is given below and shows the order
of presentation in the source program.

General Format

[IDENTIFICATION DIVISION]
[PROGRAM-ID. program-name.]
[AUTHOR. [comment-entry]...]
[INSTALLATION. [comment-entry]...]
[DATE-WRITTEN. [comment-entry]...]
[DATE-COMPILED. [comment-entry]...]
[SECURITY. [comment-entry]...]

Syntax Rules

1. The Identification Division must begin with the reserved words IDENTIFICATION DIVISION
followed by a period and a space.

2. The comment-entry may be any combination of the characters from the computer's character set
and may be written in area B on one or more lines. The continuation of the comment-entry by the
use of the hyphen in the indicator area is not permitted.

THE PROGRAM-ID PARAGRAPH

Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

Chapter 3. THE NUCLEUS

26

General Format

PROGRAM-ID. program-name.

Syntax Rules

1. The program-name must conform to the rules for formation of a user-defined word.

General Rules

1. The PROGRAM-ID paragraph must contain the name of the program and must be present in every
program if the FLAG directive is used.

2. The program-name identifies the source program and all listings pertaining to a particular program.

THE DATE-COMPILED PARAGRAPH

Function

The DATE-COMPILED paragraph provides the compilation date in the Identification Division source
program listing.

General Format

DATE-COMPILED. comment-entry ...

Syntax Rule

The comment-entry may be any combination of the characters from the computer's character set. The
continuation of the comment entry by use of the hyphen is not permitted; however, the comment entry
may be contained on one or more lines.

General Rule

The paragraph-name DATE-COMPILED causes a date string to be inserted during program
compilation. If a DATE-COMPILED is present, the comment-entry is replaced in its entirety by the
date string. See the CIS COBOL Operating Guide for details of the derivation of the comment-entry
replacement string for your implementation of CIS COBOL compile-time.

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

The SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to be
compiled.

General Format

SOURCE-COMPUTER. computer-name.

Syntax Rule

Computer-name must be one COBOL word defined by the user.

Chapter 3. THE NUCLEUS

27

General Rules

The computer-name provides a means for identifying equipment configuration, in which case the
computer-name and its implied configuration are specified by the user. The SOURCE-COMPUTER
paragraph is treated as for documentation purposes only.

The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER Paragraph identifies the computer on which the program is to be executed.

General Format

OBJECT-COMPUTER. computer-name.
[,MEMORY SIZE integer { WORDS | CHARACTERS | MODULES }]
[,PROGRAM COLLATING SEQUENCE IS alphabet-name]
[,SEGMENT-LIMIT IS segment-number]

Syntax Rules

1. Computer-name must be one COBOL word defined by the user.

2. Segment-number must be an integer in the range 1 through 49.

General Rules

1. The computer-name provides a means for identifying equipment configuration, in which case
the computer-name and its implied configurations are specified by the user. The configuration
definition contains specific information concerning the memory size. The computer-name,
segment-limit and configuration definition are treated as for documentation purposes only.

2. If the PROGRAM COLLATING SEQUENCE Clause is specified, the collating sequence
associated with alphabet-name is used to determine the truth value of any nonnumeric comparisons:

Explicitly specified in relation conditions (see Relation Condition later in this Chapter).

3. If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native collating
sequence is used. Appendix B lists the full ASCII collating sequence (native) and those characters
used in COBOL.

4. If the PROGRAM COLLATING SEQUENCE Clause is specified, the program collating sequence
is the collating sequence associated with the alphabet-name specified in that Clause.

5. The PROGRAM COLLATING SEQUENCE Clause is also applied to any nonnumeric merge or
sort keys.

The SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means of relating implementor-names to user-specified
mnemonic-names and of relating alphabet-names to character sets and/or collating sequences.

General Format

SPECIAL-NAMES.
SWITCH {0 ... 7} [IS mnemonic-name] { ,ON STATUS IS condition-name-1 | [,OFF STATUS IS
condition-name-2] | ,OFF STATUS IS condition-name-2 | [,ON STATUS IS condition-name-1]}
[{ ,SYSIN | ,SYSOUT } IS mnemonic-name]
[, TAB IS mnemonic-name]

Chapter 3. THE NUCLEUS

28

[, alphabet-name IS { STANDARD-1 | NATIVE }]...
[, CURRENCY SIGN IS literal-9]
[, DECIMAL-POINT IS COMMA]
[, CONSOLE IS CRT]
[, CURSOR IS data-name-1] .

General Rules

1. The status of the switch is specified by condition-names and interrogated by testing the condition-
names (see Switch-Status Condition later in this Chapter).

2. The alphabet-name clause provides a means for relating a name to a specified character code set
and/or collating sequence. When alphabet - name is referenced in the PROGRAM COLLATING
SEQUENCE clause (see THE OBJECT-COMPUTER PARAGRAPH in this Chapter). The
alphabet-name clause specifies a collating sequence. When alphabet-name is referenced in a
CODE-SET clause in a file description entry (see The File Description Complete Entry Skeleton
in Chapter 5), the alphabet-name clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or collating sequence identified
is that defined in American National Standard Code for Information Interchange, X3.4-1968 .
Appendix B defines the correspondence between the characters of the standard character set and
the characters of the native character set.

b. If the NATIVE phrase is specified, the native character code set or native collating sequence is
used. The native collating sequence is as in ANSI publication X3.4-1968 (see Appendix B) .

3. The character that has the highest ordinal position in the program collating sequence specified is
associated with the figurative constant HIGH- VALUE. If more than one character has the highest
position in the program collating sequence, the last character specified.

4. The character that has the lowest ordinal position in the program collating sequence specified is
associated with the figurative constant LOW-VALUE. If more than one character has the lowest
position in the program collating sequence, the first character specified is associated with the
figurative constant LOW-VALUE.

5. The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE clause
to represent the currency symbol. The literal is limited to a single character and must not be one
of the following characters.

• digits 0 thru 9;

• alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the space;

• special characters '*', '+', '-', ',', '.', ';', '(', ')', '"', '/' or '='.

If this clause is not present, only the currency sign is used in the PICTURE clause.

6. The clause DECIMAL - POINT IS COMMA means that the function of comma and period are
exchanged in the character-string of the PICTURE clause and in numeric literals.

7. The clause CONSOLE IS changes the defaults in the ACCEPT and DISPLAY statements to the CIS
COBOL interactive extension that enables data to be accepted or displayed at any specified point
on the screen. See THE ACCEPT STATEMENT and the DISPLAY STATEMENT in this Chapter.

8. The clause CURSOR IS specifies the data-name to contain the CRT cursor address as used by
the ACCEPT statement. If CURSOR IS is not specified the default cursor position on executing an
ACCEPT statement is the 'Home' position at top left of the CRT screen. The CURSOR IS clause
enables a program to retain a position at the end of execution of the last ACCEPT statement or
to specify the initial position at the start of any ACCEPT statement. This is a useful facility when
programming menu-type operator prompts. The operator need then only move the cursor to the
selected option prompt and press RETURN or just press RETURN for the default option.

Chapter 3. THE NUCLEUS

29

Data-name contains the name of the PIC 9999 field in which the most significant 99 represents
a line count in the range one to the maximum number of lines on the user screen, and the least
significant 99 represents a character position in the range one to the maximum positions allowed
by the width of the user screen. If data-name is zero, the effect is as if the CURSOR clause was
not used, i.e., initial cursor position is top left of the screen. (See also the ACCEPT STATEMENT
later in this Chapter).

9. SYSIN and SYSOUT specify the system input stream and system output stream respectively. At
this release they are treated as for documentation purposes only.

10.TAB specifies the skip-to-head-of-form system function that can be used with WRITE
ADVANCING. It is treated as for documentation purposes only at this release.

DATA DIVISION IN THE NUCLEUS

WORKING STORAGE SECTION
The Working-Storage Section is composed of the section header, followed by data description entries
for noncontiguous data items and/or record description entries. Each Working-Storage Section record
name and noncontiguous item name must be unique.

Noncontiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical relationship to one another need
not be grouped into records, provided they do not need to be further subdivided. Instead, they are
classified and defined in a separate data description entry which begins with the special level-number,
77.

The following data clauses are required in each data description entry:

• Level-number 77

• Data-name

• The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the description of the item
if necessary.

Working-Storage Records

Data elements and constants in Working-Storage which bear a definite hierarchic relationship to one
another must be grouped into records according to the rules for formation of record descriptions. All
clauses which are used in record descriptions in the File Section can be used in record descriptions
in the Working-Storage Section.

Initial Values

The initial value of any item in the Working-Storage Section except an index data item is specified by
using the VALUE clause with the data item. The initial value of any index data item is unpredictable.

THE DATA DESCRIPTION - COMPLETE ENTRY
SKELETON

Function

A data description entry specifies the characteristics of a particular item of data.

Chapter 3. THE NUCLEUS

30

General Format

level-number { data-name-1 | FILLER }
[; REDEFINES data-name-2]
[{ PICTURE | PIC } IS character-string]
[; [USAGE IS] { COMPUTATIONAL | COMP | COMPUTATIONAL-3 | COMP-3 | DISPLAY }]
[; [SIGN IS] { LEADING | TRAILING } [SEPARATE CHARACTER]]
[; { SYNCHRONIZED | SYNC } { LEFT | RIGHT }]
[; { JUSTIFIED | JUST } RIGHT] [; BLANK WHEN ZERO]
[; VALUE IS literal]

Syntax Rules

1. The level-number may be any number from 01-49 or 77.

2. The clauses may be written in any order with two exceptions: the data-name-1 or FILLER clause
must immediately follow the level-number; the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

3. The PICTURE clause must be specified for every elementary item except an index data item, in
which case use of this clause is prohibited.

General Rule

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must not be
specified except for an elementary data item.

THE BLANK WHEN ZERO CLAUSE

Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

General Format

BLANK WHEN ZERO

Syntax Rules
The BLANK WHEN ZERO clause can be used only for an elementary item whose PICTURE is
specified as numeric with implicit or explicit USAGE IS DISPLAY, or numeric edited. (See the section
called “THE PICTURE CLAUSE” later in this Chapter).

General Rules

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if the
value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the
category of the item is considered to be numeric edited.

THE DATA-NAME OR FILLER CLAUSE

Function

A data-name specifies the name of the data being described. The word FILLER specifies an elementary
item of the logical record that cannot be referred to explicitly.

Chapter 3. THE NUCLEUS

31

General Format

{ data-name | FILLER }

Syntax Rule

1. In the File, Working-Storage, Communication and Linkage Sections, a data-name or the key word
FILLER must be the first word following the level-number in each data description entry.

General Rule

1. The key word FILLER may be used to name an elementary item in a record. Under no circumstances
can a FILLER item be referred to explicitly.

THE JUSTIFIED CLAUSE

Function

The JUSTIFIED clause specifies non-standard positioning of data within a receiving data item.

General Format

{ JUSTIFIED | JUST } RIGHT

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as numeric or for which
editing is specified.

General Rules

1. When a receiving data item is described with the JUSTIFIED clause and the sending data item
is larger than the receiving data item, the leftmost characters are truncated. When the receiving
data item is described with the JUSTIFIED clause and it is larger than the sending data item, the
data is aligned at the rightmost character position in the data item with space fill for the leftmost
character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data within. an elementary
item apply. (See Standard Alignment Rules.)

LEVEL NUMBER

Function

The level-number shows the hierarchy of data within a logical record. In addition, it is used to identify
entries for working storage items, linkage items.

General Format

level-number

Chapter 3. THE NUCLEUS

32

Syntax Rules

1. A level-number is required as the first element in each data description entry.

2. Data description entries subordinate to a File Description entry must have level-numbers with the
values 01-49. (See THE FILE DESCRIPTION in Chapter 5).

3. Data description entries in the Working-Storage Section and Linkage Section must have level-
numbers with the values 01-49.

General Rules

1. The level-number 01 identifies the first entry in each record description or a report group.

2. The level-number 77 is assigned to identify noncontiguous working storage data items,
noncontiguous linkage data items, and can be used only as described by Format 1 of the data
description skeleton. (See the section called “THE DATA DESCRIPTION - COMPLETE ENTRY
SKELETON” in this Chapter).

3. Multiple level 01 entries subordinate to any given level indicator, represent implicit redefinitions
of the same area.

THE PICTURE CLAUSE

Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary
item.

General Format

{ PICTURE | PIC } IS character-string

Syntax Rules

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of characters in the COBOL character
set used as symbols. The allowable combinations determine the category of the elementary item.

3. The maximum number of characters allowed in the character-string is 30.

4. The PICTURE clause must be specified for every elementary item except an index data item, in
which case use of this clause is prohibited.

5. PIC is an abbreviation for PICTURE

6. The asterisk when used as the zero suppression symbol and the clause BLANK WHEN ZERO may
not appear in the same entry.

General Rules

There are five categories of data that can be described with a PICTURE clause: alphabetic, numeric,
alphanumeric, alphanumeric edited, and numeric edited. General rules within these categories are
given below:

Alphabetic Data Rules

1. Its PICTURE character-string can only contain the symbols 'A', 'B'; and

Chapter 3. THE NUCLEUS

33

2. Its contents when represented in standard data format must be any combination of the twenty-six
(26) upper-case letters of the Roman alphabet and the space from the COBOL character set.

Numeric Data Rules

1. The PICTURE character-string can only contain the symbols '9', 'P', 'S', and 'V'. The number of digit
positions that can be described by the PICTURE character-string must range from 1 to 18 inclusive.

2. If unsigned, the data in standard data format must be a combination of the Arabic numerals '0', '1',
'2', '3', '4', '5', '6', '7', '8', and '9'; if signed, the item may also contain a '+', '-' or other representation
of an operational sign. (See THE SIGN CLAUSE later in this Chapter).

Alphanumeric Data Rules

1. The PICTURE character-string is restricted to certain combinations of the symbols 'A', 'X', '9', and
the item is treated as if the character-string contained all X's. A PICTURE character-string which
contains all A's or all 9's does not define an alphanumeric item; and

2. The contents when represented in standard data format can consist of any characters in the
computer's character set.

Alphanumeric Edited Data Rules

1. Its PICTURE character-string is restricted to certain combinations of the following symbols: 'A',
'X', '9', 'B', '0', and'/' as follows:

a. The character-string must contain at least one 'B' and at least one 'X' or at least one '0' (zero) and
at least one 'X' or at least one '/' (stroke) and at least one 'X'; or

b. The character-string must contain at least one '0' (zero) and at least one 'A' or at least one
'/' (stroke) and at least one 'A'.

2. The contents when represented in standard data format are allowable characters in the computer's
set.

Numeric Edited Data Rules

1. Its PICTURE character-string is restricted to certain combinations of the symbols 'B', '/', 'P', 'V',
'Z', '0', '9', ',', '.', '*', '+', '-', 'CR', 'DB', and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and the editing rules as follows:

a. The number of digit positions that can be represented in the PICTURE character-string must
range from 1 to 18 inclusive.

b. The character-string must contain at least one '0', 'B', '/', 'Z', '*', '+', ',', '.', '-', 'CR', 'DB', or currency
symbol.

2. The contents of the character positions of these symbols that are allowed to represent a digit in
standard data format, must be one of the numerals.

Elementary Item Size

The size of an elementary item, where size means the number of character positions occupied by
the elementary item in standard data format, is determined by the number of allowable symbols that
represent character positions. An integer which is enclosed in parentheses following the symbols 'A',
',', 'X', '9', 'P', 'Z', '*', 'B', '/', '0', '+', '-', or the currency symbol indicates the number of consecutive
occurrences of the symbol. Note that the following symbols may appear only once in a given
PICTURE: 'S', 'V', '.', 'CR', and 'DB'.

Symbols Used

Chapter 3. THE NUCLEUS

34

The functions of the symbols used to describe an elementary item are explained as follows:

A - Each 'A' in the character-string represents a character position which can
contain only a letter of the alphabet or a space.

B - Each 'B' in the character-string represents a character position into which the
space character will be inserted.

P - Each 'P' indicates an assumed decimal scaling position and is used to specify
the location of an assumed decimal point when the point is not within the
number that appears in the data item. The scaling position character 'P' is not
counted in the size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions (18) in numeric edited
items or numeric items. The scaling position character 'P' can appear only to
the left or right as a continuous string of 'P's within a PICTURE description;
since the scaling position character 'P' implies an assumed decimal point (to
the left of 'P's if 'P's are leftmost PICTURE characters and to the right if 'P's
are rightmost PICTURE characters), the assumed decimal point symbol 'V' is
redundant as either the leftmost or rightmost character within such a PICTURE
description. The character 'P' and the insertion character '.' (period) cannot both
occur in the same PICTURE character-string. If, in any operation involving
conversion of data from one form of internal representation to another, the data
item being converted is described with the PICTURE character 'P', each digit
position described by a 'P' is considered to contain the value zero, and the size
of the data item is considered to include the digit positions so described.

S - The letter 'S' is used in a character-string to indicate the presence, but neither
the representation nor, necessarily, the position of an operational sign; it must
be written as the leftmost character in the PICTURE. The S is not counted
in determining the size (in terms of standard data format characters) of the
elementary item unless the entry is subject to a SIGN clause which specifies
the optional SEPARATE CHARACTER phrase. (See the SIGN Clause in this
Chapter.)

V - The 'V' is used in a character-string to indicate the location of the assumed
decimal point and may only appear once in a character-string. The 'V' does
not represent a character position and therefore is not counted in the size of
the elementary item. When the assumed decimal point is to the right of the
rightmost symbol in the string the 'V' is redundant.

X - Each 'X' in the character-string is used to represent a character position which
contains any allowable character from the computer's character set.

Z - Each 'Z' in a character-string may only be used to represent the leftmost
numeric character positions which will be replaced by a space character when
the contents of that character position is zero. Each 'Z' is counted in the size
of the item.

9 - Each '9' in the character-string represents a character position which contains
a numeral and is counted in the size of the item.

0 - Each '0' (zero) in the character-string represents a character position into which
the numeral zero will be inserted. The '0' is counted in the size of the item.

/ - Each '/' (stroke) in the character-string represents a character position into
which the stroke character will be inserted. The '/' is counted in the size of
the item.

, - Each ',' (comma) in the character-string represents a character position into
which the character ',' will be inserted. This character position is counted in

Chapter 3. THE NUCLEUS

35

the size of the item. The insertion character ',' must not be the last character
in the PICTURE character-string.

. - The character '.' (period) in the character-string is an editing symbol which
represents the decimal point for alignment purposes and in addition, represents
a character position into which the character '.' will be inserted. The character
'.' is counted in the size of the item. For a given program the functions of
the period and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the comma apply to
the period wherever they appear in a PICTURE clause. The insertion character
'.' must not be the last character in the PICTURE character-string.

+, -, CR, DB - These symbols are used as editing sign control symbols. When used, they
represent the character position into which the editing sign control symbol will
be placed. The symbols are mutually exclusive in any one character-string and
each character used in the symbol is counted in determining the size of the
data item.

* - Each '*' (asterisk) in the character-string represents a leading numeric character
position into which an asterisk will be placed when the contents of that position
is zero. Each '*' is counted in the size of the item.

cs - The currency symbol in the character-string represents a character position
into which a currency symbol is to be placed. The currency symbol in a
character-string is represented by either the currency sign or by the single
character specified in the CURRENCY SIGN clause in the SPECIAL-
NAMES paragraph. The currency symbol is counted in the size of the item.

Editing Rules

There are two general methods of performing editing in the PICTURE clause, either by insertion or
by suppression and replacement. There are four types of insertion editing available. They are:

• Simple insertion

• Special insertion

• Fixed insertion

• Floating insertion

There are two types of suppression and replacement editing:

• Zero suppression and replacement with spaces

• Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent upon the category to which
the item belongs. Table 3-1 specifies which type of editing may be performed upon a given category.

Table 3.1. Editing Types for Data Categories

CATEGORY TYPE OF EDITING

Alphabetic Simple insertion 'B' only

Numeric None

Alphanumeric None

Alphanumeric Edited Simple insertion '0', 'B' and '/'

Chapter 3. THE NUCLEUS

36

CATEGORY TYPE OF EDITING

Numeric Edited All, but see NOTE below

Note

Floating insertion editing and editing by zero suppression and replacement are mutually
exclusive in a PICTURE clause. Only one type of replacement may be used with zero
suppression in a PICTURE clause.

Simple Insertion Editing

Simple Insertion Editing. The ',' (comma), 'B' (space), '0' (zero), and '/' (stroke) are used as the insertion
characters. The insertion characters are counted in the size of the item and represent the position in
the item into which the character will be inserted.

Special Insertion Editing

Special Insertion Editing. The '.' (period) is used as the insertion character. In addition to being
an insertion character it also represents the decimal point for alignment purposes. The insertion
character used for the actual decimal point is counted in the size of the item. The use of the assumed
decimal point, represented by the symbol 'V' and the actual decimal point, represented by the insertion
character, in the same PICTURE character-string is disallowed. The result of special insertion editing
is the appearance of the insertion character in the item in the same position as shown in the character-
string.

Fixed Insertion Editing

Fixed Insertion Editing. The currency symbol and the editing sign control symbols,'+','-', 'CR', 'DB', are
the insertion characters. Only one currency symbol and only one of the editing sign control symbols can
be used in a given PICTURE character-string. When the symbols 'CR' or 'DB' are used they represent
two character positions in determining the size of the item and they must represent the rightmost
character positions that are counted in the size of the item. The symbol '+' or '-', when used, must be
either the leftmost or rightmost character position to be counted in the size of the item. The currency
symbol must be the leftmost character.

Table 3.2. Editing Symbols in PICTURE Character-Strings

RESULTEDITING SYMBOL IN PICTURE
CHARACTER-STRING DATA ITEM POSITIVE

OR ZERO
DATA ITEM
NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols '+' or '-' are the floating insertion characters
and as such are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at least two
of the floating insertion characters. This string of floating insertion characters may contain any of the
fixed insertion symbols or have fixed insertion characters immediately to the right of this string. These
simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents the leftmost limit of the floating
symbol in the data item. The rightmost character of the floating string represents the rightmost limit
of the floating symbols in the data item.

Chapter 3. THE NUCLEUS

37

The second floating character from the left represents the leftmost limit of the numeric data that can
be stored in the data item. Non-zero numeric data may replace all the characters at or to the right of
this limit.

In a PICTURE character-string, there are only two ways of representing floating insertion editing. One
way is to represent any or all of the leading numeric character positions on the left of the decimal point
by the insertion character. The other way is to represent all of the numeric character positions in the
PICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal point in the PICTURE character-string, the
result is that a single floating insertion character will be placed into the character position immediately
preceding either the decimal point or the first non-zero digit in the data represented by the insertion
symbol string, whichever is farther to the left in the PICTURE character-string. The character positions
preceding the insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, the result depends upon the value of the data. If the value is zero the entire data item will
contain spaces. If the value is not zero, the result is the same as when the insertion character is only
to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data item
must be the number of characters in the sending data item, plus the number of non-floating insertion
characters being edited into the receiving data item, plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeros in numeric character positions is indicated by the use of the alphabetic
character 'Z' or the character '*' (asterisk) as suppression symbols in a PICTURE character-string.
These symbols are mutually exclusive in a given PICTURE character-string. Each suppression symbol
is counted in determining the size of the item. If 'Z' is used, the replacement character will be the space
and if the asterisk is used, the replacement character will be '*'.

Zero suppression and replacement is indicated in a PICTURE character-string by using a string of one
or more of the allowable symbols to represent leading numeric character positions which are to be
replaced when the associated character position in the data contains a zero. Any of the simple insertion
characters embedded in the string of symbols or to the immediate right of this string are part of the
string.

In a PICTURE character-string, there are only two ways of representing zero suppression. One way
is to represent any or all of the leading numeric character positions to the left of the decimal point
by suppression symbols. The other.way is to represent all of the numeric character positions in the
PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in the data
which corresponds to a symbol in the string is replaced by the replacement character. Suppression
terminates at the first non-zero digit in the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented by suppression
symbols and the value of the data is not zero, the result is the same as if the suppression characters
were only to the left of the decimal point. If the value is zero and the suppression symbol is 'Z', the
entire data item will be spaces. If the value is zero and the suppression symbol is '*', the data item will
be all '*' except for the actual decimal point.

The symbols '+', '-', '*' 'Z', and the currency symbol, when used as floating replacement characters, are
mutually exclusive within a given character-string.

Precedence Rules

Chapter 3. THE NUCLEUS

38

Table 3-3 shows the order of precedence when using characters as symbols in a character-string. An
'X' at an intersection indicates that the symbol(s) at the top of the column may precede, in a given
character-string, the symbol(s) at the left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The currency symbol is indicated by the symbol 'cs'.

At least one of the symbols 'A', 'X', 'Z', '9' or '*', or at least two of the symbols '+', '-' or 'cs' must be
present in a PICTURE string.

Table 3.3. PICTURE Character Precedence Chart.

First symbol Nonfloating Insertion Symbols Floating Insertion
Symbols

Other Symbols

Second
symbol

B 0 / . , {+
-}

{+
-}

{CR
DB}

cs {Z
*}

{Z
*}

{±} {±} cs cs 9 A
X

S V P P

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

/ x x x x x x x x x x x x x x x x x

. x x x x x x x x x x x x x x x x

. x x x x x x x x x x

{+
-}1

{+
-}2

x x x x x x x x x x x x x x

{CR
DB}

x x x x x x x x x x x x x x

Nonfloating
Insertion
Symbols

cs x

{Z
*}1

x x x x x x x

{Z
*}2

x x x x x x x x x x x

{+
-}1

x x x x x x

{+
-}2

x x x x x x x x x x

cs1 x x x x x x

Floating
Insertion
Symbols

cs2 x x x x x x x x x x

9 x x x x x x x x x x x x x x x

A
X

x x x x x

S

V x x x x x x x x x x x x

P1 x x x x x x x x x x x x

Other
Symbols

P2 x x x x x

In Table 3-3, non-floating insertion symbols '+' and '-', floating insertion symbols 'Z', '*' '+', '-', and 'cs',
and other symbol 'P' appear twice in the PICTURE character precedence chart. The leftmost column
and uppermost row for each symbol represents its use to the left of the decimal point position. The
second appearance of symbol in the row and column represents its use to the right of the decimal
point position.

Chapter 3. THE NUCLEUS

39

THE REDEFINES CLAUSE

Function

The REDEFINES clause allows the same computer storage area to be described by different data
description entries.

General Format

level-numberdata-name-1; REDEFINES data-name-2

Note

Level-number, data-name-1 are shown in the above format to improve clarity. Level-number
and data-name-1 are not part of the REDEFINES clause.

Syntax Rules

1. The REDEFINES clause, when specified, must immediately follow data-name-1.

2. The level-numbers of data-name-1 and data-name-2 must be identical.

3. This clause must not be used in level 01 entries in the File Section. (See General Rule 2 of THE
DATA RECORDS CLAUSE in Chapter 5).

4. This clause must not be used in level 01 entries in the Communication Section.

5. The data description entry for data-name-2 cannot contain an OCCURS clause. Neither the original
definition nor the redefinition can include an item whose size is variable as defined in the OCCURS
clause. (See THE OCCURS CLAUSE in Chapter 4).

6. No entry having a level-number numerically lower than the level-number of data-name-2 and data-
name-1 may occur between the data description entries of data-name-2 and data-name-1.

General Rules

1. Redefinition starts at data-name-2 and ends when a level-number less than or equal to that of data-
name-2 is encountered.

2. When the level-number of data-name-1 is other than 01, it must specify the same number of
character positions that the data item referenced by data-name-2 contains. It is important to observe
that the REDEFINES clause specifies the redefinition of a storage area, not of the data items
occupying the area.

3. Multiple redefinitions of the same character positions are permitted. The entries giving the new
descriptions of the character positions must follow the entries defining the area being redefined,
without intervening entries that define new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally defined the area.

4. The entries giving the new description of the character positions must not contain any VALUE
clauses.

5. Multiple level 01 entries subordinate to any given level indicator represent implicit redefinitions
of the same area.

THE SIGN CLAUSE

Chapter 3. THE NUCLEUS

40

Function

The SIGN clause specifies the position and the mode of representation of the operational sign when
it is necessary to describe these properties explicitly.

General Format

[SIGN IS] { LEADING | TRAILING } [SEPARATE CHARACTER]

Syntax Rules

1. The SIGN clause may be specified only for a numeric data description entry whose PICTURE
contains the character 'S', or a group item containing at least one such numeric data description
entry.

2. The numeric data description entries to which the SIGN clause applies must be described as USAGE
IS DISPLAY.

3. At most one SIGN clause may apply to any given numeric data description entry.

4. If the CODE-SET clause is specified, any signed numeric data description entries associated with
that file description entry must be described with the SIGN IS SEPARATE clause.

General Rules

1. The optional SIGN clause, if present, specifies the position and the mode of representation of the
operational sign for the numeric data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it applies. Th, SIGN clause applies only
to numeric data description entries whose PICTURE contains the character 'S'; the 'S' indicates the
presence of, but neither the representation nor, necessarily, the position of the operational sign.

2. A numeric data description entry whose picture contains the character 'S', but to which no optional
SIGN clause applies, has an operational sign, but neither the representation nor, necessarily, the
position of the operational sign is specified by the character 'S' In this (default) case, general rules
3 through 5 do not apply to such signed numeric data items. The representation of the default
operational sign is defined in Chapter 2, the section called “Selection of Character Representation
and Radix”.

3. If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading (or, respectively,
trailing) digit position of the elementary numeric data item.

b. The letter 'S' in a PICTURE character-string is not counted in determining the size of the item
(in terms of standard data format characters).

4. If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively, trailing) character
position of the elementary numeric data item; this character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in determining the size of the item (in
terms of standard data format characters).

c. The operational signs for positive and negative are the standard data format characters '+' and
'-', respectively.

5. Every numeric data description entry whose PICTURE contains the character 'S' is a signed numeric
data description entry. If a SIGN clause applies to such an entry and conversion is necessary for
purposes of computation or comparisons, conversion takes place automatically.

Chapter 3. THE NUCLEUS

41

THE SYNCHRONIZED CLAUSE

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries
of the computer memory.

General Format

{ SYNCHRONIZED | SYNC } [{ LEFT | RIGHT }]

Syntax Rules

1. This clause may only appear with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1. The SYNCHRONIZED clause is accepted for documentation purposes only.

2. This clause specifies that the subject data item is to be aligned in the computer such that no other data
item occupies any of the character positions between the leftmost and rightmost natural boundaries
delimiting this data item. If the number of character positions required to store this data item is
less than the number of character positions between those natural boundaries, the unused character
positions (or portions thereof) must not be used for any other data item. Such unused character
positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs; and

b. The character positions redefined when this data item is the object of a REDEFINES clause.

3. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the elementary item is
to be positioned between natural boundaries in such a way as to effect efficient utilization of the
elementary data item.

4. SYNCHRONIZED LEFT specifies that the elementary item is to be positioned such that it will
begin at the left character position of the natural boundary in which the elementary item is placed.

5. SYNCHRONIZED RIGHT specifies that the elementary item is to be positioned such that it will
terminate on the right character position of the natural boundary i.n which the elementary item is
placed.

6. Whenever a SYNCHRONIZED item is referenced in the source program, the original size of the
item, as shown in the PICTURE clause, is used in determining any action that depends on size,
such as justification, truncation or overflow.

7. If the data description of an item contains the SYNCHRONIZED clause and an operational sign,
the sign of the item appears in the normal operational sign position, regardless of whether the item
is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

8. When the SYNCHRONIZED clause is specified in a data description entry of a data item that also
contains an OCCURS clause, or in a data description entry of a data item subordinate to a data
description entry that contains an OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that same table are generated tor
each occurrence of those data items.

Chapter 3. THE NUCLEUS

42

9. This clause is hardware dependent.

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the computer storage.

General Format

[USAGE IS] { COMPUTATIONAL | COMP | DISPLAY | COMPUTATIONAL-3 | COMP-3 }

Syntax Rules

1. The PICTURE character-string of a COMPUTATIONAL or COMPUTATIONAL-3 item can
contain only '9's, the operational sign character 'S', the implied decimal point character 'V', one or
more 'P's. (See the section called “THE PICTURE CLAUSE” earlier in this Chapter).

2. COMP is an abbreviation for COMPUTATIONAL.

General Rules

1. The USAGE clause can be written at any level. If the USAGE clause is written at group level, it
applies to each elementary item in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

2. This clause specifies the manner in which a data item is represented in the storage of a computer.
It does not affect the use of the data item, although the specifications for some statements in the
Procedure Division may restrict the USAGE clause of the operands referred to. The USAGE clause
may affect the radix or type of character representation of the item.

3. A COMPUTATIONAL or COMPUTATIONAL-3 item is capable of representing a value to be
used in computations and must be numeric. If a group item is described as COMPUTATIONAL(-3),
the elementary items in the group are COMPUTATIONAL(-3). The group item itself is not
COMPUTATIONAL(-3) and cannot be us ed in computations.

4. The USAGE IS DISPLAY clause indicates that the format of the data is a standard data format.

5. If the USAGE clause is not specified for an elementary item, or for any group to which the item
belongs, the usage is implicitly DISPLAY.

6. Space requirements for the various USAGE storage options are given under the section called
“Selection of Character Representation and Radix” in Chapter 2.

THE VALUE CLAUSE

Function

The VALUE clause defines the value of constants, the initial value of working storage items, the initial
value of data items in the Communication Section.

General Format

VALUE is literal

Syntax Rules

1. The VALUE clause cannot be stated for any items whose size is variable. (See THE OCCURS
CLAUSE in Chapter 4).

Chapter 3. THE NUCLEUS

43

2. A signed numeric literal must have associated with it a signed numeric PICTURE character-string.

3. All numeric literal in a VALUE clause of an item must have a value which is within the range of
values indicated by the PICTURE clause, and must not have a value which would require truncation
of nonzero digits. Nonnumeric literals in a VALUE clause of an item must not exceed the size
indicated by the PICTURE clause.

General Rules

1. The VALUE clause must not conflict with other clauses in the data description of the item or in the
data description within the hierarchy of the item. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause must be numeric. If the
literal defines the value of a working storage item, the literal is aligned in the data item according
to the standard alignment rules. (See Standard Alignment Rules in Chapter 2).

b. If the category of the item is alphabetic, alphanumeric, alphanumeric edited or numeric edited,
all literals in the VALUE clause must be nonnumeric literals. The literal is aligned in the data
item as if the data item had been described as alphanumeric. (See STANDARD ALIGNMENT
RULES in Chapter 2). Editing characters in the PICTURE clause are included in determining the
size of the data item (see the section called “THE PICTURE CLAUSE” earlier in this Chapter)
but have,no effect on initialization of the data item. Therefore, the VALUE for an edited item
is presented in an edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED clause that
may be specified.

Data Description Entries

Rules governing the use of the VALUE clause differ with the respective sections of the Data Division:

1. The VALUE clause cannot be used in the File Section.

2. In the Working-Storage Section, the VALUE clause may be used to specify the initial value of a
data item; in which case the clause causes the item to assume the specified value at the start of
the object program. If the VALUE clause is not used in an item's description, the initial value is
undefined.

3. The VALUE clause cannot be used in the Linkage Section.

4. The VALUE clause must not be stated in a data description entry that contains an OCCURS clause,
or in an entry that is subordinate to an entry containing an OCCURS clause. (See THE OCCURS
CLAUSE in Chapter 4).

5. The VALUE clause must not be stated in a data description entry that contains a REDEFINES
clause, or in an entry that is subordinate to an entry containing a REDEFINES clause.

6. If the VALUE clause is used in an entry at the group level, the literal must be a figurative constant
or a nonnumeric literal, and the group area is initialized without consideration for the individual
elementary or group items contained within this group. The VALUE clause cannot be stated at the
subordinate levels within this group.

7. The VALUE clause must not be written for a group containing items with descriptions, including
JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY).

PROCEDURE DIVISION IN THE NUCLEUS

CONDITIONAL EXPRESSIONS

Chapter 3. THE NUCLEUS

44

Conditional expressions identify conditions that art, tested to enable the object program to select
between alternate paths of control depending upon the truth value of the condition. Conditional
expressions are specified in the IF and PERFORM statements. There are two categories of conditions
associated with conditional expressions: simple conditions and relation conditions. Each may be
enclosed within any number of paired parentheses, in which case its category is not changed.

Simple Conditions

The simple conditions are the relation, class, switch-status, conditions. A simple condition has a truth
value of 'true' or 'false'. The inclusion in parentheses of simple conditions does not change the simple
truth value.

Relation Condition

A relation condition causes a comparison of two operands, each of which may be the data item
referenced by an identifier, a literal. A relation condition has a truth value of 'true' if the relation exists
between the operands. Comparison of two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses. However, for all other comparisons the operands must
have the same usage. If either of the operands is a group item, the nonnumeric comparison rules apply.

The general format of a relation condition is as follows:

{ identifier-1 | literal-1 } { IS [NOT] GREATER THAN | IS [NOT] LESS THAN | IS [NOT] EQUAL
TO | IS [NOT] > | IS [NOT] < | IS [NOT] = } { identifier-2 | literal-2 }

Note

The required relational characters '<', '>' and '=' are not underlined to avoid confusion with
other symbols such as '#' (Greater than or equal to)

The first operand (identifier-1 or literal-1) is called the subject of the condition; the second operand
(identifier-2 or literal-2) is called the object of the condition. The relation condition must contain at
least one reference to a variable.

The relational operator specifies the type of comparison to be made in a relation condition. a space
must precede and follow each reserved word comprising the relational operator. When used, 'NOT'
and the next key word or relation character are one relational operator that defines the comparison to
be executed for truth value; e.g., 'NOT EQUAL' is a truth test for an 'unequal'.

Comparison 'NOT GREATER' is a truth test for an 'equal' or 'less' comparison. The meaning of the
relational operators is as shown in Table 3-4.

Table 3.4. Relational Operators

Meaning Relational Operator

IS [NOT] GREATER THANGreater than or not greater than

IS [NOT] >

IS [NOT] LESS THANLess than or not less than

IS [NOT] <

IS [NOT] EQUAL TOEqual to or not equal to

IS [NOT] =

The required relational characters '>', '&', and '=' are not underlined to avoid confusion with other
symbols such as '#' (Greater than or equal to).

Comparison of Numeric Operands:

Chapter 3. THE NUCLEUS

45

For operands whose class is numeric a comparison is made with respect to the algebraic value of the
operands. The length of the literal, in terms of number of digits represented, is not significant. Zero is
considered a unique value regardless of the sign. Comparison of these operands is permitted regardless
of the manner in which their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

Comparison of Nonnumeric Operands:

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with
respect to a specified collating sequence of characters (see The OBJECT-COMPUTER Paragraph in
this Chapter). If one of the operands is specified as numeric, it must be an integer data item or an
integer literal and:

1. If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric operand
is treated as though it were moved to an elementary alphanumeric data item of the same size
as the numeric data item (in terms of standard data format characters), and the contents of
this alphanumeric data item were then compared to the nonnumeric operand. (See THE MOVE
STATEMENT in this Chapter, and the PICTURE Character 'P' under the heading Symbols Used
earlier in this Chapter).

2. If the numeric operand is a group item, the numeric operand is treated as though it were moved to a
group item of the same size as the numeric data item (in terms of standard data format characters),
and the contents of this group item were then compared to the nonnumeric operand. (See THE
MOVE STATEMENT in this Chapter, and the PICTURE character 'P' under the Heading Symbols
Used earlier in this Chapter).

3. A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters in the operand. Numeric
and nonnumeric operands may be compared only when their usage is the same.

There are two cases to consider:

1. Operands of equal size - If the operands are of equal size, comparison effectively proceeds by
comparing characters in corresponding character positions starting from the high order end and
continuing until either a pair of unequal characters is encountered or the low order end of the
operand is reached, whichever comes first. The operands are determined to be equal if all pairs of
characters compare equally through the last pair, when the low order end is reached.

The first encountered pair of unequal characters is compared to determine their relative position
in the collating sequence. The operand that contains the character that is positioned higher in the
collating sequence is considered to be the greater operand.

2. Operands of unequal size - If the operands are of unequal size, comparison proceeds as though the
shorter operand were extended on the right by sufficient spaces to make the operands of equal size.

Class Condition

The class condition determines whether the operand is numeric, that is, consists entirely of the
characters '0', '1', '2', '3', ..., '9', with or without the operational sign, or alphabetic, that is, consists
entirely of the characters 'A', 'B', 'C', ..., 'Z', space. The general format for the class condition is as
follows:

identifier IS [NOT] { NUMERIC | ALPHABETIC }

The usage of the operand being tested must be described as display. When used, 'NOT' and the next
key word specify one class condition that defines the class test to be executed for truth value; e.g.
'NOT NUMERIC' is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes the item as
alphabetic or as a group item composed of elementary items whose data description indicates the

Chapter 3. THE NUCLEUS

46

presence of operational sign(s). If the data description of the item being tested does not indicate the
presence of an operational sign, the item being tested is determined to be numeric only if the contents
are numeric and an operational sign is not present. If the data description of the item does indicate the
presence of an operational sign, the item being tested is determined to be numeric only if the contents
are numeric and a valid operational sign is present. Valid operational signs for data items described
with the SIGN IS SEPARATE clause are the standard data format characters, '+' and '-'

The ALPHABETIC test cannot be used with an item whose data description describes the item as
numeric. The item being tested is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters 'A' thru 'Z' and the space.

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of an implementor-defined switch. The
implementor-name and the 'on' or 'off' value associated with the condition must be named in the
SPECIAL-NAMES paragraph of the Environment Division. The general format for the switch-status
condition is as follows:

condition-name

The result of the test is true if the switch is set to the specified position corresponding to the condition-
name.

COMMON PHRASES AND GENERAL RULES FOR
STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear frequently: the ROUNDED phrase,
the SIZE ERROR phrase.

These are described below. A resultant-identifier is that identifier associated with a result of an
arithmetic operation.

The Rounded Phrase

If, after decimal point alignment, the number of places in the fraction of the result of an arithmetic
operation is greater than the number of places provided for the fraction of the resultant-identifier,
truncation is relative to the size provided for the resultant-identifier. When rounding is requested the
absolute value of the resultant-identifier is increased by one whenever the most significant digit of the
the excess is greater than or equal to five.

When the low-order integer positions in a resultant-identifier are represented by the character 'P' in the
PICTURE for the resultant-identifier, rounding or truncation occurs relative to the rightmost integer
position for which storage is allocated.

The Size Error Phrase

If, after decimal point alignment, the absolute value of a result exceeds the largest value that can be
contained in the associated resultant-identifier a size error condition exists. Division by zero always
causes a size error condition. The size error condition applies only to the final results, except in
MULTIPLY and DIVIDE statements, in which case the size error condition applies to the intermediate
results as well, If the ROUNDED phrase is specified rounding takes place before checking for size
error. When such a size error condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified as follows:

SIZE ERROR Phrase Not Specified

When a size error condition occurs, the value of those resultant-identifier(s) affected is undefined.
Values of resultant-identifier(s) for which no size error condition occurs are unaffected by size errors
that occur for other resultant-identifier(s) during execution of this operation.

Chapter 3. THE NUCLEUS

47

SIZE ERROR Phrase Specified

When a size error condition occurs, then the values of resultant-identifier(s) affected by the size errors
are not altered. After completion of the execution of this operation, the imperative statement in the
SIZE ERROR phrase is executed.

Arithmetic Statements

The arithmetic statements are the ADD, DIVIDE, MULTIPLY, and SUBTRACT statements.
Common features are as follows:

1. The data descriptions of the operands need not be the same; any necessary conversion and decimal
point alignment are supplied throughout the calculation.

2. The maximum size of each operand is 18 decimal digits. The composite of operands, which is
a hypothetical data item resulting from the superimposition of specified operands in a statement
aligned on their decimal points (See the section called “THE ADD STATEMENT”, THE DIVIDE
STATEMENT, THE MULTIPLY STATEMENT and THE SUBTRACT STATEMENT later in
this Chapter) must not contain more than 18 decimal digits.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE, SET,
statement share a part of their storage areas, the result of the execution of such a statement is undefined.

Incompatible Data

Except for the class condition (See Class Condition in this Chapter), when the contents of a data item
are referenced in the Procedure Division and the contents of that data item are not compatible with
the class specified for that data item by its PICTURE clause, then the result of such a reference is
undefined. If a numeric display field contains one or more spaces the spaces are usually treated as if
they were zero. This may present problems in portability if relied upon.

CRT Devices

The CRT is driven directly by the run time system via a buffer. The COBOL programmer moves
data into and out of this buffer by means of ACCEPT and DISPLAY statements. Each ACCEPT or
DISPLAY action is relative to the start of the CRT buffer unless POSITION is specified. The syntax
is limited to inputting to or outputting from a single data name. The data name may be a group item
and several such group items may redefine the same area of storage.

The use of FILLER data items in record descriptions used for input or output to a CRT device is
subject to special rules. On output, any FILLER item in a record results in suppression of output for
the character positions it defines. On input, any FILLER item suppresses operator keying into the
character positions it defines.

THE ACCEPT STATEMENT

Function

The ACCEPT statement causes data keyed at the CRT console to be made available to the program
in a specified data item

General Formats

Format 1

ACCEPT identifier [FROM CONSOLE]

Chapter 3. THE NUCLEUS

48

Format 2

ACCEPT data-name-1 [AT { data-name-2 | literal-1 }] FROM CRT

Syntax Rule

Literal-1 must be numeric.

General Rules

1. Format 1 is the standard ANSI ACCEPT statement

Format 2 is the extended ACCEPT format. The two formats are distinguished by their FROM
phrases and the default assumes FROM CONSOLE. The default can, however, be changed by
specifying CONSOLE IS CRT in the SPECIAL-NAMES clause so that FROM CRT becomes the
default. This changed default is not shown in the syntax above. Note: Specifying the AT phrase
implies Format 2, even if FROM CRT is omitted.

Format 1

2. The ACCEPT statement reads one line of input data from the system console device. This input
data replaces the contents of the data item named by the identifier.

3. The line of input is line-edited according to the operating system rules for line-editing (see
Operating Systems User Guide). The line is terminated by pressing the CR (Carriage Return) key
or by exceeding 120 characters in length.

4. If the input line is of the same size as the receiving data item, the transferred data is stored in the
receiving data item.

5. If the input line is not of the same size as the receiving data item, then:

a. If the size of the receiving data item exceeds the size of the input line, the transferred data is
stored aligned to the left in the receiving data item and the data item is filled with trailing spaces.

b. If the size of the transferred data exceeds 120 bytes, only the first 120 characters of the input
line are stored in the receiving data item. The remaining characters of the input line which do
not fit into the receiving data item are ignored.

Format 2

6. The ACCEPT statement causes the transfer of data from the CRT to data-name-1. The contents of
data-name-1 is replaced by this data.

7. data-name-1 is taken as a definition of the screen area in which elementary data items correspond
to areas on the screen into which the operator can key information. FILLER fields correspond to
areas on the screen which are inaccessible to the operator. data-name-1 must not be subscripted.

8. Elementary data items within data-name-1 may be alphanumeric, numeric usage display, or edited.
Numeric items are treated as two separate integer numeric fields and edited fields are treated as
Alphanumeric fields except as described in rule 12.

9. AT data-name-2 or literal-1 defines the position on the screen of the leftmost character of the data.
Either form must refer to a PIC 9999 field. The most significant 99 is taken as the line count in the
range one to the maximum lines on the user screen. The least significant 99 is taken as a character
position in the range one to the maximum positions allowed by the screen width of the user CRT.

10.data-name-1 may refer to a record, group or elementary item, but it may not be subscripted.
REDEFINES may be used within data-name-1, in which case the first description of the data is
used and subsequent descriptions are ignored. OCCURS and nested OCCURS may also be used

Chapter 3. THE NUCLEUS

49

with the effect that the repeated data-item is expanded into the full number of items it occurs and
one definition is thus automatically repeated for many fields.

11.Immediately upon execution of the ACCEPT statement the cursor is positioned to the CRT location
corresponding to the left-most non-FILLER character position in data-name-1. Alternatively, when
CURSOR is specified in the SPECIAL-NAMES paragraph, the cursor is positioned at the position
held in the CURSOR data-name in the same format as the screen position is held in data-name-2.
If the cursor data-name has the value SPACE or ZERO, the effect is as if the CURSOR was not
specified; if a valid screen position is specified that is not within a non-FILLER item, the cursor is
positioned at the nearest non-FILLER character position. CURSOR data-name holds the last cursor
position at the end of execution of an ACCEPT statement.

12.If FROM CRT is not specified, the default is FROM CONSOLE (see rule 1 above).

13.As the operator keys characters, the cursor moves to the right one character position at a time in
locations corresponding to data fields. The operator always keys into the current cursor position. At
the end of a line the cursor moves down one line and to the leftmost non-FILLER character position.

14.If the data item is integer numeric, only numeric characters (0 - 9) will be accepted into that item.
Keying the decimal point character (. or , as specified in the DECIMAL POINT phrase) when
accepting a numeric item causes the item to be right justified and zero-filled from the left.

15.When the cursor location reaches a position corresponding to a FILLER item in a data-name,
it immediately skips to the next non-FILLER character position, or if there is no such position
remaining in the portion of the CRT specified by the data-name, it remains in its current position.

16.The operator can terminate input by pressing the CR (Carriage Return) key at which time control
is passed to the next statement after ACCEPT. Before control is passed to the next statement the
following takes place:

a. The numeric value of each numeric-edited data-field is formed internally from only the keyed
characters 0 to 9, +, -, . or , and then moved back to the numeric-edited field with the ANSI
PICTURE editing applied. The field may thus be different to that shown on the CRT just before
the Carriage Return was pressed.

b. When CURSOR IS is specified in the SPECIAL-NAMES paragraph, the cursor position when
the Carriage Return is pressed is returned in the data-name specified by the CURSOR IS clause,
except when its value at the start of the ACCEPT function caused it the be treated as unspecified.

17.Before keying CR, the operator can reposition the cursor to overwrite data already keyed or to skip
character positions by use of the character position keys shown in Table 3-5.

NOTE: The actual key identification and functions shown in this table vary according to the CRT
used and the way it is configured (See the CIS COBOL Operating Guide).

Table 3.5. Cursor Repositioning Keys

Key Function

← Backs up the cursor one position

↑ Backs up the cursor to the start of the non-FILLER field prior to the
current cursor position.

↓ Moves the cursor on to the start of the next non-FILLER field in advance
of the current cursor position.

→ Moves the cursor on one position without overwriting existing contents.

Moves the cursor back to the start of the first non-FILLER field in the
CRT area corresponding to data-name-1.

THE ADD STATEMENT

Chapter 3. THE NUCLEUS

50

Function

The ADD statement causes two or more numeric operands to be summed and the result to be stored.

General Format

Format 1

ADD { identifier-1 | literal-1 } [, { identifier-2 | literal-2 }]... TO identifier-m [ROUNDED]
[, identifier-n[ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

ADD { identifier-1 | literal-1 } , { identifier-2 | literal-2 } [, { identifier-3 | literal-3 }]... GIVING
identifier-m [ROUNDED] [, identifier-n [ROUNDED]] [; ON SIZE ERROR imperative-statement]

Syntax Rules

1. In Formats 1 and 2, each identifier must refer to an elementary numeric item, except that in Format
2 each identifier following the word GIVING must refer to either an elementary numeric item or
an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits (see The Arithmetic Statements
in this Chapter).

a. In Format 1 the composite of operands is determined by using all of the operands in a given
statement.

b. In Format 2 the composite of operands is determined by using all of the operands in a given
statement excluding the data items that follow the word GIVING.

General Rules

1. See the section called “The Rounded Phrase”, The Size Error Phrase, The Arithmetic Statements,
Overlapping Operands and the section called “Incompatible Data” in this Chapter.

2. If Format 1 is used, the values of the operands preceding the word TO are added together, then the
sum is added to the current value of identifier-m storing the result immediately into identifier-m.

3. If Format 2 is used, the value of the operands preceding the word GIVING are added together, then
the sum is stored as the new value of identifier-m, the resultant identifiers.

4. The compiler ensures that enough places are carried so as not to lose any significant digits during
execution.

THE ALTER STATEMENT

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

Chapter 3. THE NUCLEUS

51

Syntax Rule

1. Procedure-name-1 is the name of a paragraph that contains a single sentence consisting of a GO
TO statement without the DEPENDING phrase.

2. Procedure-name-2 is the name of a paragraph or section in the Procedure Division.

General Rule

Execution of the ALTER statement modifies the GO TO statement in the paragraph named procedure-
name-1, so that subsequent executions of the modified GO TO statements cause transfer of control
to procedure-name-2. Modified GO TO statements in independent segments may, under some
circumstances, be returned to their initial states (see Independent Segments in Chapter 8).

THE DISPLAY STATEMENT

Function

The DISPLAY statement causes data to be transferred from specified data items to the CRT screen.

General Formats

Format 1

DISPLAY { identifier-1 | literal-1 } [, { identifier-2 | literal-2 }]... [UPON CONSOLE]

Format 2

DISPLAY { data-name-1 | literal-3 } [AT { data-name-2 | literal-4 }] UPON { CRT | CRT-UNDER }

Syntax Rules

Format 1

1. Each literal may be any figurative constant, except ALL.

2. If the literal is numeric, it must be an unsigned integer.

Format 2

3. Literal-3 must be alphanumeric. Literal-4 must be numeric.

4. data-name-1 may refer to a record, group or elementary item, but it must not be subscripted.

General Rules

1. Format 1 is the standard ANSI DISPLAY statement.

Format 2 is the extended DISPLAY format.

The two formats are distinguished by their UPON phrases and the default assumes UPON
CONSOLE. The default can, however, be changed by specifying CONSOLE IS CRT in the
SPECIAL-NAMES clause so the UPON CRT becomes the default. This changed default is not
shown in the syntax above. Note: Specifying the AT phrase implies Format 2, even if the UPON
phrase is omitted.

Format 1

2. The DISPLAY statement causes the contents of each operand to be transferred to the CRT in the
order listed as one line of output data.

Chapter 3. THE NUCLEUS

52

3. The size of the data transfer can be up to 132 bytes.

4. If a figurative constant is specified as one of the operands, only a single occurrence of the figurative
constant is displayed.

5. If the CRT is capable of displaying data of the same size as the data item being output, the data
item is transferred.

6. If the CRT is not capable of displaying data of the same size as the data item being transferred,
one of the following applies.

a. If the size of the data item being displayed exceeds the size of the data that the CRT is capable
of receiving in a single transfer, the data beginning with the leftmost character is stored aligned
to the left in the receiving CRT.

b. If the size of the data item that the CRT is capable of receiving exceeds the size of the data being
transferred, the transferred data is stored aligned to the left in the receiving CRT.

7. When a DISPLAY statement contains more than one operand, the size of the sending item is the
sum of the sizes associated with the operands, and the values of the operands are transferred in the
sequence in which the operands are encountered.

Format 2

8. The DISPLAY statement is used to output data to the CRT in the screen positions specified.

9. data-name-1 is taken as a definition of the screen area into which data items that correspond to
areas on the screen are moved. FILLER fields correspond to areas on the screen into which data
is not moved.

10.Elementary data items within data-name-1 may be alphanumeric, integer numeric, numeric or
edited.

11.AT data-name-2 or literal-4 defines the position on the screen of the leftmost character of the. data.
Either form must refer to a PIC 9999 field. The most significant 99 is taken as a line count in the
range one to the maximum number of lines on the user screen. The least significant 99 is taken as
a character position in the range one to the maximum of characters per line on the user screen.

12.data-name-1 may refer to a record, group or elementary item, but it may not be subscripted.
REDEFINES may be used, in which case the first description of the data is used and subsequent
descriptions are ignored. OCCURS and nested OCCURS may also be used with the effect that the
repeated data-item is expanded into the full number of times it occurs and one definition is thus
automatically repeated for many fields.

13.DISPLAY SPACE has the effect of clearing the screen at run time (i.e. filling the whole screen
with spaces). DISPLAY " " (one space character), however, displays only one space character.

14.The CRT-UNDER phrase causes the elementary items moved to the CRT to be displayed with
the underline feature present. This feature is dependent on the CRT hardware functions and is not
available on all makes of CRT (see the CIS COBOL Operating Guide).

THE DIVIDE STATEMENT

Function

The DIVIDE statement divides one numeric data item into others and sets the values of data items
equal to the quotient.

General Format

Format 1

Chapter 3. THE NUCLEUS

53

DIVIDE { identifier-1 | literal-1 } INTO identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

DIVIDE { identifier-1 | literal-1 } INTO { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 3

DIVIDE { identifier-1 | literal-1 } BY { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to an elementary numeric item, except that any identifier associated with
the GIVING phrase must refer to either an elementary numeric item or an elementary numeric
edited item.

2. Each literal must be a numeric literal.

General Rules

1. See the section called “The Rounded Phrase”, The Size Error Phrase, The Arithmetic Statements,
Overlapping Operands and the section called “Incompatible Data” in this Chapter for a description
of these functions.

2. When Format is used, the value of identifier-1 or literal-1 is divided into the value of identifier-2.
The value of the dividend (identifier-2) is replaced by this quotient.

3. When Format 2 is used, the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2
and the result is stored in identifier-3.

4. When Format 3 is used, the value of identifier-1 or literal-1 is divided by the value of identifier-2
or literal-2 and the result is stored in identifier-3.

THE ENTER STATEMENT

Function

The ENTER statement provides a means of allowing the use of more than one language in the same
program.

General Format

ENTER language-name [routine-name]

Syntax Rule

1. This statement is for documentation purposes only.

General Rule

1. Access to other languages can be achieved by means of CALL.

THE EXIT STATEMENT

Chapter 3. THE NUCLEUS

54

Function

The EXIT statement provides a common end point for a series of procedures.

General Format

EXIT

Syntax Rules

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

General Rule

An EXIT statement serves only to enable the user :o assign a procedure-name to a given point in a
program. Such an EXIT statement has no other effect on the compilation or execution of the program.

THE GO TO STATEMENT

Function

The GO TO statement causes control to be transferred from one part of the Procedure Division to
another.

General Format

Format 1

GO TO {procedure-name-1}

Format-2

GO TO procedure-name-1 [, procedure-name-2]... , procedure-name-n DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described without any positions to the right
of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph can consist only of a
paragraph header followed by a Format 1 GO TO statement.

3. If a GO TO statement represented by Format 1 appears in a consecutive sequence of imperative
statements within a sentence, it appears as the last statement in that sequence.

General Rules

1. When a GO TO statement, represented by Format 1 is executed, control is transferred to procedure-
name-1 or to another procedure-name if the GO TO statement has been modified by an ALTER
statement.

2. When a GO TO statement represented by Format 2 is executed, control is transferred to procedure-
name-1, procedure-name-2, etc., depending on the value of the identifier being 1, 2, ... , n. If the
value of the identifier is anything other than the positive or unsigned integers 1, 2, ..., n, then no
transfer occurs and control passes to the next statement in the normal sequence for execution.

THE IF STATEMENT

Chapter 3. THE NUCLEUS

55

Function

The IF statement causes a condition to be evaluated (see CONDITIONAL EXPRESSIONS in this
Chapter). The subsequent action of the object program depends on whether the value of the condition
is true or false.

General Format

IF condition; [THEN] { statement-1 | NEXT SENTENCE } { ; ELSE statement-2 | ; ELSE NEXT
SENTENCE }

Syntax Rules

1. Statement-1 and statement-2 represent either an imperative statement or a conditional statement,
and either may be followed by a conditional statement.

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal
period of the sentence.

General Rules

1. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-1 is executed if specified. If statement-1 contains a procedure
branching or conditional statement, control is explicitly transferred in accordance with the rules
of that statement. If statement-1 does not contain a procedure branching or conditional statement,
the ELSE phrase, if specified, is ignored and control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of statement-1,
the ELSE phrase, if specified, is ignored and control passes to the next executable sentence.

c. If the condition is false, statement-1 or its surrogate NEXT SENTENCE is ignored, and
statement-2, if specified, is executed. If statement-2 contains a procedure branching or
conditional statement, control is explicitly transferred in accordance with the rules of that
statement. If statement-2 does not contain a procedure branching or conditional statement,
control passes to the next executable sentence. If the ELSE statement-2 phrase is not specified,
statement-1 is ignored and control passes to the next executable sentence.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is specified, statement-1 is
ignored, if specified, and control passes to the next executable sentence.

2. Statement-1 and/or statement-2 may contain an IF statement. In this case the IF statement is said
to be nested.

IF statements within IF statements may be considered as paired IF and ELSE combinations,
proceeding from left to right. Thus, any ELSE encountered is considered to apply to the immediately
preceding IF that has not been already paired with an ELSE.

THE INSPECT STATEMENT

Function

The INSPECT statement provides the ability to tally (Format 1), replace (Format 2), or tally and
replace (Format 3) occurrences of single characters in a data item.

General Format

Format 1

Chapter 3. THE NUCLEUS

56

INSPECT identifier-1 TALLYING identifier-2 FOR , { ALL | LEADING | CHARACTERS }
{ identifier-3 | literal-1 } [{ BEFORE | AFTER } INITIAL { identifier-7 | literal-5 }]

Format 2

INSPECT identifier-1 REPLACING
{ CHARACTERS BY identifier-6 | literal-4 | , { ALL | LEADING | FIRST } , { identifier-5 | literal-3 }
BY { identifier-6 | literal-4 } }
[{ BEFORE | AFTER } INITIAL { identifier-7 | literal-5 }]

Format 3

INSPECT identifier-1 TALLYING identifier-2 FOR , { ALL | LEADING | CHARACTERS }
{ identifier-3 | literal-1 } [{ BEFORE | AFTER } INITIAL { identifier-4 | literal-2 }]
REPLACING
{ CHARACTERS BY identifier-6 | literal-4 | , { ALL | LEADING | FIRST } , { identifier-5 | literal-3 }
BY { identifier-6 | literal-4 } }
[{ BEFORE | AFTER } INITIAL { identifier-7 | literal-5 }]

Syntax Rules

All Formats

1. Identifier-1 must reference either a group item or any category of elementary item, described (either
implicitly or explicitly) as usage is DISPLAY.

2. Identifier-3 ... identifier-n must reference either an elementary alphabetic, alphanumeric or numeric
item described (either implicitly or explicitly) as usage is DISPLAY.

3. Each literal must be nonnumeric and may be any figurative constant, except ALL.

4. In Level 1, literal-1, literal-2, literal-3, literal-4, and literal-5, and the data items referenced by
identifier-3, identifier-4, identifier-5, identifier-6, and identifier-7 must be one character in length.

Formats 1 and 3 Only

5. Identifier-2 must reference an elementary numeric data item.

6. If either literal-1 or literal-2 is a figurative constant, the figurative constant refers to an implicit
one character data item.

Formats 2 and 3 Only

7. The size of the data referenced by literal-4 or identifier-6 must be equal to the size of the data
referenced by literal-3 or identifier-5. When a figurative constant is used as literal-4, the size of
the figurative constant is equal to the size of literal-3 or the size of the data item referenced by
identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5, or the size of the data item referenced
by identifier-6, identifier-7 must be one character in length.

9. When a figurative constant is used as literal-3, the data referenced by literal-4 or identifier-6 must
be one character in length.

General Rules

All Formats

1. Inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE
or AFTER phrase, and the mechanism for tallying and/or replacing) begins at the leftmost character
position of the data item referenced by identifier-1, regardless of its class, and proceeds from left
to right to the rightmost character position as described in general rules 4 through 6.

Chapter 3. THE NUCLEUS

57

2. For use in the INSPECT statement, the contents of the data item referenced by identifier-1,
identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 will be treated as follows:

a. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 are
described as alphanumeric, the INSPECT statement treats the contents of each such identifier
as a character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 are
described as alphanumeric edited, numeric edited or unsigned numeric, the data item is inspected
as though it had been redefined as alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference the redefined data item.

c. If any of the identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 are
described as signed numeric, the data item is inspected as though it had been moved to an
unsigned numeric data item of the same length and then the rules in general rule 2b had been
applied. (See THE MOVE STATEMENT later in this Chapter).

3. In general rules 4 through 11 all references to literal-1, literal-2, literal-3, literal-4, and literal-5
apply equally to the contents of the data item referenced by identifier-3, identifier-4, identifier-5,
identifier-6, and identifier-7, respectively.

4. During inspection of the contents of the data item referenced by identifier-1, each properly matched
occurrence of literal-1 is tallied (Formats 1 and 3) and/or each properly matched occurrence of
literal-3 is replaced by literal-4 (Formats 2 and 3). Data items to be referenced by the INSPECT
verb should be placed such that they Lie within the first 10,000 bytes of intermediate code.

5. The comparison operation to determine the occurrences of literal-1 to be tallied and/or occurrences
of literal-3 to be replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are considered in the order they are
specified in the INSPECT statement from left to right. The first literal-1, literal-3 is compared
to an equal number of contiguous characters, starting with the leftmost character position in the
data item referenced by identifier-1. Literal-1, literal-3 and that portion of the contents of the
data item referenced by identifier-1 match if, and only if, they are equal, character for character.

b. If no match occurs in the comparison of the first literal-1, literal-3, the comparison is repeated
with each successive literal-1, literal-3, if any, until either a match is found or there ls no next
successive literal-1, literal-3. When there is no next successive literal-1, literal-3, the character
position in the data item referenced by identifier-1 immediately to the right of the leftmost
character position considered in the last comparison cycle is considered as the leftmost character
position, and the comparison cycle begins again with the first literal-1, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place as described in general rules 8
through 10. The character position in the data item referenced by identifier-1 immediately to the
right of the rightmost character position that participated in the match is now considered to be
the leftmost character position of the data item referenced by identifier-1, and the comparison
cycle starts again with the first literal-1, literal-3.

d. The comparison operation continues until the rightmost character position of the data item
referenced by identifier-1 has participated in a match or has been considered as the leftmost
character position. When this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character operand participates in the
cycle described in paragraphs 5a through 5d above, except that no comparison to the contents
of the data item referenced by identifier-1 takes place. This implied character is considered
always to match the leftmost character of the contents of the data item referenced by identifier-1
participating in the current comparison cycle.

6. The comparison operation defined in general rule 5 is affected by the BEFORE and AFTER phrases
as follows:

Chapter 3. THE NUCLEUS

58

a. If the BEFORE or AFTER phrase is not specified, literal-1, literal-3 or the implied operand of the
CHARACTERS phrase participates in the comparison operation as described in general rule 5.

b. If the BEFORE phrase is specified, the associated literal-1, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison cycles which involve that portion
of the contents of the data item referenced by identifier-1 from its leftmost character position up
to, but not including, the first occurrence of literal-2, literal-5 within the contents of the data item
referenced by identifier-1. The position of this first occurrence is determined before the first
cycle of the comparison operation described in general rule 5 is begun. If, on any comparison
cycle, literal-1, literal-3 or the implied operand of the CHARACTERS phrase is not eligible to
participate, it is considered not to match the contents of the data item referenced by identifier-1.
If there is no occurrence of literal-2 literal-5 within the contents of the data item referenced
by identifier-1, its associated literal-1, literal-3, or the implied operand of the CHARACTERS
phrase participates in the comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1, literal-3 or the implied operand of
the CHARACTERS phrase may participate only in those comparison cycles which involve
that portion of the contents of the data item referenced by identifier-1 from the character
position immediately to the right of the rightmost character position of the first occurrence
of literal-2, literal-5 within the contents of the data item referenced by identifier-1 and the
rightmost character position of the data item referenced by identifier-1. The position of this first
occurrence is determined before the first cycle of the comparison operation described in general
rule 5 is begun. If, on any comparison cycle, literal-1, literal-3 or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not to match the contents
of the data item referenced by identifier-1. If there is no occurrence of literal-2, literal-5 within
the contents of the data item referenced by identifier-1, its associated literal-1, literal-3, or the
implied operand of the CHARACTERS phrase is never eligible to participate in the comparison
operation.

Format 1

7. The contents of the data item referenced by identifier-2 are not initialized by the execution of the
INSPECT statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item referenced by identifier-2 is
incremented by one for each occurrence of literal-1 matched within the contents of the data item
referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the data item referenced by identifier-2
are incremented by one for each contiguous occurrence of literal-1 matched within the contents
of the data item referenced by identifier-1, provided that the leftmost such occurrence is at the
point where comparison began in the first comparison cycle in which literal-1 was eligible to
participate.

c. If the CHARACTERS phrase is specified, the contents of the data item referenced by identifier-2
are incremented by one for each character matched, in the sense of general rule 5e, within the
contents of the data item referenced by identifier-1.

Format 2

9. The required words ALL, LEADING, and FIRST are adjectives.

10.The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched in the sense of general
rule 5e in the contents of the data item referenced by identifier-1 is replaced by literal-4.

Chapter 3. THE NUCLEUS

59

b. When the adjective ALL is specified, each occurrence of literal-3 matched in the contents of the
data item referenced by identifier-1 is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous occurrence of literal-3 matched in
the contents of the data item referenced by identifier-1 is replaced by literal-4, provided that
the leftmost occurrence is at the point where comparison began in the first comparison cycle in
which literal-3 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of literal-3 matched within the
contents of the data item referenced by identifier-1 is replaced by literal-4.

Format 3

1. -. A Format 3 INSPECT statement is interpreted and executed as though two successive INSPECT
statements specifying the same identifier-1 had been written with one statement being a Format 1
statement with TALLYING phrases identical to those specified in the Format 3 statement, and the
other statement being a Format 2 statement with REPLACING phrases identical to those specified
in the Format 3 statement. The general rules given for matching and counting apply to the Format 1
statement and the general rules given for matching and replacing apply to the Format 2 statement.

EXAMPLES

Four examples of the use of the INSPECT statement follow:

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E"
AFTER INITIAL "L".

 Where word = CALLAR, count 2, word = CALLAR.
 Where word = SALAMI, count 1, word= SALEMI.
 Where word = LATTER, count 1, word LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

 Where word = ARXAX, word = GRXAX.
 Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B"

 Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
 Where word = JACK, count = 3, word = JBCK.
 Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

 word before: 1 2 X Z A B C D
 word after: B B B B B A B C D

THE MOVE STATEMENT

Function

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

Chapter 3. THE NUCLEUS

60

General Format

Format 1

MOVE { identifier-1 | literal } TO identifier-2 [, identifier-3 ...]

Syntax Rules

1. Identifier-1 and literal represent the sending area; identifier-2, identifier-3, ... represent the
receiving area.

2. An index data item cannot appear as an operand of a MOVE statement. (See THE USAGE
CLAUSE in this Chapter).

General Rules

1. The data designated by the literal or identifier-1 is moved first to identifier-2, then to identifier-3,
The rules referring to identifier-2 also apply to the other receiving areas. Any subscripting or
indexing associated with identifier-2, ..., is evaluated immediately before the data is moved to the
respective data item.

Any subscripting or indexing associated with identifier-1 is evaluated only once, immediately
before data is moved to the first of the receiving operands. The result of the statement:

 MOVE a (b) TO b, c (b)

is equivalent to:

 MOVE a (b) TO temp
 MOVE temp TO b
 MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the implementor.

See the section called “Incompatible Data” in this Chapter.

2. Any MOVE in which the sending and receiving items are both elementary items is an elementary
move. Every elementary item belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These categories are described in the
PICTURE clause. Numeric literals belong to the category numeric, and nonnumeric literals belongs
to the category alphanumeric. The figurative constant ZERO belongs to the category numeric. The
figurative constant SPACE belongs to the category alphabetic. All other figurative constants belong
to the category alphanumeric. The following rules apply to an elementary move between these
categories:

a. The figurative constant SPACE, alphanumeric edited, or alphabetic data item must not be moved
to a numeric or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item or a numeric edited data
item must not be moved to an alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data item must not be moved to an
alphanumeric or alphanumeric edited data item.

d. A move from a numeric edited field to a numeric field will work provided:

i. the source field is not blank

Chapter 3. THE NUCLEUS

61

ii. the source field does not contain non-stored editing characters i.e. P, S or V

iii. zero is not used as an edited character.

e. All other elementary moves are legal and are performed according to the rules given in general
rule 4.

3. Any necessary conversion of data from one form of internal representation to another takes place
during legal elementary moves, along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any
necessary space filling takes place as defined under STANDARD ALIGNMENT RULES in
this Chapter. If the size of the sending item is greater than the size of the receiving item, the
excess characters are truncated on the right after the receiving item is filled. If the sending item is
described as being signed numeric, the operational sign will not be moved; if the operational sign
occupies a separate character position (see THE SIGN CLAUSE in this Chapter), that character
will not be moved and the size of the sending item will be considered to be one less than its
actual size (in terms of standard data format characters).

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and
any necessary zero-filling takes place as defined under the STANDARD ALIGNMENT RULES
in Chapter 2, except where zeroes are replaced because of editing requirements. When a signed
numeric item is the receiving item, the sign of the sending item is placed in the receiving item.
(See THE SIGN CLAUSE in this Chapter). Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a positive sign is generated for the receiving
item.

When an unsigned numeric item is the receiving item, the absolute value of the sending item is
moved and no operational sign is generated for the receiving item.

When a data item described as alphanumeric is the sending item, data is moved as if the sending
item were described as an unsigned numeric integer.

c. When a receiving field is described as alphabetic, justification and any necessary space-filling
takes place as defined under the STANDARD ALIGNMENT RULES in Chapter 2. If the size of
the sending item is greater than the size of the receiving item, the excess characters are truncated
on the right after the receiving item is filled.

4. Any move that is not an elementary move is treated exactly as if it were an alphanumeric to
alphanumeric elementary move, except that there is no conversion of data from one form of internal
representation to another. In such a move, the receiving area will be filled without consideration
for the individual elementary or group items contained within either the sending or receiving area.

5. Data in Table 3-6 summarizes the legality of the various types of MOVE statements. The general
rule reference indicates the rule that prohibits the move or the behavior of a legal move.

Table 3.6. MOVE Statement Data Categories.

Category of Sending Data Item Category of Receiving Data Item1

Alphanumeric
Edited

Numeric IntegerAlphabetic

Alphanumeric Numeric Non-
Integer

Numeric EditedALPHABETIC

Yes/3c Yes/3a No/2a No/2a

ALPHANUMERIC Yes/3c Yes/3a Yes/3b Yes/3b

ALPHANUMERIC EDITED Yes/3c Yes/3a No/2a No/2a

NUMERIC INTEGER No/2b Yes/3a Yes/3b Yes/3b

Chapter 3. THE NUCLEUS

62

Category of Sending Data Item Category of Receiving Data Item1

NUMERIC NON-INTEGER No/2b No/2c Yes/3b Yes/3b

NUMERIC EDITED No/2b Yes/3a Yes/2d No/2a

1 - The relevant rule number is quoted in these columns

THE MULTIPLY STATEMENT

Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data
items equal to the results.

General Format

Format 1

MULTIPLY { identifier-1 | literal-1 } BY identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY { identifier-1 | literal-1 } BY { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that in Format 2 each identifier
following the word GIVING must refer to either an elementary numeric item or an elementary
numeric edited item.

2. Each literal must be a numeric literal.

General Rules

1. See the section called “The Rounded Phrase”, The Size Error Phrase, The Arithmetic Statements,
Overlapping Operands and the section called “Incompatible Data” in this Chapter.

2. When Format 1 is used, the value of identifier-1 or literal-1 is multiplied by the value of identifier-2.
The value of the multiplier (identifier-2) is replaced by this product; similarly for identifier-1 or
literal-1 and identifier-3, etc.

3. When Format 2 is used, the value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2
and the result is stored in identifier-3, identifier-4, etc.

THE PERFORM STATEMENT

Function

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return
control implicitly whenever execution of the specified procedure is complete.

General Format

Format 1

PERFORM procedure-name-1 [{ THROUGH | THRU } procedure-name-2]

Chapter 3. THE NUCLEUS

63

Format 2

PERFORM procedure-name-1 [{ THROUGH | THRU } procedure-name-2] { identifier-1 | integer-1 }
TIMES

Format 3

PERFORM procedure-name-1 [{ THROUGH | THRU } procedure-name-2] UNTIL condition-1

Syntax Rules

1. Each identifier represents a numeric elementary item described in the Data Division. In Format 2,
identifier-1 must be described as a numeric integer.

2. The words THRU and THROUGH are equivalent.

3. Where procedure-name-1 and procedure-name-2 are both specified and either is the name of a
procedure in the declarative section of the program then both must be procedure-names in the same
declarative section.

General Rules

1. When the PERFORM statement is executed, control is transferred to the first statement of the
procedure named procedure-name-1 (except as indicated in general rules 4b, 4c, and 4d). This
transfer of control occurs only once for each execution of a PERFORM statement. For those cases
where a transfer of control to the named procedure does take place, an implicit transfer of control
to the next executable statement following the PERFORM statement is established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, then the return
is after the last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified, then the return is
after the last statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, then the return is after the last
statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then the return is after the last statement
of the last paragraph in the section.

2. There is no necessary relationship between procedure-name-1 and procedure-name-2 except that a
consecutive sequence of operations is to be executed beginning at the procedure named procedure-
name-1 and ending with the execution of the procedure named procedure-name-2. In particular, GO
TO and PERFORM statements may occur between procedure-name-1 and the end of procedure-
name-2. If there are two or more logical paths to the return point, then procedure-name-2 may be
the name of a paragraph consisting of the EXIT statement, to which all of these paths must lead.

3. If control passes to these procedures other than via a PERFORM statement the procedures are
executed right through to the next executable statement in the main program as if they were just
part of the main program,

4. The PERFORM statements operate as follows with rule 3 above applying to all formats:

a. Format 1 is the basic PERFORM statement. A procedure referenced by this type of PERFORM
statement is executed once and then control passes to the next executable statement following
the PERFORM statement.

b. Format 2 is the PERFORM TIMES. The procedures are performed the number of times specified
by integer-1 or by the initial value of the data item referenced by identifier-1 for that execution.
If, at the time of execution of a PERFORM statement, the value of the data item referenced

Chapter 3. THE NUCLEUS

64

by identifier-1 is equal to zero or is negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the procedures the specified
number of times, control is transferred to the next executable statement following the PERFORM
statement. During execution of the PERFORM statement, references to identifier-1 cannot alter
the number of times the procedures are to be executed from that which was indicated by the
initial value of identifier-1.

c. Format 3 is the PERFORM...UNTIL. The specified procedures are performed until the condition
specified by the UNTIL phrase is true. When the condition is true, control is transferred to
the next executable statement after the PERFORM statement. If the condition is true when the
PERFORM statement is entered, no transfer to procedure-name-1 takes place, and control is
passed to the next executable statement following the PERFORM statement.

5. If a sequence of statements referred to by a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the included PERFORM must itself either
be totally included in, or totally excluded from, the logical sequence referred to by the first
PERFORM. Thus, an active PERFORM statement, whose execution point begins within the range
of another active PERFORM statement, must not allow control to pass to the exit of the other active
PERFORM statement; furthermore, two or more such active PERFORM statements may not have
a common exit. See Figure 3-1.

Figure 3.1. PERFORM Statement in Sequence.

 x PERFORM a THRU m x PERFORM a THRU m

 a -------------------+ a -------------------+
 | |
 d PERFORM f THRU j | d PERFORM f THRU j |
 | |
 f ---------------+ | h |
 | | |
 j <--------------+ | m <------------------+
 |
 m <------------------+ f -------------------+
 |
 j <------------------+

 x PERFORM a THRU m

 a -------------------+
 |
 f ---------------+ |
 | |
 m <------------------+
 |
 j <--------------+

 d PERFORM f THRU j

6. A PERFORM statement that appears in a section that is not an independent segment can have within
its range, in addition to any declarative sections whose execution is caused within that range, only
one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-independent segments.

b. Sections and/or paragraphs wholly contained in a single independent segment.

c.

Chapter 3. THE NUCLEUS

65

7. A PERFORM statement that appears in an independent segment can have within its range, in
addition to any declarative sections whose execution is caused within that range, only one of the
following:

a. Sections and/or paragraphs wholly contained in one or more non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent segment as that
PERFORM statement.

8. PERFORM statements must not be nested to greater than 22 levels.

THE STOP STATEMENT

Function

The STOP statement causes a permanent or temporary suspension of the execution of the object
program.

General Format

STOP { RUN | literal }

Syntax Rules

1. The literal may be numeric or non-numeric or may be any figurative constant, except ALL.

2. If the literal is numeric, then it must be an unsigned integer.

3. If a STOP RUN statement appears in a consecutive sequence of imperative statements within a
sentence, it must appear as the last statement in that sequence.

General Rules

1. If the RUN phrase is used, then the operating system ending procedure is instituted.

2. If STOP literal is specified, the literal is communicated to the operator. Continuation of the object
program begins with the execution of the next executable statement in sequence.

THE SUBTRACT STATEMENT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items
from one or more items, and set the values of one or more items equal to the results.

General Format

Format 1

SUBTRACT { identifier-1 | literal-1 } , { identifier-2 | literal-2 }... ... FROM identifier-m [ROUNDED]
[, identifier-n [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT { identifier-1 | literal-1 } , { identifier-2 | literal-2 }... ... FROM identifier-m GIVING
identifier-n [ROUNDED] [, identifier-o [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Chapter 3. THE NUCLEUS

66

Syntax Rules

1. Each identifier must refer to a numeric elementary item except that in Format 2, each identifier
following the word GIVING must refer to either an elementary numeric item or an elementary
numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. (See The Arithmetic Statements
in this Chapter).

a. In Format 1 the composite of operands is determined by using all of the operands in a given
statement.

b. In Format 2 the composite of operands is determined by using all of the operands in a given
statement excluding the data items that follow the word GIVING.

General Rules

1. See the section called “The Rounded Phrase”, The Size Error Phrase, The Arithmetic Statement,
Overlapping Operands and the section called “Incompatible Data” in this Chapter.

2. In Format 1, all literals or identifiers preceding the word FROM are added together and this total is
subtracted from the current value of identifier-m storing the result immediately into identifier-m,
and repeating this process respectively for each operand following the word FROM.

3. In Format 2, all literals or identifiers preceding the word FROM are added together, the sum is
subtracted from literal-m or identifier-m and the result of the subtraction is stored as the new value
of identifier-n, identifier-n, etc.

4. The compiler ensures enough places are carried so as not to lose significant digits during execution.

67

Chapter 4. TABLE HANDLING
INTRODUCTION TO THE TABLE HANDLING
MODULE

The Table Handling module provides a capability for defining tables of contiguous data items and
accessing an item relative to its position in the table. Language facilities are provided for specifying
how many times an item is to be repeated. Each item may be identified through use of a subscript or
an index (see Chapter 2).

Table Handling provides a capability for accessing items in variable length. tables of multiple
dimensions. The maximum number of multiple dimensions if the ANSI switch is on (see Chapter 2)
is restricted to three.

DATA DIVISION IN THE TABLE HANDLING
MODULE

THE OCCURS CLAUSE

Function

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies
information required for the application of subscripts or indices.

General Format

OCCURS integer-2 TIMES [INDEXED BY index-name-1 [, index-name-2]...]...

Syntax Rules

1. An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this
entry, is to be referred to by indexing. The index-name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the hardware, and not being data, cannot
be associated with any data hierarchy.

2. The OCCURS clause cannot be specified in a data description entry that has 01 or 77 level-number
(if ANSI switch has been set).

3. Index-name-1, index-name-2, ... must be unique words within the program.

General Rules

1. The OCCURS clause is used in defining tables and other homogeneous sets of repeated data items.
Whenever the OCCURS clause is used, the data-name which is the subject of this entry must
be either subscripted or indexed whenever it is referred to in a statement other than USE FOR
DEBUGGING. Further, if the subject of this entry is the name of a group item, then all data-names
belonging to the group must be subscripted or indexed whenever they are used as operands, except
as the object of a REDEFINES clause. (See under headings Subscripting, Indexing and Identifier
in Chapter 2).

2. Except for the OCCURS clause itself, all data description clauses associated with an item whose
description includes an OCCURS clause apply to each occurrence of the item described. (See
restriction in general rule 2 under Data Description Entries Other Than Condition in Chapter 3).

Chapter 4. TABLE HANDLING

68

3. The number of occurrences of the subject entry is defined as the value of integer-2 representing
the exact number of occurrences.

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the computer storage.

General Format
[USAGE IS] INDEX

Syntax Rules
1. An index data item can be referenced explicitly only in a SET statement, a relation condition, the

USING phrase of a Procedure Division header, or the USING phrase of a CALL statement.

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items described with the USAGE IS INDEX clause.

General Rules
1. The USAGE clause can be written at any level. If the USAGE clause is written at a group level,

it applies to each elementary item in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

2. An elementary item described with the USAGE IS INDEX clause is called an index data item
and contains a value which must correspond to an occurrence number of a table element. The
elementary item cannot be a conditional variable. The compiler will allocate a 2 byte binary field
with an implied picture of 9(4) COMPUTATIONAL. If a group item is described with the USAGE
IS INDEX clause the elementary items in the group are all index data items. The group itself is not
an index data item and cannot be used :n the SET statement or in a relation condition.

3. An index data item can be part of a group which is referred to in a MOVE or input-output statement,
in which case no conversion will take place.

PROCEDURE DIVISION IN THE TABLE
HANDLING MODULE

RELATION CONDITION

Comparisons Involving Index-Names And/or Index Data Items

Relation tests may be made between the following data items:

• Two index-names. The result is the same as if the corresponding occurrence numbers were
compared.

• An index-name and a data item (other than an index data item) or literal. The occurrence number
that corresponds to the value of the index-name is compared to the data item or literal.

• An index data item and an index-name or another index data item. The actual values are compared
without conversion.

Chapter 4. TABLE HANDLING

69

• The result of the comparison of an index data item with any data item or literal not specified above
is undefined.

OVERLAPPING OPERANDS
When a sending and a receiving item in a SET statement share a part of their storage areas, the result
of the execution of such a statement is undefined.

THE SET STATEMENT

Function

The SET statement establishes reference points for table handling operations by setting index-names
associated with table elements.

General Format

Format 1

SET { identifier-1 [, identifier-2]... | index-name-1 [, index-name-2]... } TO { identifier-3 | index-
name-3 | integer-1 }

Format 2

SET index-name-4 [, index-name-5]... { UP BY | DOWN BY } { identifier-4 | integer-2 }

Syntax Rules

1. All references to index-name-1, identifier-1, and index-name-4 apply equally to index-name-2,
identifier-2, and index-name-5, respectively.

2. Identifier-1 and identifier-3 must name either index data items, or elementary items described as
an integer.

3. Identifier-4 must be described as an elementary numeric integer.

4. Integer-1 and integer-2 may be signed. Integer-1 must be positive.

General Rules

1. Index-names are considered related to a given table and are defined by being specified in the
INDEXED BY clause.

2. If index-name-3 is specified, the value of the index before the execution of the SET statement must
correspond to an occurrence number of an element in the associated table.

If index-name-4, index-name-5 is specified, the value of the index both before and after the
execution of the SET statement must correspond to an occurrence number of an element in the
associated table If index-name-1, index-name-2 is specified, the value of the index after the
execution of the SET statement must correspond to an occurrence number of an element in the
associated table. The value of the index associated with an index-name after the execution of a
PERFORM statement may be undefined. (See THE PERFORM STATEMENT in Chapter 3).

3. In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table element that corresponds in
occurrence number to the table element referenced by index-name-3, identifier-3, or integer-1.
If identifier-3 is an index data item, or if index-name-3 is related to the same table as index-
name-1, no conversion takes place.

Chapter 4. TABLE HANDLING

70

b. If identifier-1 is an index data item, it may be set equal to either the contents of index-name-3
or identifier-3 where identifier-3 is also an index item; no conversion takes place in either case.

c. If identifier-1 is not an index data item, it may be set only to an occurrence number that
corresponds to the value of index-name-3. Neither identifier-3 nor integer-1 can be used in this
case.

d. The process is repeated for index-name-2 , identifier-2, etc., if specified. Each time the value of
index-name-3 or identifier-3 is used as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-1, etc., is evaluated immediately before
the value of the respective data item is changed.

4. In Format 2, the contents of index-name-4 are incremented (UP BY) or decremented (DOWN BY)
by a value that corresponds to the number of occurrences represented by the value of integer-2
or identifier-4; thereafter, the process is repeated for index-name-5, etc. Each time the value of
identifier-4 is used as it was at the beginning of the execution of the statement.

5. Data in Table 4-1 represents the validity of various operand combinations in the SET statement.
The general rule reference indicates the applicable general rule.

Table 4.1. SET Statement Valid Operand Combinations.

Receiving Item1Sending Item

Integer Data Item Index-Name Index Data Item

Integer Literal No/3c Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/3c Valid/3a Valid/3b2

Index Data Item No/3c Valid/3a2 Valid/3b2

1 = Rule numbers under General Rules above are referred to.

2 = No conversion takes place

71

Chapter 5. SEQUENTIAL INPUT AND
OUTPUT
INTRODUCTION TO THE SEQUENTIAL I-O
MODULE

The Sequential I-O module provides a capability to access records of a file in established sequence. The
sequence is established as a result of writing the records to the file. It also provides for the specification
of re-run points and the sharing of memory areas among files.

LANGUAGE CONCEPTS

Organization

Sequential files are organized such that each record in the file except the first has a unique predecessor
record, and each record except the last has a unique successor record. These predecessor-successor
relationships are established by the order of WRITE statements when the file is created. Once
established, the predecessor-successor relationships do not change except in the case where records
are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are accessed is the order in which the
records were originally written.

Current Record Pointer

The current record pointer is a conceptual entity used in this document to facilitate specification of
the next record to be accessed within a given file. The concept of the current record pointer has no
meaning for a file opened in the output mode. The setting of the current record pointer is affected only
by the OPEN and READ statements.

I-O Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into the specified
two-character data item during the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE
statement and before any applicable USE procedure is executed, to indicate to the COBOL program
the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is known as Status Key 1 and is set to
indicate one of the following conditions upon completion of the input-output operation.

'0' - indicates Successful Completion
'1' - indicates At End
'3' - indicates Permanent Error
'9' - indicates an Operating System Error Message

The meaning of the above indications are as follows:

0 Successful Completion. The input-output statement was successfully executed.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

72

1 At End. The sequential READ statement was unsuccessfully executed as a result of an attempt to
read a record when no next logical record exists in the file

3 Permanent Error. The input-output statement was unsuccessfully executed as the result of a
boundary violation for a sequential file or as the result of an input-output error, such as data check
parity error, or transmission error.

9 Operating System Error Message. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the Operating System Error Message. This value is used
only to indicate a condition not indicated by other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as Status Key 2 and is
used to further describe the results of the input-output operation. This character will contain a value
as follows:

• If no further information is available concerning the input-output operation, then status key 2
contains a value of '0'.

• When status key 1 contains a value of '3' an irrecoverable error has occurred. This is treated as a
fatal error by the Operating System.

• When status key 1 contains a value of '9', the value of status key 2 is the operating system
error message number (for those operating systems which designate errors numerically). The CIS
COBOL Operating Guide specific to your operating system contains details of this status-key-2
representation. Note that it is not possible to extract this number directly.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in the
following table. An 'X' at an intersection indicates a valid permissible combination.

Status Key 2Status Key 1

No Further Information (0)

Successful Completion (0) X

At End (1) X

Permanent Error (3) X

Implementor Defined (9) O/S Error Number

The AT END Condition

The AT END condition can occur as a result of the execution of a READ statement. For details of the
causes of the condition, see THE READ STATEMENT later in this Chapter.

ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O
MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other file-related
information. (See also Appendix I in this manual).

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

73

General Format

FILE-CONTROL. file-control-entry ...

The FILE CONTROL Entry

Function

The file control entry names a file and may specify other file-related information.

General Format

SELECT file-name
ASSIGN TO { external-file-name-literal | file-identifier } [, external-file-name-literal | file-identifier]
[; ORGANIZATION IS SEQUENTIAL | LINE SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data-name-1]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only once as file-name in the
FILE-CONTROL paragraph. Each file specified in the file control entry must have a file description
entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is
implied.

4. Data-name-1 must be defined in the Data Division as a two-character data item of the category
alphanumeric and must not be defined in the File Section.

5. When the ORGANIZATION IS SEQUENTIAL clause is not specified, the ORGANIZATION IS
SEQUENTIAL clause is implied.

General Rules

1. The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. See Appendix F in the CIS COBOL Operating Guide. The first assignment takes effect.
Subsequent assignments within any one ASSIGN clause are for documentation purposes only.

2. The ORGANIZATION clause specifies the logical structure of a file. The file organization is
established at the time a file is created and cannot subsequently be changed.

3. When LINE SEQUENTIAL ORGANIZATION is specified, the file is treated as consisting of
variable length records, each record containing one line of data. The definition of a line of data
varies with different operating systems. Some terminate line "records" with the Carriage Return
and Line Feed characters, or one of them, and some pad out as fixed length records. CIS COBOL
therefore is always compatible with the Editor software in any Operating System in this respect.

4. Records in the file are accessed in the sequence dictated by the file organization. This sequence
is specified by predecessor-successor record relationships established by the execution of WRITE
statements when the file is created or extended.

5. When the FILE STATUS clause is specified, a value will be moved by the operating system into
the data item specified by data-name-1 after the execution of every statement that references that
file either explicitly or implicitly. This value indicates the status of execution of the statement (See
the section called “I-O Status” in this Chapter).

The I-O-CONTROL Paragraph

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

74

Function

The I-O CONTROL paragraph specifies the points at which re-run is to be established, the memory
area which is to be shared by different files, and the location of files on a multiple file reel.

General Format

I-O-CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY {{ [END OF]
{ REEL | UNIT } | integer-1 RECORDS } | OF file-name-2 | integer-2 CLOCK-UNITS | condition-
name }]... [; SAME AREA FOR file-name-3 [, file-name-4]...]... .

Syntax Rules

1. The I-O-CONTROL paragraph is optional. The whole clause is for documentation only when
present.

2. File-name-1 must be a sequentially organized file.

3. The END OF REEL/UNIT clause may only be used if file-name-2 is a sequentially organized file
and is for documentation purposes only.

4. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is specified,
implementor-name must be given in the RERUN clause.

5. More than one RERUN clause may be specified for a given file-name-2.

6. The files referenced in the SAME AREA clause need not all have the same organization or access.

General Rules

1. The RERUN clause is treated as for documentation purposes only.

2. The SAME AREA clause is treated as for documentation purposes only.

DATA DIVISION IN THE SEQUENTIAL I-O MODULE

FILE SECTION

In a CIS COBOL program the file description entry (FD) represents the highest level of organisation
in the File Section. The File Section header is followed by a file description entry consisting of a level
indicator (FD), a file-name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records, the value of implementor-
defined label items, the names of the data records which comprise the file. The entry itself is terminated
by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-
name if required, followed by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries. The structure of a record description is
defined in CONCEPT OF LEVELS in Chapter 2, while the elements allowed in a record description are
shown in the the section called “THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON”
in Chapter 3.

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

75

Function

The file description furnishes information concerning the physical structure, identification, and record
names pertaining to a given file.

General Format

FD file-name [; BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS }]
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
[; LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }]
[; VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...] [; DATA { RECORD IS |
RECORDS ARE } data-name-3 [, data-name-4]]
[; CODE-SET IS alphabet-name]

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and must precede the file-name.

2. The clauses which follow the name of the file are optional in many cases, and their order of
appearance is immaterial. All clauses are optional when the ANSI switch is unset (See Chapter 2).

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS integer { RECORDS | CHARACTERS }

General Rule

This clause is required for documentation purposes only.

THE CODE-SET CLAUSE

Function

The CODE-SET clause specifies the character code set used to represent data on the external media.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When the CODE-SET clause is specified for a file, all data in that file must be described as usage is
DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase.

3. The CODE-SET clause may only be specified for non-disk files.

General Rule

The CODE-SET clause is specified for documentation purposes only.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

76

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data records with their
associated file.

General Format

DATA { RECORD IS | RECORDS ARE } data-name-1 [, data-name-2]

Syntax Rule

Data-name-1 and data-name-2 are the names of data records and should have 01 level-number record
descriptions, with the same names, associated with them.

General Rules

1. The presence of more than one data-name indicates that the file contains more than one type of
data record. These records may be of differing sizes, different formats, etc. The order in which they
are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no way altered by the
presence of more than one type of data record within the file.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }

Syntax Rule

This clause is required in every file description entry, when the ANSI switch is set.

General Rule

This clause is used for documentation purposes only.

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description entry, therefore this
clause is never required. The RECORD CONTAINS clause is specified for documentation purposes
only.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

77

THE VALUE OF CLAUSE

Function

The VALUE OF clause specifies the description of an item in the label records associated with a file.

General Format

VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...

General Rules

1. This clause is used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever a literal is specified.

PROCEDURE DIVISION IN THE SEQUENTIAL I-O
MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files.

General Format

CLOSE file-name-1 { REEL | UNIT }

Syntax Rule

The REEL or UNIT phrase must only be used for sequential files, and are for documentation purposes
only.

General Rules

1. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if the file is in the open mode when a STOP RUN statement is executed is to close
the file. The action taken for a file that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for that program is to leave the file open.

3. If a CLOSE statement has been executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an intervening OPEN statement for that
file is executed.

4. Following the successful execution of a CLOSE statement the record area associated with file-
name is no longer available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs checking and/or writing of labels
and other input-output operations.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

78

General Format

OPEN { INPUT file-name-1 [, file-name-2]... OUTPUT file-name-3 [, file-name-4]... I-O file-name-5
[, file-name-6]... EXTEND file-name-7 [, file-name-8]... }

Syntax Rules

1. The I-O phrase can only be used for disk files, except for files in line sequential organization.

2. The EXTEND phrase can only by used for sequential files and line sequential files.

General Rules

1. The successful execution of an OPEN statement determines the availability of the file and results
in the file being in an open mode.

2. The successful execution of an OPEN statement makes the associated record area available to the
program.

3. Prior to the successful execution of an OPEN statement for a given file, no statement can be
executed that references that file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution of any of the permissible
input-output statements. In Table 5-1, 'X' at an intersection indicates that the specified statement,
used in the sequential access mode, may be used with the sequential file organization and open
mode given at the top of the column.

Table 5.1. Permissable Combinations of Statements and OPEN Modes for
Sequential I/O.

Statement Open Mode

Input Output Input-Output ExtendREAD

X X

WRITE X X

REWRITE X

This OPEN mode is not supported for ORGANIZATION line sequential files.

5. A file may be opened with the INPUT, OUTPUT, EXTEND and I-O phrases in the same program.
Following the initial execution of an OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded by the execution of a CLOSE statement, for that file.

6. Execution of the OPEN statement does not obtain or release the first data record.

7. The ASSIGNed name in the SELECT statement for a file is processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN statement causes the
ASSIGNed name to be checked in accordance with the operating system conventions for
opening files for input.

b. When the OUTPUT phrase is specified, the execution of the OPEN statement causes the
ASSIGNed name to be written in accordance with the operating system conventions for opening
files for output.

8. The file description entry for file-name-1, file-name-5, must be equivalent to that used when this
file was created.

9. If the storage medium for the file permits rewinding, execution of the OPEN statement causes the
file to be positioned at its beginning.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

79

10.For files being opened with the INPUT or I-O phrase, the OPEN statement sets the current record
pointer to the first record currently existing within the file. If no records exist in the file, the current
record pointer is set such that the next executed READ statement for the file will result in an AT
END condition. If the file does not exist, OPEN INPUT will cause an error status.

11.When the EXTEND phrase is specified, the OPEN statement positions the file immediately
following the last logical record of that file. Subsequent WRITE statements referencing the file
will add records to the file as though the file had been opened with the OUTPUT phrase. If the file
does not exist it will be created.

12.The I-O phrase permits the opening of a disk for both input and output operation except for file in
ORGANIZATION LINE SEQUENTIAL.

13.Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is
created. At that time the associated file contains no data records.

THE READ STATEMENT

Function

The READ statement makes available the next logical record from a file,

General Format

READ file-name RECORD [INTO identifier] [; AT END imperative- statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical records of various sizes as
indicated by their record descriptions. The storage area associated with identifier and the record
area associated with file-name must not be the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure is specified for file-name,

General Rules

1. The associated file must be open in the INPUT or I-O mode at the time this statement is executed.
(See THE OPEN STATEMENT in this Chapter).

2. The record to be made available by the READ statement is determined as follows:

a. If the current record pointer was positioned by the execution of the OPEN statement, the record
pointed to by the current record pointer is made available.

b. If the current record pointer was positioned by the execution of a previous READ statement,
the current record pointer is updated to point to the next existing record in the file and then that
record is made available.

3. The execution of the READ statement causes the value of the FILE STATUS data item, if any,
associated with file-name to be updated. (See the section called “I-O Status” in this Chapter)

4. Regardless of the method used to overlap access time with processing time, the concept of the
READ statement is unchanged in that a record is available to the object program prior to the
execution of any statement following the READ statement.

5. When the logical records of a file are described with more than one record description, these records
automatically share the same storage area; this is equivalent to an implicit redefinition of the area.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

80

The contents of any data items which lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

6. If the INTO phrase is specified, the record being read is moved from the record area to the area
specified by identifier according to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was unsuccessful. Any subscripting or
indexing associated with identifier is evaluated after the record has been read and immediately
before it is moved to the data item.

7. When the INTO phrase is used, the record being read is available in both the input record area and
the data area associated with identifier.

8. If, at the time of execution of a READ statement, the position of current record pointer for that file
is undefined, the execution of that READ statement is unsuccessful.

9. If the end of a reel or unit is recognized during the execution of a READ statement, an end-of-file
status condition exists.

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

10.If, at the time of the execution of a READ statement, no next logical record exists in the file, the
AT END condition occurs, and the execution of the READ statement is considered unsuccessful.
(See the section called “I-O Status”).

11.When the AT END condition is recognized the following actions are taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an AT
END condition. (See the section called “I-O Status”).

b. If the AT END phrase is specified in the statement causing the condition, control is transferred
to the AT END imperative-statement. Any USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be specified, either explicitly
or implicitly, for this file and that procedure is executed.

When the AT END condition occurs, execution of the input-output statement which caused the
condition is unsuccessful.

12.Following the unsuccessful execution of any READ statement, the contents of the associated record
area and the position of the current record pointer are undefined.

13.When the AT END condition has been recognized, a READ statement for that file must not be
executed without first executing a successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a disk file.

General Format

REWRITE record-name [FROM identifier]

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

81

Syntax Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data Division and may be
qualified.

General Rules

1. The file associated with record-name must be a disk file and must be open in the I-O mode at the
time of execution of this statement. (See THE OPEN STATEMENT in this Chapter).

2. The last input-output statement executed for the associated file prior to the execution of the
REWRITE statement must have been a successfully executed READ statement. The operating
system logically replaces the record that was accessed by the READ statement.

3. The number of character positions in the record referenced by record-name must be equal to the
number of character positions in the record being replaced.

4. The logical record released by a successful execution of the REWRITE statement is no longer
available in the record area,

5. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of:

 MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM phrase. The
contents of the record area prior to the execution of the implicit MOVE statement have no effect
on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE statement.

7. The execution of the REWRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “I-O Status” in this Chapter).

8. The REWRITE statement cannot be used with line sequential files.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in addition to the
standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARD { EXCEPTION | ERROR } PROCEDURE ON { file-name-1 |
INPUT | OUTPUT | I-O | EXTEND }

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the declaratives
section and must be followed by a period followed by a space. The remainder of the section must
consist of zero, one or more procedural paragraphs that define the procedure to be used.

2. The USE statement itself is never executed; it merely defines the conditions calling for the execution
of the USE procedures.

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

82

General Rules

1. If the AT END phase has not been specified in the input-output statement, the designated procedures
are executed by the input-output system after completing the standard input-output error routine
upon recognition of the AT END condition

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any non-declarative procedures.
Conversely, in the nondeclarative portion there must be no reference to procedure-names that
appear in the declarative portion, except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that would cause the
execution of a USE procedure that had previously been invoked and had not yet returned control
to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output file. It can also be used for vertical
positioning of lines within a logical page.

General Format

WRITE record-name [FROM identifier-1] [BEFORE | AFTER ADVANCING integer LINE | LINES
| TAB | PAGE]

Syntax Rules

1. Record-name and identifier-1 must not reference the same storage area.

2. When TAB is specified the result is to cause the paper to throw to the standard vertical tabulation
position.

3. The record-name is the name of a logical record in the File Section cf the Data Division.

4. Integer may be zero.

General Rules

1. The associated file must be open in the OUTPUT mode at the time of the execution of this statement.
(See THE OPEN STATEMENT in this Chapter).

2. The logical record released by the execution of the WRITE statement is no longer available in
the record area unless the execution of the WRITE statement was unsuccessful due to a boundary
violation.

3. The results of the execution of the WRITE statement with the FROM phrase is equivalent to the
execution of:

a. The statement:

 MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement, followed by:

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

83

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE statement have no
effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area referenced by
identifier-1 is available, even though the information in the area referenced by record-name may
not be. (See general rule 2.)

4. The current record pointer is unaffected by the execution of a WRITE statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “I-O Status” in this Chapter).

6. The maximum record size for a file is established at the time the file is created and must not
subsequently be changed.

7. The number of character positions on a disk required to store a logical record in a file may or may
not be equal to the number of character positions defined by the logical description of that record
in the program.

8. The execution of the WRITE statement releases a logical record to the operating system.

9. The ADVANCING phrase allows control of the vertical positioning of each line on a representation
of a printed page.

a. With ORGANIZATION SEQUENTIAL if the ADVANCING phrase is not used, automatic
advancing is provided when output is directed to a list-device to act as if the user had specified
AFTER ADVANCING 1 LINE. If the ADVANCING phrase is used, advancing is provided as
follows:

i. If integer is specified, the representation of the printed page is advanced the number of lines
equal to the value of integer.

ii. If the BEFORE phrase is used, the line is presented before the representation of the printed
page is advanced.

iii. If the AFTER phrase is used, the line is presented after the representation of the printed page
is advanced.

iv. If PAGE is specified, the record is presented on the logical page before or after (depending
on the phrase used) the device is repositioned to the next logical page.

b. With ORGANIZATION LINE SEQUENTIAL, if the ADVANCING phrase is not used,
automatic advancing of one line is provided to act in accordance with the convention of your
operating system text editor (usually as if the user had specified BEFORE ADVANCING 1
LINE).

If the ADVANCING phrase is used, advancing is provided according to rules 9a(i) through
9a(iv) above.

If the ADVANCING phrase is used or the output is directed to a list device, the resulting file is
restricted in its use. general, the file cannot be read to automatically retrieve the logical records
written. In particular, if the BEFORE ADVANCING and AFTER ADVANCING clauses are
both used (implicitly or explicitly) when writing the file, it may not be opened as an input file
with ORGANIZATION LINE SEQUENTIAL.

10.When an attempt is made to write beyond the externally defined boundaries of a sequential file, an
exception condition exists and the contents of the record area are unaffected. The following action
takes place:

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

84

a. The value of the FILE STATUS data item, if any, of the associated file is set to a value indicating
a boundary violation. (See the section called “I-O Status” in this Chapter).

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly specified for
the file, that declarative procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implicitly specified
for the file, the result is undefined.

85

Chapter 6. RELATIVE INPUT AND
OUTPUT
INTRODUCTION TO THE RELATIVE I-O
MODULE

The Relative I-O module provides a capability to access records of a mass storage file in either
a random or sequential manner. Each record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's ordinal position in the file. (See the CIS COBOL
Operating Guide for the maximum number of records in a relative file.)

LANGUAGE CONCEPTS

Organization

Relative file organization is permitted only on disk devices. A relative file consists of records which
are identified by relative record numbers. The file may be thought of as composed of a serial string of
areas, each capable of holding a logical record. Each of these areas is denominated by a relative record
number. Records are stored and retrieved based on this number. For example, the tenth record is the
one addressed by relative record number 10 and is in the tenth record area, whether or not records
have been written in the first through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the relative record numbers of all records which currently exist within the file. In the random access
mode, the sequence in which records are accessed is controlled by the programmer. The desired record
is accessed by placing its relative record number in a relative key data item. In the dynamic access
mode, the programmer may change at will from sequential access to random access using appropriate
forms of input-output statements.

Current Record Pointer

The current record printer is a conceptual entity used in this document to facilitate specification of
the next record to be accessed within a given file. The concept of the current record pointer has no
meaning for a file opened in the output mode. The setting of the current record pointer is affected only
by the OPEN, START and READ statements.

I-O Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into the specified two-
character data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE
or START statement and before any applicable USE procedure is executed, to indicate to the COBOL
program the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is known as Status Key 1 and is set to
indicate one of the following conditions upon completion of the input-output operation.

'0' - indicates Successful Completion
'1' - indicates At End
'2' - indicates Invalid Key

Chapter 6. RELATIVE INPUT AND OUTPUT

86

'3' - indicates Permanent Error
'9' - indicates an Operating System Error Message

The meaning of the above indications are as follows:

0 Successful Completion. The input-output statement was successfully executed.

1 At End. The Format 1 READ statement was unsuccessfully executed as a result of an attempt to
read a record when no next logical record exists in the file.

2 Invalid Key. The input-output statement was unsuccessfully executed as a result of one of the
following:
• Duplicate Key
• No Record Found
• Boundary Violation

3 Permanent Error. The input-output statement was unsuccessfully executed as the result of an input-
output error, such as data check, parity error or transmission error.

9 Operating System Error Message. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the Operating System Error Message. This value is used
only to indicate a condition not indicated by other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status key 2 and is used
to further describe the results of the input-output operation. This character contains a value as follows:

• If no further information is available concerning the input-output operation, then status key 2
contains a value of '0'

• When status key 1 contains a value of '2' indicating an INVALID KEY condition, status key 2 is
used to designate the cause of that condition by the following values:
2 - Indicates a duplicate key value. An attempt has been made to write a record that would create

a duplicate key in a relative file.
3 - Indicates no record found. An attempt has been made to access a record, identified by a key,

and that record does not exist in the file,
4 - Indicates a boundary violation. An attempt has been made to write beyond the externally-

defined boundaries of a relative file. This is normally treated as a fatal error by the Operation
System.

• When status key 1 contains a value of '9' the value of status key 2 is the operating system
error message number (for those operating systems which designate errors numerically), The CIS
COBOL Operating Guide specific to your operating system contains details of the status-key-2
representation. Note that it is not possible to extract this number directly.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in the
table. An 'X' at an intersection indicates a valid permissible combination.

Status Key 2Status Key 1

No Further
Information
(0)

Duplicate
Key (2)

No Record
Found (3)

Boundary
Violation
(4)

Successful
Completion (0)

X

At End (1) X

Chapter 6. RELATIVE INPUT AND OUTPUT

87

Invalid Key (2) X X X

Permanent Error (3) X

Implementor
Defined (9)

Operating System Error Message Number

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START, READ, WRITE,
REWRITE or DELETE statement. For details of the causes of the condition, see The START
Statement, The READ Statement, The WRITE Statement, The REWRITE Statement, and The
DELETE Statement later in this chapter.

When the INVALID KEY condition is recognised, the Operating System takes these actions in the
following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an INVALID
KEY condition. (See the section called “I-O Status” in this Chapter).

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is
transferred to the INVALID KEY imperative statement. Any USE procedure specified for this file
is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified, either explicitly
or implicitly, for this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output statement which recognised
the condition is unsuccessful, and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a READ statement. For details of the
causes of the condition, see The READ Statement later in this chapter.

ENVIRONMENT DIVISION IN THE RELATIVE I-
O MODULE

INPUT-OUTPUT SECTION

The File-Control Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other file-related
information. (See also Appendix F in the CIS COBOL Operating Guide).

General Format

FILE-CONTROL {file-control-entry}...

The File-Control Entry

Function

The file control entry names a file and may specify other file-related information.

General Format

Chapter 6. RELATIVE INPUT AND OUTPUT

88

SELECT file-name
ASSIGN TO { external-file-name-literal | file-identifier } [, { external-file-name-literal | file-
identifier }]
; ORGANIZATION IS RELATIVE
[; ACCESS MODE IS { SEQUENTIAL ,RELATIVE KEY IS data-name | { RANDOM |
DYNAMIC } ,RELATIVE KEY IS data-name }]
[; FILE STATUS IS data-name-2]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only once as file-name in the
FILE-CONTROL paragraph. Each file specified in the file control entry must have a file description
entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is
implied.

4. Data-name-2 must be defined in the Data Division as a two-character data item of the category
alphanumeric and must not be defined in the File Section, the Report Section, or the Communication
Section.

5. Data-name-1 must not be defined in a record description entry associated with that file-name.

6. The data item referenced by data-name-1 must be defined as an unsigned integer.

General Rules

1. The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. See Appendix F in the CIS COBOL Operating Guide. The first assignment takes place.
Subsequent assignments within any one ASSIGN clause are for documentation purposes only.

2.

3. When the access mode is sequential , records in the file are accessed in the sequence dictated by
the file organization. This sequence is the order of ascending relative record numbers of existing
records in the file.

4. When the FILE STATUS clause is specified, a value will be moved by the operating system into
the data item specified by data-name-2 after the execution of every statement that references that
file either explicitly or implicitly. This value indicates the status of execution of the statement. (See
the section called “I-O Status” in this Chapter).

5. If the access mode is random, the value of the RELATIVE KEY data item indicates the record to
be accessed.

6. When the access made is dynamic, records in the file may be assessed sequentially and/or randomly.
(See General Rules 3 and 5) .

7. All records stored in a relative file are uniquely identified by relative record numbers. The relative
record number of a given record specifies the record's logical ordinal position in the file. The first
logical record has a relative record number of 1, and subsequent logical records have relative record
numbers of 2, 3, 4,

8. The data item specified by data-name-1 is used to communicate a relative record number between
the user and the Operating System.

The I-O-CONTROL Paragraph

Chapter 6. RELATIVE INPUT AND OUTPUT

89

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be established and the memory
area which is to be shared by different files.

General Format

I-O-CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY { integer-1
RECORDS OF file-name-2 | integer-2 CLOCK-UNITS | condition-name }]... [; SAME AREA FOR
file-name-3 [, file-name-4]...]... .

Syntax Rules

1. The I-O-CONTROL paragraph is optional. The whole clause is for documentation purposes only.

2. File-name-1 must be a sequentially organized file.

3. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is specified,
implementor-name must be given in the RERUN clause.

4. More than one RERUN clause may be specified for a given file-name-2, subject to the following
restriction:

When multiple integer-1 RECORDS clauses are specified, no two of them may specify the same
file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be specified.

6. More than one SAME clause may be included in a program but file-name must not appear in more
than one SAME AREA clause.

7. The files referenced in the SAME AREA clause need not all have the same organization or access.

General Rules

1. The RERUN clause is treated as for documentation purposes only.

2. The SAME AREA clause is treated as for documentation purposes only.

DATA DIVISION IN THE RELATIVE I-O
MODULE

FILE SECTION
In a CIS COBOL program the file description entry (FD) represents the highest level or organization
in the File Section. The File Section header is followed by a file description entry consisting of a level
indicator (FD), a file-name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records, the value of implementor-
defined label items, and the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE
A record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-

Chapter 6. RELATIVE INPUT AND OUTPUT

90

name if required, followed by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries. The structure of a record description is
defined in CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a record description
are shown in the section called “THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON”
in Chapter 3.

THE FILE DESCRIPTION-COMPLETE ENTRY
SKELETON

Function

The file description furnishes information concerning the physical structure, identification, and record
names pertaining to a given file.

General Format

FD file-name [; BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS }]
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
[; LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }]
[; VALUE OF implementor-name-1 IS literal-1 [, implementor-name-2 IS literal-2]...] [; DATA
{ RECORD IS | RECORDS ARE } data-name-3 [, data-name-4]]

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and must precede the file-name.

2. The clauses which follow the name of the file are cases, and their order of appearance is immaterial.

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS }

General Rules

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data records with their
associated file.

General Format

DATA { RECORD IS | RECORDS ARE } data-name-1 [, data-name-2]

Chapter 6. RELATIVE INPUT AND OUTPUT

91

Syntax Rule

Data-name-1 and data-name-2 are the names of data records and should have 01 level-number record
descriptions, with the same names, associated with them.

General Rules

1. The presence of more than one data-name indicates that the file contains more than one type of
data record. These records may be of differing sizes, different formats, etc. The order in which they
are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no way altered by the
presence of more than one type of data record within the file.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }

Syntax Rule

This clause is required in every file description entry, when the ANSI switch is set.

General Rule

This clause is used for documentation purposes only.

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description entry, therefore this
clause is never required.

THE VALUE OF CLAUSE

Function

The VALUE of clause specialises the description of an item in the label records associated with a file.

General Format

VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...

Chapter 6. RELATIVE INPUT AND OUTPUT

92

Syntax Rules

1. Data-name-1, data-name-2, etc, should be qualified when necessary, but cannot be subscripted or
indexed, nor can they be items described with the USAGE IS INDEX clause

2. Data-name-1, data-name-2 etc, must be in the Working-Storage Section

General Rules

1. This clause is used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever a literal is specified.

PROCEDURE DIVISION IN THE RELATIVE I-O
MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the procession of files. The LOCK is for documentation purposes
only.

General Format

CLOSE file-name-1 [WITH LOCK] [, file-name-2 [WITH LOCK]]...

Syntax Rule

The files referenced in the CLOSE statement need not all have the same organization or access.

General Rules

1. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if a file is in the open mode when a STOP RUN statement is executed is to close
the file. The action taken for a file that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for the program is to close the file.

3. If a CLOSE statement has been executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an intervening OPEN statement for that
file is executed.

4. Following the successful execution of a CLOSE statement, the record area associated with file-
name is no longer available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

THE DELETE STATEMENT

Function

The DELETE statement logically removes a record from a mass storage file.

General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

Chapter 6. RELATIVE INPUT AND OUTPUT

93

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE statement which references a file
which is in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement which references a file
which is not in sequential access mode and for which an applicable USE procedure is not specified

General Rules

1. The associated file must be open in the I-O mode at the time of the execution of this statement.
(See THE OPEN STATEMENT later in this Chapter).

2. For files in the sequential access mode, the last input-output statement executed for file-name
prior to the execution of the DELETE statement must have been a successfully executed READ
statement. The Operating System logically removes from the file the record that was accessed by
that READ statement.

3. For a file in random or dynamic access mode, the Operating System logically removes from the file
that record identified by the contents of the RELATIVE KEY data item associated with file-name.
If the file does not contain the record specified by the key, an INVALID key condition exists. (See
the section called “The INVALID KEY Condition” in this Chapter).

4. After the successful execution of a DELETE statement, the identified record has been logically
removed from the file and can no longer be accessed.

5. The execution of a DELETE statement does not affect the contents of the record area associated
with file-name.

6. The current record pointer is not affected by the execution of a DELETE statement.

7. The execution of the DELETE statement causes the value of the specified FILE STATUS data
item, if any, associated with the file-name to be updated. See the section called “I-O Status” in
this chapter.

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs checking and/or writing of labels
and other input-output operations.

General Format

OPEN { INPUT file-name-1 [, file-name-2]... | OUTPUT file-name-3 [, file-
name-4]... | I-O file-name-5 [, file-name-6]... }...

Syntax Rule

The files referenced in the OPEN statement need not all have the same organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availability of the file and results
in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated record area available to the
program.

Chapter 6. RELATIVE INPUT AND OUTPUT

94

3. Prior to the successful execution of an OPEN statement for a given file, no statement can be
executed that references that file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution of any of the permissible
input-output statements. In Table 6-1, 'X' at an intersection indicates that the specified statement,
used in the access mode given for that row, may be used with the relative file organization and the
open mode given at the top of the column.

Table 6.1. Permissible Combinations of Statements and Open Modes for
Relative I/O

Open ModeFile Access
Mode

Statement

Input Output Input-Output

READ X X

WRITE X

REWRITE X

START X X

Sequential

DELETE X

READ X X

WRITE X X

REWRITE X

START

Random

DELETE X

READ X X

WRITE X X

REWRITE X

START X X

Dynamic

DELETE X

5. A file may be opened with the INPUT, OUTPUT, AND I-O phrases in the same program. Following
the initial execution of an OPEN statement for a file, each subsequent execution for that sane file
must be preceded by the execution of a CLOSE statement, for that file.

6. Execution of the OPEN statement does not obtain or release the first data record.

7. The file description entry for file-name-1, file-name-2, file-name-5 or file-name-6 must be
equivalent to that used when this file was created.

8. For files being opened with the INPUT or I-O phrase, the OPEN statement sets the current record
pointer to the first record currently existing within the file. If no records exist in the file, the current
record pointer is set such that the next executed Format 1 READ statement for the file will result
in an AT END condition. If the file does not exist, INPUT will cause an error status.

9. The I-O phrase permits the opening of a file for both input and output operations. If the file does
not exist, it will be created. In sequential access mode it will then be used for input; any attempt
to WRITE to it will cause an error.

10.Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is
created. At the time the associated file contains no data. If a file of the same number exists it will
be deleted. If write protected, an error status occurs.

THE READ STATEMENT

Chapter 6. RELATIVE INPUT AND OUTPUT

95

Function

For sequential access, the READ statement makes available the next logical record from a file. For
random access, the READ statement makes available a specified record from a disk file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical records of various sizes as
indicated by their record descriptions. The storage area associated with identifier and the record
area associated with file-name must not be the same storage area.

2. Format must be used (without the NEXT phrase) for all files in sequential access mode.

3. The NEXT phrase must be specified for files in dynamic access mode, when records are to be
retrieved sequentially.

4. Format 2 is used for files in random access mode or for files in dynamic access mode when records
are to be retrieved randomly.

5. The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE
procedure is specified for file-name.

General Rules

1. The associated files must be open in the INPUT or I-O mode at the time this statement is executed.
See THE OPEN STATEMENT in this Chapter.

2. The record to be made available by a Format 1 READ statement is determined as follows:

a. The record, pointed to by the current record pointer, is made available provided that the current
record pointer was positioned by the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the record is no longer accessible,
which may have been caused by the deletion of the record, the current record pointer is updated
to point to the next existing record in the file and that record is then made available.

b. If the current record pointer was positioned by the execution of a previous READ statement,
the current record pointer is updated to point to the next existing record in the file and then that
record is made available.

3. The execution of the READ statement causes the value of the FILE STATUS data item, if any,
associated with filename to be updated. (See the section called “I-O Status” in this Chapter).

4. Regardless of the method used to overlap access time with processing time, the concept of the
READ statement is unchanged in that a record is available to the object program prior to the
execution of any statement following the READ statement.

5. When the logical records of a file are described with more than one record description, these records
automatically share the same storage area; this is equivalent to an implicit redefinition of the area.
The contents of any data items which lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

Chapter 6. RELATIVE INPUT AND OUTPUT

96

6. If the I-O phrase is specified, the record being read is moved from the record area to the area
specified by identifier according to the rules specified for the MOVE statement without the
CORRESPONDING phrase. The implied MOVE does not occur if the execution of the READ
statement was unsuccessful. Any subscripting or indexing associated with identifier is evaluated
after the record has been read and immediately before it is moved to the data item.

7. When the INTO phrase is used, the record being read is available in both the input record area and
the data area associated with identifier.

8. If, at the time of execution of a Format 1 READ statement, the position of current record pointer
for that file is undefined, the execution of that READ statement is unsuccessful.

9. If, at the time of the execution of a Format 1 READ statement, no next logical record exists in
the file, the AT END condition occurs, and the execution of the READ statement is considered
unsuccessful. (See the section called “I-O Status” in this Chapter).

10.When the AT END condition is recognized the following actions are taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an AT
END condition. (See the section called “I-O Status” in this Chapter)

b. If the AT END phrase is specified in the statement causing the condition, control is transferred
to the AT END imperative-statement. Any USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be specified, either explicitly
or implicitly, for this file, and that procedure is executed. When the AT END condition occurs,
execution of the input-output statement which caused the condition is unsuccessful.

11.Following the unsuccessful execution of any READ statement, the contents of the associated record
area and the position of the current record pointer are undefined.

12.When the AT END condition has been recognised, a Format 1 READ statement for that file must
not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful OPEN statement for
that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

13.For a file for which dynamic access mode is specified, a Format 1 READ statement with the NEXT
phrase specified causes the next logical record to be retrieved from the file as described in general
rule 2.

14.If the RELATIVE KEY phrase is specified, the execution of a Format 1 READ statement updates
the contents of the RELATIVE KEY data item such that it contains the relative record number of
the record made available.

15.The execution of a Format 2 READ statement sets the current record pointer to, and makes
available, the record whose relative record number is contained in the data item named in the
RELATIVE KEY phrase for the file. If the file does not contain such a record, the INVALID KEY
condition exists and execution of the READ statement is unsuccessful. (See the section called “The
INVALID KEY Condition” in this Chapter).

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a disk file.

Chapter 6. RELATIVE INPUT AND OUTPUT

97

General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data Division.

3.

General Rules

1. The file associated with record-name must be open in the I-O mode at the time of execution of this
statement. (See THE OPEN STATEMENT in this Chapter)

2. For files in the sequential access mode, the last input-output statement executed for the associated
file prior to the execution of the REWRITE statement must have been a successfully executed
READ statement. The Operating System logically replaces the record that was accessed by the
READ statement.

3. The number of character positions in the record referenced by record-name must be equal to the
number of character positions in the record being replaced.

4. The logical record released by a successful execution of the REWRITE statement is no longer
available in the record area.

5. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of:

 MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM phrase. The
contents of the record area prior to the execution of the implicit MOVE statement have no effect
on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE statement.

7. The execution of the REWRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “I-O Status” in this Chapter).

8. For a file accessed in either random or dynamic access mode, the Operating System logically
replaces the record specified by the contents of the RELATIVE KEY data item associated with the
file. If the file does not contain the record specified by the key, the INVALID KEY condition exists.
(See the section called “The INVALID KEY Condition” in this Chapter). The updating operation
does not take place and the data in the record area is unaffected.

THE START STATEMENT

Function

The START statement provides a basis for logical positioning within a relative file, for subsequent
sequential retrieval of records.

General Format

START file-name [KEY IS EQUAL TO | IS = | IS GREATER THAN | IS > | IS NOT LESS THAN
| IS NOT < data-name

Chapter 6. RELATIVE INPUT AND OUTPUT

98

[;INVALID KEY imperative-statement]]

NOTE: The required relational characters '>', and '<' and '=' are not underlined to avoid confusion with
other symbols such as '#' (greater than or equal to).

Syntax Rules

1. File-name must be the name of a file with sequential or dynamic access.

2. Data-name may be qualified.

3. The INVALID KEY phrase must be specified if no applicable USE procedure is specified for file-
name.

4. Data-name, if specified, must be the data item specified in the RELATIVE KEY phrase of the
associated file control entry.

General Rules

1. File-name must be open in the INPUT or I-O mode at the time that the START statement is
executed. (See THE OPEN STATEMENT in this Chapter).

2. If the KEY phrase is not specified the relational operator 'IS EQUAL TO' is implied.

3. The type of comparison specified by the relational operator in the KEY phrase occurs between
a key associated with a record in the file referenced by file-name and a data item as specified in
general Rule 5.

a. The current record pointer is positioned to the first logical record currently existing in the file
whose key satisfies the comparison.

b. If the comparison is not sattified by any record in the file, an INVALID KEY condition exists,
the execution of the START statement is unsuccessful, and the position of the current record
pointer is undefined. (See the section called “The INVALID KEY Condition” in this Chapter).

4. The execution of the START statement causes the value of the FILE STATUS data item, if any,
associated with file-name to be updated. (See the section called “I-O Status” in this Chapter).

5. The comparison described in general rule 3 uses the data item referenced by the RELATIVE KEY
clause associated with file-name.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in addition to the
standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARD { EXCEPTION | ERROR } PROCEDURE ON { file-name-1 | INPUT
| OUTPUT | I-O }

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the declaratives
section and must be followed by a period followed by a space. The remainder of the section must
consist of zero, one or more procedural paragraphs that define the procedures to be used.

Chapter 6. RELATIVE INPUT AND OUTPUT

99

2. The USE statement itself is never executed; it merely defines the conditions calling for the execution
of the USE procedures.

General Rules

1. If the INVALID KEY or AT END phrases have not been specified in the input-output statement,
the designated procedures are executed by the input-output system after completing the standard
input-output error routine, or upon recognition of the INVALID KEY or AT END conditions.

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any nondeclarative procedures.
Conversely, in the nondeclarative portion there must be no reference to procedure-names in the
declarative portion, except that PERFORM statements may refer to a USE statement or to the
procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that would cause the
execution of a USE procedure that had previously been invoked and had not yet returned control
to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output or input-output file.

General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not reference the same storage area.

2. The record-name is the name of a logical record in the File Section of the Data Division.

3. The INVALID KEY phrase must be specified if an applicable USE procedure is not specified for
the associated file.

General Rules

1. The associated file must be open in the OUTPUT or I-O mode at the time of the execution of this
statement. (See THE OPEN STATEMENT Chapter).

2. The logical record released by the execution of the WRITE statement is no longer available in the
record area unless the execution of the WRITE statement is unsuccessful due to an INVALID KEY
condition.

3. The results of the execution of. the WRITE statement with the FROM phrase is equivalent to the
execution of

a. The statement:

 MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

Chapter 6. RELATIVE INPUT AND OUTPUT

100

The contents of the record area prior to the execution of the implicit MOVE statement have no
effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area referenced by
identifier is available, even though the information in the area referenced by record-name may
not be. (See general rule 2 above).

4. The current record pointer is unaffected by the execution of a WRITE statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “I-O Status” in this Chapter).

6. The maximum record size for a file ts established at the time the file is created and must not
subsequently be changed.

7. The number of character positions on a mass storage device required to store a logical record in a
file may or may not be equal to the number of character positions defined by the logical description
of that record in the program.

8. The execution of the WRITE statement releases a logical record to the operating system.

9. When a file is opened in the output mode, records may be placed into the file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause a record to be released to the
Operating System. The first record will have a relative record number of one and subsequent
records released will have relative record numbers of 2, 3, 4. If the RELATIVE KEY data item
has been specified in the file control entry for the associated file, the relative record number of
the record just released will be placed into the RELATIVE KEY data item by the Operating
System during execution of the WRITE statement.

b. If the access mode is random or dynamic, prior to the execution of the WRITE statement the
value of the RELATIVE KEY data item must be initialised in the program with the relative
record number of be associated with the record in the record area. That record is then released
to the Operating System by execution of the WRITE statement.

10.When a file is opened in the I-O mode and the access mode is random or dynamic, records are to
be inserted in the associated file. The value of the RELATIVE KEY data item must be initialised
by the program with the relative record number to be associated with the record in the record area.
Execution of a WRITE statement then causes the contents of the record area to be released to the
Operating System.

11.The INVALID KEY condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE KEY data item specifies a
record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined boundaries of the file.

12.When the INVALID KEY condition is recognised, the execution of the WRITE statement is
unsuccessful, the contents of the record area are unaffected, and the FILE STATUS data item,
if any, of the, associated file is set to a value indicating the cause of the condition. Execution
of the program proceeds according to the rules stated in the section called “The INVALID KEY
Condition” in this Chapter (see also the section called “I-O Status” in this Chapter).

101

Chapter 7. INDEXED INPUT AND
OUTPUT
INTRODUCTION TO THE INDEXED I-O
MODULE

The Indexed I-O module provides a capability to access records of a mass storage file in either a
random or sequential manner. Each record in an indexed file is uniquely identified by the value of
one key within that record.

LANGUAGE CONCEPTS

Organization

A file whose organization is indexed is a mass storage file in which data records may be accessed by
the value of a key. A record description includes a key data item, which is associated with an index.
The index provides a logical path to the data records according to the contents of a data item within
each record which is the record key.

The data item named in the RECORD KEY clause of the file control entry for a file is the record key
for that file. For purposes of inserting, updating and deleting records in a file, each record is identified
solely by the value of its record key. This value must, therefore, be unique and must not be changed
when updating the record. The key length must not exceed 32 bytes. See the CIS COBOL Operating
Guide for the maximum records in a file.

Access Modes

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the record key values.

In the random access mode, the sequence in which records are accessed is controlled by the
programmer. The desired record is accessed by placing the value of its record key in the record key
data item.

In the dynamic access mode, the programmer may change at will from sequential access to random
access using appropriate forms of input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this document to facilitate specification of
the next record to be accessed within a given file. The concept of the current record pointer has no
meaning for a file opened only in the output mode. The setting of the current record pointer is affected
only by the OPEN, START and READ statements.

I-O Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into the specified two-
character data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE
or START statement and before any applicable USE procedure is executed, to indicate to the COBOL
program the status or that input-output operation.

Status Key 1

Chapter 7. INDEXED INPUT AND OUTPUT

102

The leftmost character position of the FILE STATUS data item is known as status key 1 and is set to
indicate one of the following conditions upon completion of the input-output operation.

'0' - Successful Completion
'1' - At End
'2' - Invalid Key
'3' - Permanent Error
'9' - Operating System Error Message

The meaning of the above indications are as follows:

0 Successful Completion. The input-output statement was successfully executed.

1 At End. The Format 1 READ statement was unsuccessfully executed as a result of an attempt to
read a record when no next logical record exists in the file.

2 Invalid Key. The input-output statement was unsuccessfully executed as a result of one of the
following:
• Sequence Error
• Duplicate Key
• No Record Found
• Boundary Violation

3 Permanent Error. The input-output statement was unsuccessfully executed as the result of an input-
output error, such as data check, parity error or transmission error.

9 Operating System Error Message. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the Operating System Error Message. This value is used
only to indicate a condition not indicated by other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status key 2 and is used to
further describe the results of the input-output operation. This character will contain a value as follows:

If no further information is available concerning the input-output operation, then status key 2 contains
a value of '0'.

When status key 1 contains a value of '2' indicating an INVALID KEY condition, status key 2 contains
values to designate the cause of that condition as follows:

1 - Indicates a sequence error for a sequentially accessed indexed file. The ascending sequence
requirements of successive record key values have been violated (see The WRITE Statement
later in this Chapter), or the record key value has been changed by the COBOL program
between the successful execution of a READ statement and the execution of the next REWRITE
statement for that file.

2 - Indicates a duplicate key value. An attempt has been made to write a record that would create
a duplicate key in an indexed file.

3 - Indicates no record found. An attempt has been made to access a record, identified by a key,
and that record does not exist in the file,

4 - Indicates a boundary violation. An attempt has been made to write beyond the externally-
defined boundaries of a indexed file. This is normally treated as a fatal error by Operating
Systems.

When status key 1 contains a value of '9' the value of status key 2 is the operating system error message
number (for those operating systems which designate errors numerically). The CIS COBOL Operating
Guide specific to your operating system contains details of the status-key-2 representation.

Chapter 7. INDEXED INPUT AND OUTPUT

103

Note that it is not possible to extract this number directly.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and status key 2 are shown in the
following table. An 'X' at an intersection indicates a valid permissible combination.

Status Key 2Status Key 1

No Further
Information
(0)

Sequence
Error (1)

Duplicate
Key (2)

No Record
Found (3)

Boundary
Violation
(4)

Successful
Completion (0)

X X

At End (1) X

Invalid Key (2) X X X X

Permanent Error (3) X

Implementor
Defined (9)

Operating System Error Message Number

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START, READ, WRITE,
REWRITE or DELETE statement. For details of the causes of the condition see THE START
STATEMENT, THE READ STATEMENT, THE WRITE STATEMENT, and THE DELETE
STATEMENT later in this Chapter.

When the INVALID KEY condition is recognised, the Operating System takes these actions in the
following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an INVALID
KEY condition. (See the section called “I-O Status”).

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is
transferred to the INVALID KEY imperative statement. Any USE procedure specified for this file is
not executed. When the INVALID KEY condition occurs, execution of the input-output statement
which recognised the condition is unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a READ statement. For details of the
causes of the condition, see THE READ STATEMENT later in this Chapter.

ENVIRONMENT DIVISION IN THE INDEXED I-
O MODULE

INPUT-OUTPUT SECTION

The File Control Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other file-related
information. (See also appendix F in the CIS COBOL Operating Guide).

Chapter 7. INDEXED INPUT AND OUTPUT

104

General Format

FILE-CONTROL {file-control-entry}...

The File Control Entry

Function

The file control entry names a file and may specify other file-related information.

General Format

SELECT file-name
ASSIGN TO { external-file-name-literal | file-identifier } [, { external-file-name-literal | file-
identifier }]
; ORGANIZATION IS INDEXED
[; ACCESS MODE IS { SEQUENTIAL | RANDOM | DYNAMIC }]
; RECORD KEY IS data-name-1
[; FILE STATUS IS data-name-3]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

2. Each file described 1:1 the Data Division must be named once and only once as file-name in the
FILE-CONTROL paragraph. Each file specified in the file control entry must have a file description
entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is
implied.

4. Data-name-3 must be defined in the Data Division as a two-character data item of the category
alphanumeric and must not be defined in the File Section.

5. The data items referenced by data-name-1 must each be defined as a data item of the category
alphanumeric within a record description entry associated with that file-name.

General Rules

1. The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. See Appendix F in the CIS COBOL Operating Guide. The first assignment takes effect.
Subsequent assignments within any one ASSIGN clause are for documentation purposes only.

2.

3. When the access mode is sequential, records in the file are accessed in the sequence dictated by the
file organization. For indexed files this sequence is the order of ascending record key values.

4. When the FILE STATUS clause is specified, a value will be moved by the operating system into
the data item specified by data-name-3 after the execution of every statement that references that
file either explicitly or implicitly. This value indicates the status of execution of the statement. (See
the section called “I-O Status” in this Chapter).

5. If the access mode is random, the value of the record key data item indicates the record to be
accessed.

6. When the access mode is dynamic, records in the file may be accessed sequentially and/or
randomly. (See general rules 4 and 6).

7.

Chapter 7. INDEXED INPUT AND OUTPUT

105

8. The data description of data-name-1 as well as relative locations within a record must be the same
as that used when the file was created.

The I-O Control Paragraph

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be established and the memory
area which is to be shared by different files.

General Format

I-O-CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY { integer-1
RECORDS OF file-name-2 | integer-2 CLOCK-UNITS | condition-name }]...
[; SAME AREA FOR file-name-3 [, file-name-4]...]... .

Syntax Rules

1. The I-O-CONTROL paragraph is optional. The whole clause is for documentation purposes only
when present.

2. File-name-1 must be a sequentially organized file.

3. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is specified,
implementor-name must be given in the RERUN clause.

4. When multiple integer-1 RECORDS clauses are specified, no two of them may specify the same
file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be specified.

6. More than one SAME clause (SAME AREA) may be included in a program but a file-name must
not appear in more than one SAME AREA clause.

7. The files referenced in the SAME AREA clause need not all have the same organization or access.

General Rules

1. The RERUN clause is treated as for documentation purposes only.

2. The SAME AREA clause is treated as for documentation purposes only.

DATA DIVISION IN THE INDEXED I-O
MODULE

FILE SECTION
In a COBOL program the file description entry (FD) represents the highest level of organisation in
the File Section. The File Section header is followed by a file description entry consisting of a level
indicator (FD), a file-name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records, the value of implementor-
defined label items, and the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

Chapter 7. INDEXED INPUT AND OUTPUT

106

A record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-
name if required, followed by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries. The structure of a record description is
defined in CONCEPTS OF LEVELS in Chapter 2 while the elements allowed in a record description
are shown in the section called “THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON”
in Chapter 3.

THE FILE DESCRIPTION - COMPLETE ENTRY
SKELETON

Function

The file description furnishes information concerning the physical structure, identification, and record
names pertaining to a given file.

General Format

FD file-name [; BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS }]
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
[; LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }]
; VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]... [; DATA { RECORD IS |
RECORDS ARE } data-name-3 [, data-name-4]... .]

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and must precede the file-name.

2. The clauses which follow the name of the file are optional in many cases, and their order of
appearance is immaterial. All clauses are optional when the ANSI switch is unset.

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS }

General Rule

The clause is required for documentation purposes only.

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data records with their
associated file.

Chapter 7. INDEXED INPUT AND OUTPUT

107

General Format

DATA { RECORD IS | RECORDS ARE } data-name-1 [, data-name-2]

Syntax Rules

Data-name-1 and data-name-2 are the names of data records and must have 01 level-number record
descriptions, with the same names, associated with them.

General Rules

1. The presence of more than one data-name indicates that the file contains more than one type of
data record. These records may be of differing sizes, different formats, etc. The order in which they
are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no way altered by the
presence of more than one type of data record within the file.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }

General Rule

This clause is used for documentation purposes only.

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description entry, therefore this
clause is never required. The RECORD CONTAINS clause is specified for documentation purposes
only.

THE VALUE OF CLAUSE

Function

The VALUE OF clause specialises the description of an item in the label records associated with a file.

General Format

VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...

Chapter 7. INDEXED INPUT AND OUTPUT

108

General Rules

1. This clause is used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever a literal is specified.

PROCEDURE DIVISION IN THE INDEXED I-O
MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files. The LOCK phrase is for documentation
purposes only.

General Format

CLOSE file-name-1 [WITH LOCK] [, file-name-2 [WITH LOCK]]...

Syntax Rule

The files referenced in the CLOSE statement need not all have the same organization or access.

General Rules

1. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if a file is in the open mode when a STOP RUN statement is executed is to close
the file. The action taken for a file that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for that program is to close the file.

3. If a CLOSE statement has been executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an intervening OPEN statement for that
file is executed.

4. Following the successful execution of a CLOSE statement, the record area associated with file-
name is no longer available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

THE DELETE STATEMENT

Function

The DELETE statement logically removes a record from a file.

General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phase must not be specified for a DELETE statement which references a file
which is in sequential access mode.

Chapter 7. INDEXED INPUT AND OUTPUT

109

2. The INVALID KEY phrase must be specified for a DELETE statement which references a file
which is not in sequential access mode and for which an applicable USE procedure is not specified.

General Rules

1. The associated file must be open in I-O mode at the time of the execution of this statement. (See
THE OPEN STATEMENT later in this Chapter).

2. For files in the sequential access mode, the last input-output statement executed for file-name
prior to the execution of the DELETE statement must have been a successfully executed READ
statement. The record that was accessed by that READ statement is logically removed from the file.

3. For a file in random or dynamic access mode, the record identified by the contents of the record key
data item associated with file-name is logically removed from the file. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See the section called “The
INVALID KEY Condition” in this Chapter).

4. After the successful execution of a DELETE statement, the identified record has been logically
removed from the file and can no longer be accessed.

5. The execution of a DELETE statement does not affect the contents of the record area associated
with file-name.

6. The current record pointer is not affected by the execution of a DELETE statement.

7. The execution of the DELETE statement causes the value of the specified FILE STATUS data item,
if any, associated with file-name to be updated. (See the section called “I-O Status” in this Chapter).

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs checking and/or writing of labels
and other input-output operations.

General Format

OPEN { INPUT file-name-1 [, file-name-2]... | OUTPUT file-name-3 [, file-
name-4]... | I-O file-name-5 [, file-name-6]... }...

Syntax Rules

1. The files referenced in the OPEN statement need not all have the same organization or access.

General Rules

1. The successful execution of the OPEN statement determines the availability of the file and results
in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated record area available to the
program.

3. Prior to the successful execution of an OPEN statement for a given file, no statement can be
executed that references that file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution of any of the permissible
input-output statements. In Table 7-1, Permissible Statements, 'X' at an intersection indicates that

Chapter 7. INDEXED INPUT AND OUTPUT

110

the specified statement, used in the access mode given for that row, may be used with the indexed
file organisation and the open mode given at the top of the column.

Table 7.1. Permissible Combinations of Statements and Open Modes for
Indexed I/O

Open ModeFile Access
Mode

Statement

Input Output Input-Output

READ X X

WRITE X

REWRITE X

START X X

Sequential

DELETE X

READ X X

WRITE X X

REWRITE X

START

Random

DELETE X

READ X X

WRITE X X

REWRITE X

START X X

Dynamic

DELETE X

5. A file may be opened with the INPUT, OUTPUT and I-O phrases in the same program. Following
the initial execution of an OPEN statement for a file, each subsequent OPEN statement execution
for that same file must be preceded by the execution of a CLOSE statement for that file.

6. Execution of the OPEN statement does not obtain or release the first data record.

7. The assigned name in the select statement for a file is processed as follows:

a. When the INPUT phrase is specified , the execution of the OPEN statement causes the assigned
name to be checked in accordance with the operating system conventions for opening files for
input.

b. When the OUTPUT phrase is specified, the execution of the OPEN statement causes the assigned
name to be written in accordance with the opera ting system conventions for opening files for
output.

8. The file description entry for file-name-1 , file-name-2, file-name-5, or file-name-6 must be
equivalent to that used when this file was created.

9. For files being opened with the INPUT or I-O phrase, the OPEN statement sets the current record
pointer to the first record currently existing within the file. If no records exist in the file, the current
record pointer is set such that the next executed Format 1 READ statement for the file will result
in an AT END condition. If the file does not exist, INPUT will cause an error status.

10.The I-O phrase permits the opening of a file for both input and out put operations. If the file does
not exist, it will be created.

11.Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is
created. At that time the associated file contains no data records. If a file of the same name exists
it will be deleted. If write protected, an error status occurs.

Chapter 7. INDEXED INPUT AND OUTPUT

111

THE READ STATEMENT

Function

For sequential access, the READ statement makes available the next logical record from a file. For
random access, the READ statement makes available a specified record from a mass storage file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical records of various sizes as
indicated by their record descriptions. The storage area associated with identifier and the storage
area which is the record area associated with file-name must not be the same storage area.

2. Format 1 must be used (without the NEXT phrase) for all files in sequential access mode.

3. Format 2 is used for files in random access mode or for files in dynamic access mode when records
are to be retrieved randomly.

4. The NEXT phrase must be specified for files in dynamic access mode, when records are to be
retrieved sequentially.

5.

General Rules

1. The associated file must be open in the INPUT or I-O mode at the time this statement is executed.
(See THE OPEN STATEMENT in this Chapter).

2. The record to be made available by a Format 1 READ statement is determined as follows:

a. The record, pointed to by the current record pointer, is made available provided that the current
record pointer was positioned by the START or OPEN statement and the record is still accessible
through the path indicated by the current record pointer; if the record is no longer accessible,
which may have been caused by the deletion of the record, the current record pointer is updated
to point to the next existing record in key sequence and that record is then made available.

b. If the current record pointer was positioned by the execution of a previous READ statement, the
current record pointer is updated to point to the next existing record in the file in key sequence
and then that record is made available.

3. The execution of the READ statement causes the value of the FILE STATUS data item, if any,
associated with file-name to be updated. (See the section called “I-O Status” in this Chapter).

4. Regardless of the method used to overlap access time with processing time, the concept of the
READ statement is unchanged in that a record is available to the object program prior to the
execution of any statement following the READ statement.

5. When the logical records of a file are described with more than one record description, these records
automatically share the same storage area; this is equivalent to an implicit redefinition of the area.
The contents of any data items which lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

Chapter 7. INDEXED INPUT AND OUTPUT

112

6. If the INTO phrase is specified, the record being read is moved from the record area to the area
specified by identifier according to the rules specified for the MOVE statement. The implied MOVE
does not occur if the execution of the READ statement was unsuccessful. Any subscripting or
indexing associated with identifier is evaluated after the record has been read and immediately
before it is moved to the data item.

7. When the INTO phrase is used, the record being read is available in both the input record area and
the data area associated with identifier.

8. If, at the time of execution of a Format 1 READ statement, the position of current record pointer
for that file is undefined, the execution of that READ statement is unsuccessful.

9. If, at the time of the execution of a Format 1 READ statement, no next logical record exists in
the file, the AT END condition occurs, and the execution of the READ statement is considered
unsuccessful. (See the section called “I-O Status” in this Chapter). -

10.When the AT END condition is recognised the following actions are taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an AT
END condition. (See the section called “I-O Status” in this Chapter).

b. If the AT END phrase is specified in the statement causing the condition, control is transferred
to the AT END imperative statement. Any USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be specified, either explicitly
or implicitly, for this file, and that procedure is executed,

When the AT END condition occurs, execution of the input-output statement which caused the
condition is unsuccessful.

11.Following the unsuccessful execution of any READ statement, the contents of the associated record
area and the position of the current record pointer are undefined.

12.When the AT END condition has been recognised, a Format 1 READ statement for that file must
not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful OPEN statement for
that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

13.For a file which dynamic access mode is specified, a Format 1 READ statement with the NEXT
phrase specified causes the next logical record to be retrieved from that file as described in general
rule 2 above.

14.Execution of a Format 2 READ statement causes the value of the key that to be compared with
the value contained in the corresponding data item of the stored records in the file, until the first
record has an equal value is found. The current record pointer is positioned to this record which
is then made available. If no record can be so identified, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful. (See the section called “The INVALID KEY
Condition” in this Chapter).

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a mass storage file.

Chapter 7. INDEXED INPUT AND OUTPUT

113

General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data Division.

3. The INVALID KEY phrase must be specified in the REWRITE statement for files for which an
appropriate USE procedure is not specified.

General Rules

1. The file associated with record-name must be open in the I-O mode at the time of execution of this
statement. (See THE OPEN STATEMENT in this Chapter)

2. For files in the sequential access mode, the last input-output statement executed for the associated
file prior to the execution of the REWRITE statement must have been a successfully executed
READ statement. The Operating System logically replaces the record that was accessed by the
READ statement.

3. The number of character positions in the record referenced by record-name must be equal to the
number of character positions in the record being replaced.

4. The logical record released by a successful execution of the REWRITE statement is no longer
available in the record area.

5. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of:

 MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM phrase. The
contents of the record area prior to the execution of the implicit MOVE statement have no effect
on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE statement.

7. The execution of the REWRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “I-O Status”).

8. For a file in the sequential access mode, the record to be replaced is specified by the value contained
in the record key. When the REWRITE statement is executed the value contained in the record
key data item of the record to be replaced must be equal to the value of the record key of the last
record read from this file.

9. For a file in the random or dynamic access mode, the record to be replaced is specified by the
record key data item.

10.The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the record key data item of the record
to be replaced is not equal to the value of the record key of the last record read from this file or,

b. The value contained in the record key data item does not equal that of any record stored in the
file, or

Chapter 7. INDEXED INPUT AND OUTPUT

114

c. The updating operation does not take place and the data in the record area is unaffected. (See
the section called “The INVALID KEY Condition” in this Chapter).

THE START STATEMENT

Function

The START statement provides a basis for logical positioning within an indexed file, for subsequent
sequential retrieval of records.

General Format

START file-name [KEY IS EQUAL TO | IS = | IS GREATER THAN | IS > | IS NOT LESS THAN
| IS NOT < data-name
[;INVALID KEY imperative-statement]]

NOTE: The required relational characters '>', '<' and '=' are not underlined to avoid confusion with
other symbols such as '#' (greater than or equal to).

Syntax Rules

1. File-name must be the name of an indexed file.

2. File-name must be the name of a file with sequential or dynamic access.

3. The INVALID KEY phrase must be specified if no applicable USE procedure is specified for file-
name.

4. If file-name is the name of an indexed file, and if a KEY phrase is specified, data-name may
reference a data item specified as the record key associated with file-name, or it may reference any
data item of category alphanumeric subordinate to the data-name of a data item specified as the
record key associated with file-name whose leftmost character position corresponds to the leftmost
character position of that record key data item.

General Rules

1. File-name must be open in the INPUT or I-O mode at the time that the START statement is
executed, (See THE OPEN STATEMENT in this Chapter).

2. If the KEY phrase is not specified, 'IS EQUAL TO' is implied.

3. The type of comparison specified by the relational operator in the KEY phrase occurs between
a key associated with a record in the file referenced by file-name and a data item as specified
in general rule 5. If file-name references an indexed file and the operands are of unequal size,
comparison proceeds as though the longer one were truncated on the right such that its length is
equal to that of the shorter. All other nonnumeric comparison rules apply except that the presence
of the PROGRAM COLLATING SEQUENCE clause will have no effect on the comparison. (See
Comparison of Nonnumeric Operands).

a. The current record pointer is positioned to the first logical record currently existing in the file
whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the f11.e, an INVALID KEY condition exists,
the execution of the START statement is unsuccessful, and the position of the current record
pointer is undefined. (See the section called “The INVALID KEY Condition” in this Chapter)

4. The execution of the START statement causes the value of the FILE STATUS data item, if any,
associated with file-name to be updated. (See the section called “I-O Status”).

Chapter 7. INDEXED INPUT AND OUTPUT

115

5. If the KEY phrase is specified, the comparison described in general rule 3 uses the data item
referenced by data-name.

6. If the KEY phrase is not specified, the comparison described in general rule 3 uses ti1e data item
referenced in the RECORD KEY clause associated with file-name.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in addition to the
standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARD { EXCEPTION | ERROR } PROCEDURE ON { file-name-1 | INPUT
| OUTPUT | I-O }

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the declaratives
section and must be followed by a period followed by a space. The remainder of the section must
consist of zero, one or more procedural paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; i t merely defines the conditions calling for the
execution of the USE procedures.

General Rules

1. If the INVALID KEY phrase on the AT END phrase have not been specified in the input-output
statements the designated procedures are executed by the input-output system after completing the
standard input-output routine upon recognition of the INVALID KEY or AT END condition.

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any nondeclarative procedures.
Conversely, in the nondeclarative portion there must be no reference to procedure-names that
appear in the declarative portion, except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that would cause the
execution of a USE procedure that had previously been invoked and had not yet returned control
to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output or input-output file.

General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not reference the same storage area.

Chapter 7. INDEXED INPUT AND OUTPUT

116

2. The record-name is the name of a logical record in the File Section of the Data Division.

3. The INVALID KEY phrase must be specified if an applicable USE procedure is not specified for
the associated file.

General Rules

1. The associated file must be open in the OUTPUT or I-O mode at the time of the execution of this
statement. (See THE OPEN STATEMENT in this Chapter).

2. The logical record released by the execution of the WRITE statement is no longer available in the
record area unless the execution of the WRITE statement is unsuccessful due to an INVALID KEY
condition.

3. The results of the execution of the WRITE statement with the FROM phrase is equivalent tn the
execution of:

a. The statement:

 MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE statement have no
effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area referenced by
identifier is available, even though the information in the area referenced by record-name may
not be. (See general rule 2 above).

4. The current record pointer is unaffected by the execution of a WRITE statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “I-O Status” in this Chapter).

6. The maximum record size for a file is established at the time the file is created and must not
subsequently be changed.

7. The number of character positions on a mass storage device required to store a logical record in a
file may or may not be equal to the number of character positions defined by the logical description
of that record in the program.

8. The execution of the WRITE statement releases a logical record to the operating system.

9. Execution of the WRITE statement causes the contents of the record area to be released. The
Operating System utilizes the content of the record key in such a way that subsequent access of the
record may be made based upon the specified record key.

10.The value of the record key must be unique within the records in the file.

11.The data item specified as the record key must be set by the program to the desired value prior to
the execution of the WRITE statement.

12.If sequential access mode is specified for the file, records must be released to the Operating System
is ascending order of record key values.

13.If random or dynamic access mode is specified, records may be released to the Operating System
in any program-specified order.

Chapter 7. INDEXED INPUT AND OUTPUT

117

14.The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in the output mode, and the value of
the record key is not greater than the value of the record key of the previous record, or

b. When the file is opened in the output or I-O mode, and the value of the record key is equal to
the value of a record key of a record already existing in the file, or

c. When an attempt is made to write beyond the externally defined boundaries of the file.

15.When the INVALID KEY condition is recognised the execution of the WRITE statement is
unsuccessful, the contents of the record area are unaffected and the FILE STATUS data item, if
any, associated with file-name of the associated file is set to a value indicating the cause of the
condition. Execution of the program proceeds according to the rules stated under the section called
“The INVALID KEY Condition” (See also the section called “I-O Status” in this Chapter).

118

119

Chapter 8. SEGMENTATION
INTRODUCTION TO THE SEGMENTATION
MODULE

The Segmentation module provides a capability to specify object program overlay requirements.

Segmentation provides a facility for specifying permanent and independent segments. All sections
with the same segment-number must be contiguous in the source program. All segments specified as
permanent segments must be continuous in the source program.

GENERAL DESCRIPTION OF
SEGMENTATION

COBOL segmentation is a facility that provides a means by which the user may communicate with
the compiler to specify object program overlay requirements.

COBOL segmentation deals only with segmentation of procedures. As such, only the Procedure
Division is considered in determining segmentation requirements for an object program.

ORGANIZATION

Program Segments

Although it is not mandatory, the Procedure Division for a source program is usually written as a
consecutive group of sections, each of which is composed of a series of closely related operations that
are designed to collectively perform a particular function. However, when segmentation is used, the
entire Procedure Division must be in sections. In addition, each section must be classified as belonging
either to the fixed portion or to one of the independent segments of the object program.

Fixed Portion

The fixed portion is defined as that part of the object program which is logically treated as if it were
always in memory. This portion of the program is composed of fixed permanent segments.

A fixed permanent segment is a segment in the fixed portion which cannot be overlaid by any other
part of the program.

Independent Segments

An independent segment is defined as part of the object program which can overlay, and can be
overlaid by another independent segment. An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to that segment for the first time during the
execution of a program. On subsequent transfers of control to the segment, an independent segment
is also in its initial state when:

1. Control is transferred to that segment as a result of the implicit transfer of control between
consecutive statements from a segment with a different segment-number.

2. Control is transferred explicitly to that segment from a segment with a different segment-number
(with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment is in its last-used state when:

Chapter 8. SEGMENTATION

120

1. Control is transferred implicitly to that segment from a segment with a different segment-number
(except as noted in paragraph 1),

2. Control is transferred explicitly to that segment as the result of the execution of an EXIT
PROGRAM statement.

SEGMENTATION CLASSIFICATION
Sections which are to be segmented are classified, using a system of segment-numbers and the
following criteria:

1. Logic Requirements - Sections which must be available for reference at all times, or which
are referred to very frequently, are normally classified as belonging to one of the permanent
segments; sections which are used less frequently are normally classified as belonging to one of
the independent segments, depending on logic requirements.

2. Frequency of Use - Generally, the more frequently a section is referred to, the lower its segment-
number, the less frequently it is referred to, the higher its segment-number,

3. Relationship to Other Sections - Sections which frequently communicate with one another should
be given the same segment-numbers

SEGMENTATION CONTROL
The logical sequence of the program is the same as the physical sequence except for specific transfers
of control. Control may be transferred within a source program to any paragraph in a section; that is,
it is not mandatory to transfer control to the beginning of a section.

STRUCTURE OF PROGRAM SEGMENTS

SEGMENT-NUMBERS
Section classification is accomplished by means of a system of segment-numbers. The segment-
number is included in the section header.

GENERAL FORMAT
section-name SECTION [segment-number]

SYNTAX RULES
1. The segment-number must be an integer ranging in value from 0 through 99.

2. If the segment-number is omitted from the section header, the segment-number is assumed to be 0.

3. Sections in the declaratives must contain segment-numbers less than 50.

GENERAL RULES
1. All sections which have the same segment-number constitute a program segment. All sections

which have the same segment-number must be together in the source program.

2. Segments with segment-number 0 through 49 belong to the fixed portion of the object program.
All sections with segment-number 0 through 49 must be together in the source program.

3. Segments with segment-number 50 through 99 are independent segments.

Chapter 8. SEGMENTATION

121

RESTRICTIONS ON PROGRAM FLOW
When segmentation is used, the following restrictions are placed on the ALTER and PERFORM
statement.

THE ALTER STATEMENT
A GO TO statement in a section whose segment-number is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different segment-number.

THE PERFORM STATEMENT
A PERFORM statement that appears in a section that is not in an independent segment can have within
its range, in addition to any declarative sections whose execution is caused within that range, only
one of the following:

• Sections and/or paragraphs wholly contained in one or more non-independent segments.

• Sections and/or paragraph wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within its range, in addition
to any declarative sections whose execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent segment as that PERFORM
statement.

EXTRA INTERMEDIATE CODE FILES
When segmentation is used, extra intermediate code files are generated by the compiler as follows:

filename.Inn - Intermediate code files one for each independent segment

filename.ISR - Inter-Segment Reference table one per segmented program

filename.Dnn - Dictionary files one for each independent segment except the last

where:

filename is the name without the extension of the principal intermediate code file

nn is a segment number that identifies the particular segment

Note

The filename.Dnn files are written and used solely by the compiler, and need not be retained
after compilation. The filename.Inn files and the filename.ISR file must be retained as part
of the object program and must also be copied when the program is copied.

122

123

Chapter 9. LIBRARY
INTRODUCTION TO THE LIBRARY MODULE

The Library module provides a capability for specifying text that is to be copied from a source user-
library file. This is usually created using any suitable source text editor.

CIS COBOL libraries consist of disk files that contain source to be made available to the compiler.
The effect of the interpretation of the COPY statement is to insert text into the source program, where
it will be treated by the compiler as part of the source program.

THE COPY STATEMENT

FUNCTION
The COPY statement incorporates text into a CIS COBOL source program.

GENERAL FORMAT
COPY text-name | external-file-name-literal .

SYNTAX RULES
1. Text-name defines a unique external file name which conforms to the rules for COBOL user-

defined words. In a text-name lower case is translated into upper case. External-file-name-literal is
an alphanumeric literal enclosed in quotes that conforms to the operating system rules for filenames.

2. The COPY statement must be preceded by a space and terminated by the separator period.

3. A COPY statement may occur in the source program anywhere a character-string or a separator
may occur except that a COPY statement must not occur within a COPY statement.

GENERAL RULES
1. The compilation of a source program containing COPY statement is logically equivalent to

processing all COPY statements prior to the processing of the resulting source program.

2. The effect of processing a COPY statement is that the library text associated with text-name is
copied into the source program, logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character period, inclusive.

3. The library text is copied unchanged.

4. If the unit identifier is not explicitly specified, default is to the drive from which the compiler is
loaded.

5. The text produced as a result of the complete processing of a COPY statement must not contain
a COPY statement.

124

125

Chapter 10. DEBUG AND
INTERACTIVE DEBUGGING
INTRODUCTION

Standard ANSI COBOL debugging provides a means by which the user can describe the conditions
under which procedures are to be monitored during the execution of the object program.

The CIS COBOL Run-Time Debug Package is an extension to ANSI COBOL that provides break-
point facilities in the user's program. Programs may be run from the start until a specified break-point is
reached, when control is passed back to the user. At this point, data areas may be inspected or changed.

CIS COBOL RUN-TIME DEBUG EXTENSION
The Run-Time debug is entered as an option by the user and the user program is then tested line by line,
paragraph by paragraph and so on as required. The commands to the package can reference procedure
statements and data areas by means of a 4-digit hexadecimal code output by the compiler against each
line of the compilation listing. Powerful macros of commands can be used to give very sophisticated
debugging facilities. The precise details for using the package vary according to the host operating
system, and are therefore contained in the CIS COBOL Operating Guide for your Operating System.

STANDARD ANSI COBOL DEBUG
The decisions of what to monitor and what information to display are explicitly in the domain of the
user. The COBOL Debug facility simply provides a convenient access to pertinent information.

The features of the language that support the COBOL Debug module are:

• A compile time switch -- WITH DEBUGGING MODE.

• An object time switch.

• A USE FOR DEBUGGING statement.

• A special register -- DEBUG-ITEM.

• Debugging lines.

The reserved word DEBUG-ITEM is the name for a special register generated automatically by the
compiler that supports the debugging facility. Only one DEBUG-ITEM is allocated per program. The
names of the subordinate data items in DEBUG-ITEM are also reserved words.

COMPILE TIME SWITCH
The DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER paragraph in the
Environment Division. It serves as a compile-time switch over debugging statements written in the
program.

When DEBUGGING MODE is not specified in a program, all the debugging lines are compiled as if
they were comment lines and their syntax is not checked.

COBOL DEBUG OBJECT TIME SWITCH
An object time switch dynamically activates the debugging code inserted by the compiler. This switch
cannot be addressed in the program; it is controlled outside the COBOL environment. If the switch

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

126

is 'on', the effects of any USE FOR DEBUGGING statements written in the source program are
permitted. If the switch is 'off', all the effects described in the USE FOR DEBUGGING Statement, are
inhibited. Recompilation of the source program is not required to provide or take away this facility.

The object time switch has no effect on the execution of the object program if the WITH DEBUGGING
MODE clause was not specified in the source program at compile time. The switch is described in
the CIS COBOL Operating Guide.

ENVIRONMENT DIVISION IN COBOL DEBUG

The WITH DEBUGGING MODE Clause

Function

The WITH DEBUGGING MODE clause indicates that all debugging sections and all debugging lines
are to be compiled. If this clause is not specified, all debugging lines and sections are compiled as if
they were comment lines.

General Format

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] .

General Rules

1. If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER paragraph of
the Configuration Section, of a program, all USE FOR DEBUGGING statements and all debugging
lines are compiled.

2. If the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph of the Configuration Section of a program, any USE FOR DEBUGGING statements and
all associated debugging sections, and any debugging lines are compiled as if they were comment
lines.

PROCEDURE DIVISION IN COBOL DEBUG

The USE FOR DEBUGGING Statement

Function

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the
associated debugging section.

General Format

section-name SECTION [segment number] . USE FOR DEBUGGING ON { procedure-name-1 | ALL
PROCEDURES } [, { procedure-name-2 | ALL PROCEDURES }...]

Syntax Rules

1. Debugging section(s), if specified, must appear together immediately after the DECLARATIVES
header.

2. Except in the USE FOR DEBUGGING statement itself, there must be no reference to any non-
declarative procedure within the debugging section.

3. Statements appearing outside of the set of debugging sections must not reference procedure-names
defined within the set of debugging sections.

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

127

4. Except for the USE FOR DEBUGGING statement itself, statements appearing within a given
debugging section may reference procedure-names defined within a different USE procedure only
with a PERFORM statement.

5. Procedure-names defined within debugging sections must not appear within USE FOR
DEBUGGING statements.

6. Any given procedure-name may appear in only one USE FOR DEBUGGING statement and may
appear only once in that statement.

7. The ALL PROCEDURES phrase can appear only once in a program.

8. When the ALL PROCEDURES phrase is specified, procedure-name-1, procedure-name-2, ... must
not be specified in any USE FOR DEBUGGING statement.

9. References to the special register DEBUG-ITEM are restricted to references from within a
debugging section.

General Rules

1. In the following general rules all references to procedure-name-1, apply equally to procedure-
name-2.

2. Automatic execution of a debugging section is not caused by a statement appearing in a debugging
section.

3. When procedure-name-1 is specified in a USE FOR DEBUGGING statement that debugging
section is executed:
a. Immediately before each execution of the named procedure;
b. Immediately after the execution of an ALTER statement which references procedure-name-1.

4. The ALL PROCEDURES phrase causes the effects described in general rule 3 to occur for every
procedure-name in the program, except those appearing within a debugging section.

5. The associated debugging section is not executed.for a specific operand more than once as a result
of the execution of a single statement, regardless of the number of times that operand is explicitly
specified. In the case of a PERFORM statement which caused iterative execution of a referenced
procedure, the associated debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an imperative verb identifies a
separate statement for the purpose of debugging.

6. A reference to procedure-name-1 as a qualifier does not constitute reference to that item for the
debugging described in the general rules above.

7. Associated with each execution of a debugging section is the special register DEBUG-ITEM,
which provides information about the conditions that caused the execution of a debugging section.
DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
 02 DEBUG-LINE PICTURE IS X(6).
 02 FILLER PICTURE IS X VALUE SPACE.
 02 DEBUG-NAME PICTURE IS X(30).
 02 FILLER PICTURE IS X(19) VALUE SPACE.
 02 DEBUG-CONTENTS PICTURE IS X(n).

8. Prior to each execution of a debugging section, the contents of the data item referenced by DEBUG-
ITEM are space-filled. The contents of data items subordinate to DEBUG-ITEM are then updated,
according to the following general rules, immediately before control is passed to that debugging
section. The contents of any data item not specified in the following general rules remains spaces.

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

128

Updating is accomplished in accordance with the rules for the MOVE statement, the sole exception
being the move to DEBUG-CONTENTS when the move is treated exactly as if it was an
alphanumeric to alphanumeric elementary move with no conversion of data from one form of
internal representation to another.

9. The contents of DEBUG-LINE is the relevant COBOL source line number. This provides the means
of identifying a particular source statement.

10.DEBUG-NAME contains the first 30 characters of the name that caused the debugging section to
be executed.

Subscripts/indices, if any, are not entered into DEBUG-NAME.

11.DEBUG-CONTENTS is a data item that is large enough to contain the data required by the
following general rules.

12.f the first execution of the first nondeclarative procedure in the program causes the debugging
section to be executed, the following conditions exist:
a. DEBUG-LINE identifies the first statement of that procedure.
b. DEBUG-NAME contains the name of that procedure.
c. DEBUG-CONTENTS contains 'START PROGRAM'.

13.If a reference to procedure-name-1 in an ALTER statement causes the debugging section to be
executed, the following conditions exist:
a. DEBUG-LINE identifies the ALTER statement that references procedure-name-1.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains the applicable procedure-name associated with the TO phrase

of the ALTER statement.

14.If the transfer of control associated with the execution of a GO TO statement causes the debugging
section to be executed, the following conditions exist:
a. DEBUG-LINE identifies the GO TO statement whose execution transfers control to procedure-

name-1.
b. DEBUG-NAME contains procedure-name-1.

15.If the transfer to control from the control mechanism associated with a PERFORM statement causes
the debugging section associated with procedure-name-1 to be executed, the following conditions
exist:
a. DEBUG-LINE identifies the PERFORM statement that references procedure-name-1.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains 'PERFORM LOOP'.

16.If procedure-name-1 is a USE procedure that is to be executed, the following conditions exist:
a. DEBUG-LINE identifies the statement that causes execution of the USE procedure.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains 'USE PROCEDURE'.

17.If an implicit transfer of control from the previous sequential paragraph to procedure-name-1 causes
the debugging section to be executed, the following conditions exist:
a. DEBUG-LINE identifies the previous statement.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains 'FALL THROUGH'.

DEBUGGING LINES

A debugging line is any line with a 'D' in the indicator area of the line. Any debugging line that consists
solely of spaces from margin A to margin R is considered the same as a blank line.

The contents of a debugging line must be such that a syntactically correct program is formed with or
without the debugging lines being considered as comment lines.

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

129

A debugging line will be considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that
each continuation line must contain a 'D' in the indicator area, and character-strings may not be broken
across two lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph.

130

131

Chapter 11. INTERPROGRAM
COMMUNICATION
INTRODUCTION TO THE INTER-PROGRAM
COMMUNICATION MODULE

The Inter-Program Communication module provides a facility by which a program can communicate
with one or more programs. This provides a programmer with a modular programming capability. Each
module when CALLed is loaded dynamically by the Run Time System. Communication is provided
by:

• The ability to transfer control from one program to another within a run unit

• The ability for both programs to have access to the same data items.

DATA DIVISION IN THE INTER-PROGRAM
COMMUNICATION MODULE
LINKAGE SECTION

The Linkage Section in a program is meaningful if and only if the object program is to function under
the control of a CALL statement, and the CALL statement in the calling program contains a USING
phrase.

The Linkage Section is used for describing data that is available through the calling program but is
to be referred to in both the calling and the called program. No space is allocated in the program
for data items referenced by data-names in the Linkage Section of that program. Procedure Division
references to these data items are resolved at object time by equating the reference in the called program
to the location used in the calling program. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program always refer to separate indices.

Data items defined in the Linkage Section of the called program may be referenced within the
Procedure Division of the called program only if they are specified as operands of the USING phrase
of the Procedure Division header or are subordinate to such operands, and the object program is under
the control of a CALL statement that specifies a USING phrase.

The structure of the Linkage Section is the same as that previously described for the Working-Storage
Section, beginning with a section header, followed by data description entries for noncontiguous data
items and/or record description entries.

Each Linkage Section record-name and noncontiguous item name must be unique within the called
program since it cannot be qualified, Data items defined in the Linkage Section of the called program
must not be associated with data items defined in the Report Section of the calling program.

Of those items defined in the Linkage Section only data-name-1, data-name-2, ... in the USING phrase
of the Procedure Division header, data items subordinate to these data-names, and condition-names
and/or index-names associated with such data-names and/or subordinate data items, may be referenced
in the Procedure Division.

Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to one another need not be grouped
into records and are classified and defined as noncontiguous elementary items. Each of these data
items is defined in a separate data description entry which begins with the special level-number 77.

Chapter 11. INTERPROGRAM COMMUNICATION

132

The following data clauses are required in each data description entry:

• Level-number 77

• Data-name

• The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the description of the item
if necessary.

PROCEDURE DIVISION IN THE INTER-
PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER
The Procedure Division is identified by and must begin with the following header:

 PROCEDURE DIVISION [USING data-name-1 [, data-name-2] ...]

The USING phrase is present if and only if the object program is to function under the control of a
CALL statement, and the CALL statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header must be defined as a
data item in the Linkage Section of the program in which this header occurs, and it must have a 01
or 77 level-number.

Within a called program, Linkage Section data items are processed according to their data descriptions
given in the called program.

When the USING phrase is present, the object program operates as if data-name-1 of the Procedure
Division header in the called program and data-name-1 in the USING phrase of the CALL statement
in the calling program refer to a single set of data that is equally available to both the called and calling
programs. Their descriptions must define an equal number of character positions; however they need
not be the same name. In like manner, there is an equivalent relationship between data-name-2, ...,
in the USING phrase of the called program and data-name-2, ..., in the USING phrase of the CALL
statement in the calling program. A data-name must not appear more than once in the USING phrase
in the Procedure Division header of the called program; however, a given data-name may appear more
than once in the same USING phrase of a CALL statement.

THE CALL STATEMENT

Function

The CALL statement causes control to be transferred from one object program to another, within the
run unit.

General Format

Format 1

CALL { identifier-1 | literal-1 } [USING data-name-1 [, data-name-2]...] [ON OVERFLOW
imperative-statement]

Format 2

Chapter 11. INTERPROGRAM COMMUNICATION

133

CALL { literal-2 | identifier-2 } [USING data-name-3 [, data-name-4]...]

Syntax Rules

1. Literal-1 must be a nonnumeric literal.

2. Identifier-1 must be defined as an alphanumeric data item usage display.

3. The USING phrase is included in the CALL statement only if there is a USING phrase in the
Procedure Division header of the called program and the number of operands in each USING phrase
must be identical.

4. Each of the operands in the USING phrase must have been defined as a data item in the File Section,
Working-Storage Section, or Linkage Section, and must have a level-number of 01 or 77.

5. Literal-2 must be a nonnumeric literal.

6. Identifier-2 must must be defined as an alphanumeric data item with a numeric value, e.g. CALL "3"
or CALL D-NAM where D-NAM is defined as class alphanumeric, and usage display, containing
a numeric value.

General Rules

1. The program whose name is specified by the value of literal-1 or identifier-1 is a called intermediate
code module, literal-2 is a called run time subroutine; the program in which the CALL statement
appears is the calling program.

2. The execution of a CALL statement causes control to pass to the called program.

3. In format 1, a called intermediate code module is loaded from disk the first time it is called within
a run-unit and the first time it is called after a CANCEL to the called program.

On all other entries into the called program, the state of the program remains unchanged from its
state when last executed. This includes all data fields, the status and positioning of all files, and
all alterable switch settings.

4. In format 2, a called run time subroutine is always in the state in which it last exited.

5. If during the execution of a CALL statement, it is determined that the available portion of run-
time memory is incapable of accommodating the program specified in the CALL statement, the
next sequential instruction is executed. If ON OVERFLOW has been specified, the associated
imperative statement is executed before the next instruction is executed.

6. Called programs may contain CALL statements. However, a called program must not contain a call
statement that directly or indirectly calls the calling program.

7. The data-names, specified by the USING phrase of the CALL statement, indicate those data items
available to a calling program that may be referred to in the called program. The order of appearance
of the data-names in the USING phrase of the CALL statement and the USING phrase in the
Procedure Division header is critical. Corresponding data-names refer to a single set of data which
is available to the called and calling program. The correspondence is positional, not by name. In the
case of index-names, no such correspondence is established. Index-names in the called and calling
program always refer to separate indices.

8. The CALL statement may appear anywhere within a segmented program. Therefore, when a CALL
statement appears in a section with a segment-number greater than or equal to 50, that segment is
in its last used state when the EXIT PROGRAM statement returns control to the calling program.

THE CANCEL STATEMENT

Chapter 11. INTERPROGRAM COMMUNICATION

134

Function

The CANCEL statement releases the memory areas occupied by the referred to program.

General Format

CANCEL { identifier-1 | literal-1 } [{ identifier-2 | literal-2 }]...

Syntax Rules

1. Literal-1, literal-2, ... , must each be a nonnumeric literal.

2. Identifier-1, identifier-2, must each be defined as an alphanumeric data item such that its value can
be a program name.

General Rules

1. After the execution of a CANCEL statement, the program referred to ceases to have any logical
relationship to the run unit in which the CANCEL statement appears. A subsequently executed
CALL statement naming the same program will result in that program being initiated in its initial
state. The memory areas associated with the named programs are released so as to be made available
for disposition by the operating system.

2. A program named in the CANCEL statement must not refer to any program that has been called
and has not yet executed an EXIT PROGRAM statement.

3. A logical relationship to a cancelled subprogram is established only by execution of a subsequent
call statement.

4. A called program is cancelled either by being referred to as the operand of a CANCEL statement
or by the termination of the run unit of which the program is a member.

5. No action is taken when a CANCEL statement is executed naming a program that has not been
called in this run unit or has been called and is at present cancelled. Control passes to the next
statement.

THE EXIT PROGRAM STATEMENT

Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM

Syntax Rules

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the paragraph.

General Rule

An execution of an EXIT PROGRAM statement in a called program causes control to be passed to
the calling program. Execution of an EXIT PROGRAM statement in a program which is not called
behaves as if the statement were an EXIT statement. (See THE EXIT STATEMENT in Chapter 3) .

135

Chapter 12. PROGRAMMING
TECHNIQUES, USEFUL HINTS AND
PROGRAM SIZING

PROGRAMMING TECHNIQUES
Although COBOL is written in an essentially free form, the user will nevertheless obtain many
advantages from a few self-imposed disciplines. It is suggested that these should include the following:

1. Use of the first 256 bytes of working-storage for variables which are frequently referenced will
produce more compact and efficient code.

2. Use subscripts as sparingly as possible because each subscript has a storage requirement
approximately equal to the size of a normal instruction.

3. For ACCEPT and DISPLAY the compiler generates one instruction per elementary item of the data-
name being displayed/accepted. Therefore redefine a group of fields as a single field for DISPLAY
whenever possible and avoid unnecessary numbers of small fields in ACCEPT.

4. Use FILLER instead of a data-name for any elementary field not referenced explicitly because the
word FILLER is compacted to one character in the Data Dictionary.

5. Keep the number of digits in numeric fields as small as possible.

6. Whenever possible move a group instead of several elementary moves.

7. CIS COBOL provides for values greater than decimal 99 to be stored in a nonnumeric field of one
character, e.g, PIC X "7F"

This is an extension to the ANSI COBOL standard X3.23 (1974). (See under Nonnumeric Literals
in Chapter 2).

Note, however, that the rules for moving such a field comply with the ANSI standard in that the
contents will be truncated if over decimal 99.

If your operating system returns an error number greater than 99 in the error Status Key 2 byte
(see I-O Status in chapters 5, 6 and 7) careful redefinition of data-items is required if you wish to
display this status with its correct decimal value. See the appendix that describes disk files in your
operating system specific CIS COBOL Operating Guide for a sample program.

USEFUL HINTS
When writing interactive programs the following facilities of CIS COBOL should be remembered:

1. By use of the CURSOR IS facility and the ACCEPT statement it is easy to program conditionally
depending on the cursor position after a menu type of prompt. The operator need then only move
the cursor to the option required to reply to the prompt, or just press RETURN in the default case.

2. By use of the ACCEPT FROM CONSOLE facility it is easy to pass parameters to your program
via the Run command line. See THE ACCEPT STATEMENT in Chapter 3.

3. Remember always to end your CIS COBOL program with a period. Invalid intermediate code can
result if this final period is missing.

Chapter 12. PROGRAMMING TECHNIQUES,
USEFUL HINTS AND PROGRAM SIZING

136

4. Note that the data part of an indexed sequential file may be accessed relatively. However, the first
record (relatively) is inaccessible. since relative file access begins at record number 1, as specified
in the ANSI COBOL standard X3.23(1974).

5. Never define a Linkage Section in the main program, only in sub-programs. The CIS COBOL
Compiler will not treat such a Linkage Section as an error but it can result in memory content
corruption at run time.

6. Be careful to specify literal filenames in Select statements in quotation marks ("...."). This is the
only indication to the compiler that a literal filename is desired.

(Filename identifiers are not declared in the Working Storage Section or elsewhere explicitly). The
omission of quotation marks where required will result in an undefined file being accessed at run
time.

Table 12.1. Data Dictionary Entry Sizing

User-defined name Number of Bytes1

File-name
Record-name
Key-name
Status-name
Paragraph-name
Alphanumeric < 32 characters
Alphanumeric ≥ 32 characters
Numeric integer
Numeric non integer
Numeric edited

18 + n
8 + n
8 + n
8 + n
6 + n
8 + n2

7 + n2

8 + n2

7 + n2

8 + n2

7 + n + x

1. n = number of characters in user-defined name.

For a FILLER, n = 1.

x number of characters in PICture, after coalescing repetitions.

e.g. 9 9 9 9 . 9 = 3 bytes
 9 (4) . 9 = 3 bytes
 Z (2) 9 (4) . 9 (3)= 4 bytes

2. Subtract 1 byte if item is in the first 256 bytes of Working-Storage.

Add 4 bytes if item has an OCCURS clause associated with it.

Add 2 bytes if item is subordinate to an item described with OCCURS.

137

Appendix A. RESERVED WORD LIST
This appendix contains a full list of COBOL and CIS COBOL reserved words. A shaded reserved
word is a CIS COBOL extension to ANSI COBOL.

The / symbol denotes that the text up to that point is a reserved word, as is the whole word.

e.g., In INDEX/ED, INDEX and INDEXED are reserved words IN SPACE/S, SPACE and SPACES
are reserved words.

ACCEPT DYNAMIC NEGATIVE SORT
ACCESS ELSE NEXT SORT-MERGE
ADD END NOT SOURCE-COMPUTER
ADVANCING ENTER NUMERIC SPACE/S
AFTER ENVIRONMENT OBJECT-COMPUTER SPECIAL-NAMES
ALL EQUAL OCCURS STANDARD
ALPHABETIC ERROR OF STANDARD-1
ALTER EVERY OFF START
AND EXCEPTION OMITTED STATUS
ARE EXCESS-3 ON STOP
AREA EXCLUSIVE OPEN SUBTRACT
ASCENDING EXIT OR SWITCH
ASSIGN EXTEND ORGANIZATION SYNC/HRONIZED
AT FD OUTPUT SYSIN
AUTHOR FILE OVERFLOW SYSOUT
AUTOMATIC FILE-CONTROL PAGE TAB
BEFORE FILLER PERFORM TABLE
BLANK FIRST PIC/TURE TALLYING
BLOCK FOR POSITIVE THAN
BY FROM PROCEDURE/S THEN
CALL GIVING PROCEED THROUGH
CANCEL GO PROGRAM THRU
CHARACTER/S GREATER PROGRAM-ID TIMES
CLOCK-UNITS HIGH-VALUE/S QUOTE/S TO
CLOSE I-O/-CONTROL RANDOM TRAILING
COBOL IDENTIFICATION RD TYPE
CODE-SET IF READ UNIT
COLLATING INDEX/ED RECORD/S UNTIL
COMMA INITIAL REDEFINES UP
COMMIT INPUT/-OUTPUT REEL UPON
COMP-M INSPECT RELATIVE USAGE
COMP-N INSTALLATION RELEASE USE
COMP-3 INTO REMAINDER USING
COMP/UTATIONAL/-3 INVALID REPLACING VALUE/S
CONFIGURATION IS RERUN VARYING
CONSOLE JUST/IFIED RETURN WHEN
CONTAINS KEPT REWRITE WITH
COPY KEY RIGHT WORDS
CRT LABEL ROLLBACK WORKING-STORAGE
CRT-UNDER LEADING ROUNDED WRITE
CURRENCY LEFT RUN ZERO/ES or S
CURSOR LESS SAME . (period)
DATA LIMIT/S SD (
DATE-COMPILED LINE/S SECTION -
DATE-WRITTEN LINKAGE SECURITY)
DEBUGGING LOCK SEGMENT ;
DECIMAL-POINT LOW-VALUE/S SEGMENT-LIMIT +

Appendix A. RESERVED WORD LIST

138

DECLARATIVES MANUAL SELECT ,
DELETE MEMORY SENTENCE <
DEPENDING MERGE SEPARATE =
DESCENDING MODE SEQUENCE >
DISPLAY MODULES SEQUENTIAL /
DIVIDE MOVE SET *
DIVISION MULTIPLY SIGN
DOWN NATIVE SIZE

Note that the Level II COBOL product contains the following additional reserved words. If you wish
to ensure that your CIS COBOL programs are upward compatible with Level II COBOL do not use
these words as user-names.

ALSO DELIMITED LINAGE/-COUNTER SEARCH
ALTERNATE DELIMITER MESSAGE SEND
BOTTOM DESTINATION MULTIPLE STRING
COMMUNICATION DISABLE NO SUB-QUEUE-1
COMPUTE DUPLICATES OPTIONAL SUB-QUEUE-2
CORR/ESPONDING EGI POINTER SUB-QUEUE-3
COUNT ENABLE POSITION SYMBOLIC
DATE END-OF-PAGE QUEUE TAPE
DAY EOP RECEIVE TERMINAL
DEBUG-CONTENTS EMI REMOVAL TEXT
DEBUG-ITEM ESI RENAMES TIME
DEBUG-LINE FOOTING RESERVE TOP
DEBUG-NAME IN RETURN UNSTRING
DEBUG-SUB-1 KEPT REVERSED
DEBUG-SUB-2 LENGTH REWIND

139

Appendix B. CHARACTER SETS AND
COLLATING SEQUENCE

ASCII HEX COBOL ASCII HEX COBOL ASCII HEX COBOL

NUL 00 x / 2F 5E x

SOH 01 x 0 30 5F x

STX 02 x 1 31 60 x

ETX 03 x 2 32 a 61

EOT 04 x 3 33 b 62

ENQ 05 x 4 34 c 63

ACK 06 x 5 35 d 64

BEL 07 x 6 36 e 65

BS 08 x 7 37 f 66

HT 09 x 8 38 g 67

LF 0A x 9 39 h 68

VT 0B x : 3A x i 69

FF 0C x ; 3B j 6A

CR 0D x < 3C k 6B

SO 0E x = 3D l 6C

SI 0F x > 3E m 6D

DLE 10 x ? 3F x n 6E

DC1 11 x @ 40 x o 6F

DC2 12 x A 41 p 70

DC3 13 x B 42 q 71

DC4 14 x C 43 r 72

NAK 15 x D 44 s 73

SYN 16 x E 45 t 74

ETS 17 x F 46 u 75

CAN 18 x G 47 v 76

EM 19 x H 48 w 77

SUB 1A x I 49 x 78

ESC 1B x J 4A y 79

FS 1C x K 4B z 7A

GS 1D x L 4C 7B x

RS 1E x M 4D 7C x

US 1F x N 4E 7D x

space 20 O 4F 7E x

! 21 x P 50 DEL 7F x

" 22 Q 51

23 x R 52

$ 24 S 53

Appendix B. CHARACTER SETS AND COLLATING SEQUENCE

140

ASCII HEX COBOL ASCII HEX COBOL ASCII HEX COBOL

% 25 x T 54

& 26 x U 55

' 27 x V 56

(28 W 57

) 29 X 58

* 2A Y 59

+ 2B Z 5A

, 2C 5B x

- 2D 5C x

. 2E 5D x

141

Appendix C. GLOSSARY
INTRODUCTION

The terms in this Chapter are defined in accordance with their meaning as used in this document
describing CIS COBOL and may not have the same meaning for other languages.

These definitions are also intended to be either reference material or introductory material to be
reviewed prior to reading the detailed language specifications that are contained in this manual. For
this reason, these definitions are, in most instances, brief and do not include detailed syntactical rules.

DEFINITIONS
Access Mode. The manner in which records are to be operated upon within

a file

Actual Decimal Point. The physical representation, using either of the decimal point
characters . (period) or , (comma) of the decimal point position
in a data item.

Alphabet-Name. A user-defined word in the SPECIAL-NAMES paragraph of
the Environment Division that assigns a name to a specific
character set and/or collating sequence.

Alphabetic Character. A character that belongs to the following set. of letters:
A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
and the space. Also a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,x,y
and z which are converted to their upper case equivalents.

Alphanumeric Character. Any character in the computer's character set.

Arithmetic Expression. An arithmetic expression can be an identifier or a numeric
elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses.

Arithmetic Operator. A single character, or a fixed two-character combination, that
belongs to the following set:

Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

Ascending Key. A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparison of the data items.

Assumed Decimal Point. A decimal point position which does not involve the existence
of an actual character in a data item. The assumed decimal point
has logical meaning but no physical representation.

At End Condition. A condition caused in one of two circumstances:
1. During the execution of a READ statement for a sequentially

accessed file.

Appendix C. GLOSSARY

142

2. During the execution of a RETURN statement when no next
logical record exists for the associated sort or merge file.

Called Program. A program which is the object of a CALL statement combined
at run time with the calling program to produce a run unit.

Calling Program. A program which executes a CALL to another program.

Character. The basic indivisible unit of the language.

Character Set (CIS COBOL). The complete CIS COBOL character set consists of all
characters listed below:

Character Meaning

0,1, ... ,9 Numeric digit

A,B ... ,Z Uppercase alphabetic

a,b ... ,z Lowercase alphabetic

Space (Blank)

+ Plus Sign

- Minus Sign

* Asterisk

/ Stroke (Virgule or Slash)

= Equal Sign

$ Currency Sign

, Comma

; Semicolon

. Period (Decimal Point,
Fullstop)

' Quotation Mark

(Left Parenthesis

) Right Parenthesis

> Greater Than Symbol

< Less Than Symbol

Character Position. A character position is the amount of physical storage required
to store a single standard data format character described as
usage in DISPLAY. Further characteristics of the physical
storage are defined by the implementor.

Character-String. A sequence of contiguous characters which form a CIS
COBOL word, a literal, a PICTURE character-string or a
comment-entry.

Class Condition. The proposition, for which a truth value can be determined, that
the content of an item is wholly alphabetic or is wholly numeric.

Clause. A clause is an ordered set of consecutive CIS COBOL
character-strings whose purpose is to specify an attribute of an
entry.

Collating Sequence. The sequence in which the characters that are acceptable in a
computer are ordered for purposes of sorting, merging and or
comparing.

Appendix C. GLOSSARY

143

Column. A character position within a print line. The columns are
numbered from one, by one, starting at the left-most character
position of the print line and extending to the right-most
character position of the print line.

Comment Entry. An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line. A source program line represented by an asterisk in the
indicator area of the line and any characters from the computer's
character set in area A and area B of that line. The comment line
serves only for documentation in a program. A special form of
comment line represented by a stroke (/) in the indicator area
of the line and any characters from the computer's character set
in area A and area B of that line causes page ejection before
printing the comment.

Compile Time. The time at which an CIS COBOL source program is translated
by the compiler to an CIS COBOL intermediate code program.

Compiler-Directing Statement. A statement, beginning with a compiler-directing verb,
that causes the compiler to take a specific action during
compilation.

Computer-Name. A system-name that identifies the computer upon which the
program is to be compiled or run.

Condition. A status of a program at execution time for which a truth value
can be determined. Where the term “condition” (condition-1,
condition-2,) appears in these language specifications in or
in reference to “condition” (condition-1, condition-2, ...) of
a general format, it is a conditional expression consisting of
either a simple condition optionally parenthesised, or a negated
simple condition.

Condition-Name. The user-defined word assigned to a status of an implementor-
defined switch or device.

Conditional Expression. A simple condition specified in an IF, or PERFORM. (See
Simple Condition and Complex Condition.)

Conditional Statement. A conditional statement specifies that the truth value of a
condition is to be determined, and that the subsequent action of
the run-time program is dependent on this truth value.

Configuration Section. A section of the Environment Division that describes overall
specifications of source and run computers.

Connective. A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or
text-name with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions (logical connectives). (See Logical
Operator.)

Contiguous Items. Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to one
another.

Appendix C. GLOSSARY

144

Counter. A data item used for storing numbers or number representations
in a manner that permits these numbers to be increased or
decreased by the value of another number, or to be changed or
reset to zero or to an arbitrary positive or negative value.

CRT. An interactive input/output device comprising a cathode ray
tube and a keyboard by which an Operator can enter and receive
visual data.

Currency Sign. The character “$” (dollar sign) in the CIS COBOL character
set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in
the SPECIAL- NAMES paragraph. If no CURRENCY SIGN
clause is present in a CIS COBOL source program, the currency
symbol is identical to the currency sign.

Current Record. The record which is available in the record area associated with
the file.

Current Record Pointer. A conceptual entity that is used in the selection of the next
record.

Cursor. The indicator on a CRT screen that marks the line and character
position which the input/output control is currently referencing.

Data Clause. A clause that appears in a data description entry in the Data
Division and provides information describing a particular
attribute of a data item.

Data Description Entry . An entry in the Data Division that is composed of a level-
number followed by a data-name, if required, and then followed
by a set of data clauses as required.

Data Dictionary. A dictionary file of user def in ed names constructed by the
Compiler containing the number of bytes for each entry.

Data Item. A character or set of contiguous characters (excluding in either
case literals) defined as a unit of data by the CIS COBOL
program.

Data-name. A user-defined word that names a data item described in a data
description entry in the Data Division. When used in the general
formats , “data-name” represents a word which can neither be
subscripted, nor indexed unless specifically permitted by the
rules for that format.

Debugging Line. A debugging line is any line with “D” in the indicator area of
the line.

Declaratives. A set of one or more special purpose sections written at the
beginning of the Procedure Division, the first of which is
preceded by the key word DECLARATIVES and the last of
which is followed by the key words END DECLARATIVES. A
declarative is composed of a section header, followed by a USE
compiler directing sequence, followed by a set of associated
paragraphs (0 or more).

Declarative-Sentence. A compiler-directing sentence consisting of a single USE
statement terminated by the separator period (.).

Appendix C. GLOSSARY

145

Default Disk. The disk from which the compiler or run-time system is loaded
and from which, in the absence of a specific drive identifier,
any copy file or called code will be loaded if required.

Delimiter. A character (or sequence of contiguous characters) that
identifies the end of a string of characters, and separates that
string of characters from the following string of characters. A
delimiter is not part of the string of characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting with
the highest value of key down to the lowest value of key, in
accordance with the rules for comparing data items.

Digit Position. A digit position is the amount of physical storage required
to store a single digit. This amount varies depending on the
usage of the data item describing the digit position. Further
characteristics of the physical storage are defined by the
implementor.

Division. A set of sections or paragraphs (0 or more) that are formed and
combined in accordance with a specific set of rules is called
a division body. There are four divisions in a CIS COBOL
program: Identification, Environment, Data and Procedure.

Division Header. A combination of words followed by a period and a space that
indicate the beginning of a division. The division headers are:

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 PROCEDURE DIVISION USING data-name-1 data-name-2

Dynamic Access. An access mode in which specific logical records can be
obtained from or placed into a disk file in a non-sequential
manner (see Random Access) and obtained from a file in a
sequential manner (see Sequential Access) during the scope of
the same OPEN statement.

Editing Character. A single character or a fixed two character combination
belonging to the same set:

Character Meaning

B Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero Suppress

* Check Protect

$ Currency Sign

, Comma

. Period (Decimal Point)

/ Stroke (Virgule, Slash)

Appendix C. GLOSSARY

146

Elementary Item. A data item that is described as not being further logically
subdivided.

End of Procedure Division. The physical position in a CIS COBOL source program after
which no further procedures appear. Any descriptive set of
consecutive clauses terminated by a period (.) and written in the
Identification Division, Environment Division or Data Division
of an CIS COBOL source program.

Environment Clause. A clause that appears as part of an Environment Division entry.

Extend Mode. With the EXTEND phrase specified, the state of a file after
execution of an OPEN statement, and before the execution of
a CLOSE statement for the file.

Figurative Constant. A compiler-generated value referenced through the use of
certain reserved words.

File. A collection of records.

File Clause. A clause that appears as part of any of the following Data
Division entries: File Description (FD)

FILE-CONTROL. The name of an Environment Division paragraph in which the
data files for a given source program are declared.

File Description Entry. An entry in the File Section of the Data Division that is
composed of the level indicator FD, followed by a file-name,
and then followed by a set of file clauses as required.

File-Name. A user-defined word that names a file described in a file
description entry or a sort-merge file description entry within
the File Section of the Data Division.

File Organization. The permanent logical file structure established at the time that
a file is created.

File Section. The section of the Data Division that contains file description
entries together with their associated record descriptions.

Format. A specific arrangement of a set of data.

FORMS Program. A screen formatting program that automatically generates CIS
COBOL CRT input/output coding from actual screen layout.

Group Item. A named contiguous set of elementary or group items.

High Order End. The leftmost character of a string of characters.

I-O-CONTROL. The name of an Environment Division paragraph in
which object program requirements for specific input/output
techniques, rerun points, sharing of same areas by several data
files, and multiple file storage on a single input/output device
are specified.

I-O Mode. The state of a file after execution of an OPEN statement, with
the I-O phrase specified for that file, and before the execution
of a CLOSE statement for that file.

Identifier. A data-name, followed as required by the syntactically correct
combination of subscripts and indices necessary to make
unique reference to a data item.

Appendix C. GLOSSARY

147

Imperative Statement. A statement that begins with an imperative verb and specifies
an unconditional action to be taken. An imperative statement
may consist of a sequence of imperative statements.

Implementor-Name. A system-name that refers to a particular feature avail- able on
the implementors computing system.

Index. A computer storage position or register, the contents of which
represent the identification of a particular element in a table.

Index Data Item. A data item in which the value associated with an index-name
can be stored in a form specified by the implementor.

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each record is
identified by the value of one or more keys within that record.

Indicator Area. The leftmost parameter position of a CIS COBOL source
record that indicates the use of the record.

Input File. A file that is opened in the input mode.

Input Mode. The state of a file after execution of an OPEN statement,
with the INPUT phrase specified, for that file and before the
execution of a CLOSE statement for that file.

Input-Output File. A file that is opened in the I-O mode.

Input-Output Section. The section of the Environment Division that names the files
and the external media used by a program and which provides
information required for transmission and handling of data
during execution of the run-time program.

Integer. A numeric literal or a numeric data item that does not include
any character positions to the right of the assumed decimal
point. Where the term 'integer' appears in general formats,
integer must not be a numeric data item, and must not be signed,
nor zero unless explicitly allowed by the rules of that format.

Intermediate Code The code produced by the CIS COBOL compiler from the
source code entered, and which the Run Time System 'fast
loads' for execution.

Invalid Key Condition. A condition, at object time, caused when a specified value of
the key associated with an indexed or relative file is determined
to be invalid.

Issue Disk. The flexible diskette or which the CIS COBOL software is
supplied to users.

Key. A data item which identifies the location of a record, or a set of
data items which serve to identify the ordering of data.

Key of Reference. The key currently being used to access records within an
indexed file.

Key Word. A reserved word whose presence is required when the format
in which the word appears is used in a source program.

Level-Number. A user-defined word which indicates the position of a data
item in the hierarchical structure of a logical record or which

Appendix C. GLOSSARY

148

indicates special properties of a data description entry. A level-
number is expressed as a one or two digit number. Level-
numbers in the range 1 through 49 indicate the position of a
data item in the hierarchical structure of a logical record. Level-
numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. Level-
number 77 identifies special properties of a data description
entry.

Library-Name. A user-defined word that names a CIS COBOL library source
file that is to be used by the compiler for a given source program
compilation.

Library-Text. A sequence of character-strings and/or separators in a COBOL
library.

Line Sequential File Organization A sequential file containing variable length records separated
by the C/R (carriage return) and L/F (line feed) characters.

Linkage Section. The section in the Data Division of the called program that
describes data items available from the calling program. These
data items may be referred to by both the calling and called
program.

Literal. A character-string whose value is implied by the ordered set of
characters comprising the string.

Logical Operator. The reserved word 'NOT'. It can be used for logical negation.

Logical Record. The most inclusive data item. The level-number for a record
is 01.

Low Order End. The rightmost character of a string of characters.

Mnemonic-Name. A User-defined word that is associated in the Environment
Division with a specified implementor-name.

Native Character Set. The implementor-defined character set associated with the
computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-defined collating sequence associated
with the computer specified in the OBJECT-COMPUTER
paragraph.

Negated Simple Condition. The 'NOT' logical operator immediately followed by a simple
condition.

Next Executable Sentence. The next sentence to which control will be transferred after
execution of the current statement is complete.

Next Executable Statement. The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record. The record which logically follows the current record of a file.

Non contiguous Items. Elementary data items, in the Working-Storage and Linkage
Sections, which bear no hierarchic relationship to other data
items.

Nonnumeric Item. A data item whose description permits its contents to be
composed of any combination of characters taken from the

Appendix C. GLOSSARY

149

computer's character set. Certain categories of nonnumeric
items may be formed from more restricted character sets.

Nonnumeric Literal. A character-string bounded by quotation marks. The string
of characters may include any character in the computer's
character set. To represent a single quotation mark character
within a nonnumeric literal, two contiguous quotation marks
must be used.

Numeric Character. A character that belongs to the following set of digits: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its contents to a value
represented by characters chosen from the digits '0' through
'9'; if signed, the item may also contain a '+', '-' or other
representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that also
may contain either a decimal point, or an algebraic sign, or
both. The decimal point must not be the rightmost character.
The algebraic sign, if present, Must be the leftmost character.

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the
computer environment, within which the run-time program is
executed, is described.

Open Mode. The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement
as either INPUT, OUTPUT, I-O or EXTEND.

Operand. Whereas the general definition of operand is 'that component
which is operated upon', for the purposes of this publication,
any lowercase word (or words) that appears in a statement or
entry format may be considered to be an operand and, as such,
is an implied reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or a
numeric literal, to indicate whether its value is positive or
negative.

Optional Word. A reserved word that is included in a specified format only to
improve the readability of the language and whose presence is
optional to the user when the format in which the word appears
is used in a source program.

Output File. A file that is opened in either the output mode or extend mode.

Output-Mode. The state of a file after execution of an OPEN statement, with
the OUTPUT or EXTEND phrase specified for that file and
before the execution of a CLOSE statement for that file.

Paragraph. In the Procedure Division, a paragraph-name followed by a
period and a space and optionally by one, or more sentences.
In the Identification and Environment Divisions, a paragraph
header followed by zero, one, or more entries.

Paragraph Header. A reserved word, followed by a period and a space that
indicates the beginning of a paragraph in the Identification and
Environment Divisions. The permissible paragraph headers
are:

Appendix C. GLOSSARY

150

In the Identification Division:

 PROGRAM-ID.
 AUTHOR.
 INSTALLATION.
 DATE-WRITTEN.
 DATE-COMPILED.
 SECURITY.

In the Environment Division:

 SOURCE-COMPUTER.
 OBJECT-COMPUTER.
 SPECIAL-NAMES.
 FILE-CONTROL.
 I-O-CONTROL.

Paragraph-Name. A user-defined word that identifies and begins a paragraph in
the Procedure Division.

Phrase. A phrase is an ordered set of one or more consecutive
COBOL character-strings that form a portion of a CIS COBOL
procedural statement or of a COBOL clause.

Prime Record Key. A key whose contents uniquely identify a record within an
indexed file.

Procedure. A paragraph or group of logically successive paragraphs, or
a section or group of logically successive sections, within the
Procedure Division.

Procedure-Name. A user-defined word which is used to name a paragraph or
section in the Procedure Division. It consists of a paragraph-
name or a section-name.

Punctuation Character. A character that belongs to the following set:

Character Meaning

, comma

; semicolon

. period

" quotation mark

(left parenthesis

) right parenthesis

space

= equal sign

Random Access. An access mode in which the program-specified value of a key
data item identifies the logical record that is obtained from,
deleted from or placed into a relative or indexed file.

Record. (see Logical Record)

Appendix C. GLOSSARY

151

Record Area. A storage area allocated for the purpose of processing the
record described in a record description entry in the File
Section.

Record Description. (See Record Description Entry)

Record Description Entry. The total set of data description entries associated with a
particular record.

Record Key. A key, either the prime record key or an alternate record key,
whose contents identify a record within an indexed file.

Record-Name. A user-defined word that names a record described in a record
description entry in the Data Division.

Reference-Format. A format that provides a standard method for describing
COBOL source programs.

Relation. (See Relational Operator)

Relation Character. A character that belongs to the following set:

Character Meaning

> greater than

< less than

= equal to

Relation Condition. The proposition, for which a truth value can be determined,
that the value of an arithmetic expression or data item has
a specified relationship to the value of another arithmetic
expression or data item. (See Relational Operator),

Relational Operator. A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words
and relation characters used in the construction of a relation
condition. The permissible operators and their meaning are:

Relational Operator Meaning

IS NOT GREATER THAN

IS NOT >

Greater than or not greater
than

IS NOT LESS THAN

IS NOT <

Less than or not less than

IS NOT EQUAL THAN

IS NOT =

Equal to or not equal to

Relative File. A file with relative organization.

Relative Key. A key whose contents identify a logical record in a relative file.

Relative Organization. The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which
specifies the record's logical ordinal position in the file.

Reserved Word. A COBOL word specified in the list of words which may be
used in COBOL source programs, but which must not appear
in the programs as user-defined words or system-names.

Routine-Name. A user-defined word that identifies a procedure written in a
language other than COBOL:

Appendix C. GLOSSARY

152

Run Time Debug. An option available to CIS COBOL programmers entered
as a user option enabling break-point facilities in run time
programs.

Run Time. The time at which the intermediate code produced by the
compiler is interpreted by the Run Time System for execution.

Run Time System-(RTS). The software that interprets the intermediate code produced by
the CIS COBOL compiler and enables it to be executed by
providing interfaces to the operating system and CRT.

Run Unit. A set of one or more intermediate code programs which
function, at run time, as a unit to provide problem solutions.

Section. A set of none, one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section header.
Each section consists of the section header and the related
section body.

Section Header. A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment, Data
and Procedure Division.

In the Environment and Data Divisions, a section header is
composed of reserved words followed by a period and a space.
The permissible section headers are:

In the Environment Division:

 CONFIGURATION SECTION
 INPUT-OUTPUT SECTION

In the Data Division:

 FILE SECTION
 WORKING-STORAGE SECTION
 LINKAGE SECTION

In the Procedure Division, a section header is composed of
a section-name, followed by the reserved word SECTION,
followed by a segment-number (optional), followed by a period
and a space.

Section-Name. A user-defined word which names a section in the Procedure
Division.

Segment-Number. A user-defined word which classifies sections in the Procedure
Division for purposes of segmentation. Segment-numbers may
contain only the characters '0', '1', ... , '9'. A segment-number
may be expressed either as a one or two digit number, and is
checked for syntax only.

Sentence. A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

Separator. A punctuation character used to delimit character-strings.

Sequential Access. An access mode in which logical records are obtained from
or placed into a file in a consecutive predecessor-to-successor

Appendix C. GLOSSARY

153

logical record sequence determined by the order of records in
the file.

Sequential File. A file with sequential organization.

Sequential Organization. The permanent logical file structure in which a record is
identified by a predecessor-successor relationship established
when the record is placed into the file.

Sign Condition. The proposition, for which a truth value can be determined, that
the algebraic value of a data item or an arithmetic expression is
either less than, greater than, or equal to zero.

Simple Condition. Any single condition chosen from the set:

relation condition
class condition
switch-status condition
sign condition
(simple-condition)

SOURCE-COMPUTER. The name of an Environment Division paragraph in which the
computer environment, within which the source program is
compiled, is described.

Source Program. Although it is recognised that a source program may be
represented by other forms and symbols, in this document
it always refers to a syntactically correct set of COBOL
statements beginning with an Identification Division and
ending with the end of the Procedure Division. In contexts
where there is no danger of ambiguity, the word 'program' alone
may be used in place of the phrase 'source program'.

Special Character. A character that belongs to the following set:

Character Meaning

+ Plus Sign

- Minus Sign

* Asterisk

/ Stroke (Virgule or Slash)

= Equal Sign

$ Currency Sign

, Comma

; Semicolon

. Period (Decimal Point,
Fullstop)

' Quotation Mark

(Left Parenthesis

) Right Parenthesis

> Greater Than Symbol

< Less Than Symbol

Special-Character Word. A reserved word which is an arithmetic operator or a relation
character.

Appendix C. GLOSSARY

154

SPECIAL-NAMES. The name of an Environment Division paragraph in which
implementor-names are related to user specified mnemonic-
names.

Special Registers. Compiler generated storage areas whose primary use is to store
information produced in conjunction with the user of specified
COBOL features.

Standard Data Format. The concept used in describing the characteristics of data in
a COBOL Data Division under which the characteristics or
properties of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite length and
breadth, rather than a form oriented to the manner in which
the data is stored internally in the computer, or on a particular
external medium.

Statement. A syntactically valid combination of words and symbols
written in the Procedure Division beginning with a verb.

Subprogram. (See Called Program).

Subscript. An integer whose value identifies a particular element in a
table.

Subscripted Data-Name. An identifier that is composed of a data-name followed by one
or more subscripts enclosed in parenthesis.

Switch-Status Condition. The proposition, for which a truth value can be determined, that
an implementor-defined switch, capable of being set to an 'on'
or 'off' status, has been set to a specified status.

Symbol Function. The use of specified characters in the PICTURE clause to
represent data types.

System-Name. A COBOL word which is used to communicate with the
operating environment.

Syntax. The order in which elements must be put together to form a
program.

Table. A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items comprising
a table.

Text-Name. A user-defined word which identifies library text.

Text-Word. Any character-string or separator, except space, in a COBOL
library or in pseudo-text.

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable or a
left parenthesis in an arithmetic expression and which has the
effect of multiplying the expression of +1 or -1 respectively.

User-Defined Word. A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

Variable. A data item whose value may be changed by execution of the
object program. A variable used in an arithmetic expression
must be a numeric elementary item.

Appendix C. GLOSSARY

155

Verb. A word that expresses an action to be taken by a COBOL
compiler or run time program.

Word. A character-string of not more than 30 characters which forms
a user-defined word, a system-name, or a reserved word.

Working-Storage Section. The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of
working storage records or of both.

77 Level-Description-Entry. A data description entry that describes a noncontiguous data
item with the level-number 77.

156

157

Appendix D. COMPILE-TIME ERRORS
The error descriptions that correspond to error numbers as printed on listings produced by the CIS
COBOL compiler are as follows:

ERROR DESCRIPTION

01 Compiler Error; consult your Technical Support Service

02 Illegal format of data-name

03 Illegal format of literal or invalid use of 'ALL'

04 Illegal format of character

05 Data-name declared twice

06 Too many data or procedure names have been declared - compilation
abandoned

07 Illegal character in column 7, or continuation line error

08 Nested COPY statement or unknown file specified

09 '.' missing

10 The statement starts in the wrong area of the source line

22 'DIVISION' missing

23 'SECTION' missing

24 'IDENTIFICATION' missing

25 'PROGRAM-ID' missing

26 'AUTHOR' missing

27 'INSTALLATION' missing

28 'DATE-WRITTEN' missing

29 'SECURITY' missing

30 'ENVIRONMENT' missing

31 'CONFIGURATION' missing

32 'SOURCE-COMPUTER' missing

33 OBJECT-COMPUTER or SPECIAL-NAMES clause in error

34 'OBJECT-COMPUTER' missing

36 'SPECIAL-NAMES' missing

37 SWITCH Clause in error

38 DECIMAL-POINT Clause in error

39 CONSOLE Clause in error

40 Illegal currency symbol

42 'DIVISION' missing

43 'SECTION' missing

44 'INPUT-OUTPUT' missing

45 'FILE-CONTROL' missing

46 'ASSIGN' missing

47 'SEQUENTIAL' or 'RELATIVE' or 'INDEXED' missing

48 'ACCESS' missing on indexed or relative file

49 'SEQUENTIAL' or 'DYNAMIC' missing

50 Illegal combination ORGANIZATION/ACCESS/KEY

Appendix D. COMPILE-TIME ERRORS

158

ERROR DESCRIPTION

51 Unrecognised clause in SELECT statement

52 RERUN clause contains syntax error

53 SAME AREA clause contains syntax error

54 File-name missing or illegal

55 'DATA DIVISION' missing

56 'PROCEDURE DIVISION' missing or unknown statement

57 * 'EXCLUSIVE', 'AUTOMATIC' or 'MANUAL' missing

58 * Non-exclusive lock mode specified for restricted file

62 'DIVISION' missing

63 'SECTION' missing

64 File-name not specified in SELECT statement

65 RECORD SIZE integer missing

66 Illegal level number or level 01 required

67 FD qualification contains syntax error

68 'WORKING-STORAGE' missing

69 'PROCEDURE DIVISION' missing or unknown statement

70 Unrecognized clause in Data Description or previous'.' missing

71 Incompatible clauses in Data Description

72 BLANK is illegal with non-numeric data-item

73 PICTURE clause too long

74 VALUE with non-elementary item, wrong data-type or value
truncated

75 VALUE clause in error or illegal for PICTURE type

76 FILLER/SYNCHRONIZED/JUSTIFIED/BLANK clause for non-
elementary item

77 Preceding item at this level has 0 or more than 8192 bytes

78 REDEFINES of different levels or unequal field lengths.

79 Data Division exceeds 32K and data-item has address above 7FFF

81 Data Description clause inappropriate or repeated

82 REDEFINES data-name not declared

83 USAGE must be COMP, DISPLAY or INDEX

84 SIGN must be LEADING or TRAILING

85 SYNCHRONIZED must be LEFT or RIGHT

86 JUSTIFIED must be RIGHT

87 BLANK must be ZERO

88 OCCURS must be numeric, non-zero and unsigned

89 VALUE must be a literal, numeric literal or figurative constant

90 PICTURE string has illegal precedence or illegal character

91 INDEXED data-name missing or already declared

92 Numeric edited PICTURE string is too large

101 Unrecognised verb

102 IF ELSE mismatch

103 Data-item has wrong data-type or is not declared

Appendix D. COMPILE-TIME ERRORS

159

ERROR DESCRIPTION

104 Procedure name has been declared twice

10S Procedure name is the same as a data-name

106 Name required

107 Wrong combination of data-types

108 Conditional statement not allowed; imperative statement expected

109 Malformed subscript

110 ACCEPT or DISPLAY wrong

111 Illegal syntax used with I-O verb

112 * LOCK clause specified for file with lock mode EXCLUSIVE

113 * KEPT specified for uncommittable file

115 * KEPT omitted for comittable file

116 IF statements nested too deep (maximum 8)

117 Structure of Procedure Division wrong (e.g. DECLARATIVES not
first)

118 Reserved Word missing or incorrectly used

119 Too many subscripts in one statement

120 Too many operands in one statement

141 Inter-segment procedure name declared twice

142 IF ELSE mismatch at the end of source input

143 Data-Item has wrong data-type or is not declared

144 Procedure name undeclared

145 INDEX name declared twice

146 Cursor address field not declared or not 4 bytes long

147 KEY declaration missing or FD missing

148 STATUS declaration missing

149 FILE STATUS data-item has the wrong format

150 Paragraph to be ALTERed is not declared

151 PROCEDURE DIVISION in error

152 USING parameter is not declared in the linkage section

153 USING parameter is not level 01 or 77

154 USING parameter is used twice in the parameter list

157 Structure of Procedure Division wrong (e.g. DECLARATIVES not
first)

160 Too many operands in one statement

* The error codes marked by an asterisk apply only when the optional FILESHARE product is in use.

In addition to these numbered error messages, the following message can be displayed with subsequent
termination of the compilation:

 FATAL I-O ERROR: filename

where filename is the erroneous file.

Any intermediate code file produced is not usable.

The following conditions will cause this error:

Appendix D. COMPILE-TIME ERRORS

160

Disk overflow
File directory overflow
File full
Impossible I-O device usage

Other operating system dependent conditions can also cause this error.

Note

You will notice that the numbers of the numbered error messages listed above are not
continuous, i.e., there are gaps in the numbering. The compiler should never have cause to
generate an error message with a number not listed above. If you ever encounter such a
number, consult your Micro Focus Product Technical Support office.

161

Appendix E. RUN-TIME ERRORS
Run-time error messages are preceded by the name and segment number of the currently executing
intermediate code file.

There are two types of runtime errors: Recoverable and Fatal.

(a) Recoverable errors

If the programmer has specified the STATUS clause in the FILE-CONTROL paragraph of a program
error handling is the programmer's responsibility. This will generally only apply to errors that are not
considered fatal by the operating system. (See File Status in Chapters 5, 6 and 7)

(b) Fatal errors

All errors except those above are fatal. They may come from the operating system or from the run-
time system. Fatal errors cause a message to be output to the console which includes a 3-digit error
code and reference to the COBOL statement subsequent to that in which the error occurred. These
fall into two classes:

(i) Exceptions These cover arithmetic overflow, subscript out of range, too many levels of
perform nesting.

(ii) I-O errors These exclude those for which STATUS is not selected as above.

Error Description

151 Random read on sequential file

152 REWRITE on file not open I-O

153 Subscript out of range

154 Perform nesting exceeds 22 levels

156 Invalid file operation

157 Object file too large

158 REWRITE on line-sequential file

159 Malformed line-sequential file

161 Illegal intermediate code

162 Arithmetic overflow or underflow

164 Specified CALL code not supplied or Attempt to call a COBOL
module recursively (i.e when is already active)

165 Incompatible releases of compiler and run-time system

168 Memory arrangement failure

169 Invalid indirect sequential file key length (>32 characters)

170 Illegal operation in Indexed Sequential

171 Attempt to read I-S record in output/extend mode

172 Attempt to delete I-S record in non I-O mode

173 Attempt to write I-S record in input mode

174 Attempt to CALL/CANCEL on active program

176 Illegal inter-segment reference

180 COBOL file malformed

181 Fatal file malformation

Appendix E. RUN-TIME ERRORS

162

Error Description

194 (CP/M 1.4
only)

File size too large (>0.5MB) or Failure to Open on Extent

195 DELETE/REWRTTE not preceded by a READ

196 Relative (or Indexed) - Record number too large (>65535)

197 File save failure

198 Program load failure (using CHAIN)

199 Indexed sequential file name too long (>20 characters)

200 Insufficient space to load Animator

See also appendix D in the CIS COBOL Operating Guide specific to your operating system.

163

Appendix F. SYNTAX SUMMARY
All the syntax for CIS COBOL is summarized below.

E denotes that the feature is a CIS COBOL extension to ANSI COBOL.

D denotes that the feature is documentary only in CIS COBOL.

GENERAL FORMAT FOR IDENTIFICATION
DIVISION

[IDENTIFICATION DIVISION.]
[PROGRAM-ID.] program name
[AUTHOR.] [comment entry]...
[INSTALLATION.] [comment entry]...
[DATE-WRITTEN.] [comment entry]...
[DATE-COMPILED.] [comment entry]...
[SECURITY.] [comment entry]...

GENERAL FORMAT FOR ENVIRONMENT
DIVISION

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry [WITH DEBUGGING MODE] .
OBJECT-COMPUTER. object-computer-entry
[,MEMORY SIZE integer { WORDS | CHARACTERS | MODULES }]
[,PROGRAM COLLATING SEQUENCE IS alphabet-name]
SPECIAL-NAMES.
SWITCH {0 ... 7} [IS mnemonic-name] { ,ON STATUS IS condition-name-1 | [,OFF STATUS IS
condition-name-2] | ,OFF STATUS IS condition-name-2 | [,ON STATUS IS condition-name-1]}
[{ ,SYSIN | ,SYSOUT } IS mnemonic-name]
[, TAB IS mnemonic-name]
[, CURRENCY SIGN IS literal-9]
[, DECIMAL-POINT IS COMMA]
[, CONSOLE IS CRT]
[, CURSOR IS data-name-1] .
INPUT-OUTPUT SECTION.
FILE-CONTROL.
file-control-entry ...
I-O-CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY {{ [END OF]
{ REEL | UNIT } | integer-1 RECORDS } | OF file-name-2 | integer-2 CLOCK-UNITS | condition-
name }]...
[; SAME AREA FOR file-name-3 [, file-name-4]...]... .

GENERAL FORMAT FOR FILE-CONTROL
ENTRY

Sequential SELECT:

SELECT file-name ASSIGN TO { external-file-name-literal | file-identifier } [, external-file-name-
literal | file-identifier]

Appendix F. SYNTAX SUMMARY

164

[; ORGANIZATION IS SEQUENTIAL | LINE SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data-name-1]

Relative Select:

SELECT file-name
ASSIGN TO { external-file-name-literal | file-identifier } [, { external-file-name-literal | file-
identifier }]
; ORGANIZATION IS RELATIVE
[; ACCESS MODE IS { SEQUENTIAL ,RELATIVE KEY IS data-name | { RANDOM |
DYNAMIC } ,RELATIVE KEY IS data-name }]
[; FILE STATUS IS data-name-2]

Indexed Select:

SELECT file-name
ASSIGN TO { external-file-name-literal | file-identifier } [, { external-file-name-literal | file-
identifier }]
; ORGANIZATION IS INDEXED
[; ACCESS MODE IS { SEQUENTIAL | RANDOM | DYNAMIC }]
; RECORD KEY IS data-name-1
[; FILE STATUS IS data-name-3]

GENERAL FORMAT FOR THE DATA
DIVISION

DATA DIVISION.
[FILE SECTION.
FD file-name
[; BLOCK CONTAINS integer { RECORDS | CHARACTERS }]
[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]
; LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }
; VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...
; DATA { RECORD IS | RECORDS ARE } data-name-1 [, data-name-2]...
[; CODE-SET IS alphabet-name] .
[file-description-entry [record-description-entry]...]...]
[WORKING-STORAGE SECTION.
[{ 77-level-description-entry | record-description-entry }]...]
[LINKAGE-SECTION.
[{ 77-level-description-entry | record-description-entry }]...]

GENERAL FORMAT FOR DATA
DESCRIPTION ENTRY

level-number { data-name-1 | FILLER }
[; REDEFINES data-name-2]
[{ PICTURE | PIC } IS character-string]
[; [USAGE IS] { COMPUTATIONAL | COMP | COMPUTATIONAL-3 | COMP-3 | DISPLAY }]
[; [SIGN IS] { LEADING | TRAILING } [SEPARATE CHARACTER]]
[; { SYNCHRONIZED | SYNC } { LEFT | RIGHT }]
[; { JUSTIFIED | JUST } RIGHT] [; BLANK WHEN ZERO]
[; VALUE IS literal]

Appendix F. SYNTAX SUMMARY

165

GENERAL FORMAT FOR PROCEDURE
DIVISION

Declarative format:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2]...] .

[DECLARATIVES. { section-name SECTION [segment-number] . declarative-sentence
[paragraph-name. [sentence]...]... }...
END DECLARATIVES.]
{ [section-name SECTION [segment-number]]
[[paragraph-name] [sentence]...] }

Non-declarative format:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2]...] .

GENERAL FORMAT FOR VERBS
ACCEPT data-name-1 [AT { data-name-2 | literal-1 }] FROM CRT

ACCEPT identifier [FROM CONSOLE]

ADD { identifier-1 | literal-1 } [, { identifier-2 | literal-2 }]... TO identifier-m [ROUNDED]
[, identifier-n[ROUNDED]]... [; ON SIZE ERROR imperative-statement]

ADD { identifier-1 | literal-1 } , { identifier-2 | literal-2 } [, { identifier-3 | literal-3 }]... GIVING
identifier-m [ROUNDED] [, identifier-n [ROUNDED]] [; ON SIZE ERROR imperative-statement]

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

CALL { identifier-1 | literal-1 } [USING data-name-1 [, data-name-2]...] [ON OVERFLOW
imperative-statement]

CANCEL { identifier-1 | literal-1 } [{ identifier-2 | literal-2 }]...

DELETE file-name RECORD [;INVALID KEY imperative-statement]

DISPLAY { identifier-1 | literal-1 } [, { identifier-2 | literal-2 }]... [UPON CONSOLE]

DISPLAY { data-name-1 | literal-3 } [AT { data-name-2 | literal-4 }] UPON { CRT | CRT-UNDER }

DIVIDE { identifier-1 | literal-1 } INTO identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

DIVIDE { identifier-1 | literal-1 } INTO { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

DIVIDE { identifier-1 | literal-1 } BY { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

ENTER language-name [routine-name]

EXIT [PROGRAM]

GO TO {procedure-name-1}

GO TO procedure-name-1 [, procedure-name-2]... , procedure-name-n DEPENDING ON identifier

Appendix F. SYNTAX SUMMARY

166

IF condition; [THEN] { statement-1 | NEXT SENTENCE } { ; ELSE statement-2 | ; ELSE NEXT
SENTENCE }

INSPECT identifier-1 TALLYING identifier-2 FOR , { ALL | LEADING | CHARACTERS }
{ identifier-3 | literal-1 } [{ BEFORE | AFTER } INITIAL { identifier-7 | literal-5 }]

INSPECT identifier-1 REPLACING
{ CHARACTERS BY identifier-6 | literal-4 | , { ALL | LEADING | FIRST } , { identifier-5 | literal-3 }
BY { identifier-6 | literal-4 } }
[{ BEFORE | AFTER } INITIAL { identifier-7 | literal-5 }]

INSPECT identifier TALLYING tally-clause REPLACING replacing-clause

MOVE { identifier-1 | literal } TO identifier-2 [, identifier-3 ...]

MULTIPLY { identifier-1 | literal-1 } BY identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

MULTIPLY { identifier-1 | literal-1 } BY { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

OPEN { INPUT file-name-1 [, file-name-2]... OUTPUT file-name-3 [, file-name-4]... I-O file-name-5
[, file-name-6]... EXTEND file-name-7 [, file-name-8]... }

PERFORM procedure-name-1 [{ THROUGH | THRU } procedure-name-2]

PERFORM procedure-name-1 [{ THROUGH | THRU } procedure-name-2] { identifier-1 | integer-1 }
TIMES

PERFORM procedure-name-1 [{ THROUGH | THRU } procedure-name-2] UNTIL condition-1

READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative- statement]

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

SET { identifier-1 [, identifier-2]... | index-name-1 [, index-name-2]... } { TO | UP BY | DOWN BY }
{ identifier-3 | index-name-3 | integer-1 }

START file-name [KEY IS = | IS > | IS NOT < data-name
[;INVALID KEY imperative-statement]]

STOP { RUN | literal }

SUBTRACT { identifier-1 | literal-1 } , { identifier-2 | literal-2 }... ... FROM identifier-m [ROUNDED]
[, identifier-n [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

SUBTRACT { identifier-1 | literal-1 } , { identifier-2 | literal-2 }... ... FROM identifier-m GIVING
identifier-n [ROUNDED] [, identifier-o [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

USE AFTER STANDARD { EXCEPTION | ERROR } PROCEDURE ON { file-name-1 | INPUT |
OUTPUT | I-O | EXTEND }

USE FOR DEBUGGING ON { procedure-name-1 | ALL PROCEDURES } [, { procedure-name-2
| ALL PROCEDURES }...] OUTPUT

WRITE record-name [FROM identifier-1] [BEFORE | AFTER ADVANCING integer LINE | LINES
| TAB | PAGE]

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Appendix F. SYNTAX SUMMARY

167

GENERAL FORM FOR COPY STATEMENT
COPY text-name | external-file-name-literal .

168

169

Appendix G. SUMMARY OF
EXTENSIONS TO ANSI COBOL

CIS COBOL is oriented to microcomputer users with the system readily accessible and usually with
a CRT. CIS COBOL therefore provides extensions for interactive working, program control of files,
text file handling and rapid development and testing. These facilities are summarized below.

SCREEN FORMATTING AND DATA ENTRY

THE ACCEPT STATEMENT
An additional format for the ACCEPT statement is provided as follows:

ACCEPT data-name-1 [AT { data-name-2 | literal-1 }] FROM CRT

data-name-2 allows the start of screen to be changed dynamically. It refers to a PIC 9999 field
where the most significant 99 is a line count 1-25 and the least significant 99 is a
character position 1-80.

data-name-1 refers to a record, group or elementary item but may not be subscripted.
literal-1 is a numeric literal

NOTE: See Chapter 3 for description. See also Appendix H for Environment Division changes.

THE DISPLAY STATEMENT
An additional format for the DISPLAY statement is provided as follows:

Format

DISPLAY { data-name-1 | literal-3 } [AT { data-name-2 | literal-1 }] UPON { CRT | CRT-UNDER }

literal-3 is an alphanumeric literal
dataname-1 refers to a record, group or elementary item but may not be subscripted
dataname-2 defines the left-most position on the screen. It refers to a PIC 9999 field where the

most significant 99 is a line count 1-25 and the least significant 99 is a character
position 1-80.

NOTE: See Chapter 3 for description.

DISK FILES
Two extensions are offered by CIS COBOL file processing; these are as follows:

1. Line sequential files
2. Run time input of filenames

LINE SEQUENTIAL FILES
When LINE SEQUENTIAL ORGANIZATION is specified in the FILE CONTROL paragraph
ORGANIZATION IS entry, the file is treated as consisting of variable length records separated by the
lire delimiter characters. Trailing spaces in output records are replaced by a record terminator which
is operating system dependent.

Appendix G. SUMMARY OF EXTENSIONS TO ANSI COBOL

170

RUN TIME INPUT OF FILENAMES
The ASSIGNed name in the SELECT statement for a file is processed on OPENing as follows:

When the INPUT or OUTPUT phrase is specified, execution of OPEN causes checking of the file
names in accordance with the operating system conventions for opening an input or output file. The
full operating system features for file reallocation and device control are therefore available to the
CIS COBOL program.

LOWER CASE CHARACTERS
The full alphanumeric lower case a to z is available in CIS COBOL. Reserved and user word characters
are read as their upper case equivalents (A to Z).

HEXADECIMAL VALUES
Hexadecimal binary values can be attributed to non-numeric literals in CIS COBOL by expressing
them as X "xx", where x is a hexadecimal character in the set 0-9, A-F; xx can be repeated up to 120
times, but the number of hexadecimal digits must be even.

INTERACTIVE DEBUGGING
There is a Run-Time Debug Package to provide break-point facilities in the user's program. Programs
may be run from the start until a specified break-point is reached, when control is passed back to the
user. At this point, data areas may be inspected or changed.

The Debug package is entered as an option by the user and the user program is then tested line by line,
paragraph by paragraph and so on as required. The commands to the package can reference procedure
statements and data areas by means of a 4-digit hexadecimal code output by the compiler against each
line of the compilation listing. Powerful macros of commands can be used to give very sophisticated
debugging facilities. The precise details for using the package vary according to the host operating
system and are described in the appropriate Operating Guide.

171

Appendix H. SYSTEM DEPENDENT
LANGUAGE FEATURES

This Appendix summarizes those parts of a COBOL program that need to be changed to run them as
CIS COBOL programs and those parts that do not need changing specifically but are ignored by the
CIS COBOL compiler when generating the object program.

MANDATORY CHANGES

ENVIRONMENT DIVISION
The only statements in the environment division that must be specialized for CIS COBOL are shown
below:

Configuration Section

SPECIAL-NAMES. special names entry

special names entry must include the following:

CURSOR IS data-name-1

The CURSOR IS data-name-1 clause specifies the data-name which will contain the CRT cursor
address as used by ACCEPT statements. Data-name-1 must be declared in the Working-Storage
section as a 4 character item. The interpretation of the 4 characters is given in the ACCEPT statement
description.

Input-Output Section

File names must be as described in Appendix F of the CIS COBOL Operating Guide.

STATEMENTS COMPILED AS
DOCUMENTATION ONLY

COBOL programs not specifically written for compilation as CIS COBOL on microcomputers can
still be compiled. Statements using features that are not available are treated as documentary only, and
are not compiled. A summary of these features follows:

ENVIRONMENT DIVISION

I-O-Control Paragraph

The clauses that refer to a real time clock and magnetic tape in this paragraph are ignored by the
compiler during compilation but do not cause compile times errors. These clauses are as follows:

END OF { REEL | UNIT } of file-name-2

(no magnetic tape)

integer-2 CLOCK UNITS

Appendix H. SYSTEM DEPENDENT LANGUAGE FEATURES

172

(no clock)

DATA DIVISION

File Description Paragraph

The following complete statements in the file description are ignored by the compiler during
compilation but do not cause compile time errors:

BLOCK CONTAINS integer-1 TO integer-2 { RECORDS | CHARACTERS }

CODE-SET IS alphabetic-name

LABEL { RECORD IS | RECORDS ARE } { STANDARD | OMITTED }

VALUE OF implementor-name-1 IS literal-1 [, implementor-name-2 IS literal-2]

PROCEDURE DIVISION

CLOSE Statement

The following phrases in the CLOSE statement are ignored by the compiler during compilation but
do not cause compiler-time errors:

{ REEL | UNIT }

(No magnetic tape)

173

Appendix I. LANGUAGE
SPECIFICATION

CIS COBOL is ANSI COBOL as given in "American National Standard Programming Language
COBOL" (ANSI X.3.23 1974). CIS COBOL implements both levels of ANSI COBOL. The following
modules are fully implemented at Level 1:

• Nucleus

• Table Handling

• Sequential Input and Output

• Relative Input and Output

• Indexed Input and Output

• Segmentation

• Library

• Inter-Program Communication

• Debug

In addition many Level 2 features are implemented such as:

• Nucleus - Nested IF, PERFORM UNTIL

• Relative and Indexed sequential I/O - START statement

• Inter-Program Communication - Fully implemented at level 2

This appendix specifies the implementation of Version 4.3 CIS COBOL. The implementation of
each of the eight standard COBOL modules listed above is given under the following headings as
applicable:

Level 1 Implementation
Level 2 Implementation
CIS COBOL Extensions

Appendix F in this manual is a CIS COBOL syntax summary.

NUCLEUS

Level One Implementation
Fully implemented to Level One.

Level Two Implementation
1. DATE-COMPILED in the Identification Division is accepted for documentation purposes only.

2. Up to 49 Level Numbers are permitted and 1-9 can be a single digit.

3. The characters , and ; are permitted as separators

Appendix I. LANGUAGE SPECIFICATION

174

4. The character '>', '=' and '<' are permitted in relative conditions.

5. The PERFORM ... THROUGH ... UNTIL feature is implemented.

6. Plural forms of the figurative constants can be used.

7. IF statements can be nested.

8. Mnemonic names are permitted in ACCEPT and DISPLAY statements (See CIS COBOL
extensions 6 and 7 below).

9. Procedure names can be all digits.

10.REDEFINES clauses can be nested.

11.Non-numeric operands can be compared.

CIS COBOL Extensions
1. Lower case letters a to z are read as upper case letters A to Z.

2. Hexadecimal binary values can be attributed to non-numeric values by expressing literals as X"nn".

3. Reserved word SPACE can be used to clear the whole CRT screen.

4. ANS switch not set enables omission of certain ANSI required "red tape" paragraphs and
statements.

5. COMPUTATIONAL-3 or COMP-3 can be specified in the USAGE clause to specify packed
internal decimal storage, (BCD).

6. ACCEPT data-name-1 [AT { data-name-2 | literal-1 }] FROM CRT

gives enhanced CRT input features

7. DISPLAY { data-name-1 | literal-1 } [AT { data-name-2 | literal-2 }] UPON { CRT | CRT-
UNDER }

gives enhanced CRT output facilities.

8. 'CURSOR IS data-name' can be specified in SPECIAL-NAMES and 'data-name' in WORKING-
STORAGE section to specify CRT cursor address for ACCEPT statements.

SEQUENTIAL, RELATIVE AND INDEXED I-O

Level One Implementation
Fully implemented to Level One.

Level Two Implementation
1. The START statement is fully supported for Relative and Indexed files.

2. In sequential files, EXTEND is supported.

3. In OPEN and CLOSE statements:

REEL

Appendix I. LANGUAGE SPECIFICATION

175

UNIT

are accepted for documentation purposes only.

4. LOCK in the CLOSE statement is treated as documentary only.

5. Dynamic access mode and READ NEXT are supported for relative and indexed files.

6. Only the first assignment in each ASSIGN is actioned, others are treated as documentary only at
compilation.

7. The I-O-CONTROL paragraph is treated as documentary only as are its RERUN and SAME AREA
clauses.

8. The following are treated as documentary only in the FD clause:

BLOCK CONTAINS
CODE-SET
DATA RECORDS
LABEL RECORDS
RECORDS CONTAINS
VALUE OF

CIS COBOL Extensions
1. Run Time allocation of file-names. See Appendix F in the CIS COBOL Operating Guide.

2. LINE SEQUENTIAL is an additional file type.

3. All File Description (FD) clauses are optional when ANS switch is unset.

4. Tabbing is available, specified by TAB in the WRITE statement.

TABLE HANDLING

Level One Implementation
Fully implemented to Level One.

CIS COBOL Extensions
1. Items can be accessed in tables up to 49 dimensions. This extension is restricted to three dimensions

if the ANS switch is set.

SEGMENTATION

Level One Implementation
Fully implemented to Level One.

LIBRARY

Level One Implementation
Fully implemented to Level One.

Appendix I. LANGUAGE SPECIFICATION

176

DEBUG

Level One Implementation
Fully implemented to Level 1 plus an additional Interactive Run-Time Debug package.

CIS COBOL Extensions
A powerful Run-Time Debug package is available. See Chapter 3 in the CIS COBOL Operating Guide.

INTER-PROGRAM COMMUNICATION

Level Two Implementation
Fully implemented to Level Two.

177

Index
A
ACCEPT Statement, 47
Access Mode, 71, 85, 101
ADD Statement, 49
Algebraic Signs, 13
Alignment Rules, Standard, 14
Alphabetic Data Rules, 32
Alphanumeric Data Rules, 33
Alphanumeric Edited Data Rules, 33
ALTER Statement, 50
ANSI (ANS) Compiler Directive, 16
Area, Indicator, 3
Arithmetic Statements, 47
ASSIGN Clause, 73, 88, 104
AT END Condition, 72, 87, 103

B
Blank Lines, 22
BLANK WHEN ZERO Clause, 30
BLOCK CONTAINS Clause, 75, 90, 106
Body, Procedure Division, 19

C
CALL Statement, 132
CANCEL Statement, 133
Character Representation and Radix, 12
Character Sets, 5
Character Strings, 6
Character Strings, PICTURE, 10
CIS COBOL, What It Is, 1
Class Condition, 45
Classes of Data, Concepts, 11
Classification, Segmentation, 120
Clause, ASSIGN, 73, 88, 104
Clause, BLANK WHEN ZERO, 30
Clause, BLOCK CONTAINS, 75, 90, 106
Clause, CODE-SET, 75
Clause, CURSOR IS, 28
Clause, DATA RECORDS, 76, 90, 106
Clause, DATA-NAME or FILLER, 30
Clause, FILE STATUS, 73, 88, 104
Clause, JUSTIFIED, 31
Clause, LABEL RECORDS, 76, 91, 107
Clause, OCCURS, 67
Clause, ORGANIZATION, 73, ,
Clause, PICTURE, 32
Clause, RECORD CONTAINS, 76, 91, 107
Clause, RECORD KEY,
Clause, REDEFINES, 39
Clause, SELECT, 73, 87, 104
Clause, SIGN, 39
Clause, SYNCHRONIZED, 41
Clause, USAGE, 42, 68
Clause, VALUE, 42

Clause, VALUE OF, 77, 91, 107
Clause, WITH DEBUGGING MODE, 126
CLOSE Statement, 77, 92, 108
COBOL Words, 6
CODE-SET Clause, 75
Comment Entries, 10
Comment Lines, 23
COMP(UTATIONAL), 12
Comparison Involving Index-Names, 68
Comparison of Nonnumeric, 45
Comparison of Numeric, 44
Compile Time Debug Switch, 125
Compiler Directive, ANSI, 16
Computer Independent Date, 11
Concept, Classes of Data, 11
Concepts, Computer, 11
Concepts, Language, 5
Concepts, Levels, 11
Condition-Name, 7, 15
Condition-Name Rules, 28
Conditional Expressions, 43
Conditions, AT END, 72, 87, 103
Conditions, Class, 45
Conditions, INVALID KEY, 97, 111
Conditions, Relation, 44
Conditions, Simple, 44
Conditions, Switch-Status, 46
CONFIGURATION SECTION, 26
Connectives, 8
Constants, Figurative, 8
Continuation of Lines, 22
COPY Statement, 123
CRT Devices, 47
Current Record Pointer, 71, 85, 101
CURSOR IS Clause, 28

D
Data Description, Computer, 11
Data Description, Entries, 43
Data Description, Entry, 29
Data Division Entries, 22
Data Division in Indexed I-O, 105
Data Division in Inter-Program, 131
Data Division in Nucleus, 29
Data Division in Relative, 89
Data Division in Sequential, 74
DATA RECORDS Clause, 76, 90, 106
DATA-NAME or FILLER Clause, 30
DATE-COMPILED Paragraph, 26
Debug, 125
DEBUG, Environment, 126
DEBUG, Object Time Switch, 125
DEBUG, Procedure Division in COBOL, 126
DEBUG, Run Time, 125
Declarations, 18
Declaratives, 23
DELETE Statement, 92, 108
DISPLAY Statement, 51

Index

178

DIVIDE Statement, 52
Division Format, 22
Division Header, 22

E
Editing Symbols, 36
Editing Types for Data Categories, 35
Elementary Item Size Rules, 33
Elements, 2
ENTER Statement, 53
Entries, Comment, 11
Entry, FILE-CONTROL, 73, 87, 104
Environment Division in COBOL DEBUG, 126
Environment Division in Indexed I-O, 103
Environment Division in Nucleus, 26
Environment Division in Relative, 87
Environment Division in Sequential, 72
Execution, Procedure Division, 19
EXIT PROGRAM Statement, 134
EXIT Statement, 53
Expressions, Conditional, 44
Extra Intermediate Code Files, 121

F
Figurative Constant Values, 9
Figurative Constants, 8
File Description Entry, 74, 90, 106
FILE Section, 74, 89, 105
FILE STATUS Clause, 73, 87, 104
FILE-CONTROL Entry, 73, 87, 104
FILE-CONTROL Paragraph, 72, 87, 103
FILLER or DATA-NAME Clause, 30
Fixed Insertion Editing Rules, 36
Fixed Portion, 119
Formats, Division, 22
Formats, General, 2
Formats, Paragraph, 22
Formats, Reference, 21
Formats, Section, 22
Formats, Source, 3

G
General Formats, 2
GO TO Statement, 54

H
Header, Division, 22
Header, Paragraph, 22
Header, Procedure Division, 19
Header, Section, 22
Hexadecimal Characters, 9
Hints, Useful, 135

I
I-O Control Paragraph, 73, 88, 105
Identification Division, 16, 25
Identifier, 15

IF Statement, 54
Incompatible Data, 47
Independent Segments, 119
Index Data Items, 68
Index-Names, 68
Indexed I-O Module, 101
Indexed I-O Module, Data Division, 105
Indexed I-O Module, Environment Division, 103
Indexed I-O Module, Procedure Division, 108
Indexing, 14
Indicator Area, 3
Input-Output Section, 72, 87, 103
Input-Output Status, 71, 85, 101
Insertion Editing Rules, Fixed, 36
Insertion Editing Rules, Floating, 36
Insertion Editing Rules, Simple, 36
Insertion Editing Rules, Special, 36
INSPECT Statement, 55
Inter-Program Communication, Data Division, 131
Inter-Program Communication, Procedure Division,
132
Intermediate Code Files, Extra, 121
INVALID KEY Condition, ,

J
JUSTIFIED Clause, 31

K
Keys, Status, 71, 85, 102

L
LABEL RECORDS Clause, 76, 91, 107
Language Concepts, 5, 71, 85, 101
Language Structure, 5
Levels, Concepts of, 11
Levels, Number, 11, 31
Library Module, 123
Lines, Blank, 22
Lines, Comment, 23
Lines, Continuation of, 22
Lines, Debugging, 128
Linkage Section, 131
Literals, Nonnumeric, 8
Literals, Numeric, 9

M
Mnemonic-Name, 7
Mode, Access, 71, 85, 101
MOVE Statement, 59
MULTIPLY Statement, 62

N
Name, Condition, 7
Name, Mnemonic, 7
Name, Paragraph, 7
Name, Section, 7
Name, System, 8

Index

179

Name, User-Defined, 6
Nonnumeric Literals, 8
Nucleus Function, 25
Nucleus, Data Division in, 29
Nucleus, Environment Division in, 26
Nucleus, Identification, 25
Nucleus, Organization, 25
Nucleus, Procedure Division in, 43
Nucleus, Structure, 25
Number, Level, 11, 31
Number, Sequence, 3, 22
Numeric Data Rules, 33
Numeric Edited Data Rules, 33
Numeric Literals, 9
Numeric Operands, 44

O
OBJECT Time DEBUG Switch, 125
OBJECT-COMPUTER Paragraph, 27
OCCURS Clause, 67
OPEN Statement, 77, 93, 109
Operand Comparison, 44
Operand, Overlapping, 47, 69
Organisation, Data Division, 18
Organisation, Environment Division, 17
Organisation, Identification Division, 16
Organisation, Indexed, 101
Organisation, Nucleus, 25
Organisation, Procedure Division, 19
Organisation, Relative, 85
Organisation, Segmentation, 119
Organisation, Sequential, 71
ORGANIZATION IS INDEXED, 104
ORGANIZATION IS LINE SEQUENTIAL, 73
ORGANIZATION IS RELATIVE, 88
ORGANIZATION IS SEQUENTIAL, 73
Organization, LINE SEQUENTIAL, 73
Overlapping Operands, 47, 69

P
Paragraph Format, 22
Paragraph, DATE-COMPILED, 26
Paragraph, FILE-CONTROL, 72, 87, 103
Paragraph, I-O CONTROL, 74, 89, 105
Paragraph, OBJECT-COMPUTER, 27
Paragraph, PROGRAM-ID, 25
Paragraph, SOURCE-COMPUTER, 26
Paragraph, SPECIAL-NAMES, 27
Paragraph-Name, 7
PERFORM Statement, 62, 121
Phrase, ROUNDED, 46
Phrase, SIZE ERROR, 46
PICTURE Character Strings, 10
PICTURE Clause, 32
Portion, Fixed, 119
Precedence Rules, 37
Procedure Division Header, 19, 132

Procedure Division in COBOL Debug, 126
Procedure Division in Indexed I-O, 108
Procedure Division in Nucleus, 43
Procedure Division in Relative, 92
Procedure Division in Sequential, 77
Procedure Division in the Inter-Program
Communication Module, 132
Procedure Division, Body, 19
Procedure Division, Execution, 19
Procedure Division, General, 19
Procedures, 18
Program Segments, 119
Program Structure, 2, 15, 120
PROGRAM-ID Paragraph, 25
Programming Techniques, 135

R
READ Statement, 79, 94, 111
RECORD CONTAINS Clause, 76, 91, 107
Record Description Structure, 74, 89, 105
RECORD KEY Clause, 104
Record Pointer, Current, 71, 85, 101
REDEFINES Clause, 39
Reference, Uniqueness of, 14
Relation Condition, 44
Relation Condition, Table, 68
Relative I-O Module, Data Division, 89
Relative I-O Module, Environment Division, 87
Relative I-O Module, Procedure Division, 92
Reserved Words, 8, 23
REWRITE Statement, 80, 96, 112
ROUNDED Phrase, 46
Rules, Alignment, Standard, 14
Rules, Alphabetic Data, 32
Rules, Alphanumeric Data, 33
Rules, Alphanumeric Edited Data, 33
Rules, Editing, 35
Rules, Editing, Fixed, 36
Rules, Editing, Floating, 36
Rules, Editing, Simple, 36
Rules, Editing, Special, 36
Rules, Editing, Zero, 37
Rules, Elementary Item Size, 33
Rules, General, 2
Rules, Numeric Data, 33
Rules, Numeric Edited Data, 33
Rules, Precedence, 38
Rules, Symbols Used, 33
Rules, Syntax, 25
Run Time Debug, 125

S
Section Format, 22
SECTION, CONFIGURATION, 26
Section, FILE, 74, 89, 105
Section, Input-Output, 72, 87, 103
Section, Linkage, 131

Index

180

SECTION, WORKING-STORAGE, 29
Section-Name, 7
Segmentation, 119
Segmentation Classification, 120
Segmentation Control, 120
Segmentation Organisation, 119
Segments, Independent, 119
Segments, Program, 119
SELECT Clause, 73, 87, 104
Selection of Character, 12
Sentences, 19
Sentences, Compiler Directing, 20
Sentences, Conditional, 20
Sentences, Imperative, 21
Separators, 5
Sequence Number, 3, 22
Sequential I-O Module, Data Division, 74
Sequential I-O Module, Environment Division, 72
Sequential I-O Module, Procedure Division, 77
SET Statement, 69
SIGN Clause, 39
Signs, Algebraic, 13
Simple Conditions, 44
Simple Insertion Editing Rules, 36
SIZE ERROR Phrase, 46
Sizing, 136
Source Format, 3
SOURCE-COMPUTER Paragraph, 26
Special Insertion Editing Rules, 36
SPECIAL-NAMES Paragraph, 27
Standard Alignment Rules, 14
START Statement, 97, 114
Statement, ACCEPT, 47
Statement, ADD, 50
Statement, ALTER, 50
Statement, CALL, 132
Statement, CANCEL, 133
Statement, CLOSE, 77, 92, 108
Statement, COPY, 123
Statement, DELETE, 92, 108
Statement, DISPLAY, 51
Statement, DIVIDE, 52
Statement, ENTER, 53
Statement, EXIT, 53
Statement, EXIT PROGRAM, 134
Statement, GO TO, 54
Statement, IF, 54
Statement, INSPECT, 55
Statement, MOVE, 59
Statement, MULTIPLY, 62
Statement, OPEN, 77, 93, 109
Statement, PERFORM, 62
Statement, READ, 79, 94, 111
Statement, REWRITE, 80, 96, 112
Statement, SET, 69
Statement, START, 97, 114
Statement, STOP, 65
Statement, SUBTRACT, 65

Statement, USE, 81, 98, 115
Statement, USE FOR DEBUGGING, 126
Statement, WRITE, 82, 99, 115
Statements, Arithmetic, 47
Statements, Compiler Directing, 20
Statements, Conditional, 20
Statements, Imperative, 20
Status Keys, 71, 85, 101
Status, Input-Output, 71, 85, 101
STOP Statement, 65
Structure, Data Division, 18
Structure, Environment Division, 17
Structure, Identification Division, 16
Structure, Language, 5
Structure, Nucleus, 25
Structure, Procedure Division, 19
Structure, Program, 2, 15
Structure, Program Segments, 120
Structure, Record Description, 74, 89, 106
Subscripting, 14
SUBTRACT Statement, 65
Suppression Editing, Zero, 37
Switch Status Condition, 46
Switch, Compile Time Debug, 125
Symbols Used Rules, 33
SYNCHRONIZED Clause, 41
Syntax Rules, 2
Syntax Rules, in Nucleus, 25
System-Name, 8

T
Table Handling, 67
Table Handling, Data Division in, 67
Table Handling, Procedure Division in, 68
Techniques, Programming, 135

U
Uniqueness of Reference, 14
USAGE Clause, 42, 68
USE FOR DEBUGGING Statement, 126
USE Statement, 81, 98, 115
Useful Hints, 135
User-Defined Words, 6

V
VALUE Clause, 42
VALUE OF Clause, 77, 91, 107

W
WITH DEBUGGING MODE Clause, 126
Words, COBOL, 6
Words, Key, 8
Words, Optional, 8
Words, Reserved, 8, 23
Words, User Defined, 6
Working-Storage Noncontiguous, 29
Working-Storage Records, 29

Index

181

WORKING-STORAGE Section, 29
WRITE Statement, 82, 99, 115

Z
Zero-Suppression Editing Rules, 37

182

183

Colophon
This book was reconstructed into DocBook format from a scanned PDF found on the Internet. The PDF file already
had OCR performed and the text was embedded in the file.

The original was published by Acorn Computers Limited in cooperation with the British Broadcasting Corporation.

Source version: 1.0.2

184

	CIS COBOL Language Reference Manual
	Table of Contents
	PREFACE
	AUDIENCE
	MANUAL ORGANIZATION
	RELATED PUBLICATIONS
	NOTATION IN THIS MANUAL

	Chapter 1. Introduction
	WHAT IS CIS COBOL?
	PROGRAM STRUCTURE

	FORMATS AND RULES
	GENERAL FORMAT
	SYNTAX RULES
	GENERAL RULES
	ELEMENTS

	SOURCE FORMAT
	SEQUENCE NUMBER
	INDICATOR AREA

	Chapter 2. COBOL Concepts
	LANGUAGE CONCEPTS
	CHARACTER SET
	LANGUAGE STRUCTURE
	Separators
	Character-Strings
	COBOL Words
	Literals
	Figurative Constant Values
	PICTURE Character-Strings
	Comment-Entries

	CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION
	Concept of Levels
	Level-Numbers

	Concept of Classes of Data
	Selection of Character Representation and Radix
	Algebraic Signs
	Standard Alignment Rules
	Uniqueness of Reference
	Subscripting
	Indexing
	Identifier
	Condition-Name

	PROGRAM STRUCTURE
	THE "ANSI SWITCH" COMPILER DIRECTIVE

	IDENTIFICATION DIVISION
	GENERAL DESCRIPTION
	ORGANISATION
	STRUCTURE
	General format

	ENVIRONMENT DIVISION
	GENERAL DESCRIPTION
	ORGANIZATION
	STRUCTURE
	General Format

	DATA DIVISION
	OVERALL APPROACH
	PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION
	Data Division Organization
	General Format

	PROCEDURE DIVISION
	GENERAL DESCRIPTION
	Declaratives
	Procedures
	Execution
	General Format
	Procedure Division Header
	Procedure Division Body

	STATEMENTS AND SENTENCES
	Conditional Statement
	Conditional Sentence
	Compiler Directing Statement
	Compiler Directing Sentence
	Imperative Statement
	Imperative Sentence

	REFERENCE FORMAT
	GENERAL DESCRIPTION
	REFERENCE FORMAT REPRESENTATION
	Sequence Numbers
	Continuation of Lines
	Blank Lines

	DIVISION, SECTION, PARAGRAPH FORMATS
	Division Header
	Section Header
	Paragraph Header, Paragraph-Name and Paragraph

	DATA DIVISION ENTRIES
	DECLARATIVES
	COMMENT LINES

	RESERVED WORDS

	Chapter 3. THE NUCLEUS
	FUNCTION OF THE NUCLEUS
	IDENTIFICATION DIVISION IN THE NUCLEUS
	GENERAL DESCRIPTION
	ORGANIZATION
	Structure
	General Format
	Syntax Rules

	THE PROGRAM-ID PARAGRAPH
	Function
	General Format
	Syntax Rules
	General Rules

	THE DATE-COMPILED PARAGRAPH
	Function
	General Format
	Syntax Rule
	General Rule

	ENVIRONMENT DIVISION IN THE NUCLEUS
	CONFIGURATION SECTION
	The SOURCE-COMPUTER Paragraph
	Function
	General Format
	Syntax Rule
	General Rules

	The OBJECT-COMPUTER Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	The SPECIAL-NAMES Paragraph
	Function
	General Format
	General Rules

	DATA DIVISION IN THE NUCLEUS
	WORKING STORAGE SECTION
	Noncontiguous Working-Storage
	Working-Storage Records
	Initial Values

	THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules
	General Rule

	THE BLANK WHEN ZERO CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE DATA-NAME OR FILLER CLAUSE
	Function
	General Format
	Syntax Rule
	General Rule

	THE JUSTIFIED CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	LEVEL NUMBER
	Function
	General Format
	Syntax Rules
	General Rules

	THE PICTURE CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules
	Alphabetic Data Rules
	Numeric Data Rules
	Alphanumeric Data Rules
	Alphanumeric Edited Data Rules
	Numeric Edited Data Rules
	Elementary Item Size
	Symbols Used

	Editing Rules
	Simple Insertion Editing
	Special Insertion Editing
	Fixed Insertion Editing
	Floating Insertion Editing
	Zero Suppression Editing

	Precedence Rules

	THE REDEFINES CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE SIGN CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE SYNCHRONIZED CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE USAGE CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE VALUE CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules
	Data Description Entries

	PROCEDURE DIVISION IN THE NUCLEUS
	CONDITIONAL EXPRESSIONS
	Simple Conditions
	Relation Condition
	Comparison of Numeric Operands:
	Comparison of Nonnumeric Operands:

	Class Condition
	Switch-Status Condition

	COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS
	The Rounded Phrase
	The Size Error Phrase
	SIZE ERROR Phrase Not Specified
	SIZE ERROR Phrase Specified

	Arithmetic Statements
	Overlapping Operands
	Incompatible Data
	CRT Devices

	THE ACCEPT STATEMENT
	Function
	General Formats
	Syntax Rule
	General Rules

	THE ADD STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE ALTER STATEMENT
	Function
	General Format
	Syntax Rule
	General Rule

	THE DISPLAY STATEMENT
	Function
	General Formats
	Syntax Rules
	General Rules

	THE DIVIDE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE ENTER STATEMENT
	Function
	General Format
	Syntax Rule
	General Rule

	THE EXIT STATEMENT
	Function
	General Format
	Syntax Rules
	General Rule

	THE GO TO STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE IF STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE INSPECT STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE MOVE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE MULTIPLY STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE PERFORM STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE STOP STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE SUBTRACT STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 4. TABLE HANDLING
	INTRODUCTION TO THE TABLE HANDLING MODULE
	DATA DIVISION IN THE TABLE HANDLING MODULE
	THE OCCURS CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE USAGE CLAUSE
	Function

	General Format
	Syntax Rules
	General Rules

	PROCEDURE DIVISION IN THE TABLE HANDLING MODULE
	RELATION CONDITION
	Comparisons Involving Index-Names And/or Index Data Items

	OVERLAPPING OPERANDS
	THE SET STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 5. SEQUENTIAL INPUT AND OUTPUT
	INTRODUCTION TO THE SEQUENTIAL I-O MODULE
	LANGUAGE CONCEPTS
	Organization
	Access Mode
	Current Record Pointer
	I-O Status
	Status Key 1
	Status Key 2
	Valid Combinations of Status Keys 1 and 2
	The AT END Condition

	ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE
	INPUT-OUTPUT SECTION
	The FILE-CONTROL Paragraph
	Function
	General Format

	The FILE CONTROL Entry
	Function
	General Format
	Syntax Rules
	General Rules

	The I-O-CONTROL Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	DATA DIVISION IN THE SEQUENTIAL I-O MODULE
	FILE SECTION
	RECORD DESCRIPTION STRUCTURE
	THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules

	THE BLOCK CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE CODE-SET CLAUSE
	Function
	General Format
	Syntax Rules
	General Rule

	THE DATA RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rules

	THE LABEL RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rule

	THE RECORD CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE VALUE OF CLAUSE
	Function
	General Format
	General Rules

	PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE
	THE CLOSE STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE OPEN STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE READ STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE REWRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE USE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE WRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 6. RELATIVE INPUT AND OUTPUT
	INTRODUCTION TO THE RELATIVE I-O MODULE
	LANGUAGE CONCEPTS
	Organization
	Access Modes
	Current Record Pointer
	I-O Status
	Status Key 1
	Status Key 2
	Valid Combinations of Status Keys 1 and 2
	The INVALID KEY Condition
	The AT END Condition

	ENVIRONMENT DIVISION IN THE RELATIVE I-O MODULE
	INPUT-OUTPUT SECTION
	The File-Control Paragraph
	Function
	General Format

	The File-Control Entry
	Function
	General Format
	Syntax Rules
	General Rules

	The I-O-CONTROL Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	DATA DIVISION IN THE RELATIVE I-O MODULE
	FILE SECTION
	RECORD DESCRIPTION STRUCTURE
	THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules

	THE BLOCK CONTAINS CLAUSE
	Function
	General Format
	General Rules

	THE DATA RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rules

	THE LABEL RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rule

	THE RECORD CONTAINS CLAUSE
	Function
	Format
	General Rule

	THE VALUE OF CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	PROCEDURE DIVISION IN THE RELATIVE I-O MODULE
	THE CLOSE STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE DELETE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE OPEN STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE READ STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE REWRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE START STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE USE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE WRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 7. INDEXED INPUT AND OUTPUT
	INTRODUCTION TO THE INDEXED I-O MODULE
	LANGUAGE CONCEPTS
	Organization
	Access Modes
	Current Record Pointer
	I-O Status
	Status Key 1
	Status Key 2
	Valid Combinations of Status Keys 1 and 2
	The INVALID KEY Condition
	The AT END Condition

	ENVIRONMENT DIVISION IN THE INDEXED I-O MODULE
	INPUT-OUTPUT SECTION
	The File Control Paragraph
	Function
	General Format

	The File Control Entry
	Function
	General Format
	Syntax Rules
	General Rules

	The I-O Control Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	DATA DIVISION IN THE INDEXED I-O MODULE
	FILE SECTION
	RECORD DESCRIPTION STRUCTURE
	THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules

	THE BLOCK CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE DATA RECORDS CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE LABEL RECORDS CLAUSE
	Function
	General Format
	General Rule

	THE RECORD CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE VALUE OF CLAUSE
	Function
	General Format
	General Rules

	PROCEDURE DIVISION IN THE INDEXED I-O MODULE
	THE CLOSE STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE DELETE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE OPEN STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE READ STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE REWRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE START STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE USE STATEMENT
	Function
	General Format
	Syntax Rules

	THE WRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 8. SEGMENTATION
	INTRODUCTION TO THE SEGMENTATION MODULE
	GENERAL DESCRIPTION OF SEGMENTATION
	ORGANIZATION
	Program Segments
	Fixed Portion
	Independent Segments

	SEGMENTATION CLASSIFICATION
	SEGMENTATION CONTROL

	STRUCTURE OF PROGRAM SEGMENTS
	SEGMENT-NUMBERS
	GENERAL FORMAT
	SYNTAX RULES
	GENERAL RULES

	RESTRICTIONS ON PROGRAM FLOW
	THE ALTER STATEMENT
	THE PERFORM STATEMENT

	EXTRA INTERMEDIATE CODE FILES

	Chapter 9. LIBRARY
	INTRODUCTION TO THE LIBRARY MODULE
	THE COPY STATEMENT
	FUNCTION
	GENERAL FORMAT
	SYNTAX RULES
	GENERAL RULES

	Chapter 10. DEBUG AND INTERACTIVE DEBUGGING
	INTRODUCTION
	CIS COBOL RUN-TIME DEBUG EXTENSION
	STANDARD ANSI COBOL DEBUG
	COMPILE TIME SWITCH
	COBOL DEBUG OBJECT TIME SWITCH
	ENVIRONMENT DIVISION IN COBOL DEBUG
	The WITH DEBUGGING MODE Clause
	Function
	General Format
	General Rules

	PROCEDURE DIVISION IN COBOL DEBUG
	The USE FOR DEBUGGING Statement
	Function
	General Format
	Syntax Rules
	General Rules

	DEBUGGING LINES

	Chapter 11. INTERPROGRAM COMMUNICATION
	INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE
	DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE
	LINKAGE SECTION
	Noncontiguous Linkage Storage

	PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE
	THE PROCEDURE DIVISION HEADER
	THE CALL STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE CANCEL STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE EXIT PROGRAM STATEMENT
	Function
	General Format
	Syntax Rules
	General Rule

	Chapter 12. PROGRAMMING TECHNIQUES, USEFUL HINTS AND PROGRAM SIZING
	PROGRAMMING TECHNIQUES
	USEFUL HINTS

	Appendix A. RESERVED WORD LIST
	Appendix B. CHARACTER SETS AND COLLATING SEQUENCE
	Appendix C. GLOSSARY
	INTRODUCTION
	DEFINITIONS

	Appendix D. COMPILE-TIME ERRORS
	Appendix E. RUN-TIME ERRORS
	Appendix F. SYNTAX SUMMARY
	GENERAL FORMAT FOR IDENTIFICATION DIVISION
	GENERAL FORMAT FOR ENVIRONMENT DIVISION
	GENERAL FORMAT FOR FILE-CONTROL ENTRY
	GENERAL FORMAT FOR THE DATA DIVISION
	GENERAL FORMAT FOR DATA DESCRIPTION ENTRY
	GENERAL FORMAT FOR PROCEDURE DIVISION
	GENERAL FORMAT FOR VERBS
	GENERAL FORM FOR COPY STATEMENT

	Appendix G. SUMMARY OF EXTENSIONS TO ANSI COBOL
	SCREEN FORMATTING AND DATA ENTRY
	THE ACCEPT STATEMENT
	THE DISPLAY STATEMENT

	DISK FILES
	LINE SEQUENTIAL FILES
	RUN TIME INPUT OF FILENAMES

	LOWER CASE CHARACTERS
	HEXADECIMAL VALUES
	INTERACTIVE DEBUGGING

	Appendix H. SYSTEM DEPENDENT LANGUAGE FEATURES
	MANDATORY CHANGES
	ENVIRONMENT DIVISION
	Configuration Section
	Input-Output Section

	STATEMENTS COMPILED AS DOCUMENTATION ONLY
	ENVIRONMENT DIVISION
	I-O-Control Paragraph

	DATA DIVISION
	File Description Paragraph

	PROCEDURE DIVISION
	CLOSE Statement

	Appendix I. LANGUAGE SPECIFICATION
	NUCLEUS
	Level One Implementation
	Level Two Implementation
	CIS COBOL Extensions

	SEQUENTIAL, RELATIVE AND INDEXED I-O
	Level One Implementation
	Level Two Implementation
	CIS COBOL Extensions

	TABLE HANDLING
	Level One Implementation
	CIS COBOL Extensions

	SEGMENTATION
	Level One Implementation

	LIBRARY
	Level One Implementation

	DEBUG
	Level One Implementation
	CIS COBOL Extensions

	INTER-PROGRAM COMMUNICATION
	Level Two Implementation

	Index

