CIS COBOL Language
Reference Manual

Version 4.5

CIS COBOL Language Reference Manual: Version 4.5
Copyright © 1978, 1980, 1982, 1983 Micro Focus Limited

Neither the whole nor any part of the information contained in, or the product described in, this manual may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous development and improvement. All information
of atechnical nature and particulars of the product and its use (including the information and particulars in this manual) are given by Acorn
Computersin good faith. However, it is acknowledged that there may be errors or omissionsin thismanual. A list of details of any amendments
or revisions to this manual can be obtained upon request from Acorn Computers Technical Enquiries. Acorn Computers welcome comments
and suggestions relating to the product and this manual.

All correspondence should be addressed to:

Micro Focus Limited
26 West street
Newbury Berkshire
RG13 1JT

CISCOBOL, LEVEL Il COBOL, FORMS-2 ANIMATOR and FILESHARE are trademarks of Micro Focus Ltd
CP/M® and CP/M-86® are registered trademarks of Digital Research Inc

Z80® isaregistered trademark of Zilog Inc

ADM-3A™ isatrademark of Lear Siegler Inc

8080® is aregistered trademark of Intel Corp

Acknowledgements

COBOL isan industry language and is not the property of any company or group of companies, or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the Univac® | and 11,
Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

have specifically authorized the use of thismaterial in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Table of Contents

PREFACE ..ottt XXiii
AUDIENCE ..ot XXiii
MANUAL ORGANIZATION ...uiiiiiiiieeiet ettt et e e e e eneans XXiii
RELATED PUBLICATIONS ..ottt ettt ettt e e XXiV
NOTATION IN THIS MANUAL ..ot XXiV

O g oo 18 ot o o IO TPPPRTTRUPPIN 1
WHAT IS CIS COBOL? ..ottt ettt ettt 1

PROGRAM STRUCTUREcotiiiiiiiiieccee et 2
FORMATS AND RULESot 2
GENERAL FORMAT .ttt 2
SYNTAX RULES ... 2
GENERAL RULESottt 2
ELEMENTS Lottt et 2
SOURCE FORMAT ..ottt ettt et e e et e et e e e e s 3
SEQUENCE NUMBER ..ottt e e 3
INDICATOR AREA ..ot ettt et e e e 3

2. COBOL CONCEPLS .. etueeteeeii ettt ettt ettt et et e e e et e et e e eenas 5

LANGUAGE CONCEPTS ...ttt ettt 5
CHARACTER SET ..o 5
LANGUAGE STRUCTURE ...ttt 5

SEPAIBLOISecve ettt 5
CaraCter-SIINGS ... eeeee ettt 6
COBOL WOKTS ...ttt ettt 6
LItEIaAIS ettt e e 8
Figurative Constant ValUEScoeuuuiiiiiiiiiiiiiie e 9
PICTURE CharaCter-StringScceuvuieieiiieeeeiiie e 10
ComMMENt-ENLESoooiiiiei e 10
CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION 11
CoNCEPL OF LEVEIS ... 11
Level-NUMDBEYS ... 11
Concept Of Classes Of DaAeeverenieeiiiiee e 11
Selection of Character Representation and RadiXcovevvvviiieiiiinienenn. 12
AlGEDIAIC SIGNS ... 13
Standard AlIgNMENt RUIESuiiiiii e 14
Uniqueness Of REFEIENCEuuiiiiiiii e 14
SUBSCITPEING .. eevti ettt e e e e e e 14
INOEXING ..t 14
LAENEITIEN ... e 15
ConditioN-NAIMEooiiiii e 15

PROGRAM STRUCTURE ..ottt ettt 15
THE "ANS|I SWITCH" COMPILER DIRECTIVEccotiiiiiiiiiieiiiieeee e 16

IDENTIFICATION DIVISION ..ottt 16
GENERAL DESCRIPTIONouuiiiiiiiieiiii ettt 16
ORGANISATION ..ttt e e e e e eat e eeee 16
STRUCTURE ..ot ettt 16

GENEral TOMMBLoeeee e 16

ENVIRONMENT DIVISIONouiiiiiiiiieiiiii et 17
GENERAL DESCRIPTIONouuiiiiiiiieiiii ettt 17
ORGANIZATION ottt et e e 17
STRUCTURE ..ot ettt 17

GeNEral FOMMELoeeiiie e 17

DATA DIVISION .ottt e et e et e e e e eees 17
OVERALL APPROAGCH ..ottt 17
PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTIONc.ccceuee. 18

Data Division OrganiZationieeeeuiiereiiie et e e 18

CIS COBOL Language Reference Manual

GENEIAl FOIMAE ..vuiviiitiei e e e aaes 18
PROCEDURE DIVISION ...ouitiiiiiiii ettt et e e s e e e e e e eae e 18
GENERAL DESCRIPTION ...iiuiiiiiiiiei e e e e e e et e e e b 18

(DI = = 1AV 18
PrOCEAUIES .. .oeiieiei et 18

EXECULION ..uiveiiiiii ettt e e e e e e e e e et 19

GENEIAl FOIMAE ..vuiviiitiei e e e aaes 19

Procedure DiviSion HEAOErcvivvniiiiiiiicieieeee e 19

Procedure Division BOAYcocovuieiiiiiiiiiiciii e 19

STATEMENTS AND SENTENCESoitiiiiiieieeeeeeeee e 19
Conditional SEAEMENEvuiiriiee e 20
Conditional SENLENCEuvviiri i 20

Compiler Directing Statementocevuieiiiiiiiieeee e e e e 20

Compiler Directing SENtENCEccvuiiieei e 20

IMPErative SEAEMENTieie e e 20

IMPErative SENMENCEuu it e e e e e e e e e e e e e e eanees 21
REFERENCE FORM AT oottt ettt e e e e e e et e e e e e e eaa e 21
GENERAL DESCRIPTION ...iiuiiiiiiiiei e e e e et e e eaaes 21
REFERENCE FORMAT REPRESENTATIONccvviiiiiiiiiieiiecieeeeeeeeei e 21
SequENCe NUMDBEIS ... e 22
ContiNUALION OF LINES ...vuiiviii i 22

BlanK LiNES c.uiiviiiiiiiiee et 22
DIVISION, SECTION, PARAGRAPH FORMATS ..ot 22
DiVISION HEAOENceviiiiiii e 22

SECHON HEAENiveiiiiiiee e 22

Paragraph Header, Paragraph-Name and Paragraphccoooovivivinennnnn. 22

DATA DIVISION ENTRIES .. .ottt 22
DECLARATIVES ... ittt e e 23
COMMENT LINES ..ottt 23
RESERVED WORDS ..ottt ettt e e e e e e e e e et e e e e eeaas 23
B . THE NUCLEUS ..o e e e 25
FUNCTION OF THE NUCLEUS ...t 25
IDENTIFICATION DIVISION IN THE NUCLEUS ..ot 25
GENERAL DESCRIPTION ...iiuiiiiiiiiei e e e e et e e e eaaes 25
ORGANIZATION Lottt e e e e e e eaees 25

S 1o 11 = S 25

GENEIAl FOIMAE ..vuiteite e e e e e 25

1= G (U = 25

THE PROGRAM-ID PARAGRAPH .. .ottt 25
FUNCEION .« e 25

GENEIAl FOIMAE ..vuiteite e e e e e 26

1= G (U = 26

GENEIAl RUIES ...ttt 26

THE DATE-COMPILED PARAGRAPH ..ot 26
FUNCEION .« e e 26

GENEIAl FOIMAE ..vuiviiit e e e e e 26

SYNEAX RUIE ... 26

GENEIAl RUIB ...t 26
ENVIRONMENT DIVISION IN THE NUCLEUSccoviiiiiiieieeeeee e 26
CONFIGURATION SECTION ...ttt aaes 26

The SOURCE-COMPUTER Paragraphccooooiiiiiiiiiiiiiceec e, 26

FUNCEION ©. e 26

GENEIAl FOIMAE .vuiviitee e 26

SYNEAX RUIE ..o e 26

GENEIAl RUIES ...vviiciicee e 27

The OBJECT-COMPUTER Paragraphcooovvviiiiiiiiiiecie e, 27

FUNCEION ©. e 27

GENEIAl FOIMAE .vuiviitee e 27

Vi

CIS COBOL Language Reference Manual

SYNEAX RUIES «.cevecei e e 27

GeNEral RUIES ... 27

The SPECIAL-NAMES Paragraphccccvvuuuiiiiiieeiiieeiicii e eeeeevviee s 27

[Tox o) o 27

General FOMMatiiiiiiii e e e 27

GeNEral RUIES ... 28

DATA DIVISION IN THE NUCLEUScuiiiiiiiiiieiie e e e 29
WORKING STORAGE SECTIONccciiiiiiiiiiiieeeeeeeeeiiie s eeeeeeaiins e e e e eeaaaes 29
Noncontiguous WOrking-StOrageceuueiiiiieiii e ee e eae e 29
WOrking-Storage RECOIAScuuuiiiiieiiiee e e e 29
INItIAl VAIUES ... e e 29

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETONc.cvvvvnnn... 29
[Tox (o) o 29
GeNEral FOMMALovviii e e 30
SYNEAX RUIES ... e 30
GENETal RUIE ...ceecee e e 30
THE BLANK WHEN ZERO CLAUSEcvviiiiieiiiiiiiiis et e e eeaianee 30
[Tox (o) o 30
GeNEral FOMMALovviii e e 30
1= G (U = 30
GENEral RUIES ... 30
THE DATA-NAME OR FILLER CLAUSEoovviiiiiiieeiieee e 30
[Tox o) o P 30
GeNEral FOMMALovvnii e e 31
SYNEAX RUIE ... 31
GENEral RUIE ...ceecee e e 31
THE JUSTIFIED CLAUSE ..ottt e e e e e aeaes 31
[Tox o) o P 31
GeNEral FOMMALovvnii e e 31
1= G (U = 31
GENEral RUIES ... 31
LEVEL NUMBERouiiiiiiiiiiiis ettt e et s e e e a e e et s n e e e e aeannne 31
[Tox o) o P 31
GeENEral FOMMAL ...covviii e e 31
1= (U = 32
GENEral RUIES ...t 32
THE PICTURE CLAUSE ..ottt e e e et s e e e e a e aaaana s 32
[Tox (o) o P 32
GeENEral FOMMAL ...covviii e e 32
1= (U = 32
GENEral RUIES ...t 32
Alphabetic Data RUIESccvviiiiii e 32

NUMENC Data RUIEScevviiii e 33
Alphanumeric Data RUIEScccoviiiiiiciie e 33
Alphanumeric Edited Data RUIEScccovvieiiiiiiiiec e, 33

Numeric Edited Data RUIEScccovviiiiiiiiii e 33
Elementary [temM SIZEcc.uviiiiiiii e 33

SYMbBOIS USEoiiiiii e 33

Editing RUIES ... coviiii e e e 35
Simple Insertion EAItiNgcc.vvvviiiiiiiicie e 36

Special Insertion Editingcoooviiiiiiiiiiie e 36

Fixed Insertion EAItiNgcocviiiiieiiiiciii e, 36

Floating Insertion EAitingcoovviiiiiiiiiiie e 36

Zero Suppression Editingo.vvviieiiii e 37
PrecedenCe RUIESciiiiiiie e e 37

THE REDEFINES CLAUSE ...t e e e 39
[Tox (o) o PP 39
GeENEral FOMMAL ...covviii e 39

vii

CIS COBOL Language Reference Manual

1= (U = 39
GENEIAl RUIES ...veii it 39
THE SIGN CLAUSE .. .ovii et r e 39
FUNCEION .« ot 40
GENEIAl FOIMAE ..vuiviiitiei e e e aaes 40
1= G (U = 40
GENEIAl RUIES ...veii it 40
THE SYNCHRONIZED CLAUSE ..ottt 41
FUNCEION .« ot 41
GENEIAl FOIMAE ..vuiviiitiei e e e aaes 41
SYNEAX RUIES ... e 41
GENEIAl RUIES .. viii it eaas 41
THE USAGE CLAUSE ...t 42
FUNCEION .« e e 42
GENEIAl FOIMAE ..vuiviiitiei e e e aaes 42
SYNEAX RUIES ... e 42
GENEIAl RUIES .. viii it eaas 42
THE VALUE CLAUSE ..o e 42
FUNCEION .« e e 42
GENEIAl FOIMAE ..euivcit e e e e e 42
1= G (U = 42
GENEIAl RUIES .. vttt 43
Data DesCription ENFiESvvuiiii e e e 43
PROCEDURE DIVISION IN THE NUCLEUScoviiiiiieeeeee e 43
CONDITIONAL EXPRESSIONS ... oottt n e 43
SIMPlE CoNAItIONSiviiiii e e 44
Reation Conditionc...eiviiiiiiiiiii e 44
Comparison of Numeric Operands:cccoevevveeiiiieriineeinennn 44
Comparison of Nonnumeric Operands:coceuvvevviiieiieennnnnns 45
Class CONAITIONceviiiiieiie e 45
SWitCh-Status CoNditioneiviiiiiiiiie e, 46

COMMON PHRASES AND GENERAL RULES FOR STATEMENT
[@Y A 1 TR 46
The ROUNAEA PhIaSEvuciviiiiiiiie e 46
The SIZE EITOr PhIESEcvviiiiiiei et 46
SIZE ERROR Phrase Not Specifiedccccoiieiiiiiiiiiiieeeees 46
SIZE ERROR Phrase Specifiedcooveiiiiiiiiiiii e 47
ANThMEIC SEAEMENTS ...evniviii e aaaas 47
Overlapping OPEraNSc.uueiiiieiiiiee e e e e e e e eeas 47
INCOMPAELIDIE DAucvvieiii e e 47
CRT DBVICES .. vttt ettt et e e e e e e e aa s 47
THE ACCEPT STATEMENT ..ottt e e e 47
FUNCEION .« e e 47
GENEIAl FOIMAES .o.vviite e et e e e b 47
SYNEAX RUIE ... 48
GENEIAl RUIES ...veiicii e 48
THE ADD STATEMENT .ot e e 49
FUNCEION © .ot 50
GENEIAl FOIMAE ..vuiviiit e e e e e 50
1= G (U = 50
GENEIAl RUIES ...veiicii e 50
THE ALTER STATEMENT .ottt e e s e 50
FUNCEION © .ot 50
GENEIAl FOIMAE ..vuiviiit e e e e e 50
SYNEAX RUIE ... 51
GENEIAl RUIB ...t 51
THE DISPLAY STATEMENT ..ottt e e 51
FUNCEION © .ot 51

viii

CIS COBOL Language Reference Manual

GENEIAl FOIMAES 1.ttt e e e e e e aeeaas 51
1= (U = 51
GENEIAl RUIES ...t eaas 51
THE DIVIDE STATEMENT ..ontiiitiiie et e e e e et e e eaas 52
FUNCEION .« ot 52
GENEIAl FOIMAE ..euiticit e e e e e e 52
1= G (U = 53
GENEIAl RUIES ...t eaas 53
THE ENTER STATEMENT .ottt e e s e e 53
FUNCEION .« ot 53
GENEIAl FOIMAE ..euiticit e e e e e e 53
SYNEAX RUIE ..o 53
GENEIAl RUIE ...t 53
THE EXIT STATEMENT oot r e aaaas 53
FUNCEION .« e e 54
GENEIAl FOIMAE ..vuiteitei e e e e 54
SYNEAX RUIES ... e 54
GENEIAl RUIE ...t 54
THE GO TO STATEMENT ..ottt e e e e s e e 54
FUNCEION .« e e 54
GENEIAl FOIMAE ..uuiviit e e e e e e 54
1= G (U = 54
GENEIAl RUIES .. vttt 54
THE IF STATEMENT Looniiiiiie e e e e e e e st e e e e et 54
FUNCEION © .ot 55
GENEIAl FOIMAE ..ouitiit e e eaaes 55
1= (U = 55
GENEIAl RUIES .. vttt 55
THE INSPECT STATEMENT ..ot e 55
FUNCEION © .ot 55
GENEIAl FOIMAE ...ttt e e e 55
1= G (U = 56
GENEIAl RUIES .. vttt 56
THE MOVE STATEMENT oottt s e e e 59
FUNCEION .« e 59
GENEIAl FOIMAE ...ttt e e e 60
1= (U = 60
GENEIAl RUIES .. vttt 60
THE MULTIPLY STATEMENT ..oniiiiii ettt 62
FUNCEION .« e 62
GENEIAl FOIMAE ...ttt e e e 62
1= (U = 62
GENEIAl RUIES ...ttt 62
THE PERFORM STATEMENT ..ottt ettt e e eaas 62
FUNCEION © .ot 62
GENEIAl FOIMAE ..euiviit e e e e e e 62
SYNEAX RUIES ... e 63
GENEIAl RUIES ...veiicii e 63
THE STOP STATEMENT .ot aaas 65
FUNCEION © .ot 65
GENEIAl FOIMAE ..euiviit e e e e e e 65
1= G (U = 65
GENEIAl RUIES ...veiicii e 65
THE SUBTRACT STATEMENT oottt e e 65
FUNCEION © .ot 65
GENEIAl FOIMAE ..euiviit e e e e e e 65
1= G (U = 66
GENEIAl RUIES ...veiicii e 66

CIS COBOL Language Reference Manual

4, TABLE HANDLING ..ottt et e e 67
INTRODUCTION TO THE TABLE HANDLING MODULEccoovviiiiiieiieceis 67
DATA DIVISION IN THE TABLE HANDLING MODULEccovvvviiiiiiiiiieeeeeen 67

THE OCCURS CLAUSE ...ttt 67
FUNCEION .« ot 67
GENEIAl FOIMAE ..vuiviiitiei e e e aaes 67
1= G (U = 67
GENEIAl RUIES ...veii it 67

THE USAGE CLAUSE ...t 68
FUNCEION .« ot 68

(€1 0TC = I o 0= PPN 68

Y122 Gl (U = 68

GENEIAl RUIES ...ttt et r e e e e b 68

PROCEDURE DIVISION IN THE TABLE HANDLING MODULEccocoivviiiannn. 68

RELATION CONDITION ..ottt e e e s e e ans 68
Comparisons Involving Index-Names And/or Index Data ltems..................... 68

OVERLAPPING OPERANDS ..ottt 69

THE SET STATEMENT ..ot 69
FUNCEION .« e e 69
GENEIAl FOIMAE ..euivcit e e e e e 69
1= G (U = 69
GENEIAl RUIES .. vttt 69

5. SEQUENTIAL INPUT AND OQUTPUT ..oouiiiiiiiiiicei e 71

INTRODUCTION TO THE SEQUENTIAL I-O MODULEccooiviiieiineciccee e, 71

LANGUAGE CONCEPTS ..ot 71
L@ 0T 4114 (o) [P 71
ACCESS IMOUEiveiitieit ettt eaas 71
Current RECOId POINTESiuviitiiieiieieee et et eaaas 71

RO IS = (1 PP 71
SEAUS KBY L oot 71

SHAUS KBY 2 oot 72

Vaid Combinations of Status Keys1and 2ccccevveviiiieiineennnennnnn. 72

The AT END Conditionc.oevviiiniiiiiiiieiieee e 72

ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE 72

INPUT-OUTPUT SECTIONuiitiiiiiiii e aae i 72
The FILE-CONTROL Paragraphcccooovviiiiiiiiiieice e, 72
FUNCLION ©. ot 72
GeENEral FOMMAL .vuivciie e 73

The FILE CONTROL ENIY ..ovuuiiiiiciiee e 73
FUNCLION ©. ot 73
GeENEral FOMMAL .vuivciie e 73
SYNEAX RUIES ...ovniii e 73
GENErAl RUIES .. vt 73

The [-O-CONTROL Paragraphc.ooevviiieiiieeiiiieciie e 73
FUNCEION ©. ot 74
GeENEral FOMMAL ..uiveiieee e 74
1= G (U =P 74
GENErAl RUIES .. cvviiciicee e 74

DATA DIVISION IN THE SEQUENTIAL I-OMODULEcccoeviiiiiiineei, 74
FILE SECTION .ottt 74
RECORD DESCRIPTION STRUCTUREccoviiiiiiiiiieeeeeeee e 74
THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON 74

FUNCEION ©. e 75
GENEIAl FOIMAE .vuiviitee e 75
SYNEAX RUIES ...cevei e e 75
THE BLOCK CONTAINS CLAUSEconiiiiiiieeeeeeeeeee e 75
FUNCEION ©. e 75

GENETAl FOIMEAL ...evevieiitci e e aas 75

CIS COBOL Language Reference Manual

GENEIAl RUIEoviiii e 75

THE CODE-SET CLAUSEiitiiii et e e 75
FUNCEION ©. et 75

GENEIAl FOIMAE .vuiiieitie e 75

SYNEAX RUIES «..cevecii e e 75

GENEIAl RUIEoviiii e 75

THE DATA RECORDS CLAUSE ...t 76
FUNCEION ©. et 76

GENEIAl FOIMAE .vuiiieitie e 76

SYNEAX RUIE ..o e 76

GENEIAl RUIES ...cvvii i 76

THE LABEL RECORDS CLAUSEcovtiiiieieee e 76
FUNCEION ©. et 76

GENEIAl FOIMAE .vuiticite e 76

SYNEAX RUIE ..o e 76

GENEIAl RUIEiiiiiieieee e 76

THE RECORD CONTAINS CLAUSE ...t 76
FUNCEION ©. et 76

GENEIAl FOIMAE .vuiticite e 76

GENEIAl RUIEiviiii e 76

THE VALUE OF CLAUSE ..o 77
FUNCEION ©. e 77

GENEIAl FOIMAE .vuitcitiet e e 77

GENEIAl RUIES ...cvvive e 77
PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE 77
THE CLOSE STATEMENT ..oiiiiiiii et e e e e 77
FUNCEION © .ot 77
GENEIAl FOIMAE ..ouitiit e e eaaes 77
SYNEAX RUIE ... 77
GENEIAl RUIES .. vttt 77
THE OPEN STATEMENT .oeoiiiiiii et e e e 77
FUNCEION © .ot 77
GENEIAl FOIMAE ...ttt e e e 78
1= (U = 78
GENEIAl RUIES .. vttt 78
THE READ STATEMENT ..ottt e e 79
FUNCEION .« e 79
GENEIAl FOIMAE ...ttt e e e 79
1= (U = 79
GENEIAl RUIES .. vttt 79
THE REWRITE STATEMENT .ot e e 80
FUNCEION .« e 80
GENEIAl FOIMAE .ouitiit e e e e aaes 80
SYNEAX RUIES ... e 8l
GENEIAl RUIES ...veiicii e 81
THE USE STATEMENT .ottt e s e 81
FUNCEION © .ot 8l
GENEIAl FOIMAE ..euiviit e e e e e e 81
1= G (U = 8l
GENEIAl RUIES ...veiicii e 82
THE WRITE STATEMENT ..ottt 82
FUNCEION © .ot 82
GENEIAl FOIMAE ..euiviit e e e e e e 82
1= G (U = 82
GENEIAl RUIES ...veiicii e 82

6. RELATIVE INPUT AND OUTPUT ..otniiiiii ettt s e n e e e 85
INTRODUCTION TO THE RELATIVE [-O MODULEcovvviiiiieieeeeeveee e, 85
LANGUAGE CONCEPTS ..ottt e e 85

Xi

CIS COBOL Language Reference Manual

L@ 0T 4114 (o) o [P 85
ACCESS IMOUESiviiieiie ittt e e e e e e e eans 85
Current RECOId POINTEYiuviiriiiiiiieie et et eaaas 85

RO IS = (1 P 85
SEAUS KBY L oot 85

SHAUS KBY 2 oot 86

Valid Combinations of Status Keys1and 2coccevvvvviieiineeinnennnnn. 86

The INVALID KEY Conditionc..oveviiiiiiiiiiieiieiceeeeeieee e, 87

The AT END Conditionc.oeeviiiniiiiiiieiieeeeeeee e 87
ENVIRONMENT DIVISION IN THE RELATIVE I-O MODULEcooveviviiiiieeins 87
INPUT-OUTPUT SECTIONuiitiiiiiiiiii et e e e e e 87
The File-Control Paragraphooviiiiiiiiiii e e i 87
FUNCEION ©. et 87

GENEIAl FOIMAE .uuiteite et 87

The FIle-Control ENtryooivniiii e 87
FUNCEION ©. et 87

GENEIAl FOIMAE .uuiteite et 87

SYNEAX RUIES «..cevecii e e 88

GENEIAl RUIES .. v 88

The [-O-CONTROL Paragraphccuieiiiiiiiiiiciiie e 88
FUNCEION ©. et 89

GENEIAl FOIMAE .vuitiite e e e s 89

SYNEAX RUIES . .evecii e e 89

GENEIAl RUIES ...cvvii i 89

DATA DIVISION IN THE RELATIVE [-O MODULEccoooiviiiiiiieeeeee, 89
FILE SECTION .ottt ettt et e e et e et e e e ens 89
RECORD DESCRIPTION STRUCTUREccvviiiiiiiieieeeeeeeeee e 89
THE FILE DESCRIPTION-COMPLETE ENTRY SKELETONccccvvvvviinieannnn. 90
FUNCEION © .ot 90
GENEIAl FOIMAE ..vuiteite e e e e e 90
1= (U = 90

THE BLOCK CONTAINS CLAUSE ..ottt 90
FUNCEION © .ot 90
GENEIAl FOIMAE ..vuiteite e e e e e 90
GENEIAl RUIES .. vttt 90

THE DATA RECORDS CLAUSE ..ottt 90
FUNCEION .« e 90
GENEIAl FOIMAE ..vuiteite e e e e e 90
Y122 G (U = 91
GENEIAl RUIES .. vttt 91

THE LABEL RECORDS CLAUSE ..ottt 91
FUNCEION .« e 91
GENEIAl FOIMAE ..viitieitie e e e e e 91
SYNEAX RUIE ... 91
GENEIAl RUIB ...t 91

THE RECORD CONTAINS CLAUSE ...t 91
FUNCEION © .ot 91

O M .o e e 91
GENEIAl RUIB ...t 91

THE VALUE OF CLAUSE ..ot 91
FUNCEION © .ot 91
GENEIAl FOIMAE ..vuiviiit e e e e e 91
1= G (U = 92
GENEIAl RUIES ...veiicii e 92
PROCEDURE DIVISION IN THE RELATIVE I-O MODULEccooiiiieieeecen, 92
THE CLOSE STATEMENT ..ooiiiiiiiiiee e e 92
FUNCEION © .ot 92
GENEIAl FOIMAE ..vuiviiit e e e e e 92

Xii

CIS COBOL Language Reference Manual

SYNEAX RUIE ... e 92
GENEIAl RUIES ...t eaas 92

THE DELETE STATEMENT ..ottt e e e 92
FUNCEION .« ot 92
GENEIAl FOIMAE ..vuiteite e e e e e 92
1= G (U = 93
GENEIAl RUIES ...t eaas 93

THE OPEN STATEMENT .eoiiiiiii e e e 93
FUNCEION .« ot 93
GENEIAl FOIMAE ..euiticit e e e e e e 93
SYNEAX RUIE ..o 93
GENEIAl RUIES ...t eaas 93

THE READ STATEMENT ..ottt 94
FUNCEION .« e e 95
GENEIAl FOIMAE ..euiticit e e e e e e 95
SYNEAX RUIES ... e 95
GENEIAl RUIES .. eiiicii e e 95

THE REWRITE STATEMENT .ot r e 96
FUNCEION .« e e 96
GENEIAl FOIMAE ..vuiteitei e e e e 97
1= G (U = 97
GENEIAl RUIES .. vttt 97

THE START STATEMENT ..ooiiiiiii et e e 97
FUNCEION © .ot 97
GENEIAl FOIMAE ..ouitiit e e eaaes 97
1= G (U = 98
GENEIAl RUIES .. vttt 98

THE USE STATEMENT .ottt e e e r e 98
FUNCEION © .ot 98
GENEIAl FOIMAE ...ttt e e e 98
1= G (U = 98
GENEIAl RUIES .. vttt 99

THE WRITE STATEMENT ..ottt 99
FUNCEION © .ot 99
GENEIAl FOIMAE ...ttt e e e 99
1= (U = 99
GENEIAl RUIES .. vttt 99

7. INDEXED INPUT AND OUTPUT oottt e e e 101
INTRODUCTION TO THE INDEXED I-O MODULEcocviiiiiiieeeeeveee 101
LANGUAGE CONCEPTS ..ot e e aaas 101
L@ 0T 4114 (0] o [N 101
ACCESS IMOUES ...ttt ettt e e e e et e e e e e e et eeaaes 101
Current RECOId POINTEYuvvuiiiiiiiieei e e e 101

@ S 7= {1 101
SEAUS KEBY L oeiiiiiiieiei e 101

SEAUS KEBY 2 et 102

Valid Combinations of Status Keysland 2cccceevevviiieiineninnns 103

The INVALID KEY Conditioncoocvvviiiiiiiiiiiiiiieeeieeeeeei e 103

The AT END Conditionccvueivniiiiiiiiiiieiieieeeeeeeeee e 103
ENVIRONMENT DIVISION IN THE INDEXED |-O MODULEcooevvviiiineenn, 103
INPUT-OUTPUT SECTION ...uuiiiiiiiiiiiii e e e e s e s e e eanae e 103
The File Control Paragraphcvevuuieiiiieiii e 103
FUNCLION «. v 103

GENEIAl FOIMAE .vuiviii e 104

The File Control ENtryoovviiiii e 104
FUNCLION «. v 104

GENEIAl FOIMAE .vuiviii e 104

SYNEAX RUIES . .oviii e 104

Xiii

CIS COBOL Language Reference Manual

GENEIAl RUIES ...vvieiiiicee e 104

The [-O Control Paragraphcoooiiiiiiiii e 105
FUNCLION «. v 105

GENEIAl FOIMMAE .vuiviiii i 105

SYNEAX RUIES . .ovii e e 105

GENEIAl RUIES ...vvieiiiicee e 105

DATA DIVISION IN THE INDEXED I-O MODULEoviiiiiiieiceceeeee 105
[I S O 105
RECORD DESCRIPTION STRUCTUREcccviiiiieieceeeeeeee e 105
THE FILE DESCRIPTION - COMPLETE ENTRY SKELETONcovvvvevenneeee. 106
FUNCEION ©. et 106
GENEIAl FOIMAE .vuiiteite e e e e eans 106
1= G (U = 106

THE BLOCK CONTAINS CLAUSE ...t 106
FUNCEION ©. et 106
GENEIAl FOIMAE .vuiiteite e e e e eans 106
GENEIAl RUIEcviiii e 106

THE DATA RECORDS CLAUSEcoviiiicie e 106
FUNCEION ©. et 106
GENEIAl FOIMAE .vuiiteite e e e e eans 107
1= G (U = 107
GENEIAl RUIES .. vviie e ans 107

THE LABEL RECORDS CLAUSE ...ttt e 107
FUNCEION ©. et 107
GENEIAl FOIMAE .vuiticit e e eans 107
GENEIAl RUIEciiiiici e 107

THE RECORD CONTAINS CLAUSEouiiii e 107
FUNCEION ©. et 107
GENEIAl FOIMAE .vuiticit e e eans 107
GENEIAl RUIEciiiiici e 107

THE VALUE OF CLAUSE ..ot r e 107
FUNCEION ©. et 107
GENEIAl FOIMAE .vuiticit e e eans 107
GENEIAl RUIES .. vviie e ans 108
PROCEDURE DIVISION IN THE INDEXED I-O MODULEccococvviviiiiieei, 108
THE CLOSE STATEMENT .ouiiiitiiiee et e s e e eans 108
FUNCEION ©. et 108
GENEIAl FOIMAE .vuiticit e e eans 108
SYNEAX RUIE ... 108
GENEIAl RUIES .. vviie e ans 108

THE DELETE STATEMENT ..ottt e e 108
FUNCEION ©. et 108
GENEIAl FOIMAE .vuiitiii e e e e eans 108
1= G (U = 108
GENEIAl RUIES ...vviiecii e 109

THE OPEN STATEMENT ..ottt e e 109
FUNCEION ©. ot 109
GENEIAl FOIMAE .vuitiit et e e eans 109
1= G (U = 109
GENEIAl RUIESeviie e 109

THE READ STATEMENT ..ot 111
FUNCEION ©. ot 111
GENEIAl FOIMAE .vuitiit et e e eans 111
1= G (U = 111
GENEIAl RUIESeviie e 111

THE REWRITE STATEMENT ..ot r e 112
FUNCEION ©. ot 112
GENEIAl FOIMAE .vuitiit et e e eans 113

Xiv

CIS COBOL Language Reference Manual

1= G (U = 113

GENEIAl RUIES ...vviiecii e 113

THE START STATEMENT ..ottt 114
FUNCEION ©. et 114

GENEIAl FOIMAE vttt e e eans 114

1= G (U = 114

GENEIAl RUIES ...vviiecii e 114

THE USE STATEMENT ..ottt e 115
FUNCEION ©. et 115

GENEIAl FOIMAE vttt e e eans 115

1= G (U = 115

THE WRITE STATEMENT L.ooiiiiiii ettt 115
FUNCEION ©. et 115

GENEIAl FOIMAE vttt e e eans 115

1= G (U = 115

GENEIAl RUIESvviie it 116

8. SEGMENTATION .ottt e e e e e et e e ens 119
INTRODUCTION TO THE SEGMENTATION MODULEcocoivviiiiiiiiiiieieen, 119
GENERAL DESCRIPTION OF SEGMENTATIONoivniiiiiiiiiieeeeeeee e 119
ORGANIZATION .ottt e e eans 119
Program SEOMENTS ..o 119

FiXE POIION .. ovtiicii e e 119
INAdEPENENt SEGMENTSivii i e e ea e eeas 119
SEGMENTATION CLASSIFICATION ...ttt 120
SEGMENTATION CONTROL ...ccuiiiiiiiiiieeieeeee et e e 120
STRUCTURE OF PROGRAM SEGMENTS ...ttt 120
SEGMENT-NUMBERS ..ottt 120
GENERAL FORM AT .ottt ettt e e e e e e aaeeas 120
SYNTAX RULES ..o 120
GENERAL RULESt 120
RESTRICTIONS ON PROGRAM FLOW ..ottt eas 121
THE ALTER STATEMENT ..ouiiiiiiiiie et 121

THE PERFORM STATEMENT ...ttt 121
EXTRA INTERMEDIATE CODE FILEScoviiiiiiiieceeeeeeeeeee e 121
0. LI B RA RY it e 123
INTRODUCTION TO THE LIBRARY MODULE ..ot 123
THE COPY STATEMENT ..ottt eae e 123
FUNGCTION Lottt e e e e b 123
GENERAL FORM AT .ouitiiieee ettt ettt e e e e e e eas 123
SYNTAX RULES ..o 123
GENERAL RULESt 123

10. DEBUG AND INTERACTIVE DEBUGGINGccviiiiiiiiiiiiiieieeeeeeee e 125
INTRODUCTION .ottt et ettt e e e et et e et e et et r e e e e aeeans 125
CIS COBOL RUN-TIME DEBUG EXTENSIONccuviiiiiiiiieiiieieeieeeeee e, 125
STANDARD ANSI COBOL DEBUGccvuiiiiiiiiieeeeeeeee e 125
COMPILE TIME SWITCH ..ottt aas 125
COBOL DEBUG OBJECT TIME SWITCHccuiiiiiiiiiieeeeeeeeeeeeeeeea, 125
ENVIRONMENT DIVISION IN COBOL DEBUGccvvviiiiiiieciiecieeiien, 126

The WITH DEBUGGING MODE ClaUSecc.ocvviiiiiiiiiiieieeeeieeiieeane, 126

FUNCLION «. v 126

GENEIAl FOIMAE .vuiviii e 126

GENEIAl RUIES ...vviii e 126

PROCEDURE DIVISION IN COBOL DEBUGcccvvvvviiiiiiieieeieeeeeeeei 126

The USE FOR DEBUGGING Statementevvnvirneireiieeieiieiieeneeenneens 126

FUNCLION «. v 126

GENEIAl FOIMAE .vuiviii e 126

SYNEAX RUIES «..ov e e 126

GENEIAl RUIES .. vt 127

XV

CIS COBOL Language Reference Manual

DEBUGGING LINEScoiiiiiiiiiei ettt e e e et e e 128
11. INTERPROGRAM COMMUNICATION ..ooitiiiiie et 131
INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE 131
DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE 131
LINKAGE SECTIONiiiiiiiiiiiie e ee e et e et s e e e e e e aeatnn s aaeeaaaeaes 131
Noncontiguous Linkage StOrageoevvvieiiiiiiiii e ee e e 131

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION
1Y@ PR 132
THE PROCEDURE DIVISION HEADERcciiiiiiiiiiiiiiiiie e 132
THE CALL STATEMENT ..ottt et e e e e e e et a e e e e e eannees 132
3 Tox (o) o 132
GENEral FOMMALovvnci e e e e e e e 132
1= G (U = 133
GENEral RUIES ... 133
THE CANCEL STATEMENT .ouiiiiii i e e e e e e e e e e annees 133
3 Tox (o) o 134
GENEral FOMMALovvnci e e e e e e e 134
1= G (U = 134
GENEral RUIESeiiii e 134
THE EXIT PROGRAM STATEMENT ...oovviiiiiiciiiiiiie e e e 134
3 Tox (o) o 134
GENEral FOMMAL ... oeveii e e aen 134
1= G (U = 134
GENEral RUIE ...ceee e 134
12. PROGRAMMING TECHNIQUESoitiiiiiii e 135
PROGRAMMING TECHNIQUEScoutiiiiiiie ittt e e 135
USEFUL HINT S ..ttt ittt ettt s e e e e e e et s e s e e e e e e aaataaeaeeeaaeaennes 135
A. RESERVED WORD LIST ooiiiiiiiiiiiiiiie ettt a e e e e aaaaan e e e e 137
B. CHARACTER SETSAND COLLATING SEQUENCEcccooeviiiiiiiiiee e, 139
. GLOSSARY ottt e a e et 141
INTRODUCGTIONiiiiiiiiii s i e e e ettt s e s e e e e e et s et e e e e e e et s e s e e e e aasaannnaaaeeaeaeees 141
DEFINITIONS ..ottt iee et e e e e e e e e e e e e et e s e e e e e e asenaan e e aeeees 141
D. COMPILE-TIME ERRORS ...ttt e e 157
E. RUN-TIME ERRORSouiiiiiiiiiii ettt e e e e et e s e e e e e aeaanens 161
F. SYNTAX SUMMARY ittt ettt ettt e e e et et e s e e e e e e et s e e eeaaaaaes 163
GENERAL FORMAT FOR IDENTIFICATION DIVISIONccccvviiiiieeiiiiiiiiiineeen 163
GENERAL FORMAT FOR ENVIRONMENT DIVISIONcuviiiieiiiiiiiiiiiiineeeeeeeaiiins 163
GENERAL FORMAT FOR FILE-CONTROL ENTRYouviiiiiiiiiiiiiiiiiie e eeeeeeeiiiiennn 163
GENERAL FORMAT FOR THE DATA DIVISIONccovviiiiiiiiieeeiieiiiiie e ee e 164
GENERAL FORMAT FOR DATA DESCRIPTION ENTRYoooieiiiiiiiiiiiieieeeeeeeiinens 164
GENERAL FORMAT FOR PROCEDURE DIVISIONcuuiiiiiieiiiiiiiiiiiiiieeeeeeeainens 165
GENERAL FORMAT FOR VERBScoiiiiiiiiiiiieeee et e s 165
GENERAL FORM FOR COPY STATEMENTccovviiiiiiieeeeeeei et 167
G. SUMMARY OF EXTENSIONS TO ANSI COBOL ...ccvvviiiiieiiiiiiiiiiiei e 169
SCREEN FORMATTING AND DATA ENTRY .oiviiiiiiiiieeeieeei e 169
THE ACCEPT STATEMENT ..o e e 169
THE DISPLAY STATEMENT .ooiiiiiiiiieee e e e e eaaaes 169
DI S I PSRN 169
LINE SEQUENTIAL FILESuniii i e e e e e 169
RUN TIME INPUT OF FILENAMESccoiiiiiiii e 170
LOWER CASE CHARACTERSouuiiii ittt e e e e e e e e eaeannnes 170
HEXADECIMAL VALUES ...ttt e e e e 170
INTERACTIVE DEBUGGINGcovitiiiiiieiiiieiiiiie s e e e s e e e e e e s s e e e eeeaanes 170
H. SYSTEM DEPENDENT LANGUAGE FEATURESooiiiiiiiii e 171
MANDATORY CHANGESooiiiitii ittt e e e e eeeeaeaaaee 171
ENVIRONMENT DIVISION ..outtiiiiiieeiiieiiiiie e e e e eeettie e e e e e e et eeeeeaeaanes 171
Configuration SECHIONiiie i e e 171
INPUE-OULPUL SECLION ..oevucii e e e e e e e aen 171

XVi

CIS COBOL Language Reference Manual

STATEMENTS COMPILED AS DOCUMENTATION ONLY ...oovviiiiiieeiiieiiiiiieeeeen 171
ENVIRONMENT DIVISION ..outtiiiiieeiiieiiiiee e e e e et s s s e e e e e eaeainnneeeeeeaaenes 171
[-O-Control Paragraphcooiiiiiiiiii e 171

DATA DIVISION ..ottt e e e et s e e e e e et n e e e e e 172

File Description Paragraphccocoviiiiiiiiiii e 172
PROCEDURE DIVISION ...ovtiiiiiieeiiitiiiiieese e e e e ettt s e s e e e aaesaninaeaaeeaeaannees 172
CLOSE SEAEMENEeeeveevviiiieeeeereeeiiin s e e e e e e eeetatn s e e e e eseassnrn e aeeeeeannns 172

I. LANGUAGE SPECIFICATION ..ottt ettt a e e e e eestate e e e aeaeanees 173
N L L 173
Level One Implementationoeeeuieiiiiieiii e e e e e e e e e 173
Level TWO IMplemENntationccuviiiiieiie e e e 173

CIS COBOL EXIENSIONSvvvuiieeeieeiiiiiiieseeeeeseesiitnsseeeeeeaasinin s e e e eeeeesnnnnnnas 174
SEQUENTIAL, RELATIVE AND INDEXED 1-O ...ccovvvviiiiiiieeeeeeeee e 174
Level One Implementationoeeeuieiiiiieiii e e e e e e e e 174
Level TWO IMplemENntationccuviiiiieiie e e e 174

CIS COBOL EXIENSIONSvvvuiieeeieieiiiiiieseeeeeseesiiinssaeeeeseastninnseeeeeeeasnnnnnnas 175
TABLE HANDLING ...ttt ettt e e et e e e e e e eeanaann s 175
Level One Implementationoeeeuieiiiiieiii e e e e e e e e 175

CIS COBOL EXIENSIONSvvvuiieeeieeiiiiiiieieeeeeeeesiiinssaeeeeseastnnnnseeeeeeeessnnnnnas 175
SEGMENTATION L..iiiiiiiiiie e et s e e e et e e e e e e e et e e e e e e e e e aestatnaaaeeaaaenes 175
Level One Implementationoeeeuieiiiiieiii e e e e e e e e 175
IS S 175
Level One Implementationoeeeuieiiiiieii e e e e e e 175
DEBUG ...ttt sttt e e e e e e e e e e e et e e e e e e e et e e e aaaaare 176
Level One Implementationoeeeuieiiiiieii e e e e e e 176

CIS COBOL EXIENSIONSvvvuiieeeiieiiiiiiieseeeeeeeesiiinsseaeeesaastninnseeeaeeeasnnnnnnas 176
INTER-PROGRAM COMMUNICATIONcciiiiiiiiiiiiieeeeeeeeeiie e e e 176
Level TWO IMplemMENntationccuiiiiiiiiie e e e e 176
g0 1= SR 177

XVii

XViii

List of Figures

1.1. Sample Program Listing Showing SOUrCe FOrMELoeeiiviieiiiiiiieeiiiie e 4
2.1. Reference Format for a COBOL SOUICE LINE.cvevviiiiiiiiiiieiiii e 21
3.1. PERFORM Statement iN SEUEMNCE.ceieruieeiiiiieeeieiie e ee et et et e e et e e ena s 64

XiX

XX

List of Tables

2.1. Figurative Constants and their Reserved WOrdScocuuiiiiiiiiiiieii e 9
2.2. Data Levels, Classes and CaEOIESuuuiiuuieie it e et e e e e e ees 12
2.3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE Clause.c.ooceevvnnneee. 12
2.4. Numeric Data Storage for the COMPUTATION-3 PICTURE Clause.cccevuveeeinnnnnn. 13
3.1. Editing Types for Data CategOIiESccuuuueeiiriieetiii e e et e ettt e et e e et eeeere e eeens 35
3.2. Editing Symbolsin PICTURE CharaCter-Stringsccuuuieieriinieieiineeeiineeeeiineeeenenns 36
3.3. PICTURE Character Precedence Chart.c.uuieiiiiiiieiiiii e 38
3.4, ReIAiONal OPEIGIOISvueeiiiti ettt e et e e ettt e ettt e e e et e eeena e aees 44
3.5. Cursor REPOSITIONING KEYSceeiiieiiiie ettt 49
3.6. MOVE Statement Data CalEONES.ceuuuueeiritnieeeeiieeteeii et et e e e e e eeei e e enni e eenees 61
4.1. SET Statement Valid Operand Combinations.coeuuuiieiiiinieiiiieeee e 70
5.1. Permissable Combinations of Statements and OPEN Modes for Sequential 1/O. 78
6.1. Permissible Combinations of Statements and Open Modes for Relative 1/O 9
7.1. Permissible Combinations of Statements and Open Modes for Indexed 1/0O 110
12.1. Data Dictionary ENtrY SIZINGcccuuieiiiiiieiiiie ettt 136

XXi

XXii

PREFACE

This manual describes the Compact Interactive Standard COBOL (CIS COBOL) language for
programming microcomputers. CIS COBOL is based on the ANSI COBOL standard X3.23 (1974)
(see Acknowledgement). It also describes the additional CIS COBOL features that exploit the
capabilities of microprocessors.

Each release of CIS COBOL is characterized by atwo-digit code in the form of

"Version number”. "Release number within version”

AUDIENCE

Thismanual isintended for programmers already familiar with COBOL on other equipment.

MANUAL ORGANIZATION

Chapters 1 through 4 of the manual apply to all users and describe basic features of the language.
Chapters 5 through 7 describe language features for programming the three file organization formats
supported: sequential, relative and indexed.

Chapters 8 through 11 apply to all users and describe additional features and facilities available with
the standard language. The appendices supply reference information pertinent to all systems.

The manual contains the following chapters and appendices:

"Chapter 1. Introduction”, which givesageneral description of the language, including abroad outline
of ANSI COBOL features included and omitted and additional features of CIS COBOL.

"Chapter 2. COBOL Concepts', which describes general concepts of the COBOL language including
program structure, and details of statement components and notation.

"Chapter 3. Nucleus", which describes the nucleus of all COBOL programs and the layout of each
program division in the nucleus.

"Chapter 4. Table Handling", which describes the handling of data tables in the Data and Procedure
divisions of a COBOL program.

"Chapter 5. Sequential Input and Output”, which describes the programming of input and output of
datain files with sequential format.

"Chapter 6. Relative Input and Output", which describes the programming of input and output of data
in files with relative format.

"Chapter 7. Indexed Input and Output”, which describes the programming of input and output of data
in files with indexed format.

"Chapter 8. Segmentation”, which describes the facility for specifying permanent and independent
object program segments.

"Chapter 9. Library", which describes the source library maintenance feature of COBOL.

"Chapter 10. Debug and I nteractive Debugging", which describes the basic and interactive debugging
features available in CIS COBOL.

"Chapter 11. Interprogram Communication”, which describes the ability of CIS COBOL programsto
interface during running and to access common data, enabling modular programming.

XXiii

PREFACE

"Chapter 12. Programming Techniques and Sizing", which describes the means available for CIS
COBOL programmers to estimate object program size and includes programming techniquesin CIS
COBOL.

"Appendix A. Reserved Word Table", which lists words reserved for CIS COBOL functions within
aprogram.

"Appendix B. Character Set and Collating Sequence”, which lists all characters available and their
collating sequence.

"Appendix C. Glossary", which lists specific termsused in CIS COBOL.

"Appendix D. Compile - Time Errors’, which lists all errors that can be signalled during program
compilation.

"Appendix E. Run-Time Errors’, which listsall errorsthat can be signalled during program execution.
"Appendix F. Syntax Summary", which summarizes the syntax used in CIS COBOL programming.

"Appendix G. Summary of Extensionsto ANSI COBOL", which summarizes all extensionsto ANSI
COBOL provided by CIS COBOL.

"Appendix H. System Dependent Language Features', which describes the system dependent CIS
COBOL entries for use with microcomputers and those features not included because of hardware
requirements.

"Appendix |. Language Specification", which isan overall specification of the CIS COBOL language.

RELATED PUBLICATIONS

No discussion of operating the CIS COBOL Compiler or Run-Time system is incorporated in this
manual. Please refer to document:

CISCOBOL Operating Guide (for use with the relevant Operating System)

NOTATION IN THIS MANUAL

Throughout this manual, the following notation is used to describe the format of COBOL statements:

1. All words printed in capital |etters which are underlined must always be present when the functions
of which they are a part are used. An error printout will occur during compilation if the underlined
words are absent or incorrectly spelled. The underlining is not necessary when writing a COBOL
source program.

2. All words printed in capital letters which are not underlined are used for readability only. They
may be written, or not, as the programmer wishes.

3. All words printed in small letters are generic terms representing names which will be devised by
the programmer.

4. When material isenclosed in braces{ } , a choice must be made from the options within them.

5. When material is enclosed in square brackets [], it is an indication that the material is an option
which may be included or omitted as required.

6. When material is enclosed in square brackets crossed { 1, it is an indication that the material is
mandatory when the ANS| switch is set (see Chapter 2) but optional otherwise.

7. Language features that are shaded in the text are language extensions which exceed the ANSI
standard.

XXiV

PREFACE

8. Intext, the ellipsis (...) shows the omission of a portion of a source program or a sequence. This
meaning becomes apparent in context.

Inthe general formats, the ellipsis represents the position at which repetition may occur at the user's
option. The portion of the format that may be repeated is determined as follows:

Given ... in aclause or statement format, scanning right to left, determine the { or [immediately to
the left of the ...; continue scanning right to left and determine the logically matching } or]; the ...
appliesto the words between the determined pair of delimiters.

9. The term identifier means either a data-name or a subscripted data-name. An identifier takes the
following form:

data-name-1[({data-name-2 | literal-1})]

data-name-2 or literal-1 must be a positive integer in the range 1 to the number of elementsin the
table.

Headings are presented in this manual in the following order of importance:

CHAPTER N Chapter Heading TITLE ORDER ONE HEADING ORDER TWO HEADING Order
Three Heading Text two lines down Order Four Heading Order Five Heading: Text on sameline

Numbers one (1) to nine (9) are written in text as letters, e.g. one.
Numbers ten (10) upwards are written in text as numbers, e.g. 12.

The phrase "For documentation purposes only" in the text of this manual means that the associated
coding is accepted syntactically by the Compiler, but is ignored when producing the object program.

XXV

XXVi

Chapter 1. Introduction
WHAT IS CIS COBOL?

COBOL (COmmon Business Oriented Language) is the most widely and extensively used language
for the programming of commercia and administrative data processing.

CISCOBOL isaCompact, Interactive and Standard COBOL Language System which isdesigned for
use on microprocessor-based computers and intelligent terminals.

It is based on the ANSI COBOL given in "American National Standard Programming Language
COBOL" (ANSI X3.23 1974). The CIS COBOL implementation has been selected from both levels
of ANSI COBOL. The following modules are fully implemented at Level 1:

* Nucleus

» TableHandling

» Sequential Input and Output

» Relative Input and Output

* Indexed Input and Output

» Segmentation

* Library

¢ Inter-Program Communication
» Debug

In addition many Level 2 features are implemented such as:

* Nucleus - Nested |F, PERFORM UNTIL
» Relative and Indexed sequential 1/O - START statement
* Inter-Program Communication - CANCEL statement

This manual is intended as a reference work for COBOL programmers and material from the ANSI
language standard document is included.

The package has been proved to meet and exceed the COBOL ANSI standard X3.23 and has been
certified by the Federal Compiler Testing Center (FCTC) under the direction of the General Services
Administration (GSA) asvalidated at Federal Low Intermediate Level. The GSA Validation Summary
Report is available under the reference CCV S74-V SR685.

Along with the ANSI implementation CIS COBOL aso contains severa language extensions
specifically oriented to the small computer environment. These enable a CIS COBOL program to
format CRT screens for data input and output (DISPLAY and ACCEPT), READ and WRITE text
files efficiently and define external file names at run time.

The programmer wishing to transport an existing COBOL program to run under CIS COBOL must
check that the individual language features he has used are supported by CIS COBOL. The COBOL
SECTION statements in the Segmentation feature can be performed using the PERFORM statement.

A compiletime ANSI switch can be set that makes certain COBOL source mandatory, whereas if not
set it isoptional. (See Chapter 2).

The CIS COBOL compiler is designed to enable programs to be developed in a 48K machine.
The Compiler supports sequential, relative and indexed sequential files, as well as interactive
communications viathe ACCEPT and DISPLAY verbs.

The CIS COBOL System aso contains a powerful utility called FORMS-2 that enables the Operator
to define screen layouts from a screen “module” and produce automatically the data description for
direct inclusion in a CIS COBOL program. Thisis described in the CIS COBOL Operating Guide.

CIS COBOL programs are created using a conventional text editor, The Compiler compiles the
programs and the Run-Time system links with the compiled output to form arunning user program. A

Chapter 1. Introduction

listing of the CIS COBOL program is provided by the Compiler during compilation. Error messages
areinserted in thelisting. Interactive Debugging facilities are provided for run-time use, and these are
described in the CIS COBOL Operating Guide.

CIS COBOL is designed to be interfaced easily to any microprocessor operating system. Detailed
operating characteristics are dependent on the particular host operating system used and are defined
in the appropriate Operating Guide.

PROGRAM STRUCTURE

A COBOL program consists of four divisions:
1. IDENTIFICATION DIVISION - An identification of the program

2. ENVIRONMENT DIVISION - A description of the equipment to be used to compile and run the
program

3. DATA DIVISION - A description of the data to be processed

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be performed on the
data

Each divisionisdivided into sectionswhich are further divided into paragraphswhich in turn are made
up of sentences.

Within these subdivisions of aCOBOL program, further subdivisions exist as clauses and statements.
A clauseis an ordered set of COBOL elements that specify an attribute of an entry, and a statement
is a combination of elements in the Procedure Division that include a COBOL verb and constitute a
program instruction.

FORMATS AND RULES
GENERAL FORMAT

A general format isthe specific arrangement of the elements of aclause or astatement, Throughout this
document aformat is shown adjacent to information defining the clause or statement. When more than
one specific arrangement is permitted, the general format is separated into numbered formats. Clauses
must be written in the sequence given in the general formats. (Clausesthat are optional must appear in
the sequence shown if they are used). In certain cases, stated explicitly in the rules associated with a
given format, the clauses may appear in sequences other than that shown. Applications, requirements
or restrictions are shown as rules.

SYNTAX RULES

Syntax rules are those rules that define or clarify the order in which words or elements are arranged
to form larger elements such as phrases, clauses, or statements. Syntax rules also impose restrictions
on individual words or elements.

These rules are used to define or clarify how the statement must be written, i.e., the order of the
elements of the statement and restrictions on what each element may represent.

GENERAL RULES

A general ruleisarulethat defines or clarifies the meaning or relationship of meanings of an element
or set of elements. It is used to define or clarify the semantics of the statement and the effect that it
has on either execution or compilation.

ELEMENTS

Chapter 1. Introduction

Elements which make up a clause or a statement consist of uppercase words, lowercase words, level-
numbers, brackets, braces, connectives and specia characters (see Chapter 2).

SOURCE FORMAT

The COBOL source format divides each COBOL source record into 72 columns. These columns are
used in the following way:

Columns1-6 Sequence number
Column 7 Indicator area
Columns 8- 11 AreaA

Columns 12 -72 AreaB

SEQUENCE NUMBER

A sequence humber of six digits may be used to identify each source program line.

INDICATOR AREA

An asterisk * in this area marks the line as documentary comment only. Such a comment line can
appear anywhere in the program after the Identification Division header. Any characters from the
ASCII character set can beincluded in Area A and AreaB of theline.

A stroke /, in the indicator area acts as a comment line above but causes the page to gect before
printing the comment.

A "D" intheindicator arearepresents adebugging line. Areas A and B may contain any valid COBOL
sentence.

A "-" intheindicator area represents a continuation line.

Section names and paragraph names begin in Area A and are followed by a period and a space. Level
indications FD, 01 and 77 begin in Area A and are followed in Area B by the appropriate file and
record description.

Program sentencesmay commenceanywherein AreaA or AreaB. Morethan one sentenceis permitted
in each source record.

Note that TAB characters are not permitted in CIS COBOL source.

Figure 1-1 shows the source format of atypical program.

** CS COBOL V4.5 STOCK. CBL PAGE: 0001

* %

** OPTI ONS SELECTED :

* %

* %

000010
000020
000030
000040
000050
000060
000070
000075
000080
000090
000100
000110

FORM 72)
| DENTI FI CATI ON DI VI SI ON. 0118
PROGRAM | D. STOCK- FI LE- SET- UP. 0118
AUTHOR. M CRO FOCUS LTD. 0118
ENVI RONVENT DI VI SI ON. 0118
CONFI GURATI ON SECTI ON. 0118
SOURCE- COMPUTER. 0118
OBJECT- COMPUTER. 0118
SPECI AL- NAVES. CONSOLE |'S CRT. 0118
| NPUT- OUTPUT SECTI ON. 0118
FI LE- CONTROL. 0118
SELECT STOCK- FI LE ASSI GN " STOCK. | T" 0184
ORGANI ZATI ON | NDEXED 0186

Chapter 1. Introduction

000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580

ACCESS DYNAM C
RECORD KEY STOCK- CODE
DATA DI VI SI ON
FI LE SECTI ON
FD STOCK-FI LE: RECCRD 32.
01 STOCK-1TEM
02 STOCK- CODE PIC X(4).
02 PRCDUCT- DESC PI C X(20) .
02 UNIT-SI ZE PIC 9(4).

WORKI NG STORAGE SECTI ON.
01 SCREEN- HEADI NGS.
02 ASK-CODE PI C X(21) VALUE "STOCK CODE
02 FILLER PIC X(59).
02 ASK-DESC PI C X(16) VALUE "DESCRI PTI ON
02 SI-DESC PIC X(21) VALUE "
02 FILLER PI C(43).
02 ASK-SIZE PIC X(21) VALUE "UNIT Sl ZE
01 ENTER-1T REDEFI NES SCREEN- HEADI NGS.
02 FILLER PIC X(16).
02 CRT-STOCK-CODE PIC X(4).
02 FILLER PI C X(76).
02 CRT-PROD-DESC PIC X(20).
02 FILLER Pl C X(60).
02 CRT-UNIT-SIZE PIC 9(4).
02 FILLER Pl C X.
PROCEDURE DI VI SI ON.
SRL.
DI SPLAY SPACE.
OPEN | - O STOCK- FI LE.
DI SPLAY SCREEN- HEADI NGS.
NORMAL- | NPUT.

MOVE SPACE TO ENTER-IT.
DI SPLAY ENTER-1T.
CORRECT- ERROR.
ACCEPT ENTER-IT.
| F CRT- STOCK- CODE = SPACE GO TO END-IT.

I F CRT-UNIT-SI ZE NOT NUMERI C GO TO CORRECT- ERROR.

MOVE CRT- PROD- DESC TO PRODUCT- DESC.
MOVE CRT-UNIT-SI ZE TO UNI T- SI ZE
MOVE CRT- STOCK- CODE TO STOCK- CODE

VWRI TE STOCK-1 TEM | NVALI D KEY GO TO CORRECT- ERROR

GO TO NORMAL- | NPUT.
END- | T.

CLOSE STOCK- FI LE

DI SPLAY SPACE

DI SPLAY "END OF PROGRAM'.

STOP RUN

** CIS COBOL V4.5 REVISION 4
** COWPI LER COPYRI GHT (C) 1978, 1982 M CRO FOCUS LTD

** ERRORS=00000 DATA=00768 CODE=00256 DI CT=00409: 20662/ 21071 GSA FLAGS=
I e e TR

<---->

+- -

0186
0186
01BE
01BE
01BE
01BE
01BE
01c2
01D6
01DC
01DC
01DC
01F3
022C
023C
0251
027C
01DC
01DC
01EC
01F0
023C
0250
028C
0290
0000
001cC
001D
0020
0024
0038
0039
003F
0056
0057
006E
0078
0081
0087
008F
0095
00A1
00A4
00A5
00A9
00AC
00BD

URN AA/ 0000/ AA

OFF

| | | Inserted by Conpiler---+

| | +-- Colums 12-72 - Area B
| +-- Colums 8-11 - Area A

+-- Colum 7 - Indicator Area

Col ums 1-6 - Sequence Nunber

Figure 1.1. Sample Program Listing Showing Sour ce For mat

00
00
15
50
60
75
A0
00
00
10
14
60
74
BO

00

00

00

00

Chapter 2. COBOL Concepts

LANGUAGE CONCEPTS
CHARACTER SET

The most basic and indivisible unit of the language is the character. The set of characters used to form
CIS COBOL character-strings and separators includes the letters of the alphabet, digits and special
characters. The character set consists of the characters defined below:

Oto9
AtoZz
ato z (Reserved and User-defined Word Charactersread as: A to Z)
Space
+ Plussign
- Minus sign or hyphen
* Asterisk
/ Oblique Stroke/Slash
= Equal sign
$ Doallar sign
Full stop or decimal point
, Commaor decimal point
Semicolon
Quotation mark
(L eft Parenthesis
) Right Parenthesis
> Greater than symbol
< Less than symbol

The CIS COBOL language is restricted to the above character set ,but the content of non-numeric
literals, comment lines and data may include any of the characters from the ASCI| character set. See
Appendix B.

LANGUAGE STRUCTURE

The individual characters of the language are concatenated to form character-strings and separators.
A separator may be concatenated with another separator or with a character-string. A character-string
may only be concatenated with a separator. The concatenation of character-strings and separators
forms the text of a source program.

Separators

A separator isastring of one or more punctuation characters. The rulesfor formation of separatorsare:

1. The punctuation character space is a separator. Anywhere a spaceis used as a separator, more than
one space may be used.

2. The punctuation characters comma, semicolon and period, when immediately followed by a
space, are separators. These separators may appear in a COBOL source program only where
explicitly permitted by the general formats, by format punctuation rules (see FORMATS AND

Chapter 2. COBOL Concepts

RULES in Chapter 1), by statement and sentence structure definitions (see STATEMENTS AND
SENTENCES in this Chapter), or reference format rules (see REFERENCE FORMAT in this
Chapter).

3. The punctuation charactersright and left parenthesis are separators. Parenthesis may appear only in
balanced pairs of left and right parentheses delimiting subscripts, indices, arithmetic expressions,
or conditions.

4. The punctuation character quotation mark is a separator. An opening quotation mark must be
immediately preceded by aspace or left parenthesis; a closing quotation mark must be immediately
followed by one of the separators space, comma, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when the
literal is continued. (See CONTINUATION OF LINES in this Chapter).

5. The separator space may optionally immediately precede all separators except the following:
a. As specified by reference format rules see REFERENCE FORMAT in this Chapter.

b. The separator closing quotation mark. In this case, a preceding space is considered as part of
the nonnumeric literal and not as a separator.

6. The separator space is optional and can immediately follow any separator except the opening
guotation mark. In this case, afollowing space is considered as part of the nonnumeric literal and
not as a separator.

Any punctuation character which appears as part of the specification of a PICTURE character-string
(see Chapter 3) or numeric literal is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or numeric literal. PICTURE character-
strings are delimited only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters which comprise
the contents of nonnumeric literals, comment-entries, or comment lines.

Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a CIS COBOL
word, aliteral, a PICTURE character-string, or a comment-entry. A character-string is delimited by
separators.

COBOL Words

A COBOL word isacharacter-string of not more than 30 characters which forms auser defined word,
asystem-name, or areserved word. Within a given source program these classes form digjoint sets; a
COBOL word may belong to one and only one of these classes.

User-Defined Words: A user-defined word is a COBOL word that must be supplied by the user to
satisfy the format of aclause or statement. Each character of a user-defined word is selected from the
set of characters'A’, 'B', 'C, ... 'Z','d, 'b, 'c, ... 'Z, 0, ... "9, and -', except that the -' may not appear
as thefirst or last character. The exception to this ruleis an external file-name-literal which must be
anormal aphanumeric literal.

User-defined word types which are implemented are as follows:

alphabet-name
condition-name
data-name
external-file-name-literal
file-name

index-name

Chapter 2. COBOL Concepts

level-number
mnemonic-name
paragraph-name
program-name
record-name
section-name
segment-number
text-name

Within a given source program, ten of these 12 types of user-defined words are grouped into nine
digoint sets. The digoint sets are;

alphabet-names

condition-names, data-names, and record-names

file-names
index-names
mnemonic-names
paragraph-names
program-names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong to one and only one
of these digoint sets. Further, all user-defined words within a given digoint set must be unique. (See
UNIQUENESS OF REFERENCE in this Section).

With the exception of paragraph-name, section-name, level-number and segment-number, all user-
defined words must contain at least one a phabetic character. Segment-numbers and level-numbers
need not be unique; a given specification of a segment-number or level-number may be identical to
any other segment-number or level-number and may even beidentical to a paragraph-name or section-

name.

Condition-Name:

Mnemonic-Name:

Paragraph-Name:

Section-Name:

Other User-Defined
Names:

A condition-name is a name which is assigned to a specific value, set of
values, or range of values, within a complete set of values that a data item
may assume. The dataitem itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-
NAMES paragraph within the Environment Division where a condition-
name must be assigned to the ON STATUS or OFF STATUS, or both, of
the run time switches.

A condition-name is used only in the RERUN clause or in conditions as an
abbreviation for the relation condition; this relation condition posits that the
associated conditional variable is equal to one of the set of values to which
that condition-name is assigned.

A mnemonic-name assigns a user-defined word to an implementor-name.
These associations are established in the SPECIAL-NAMES paragraph of
the Environment Division. (See SPECIAL-NAMES in Chapter 3).

A paragraph-name is a word which names a paragraph in the Procedure
Division. Paragraph-names are equivalent if, and only if, they are composed
of the same sequence of the same number of digits and/or characters.

A section-name is aword which names a section in the Procedure Division.
Section names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits and/or characters.

See the glossary in Appendix C for definitions of all other types of user-
defined words.

Chapter 2. COBOL Concepts

Literals

System-Names:

Reserved Words:

Key Words:

Optiona Words:

Connectives:

Figurative Constants:

A system-name is a COBOL word which is used to communicate with the
operating environment. Each character used in the formation of a system-
name must be selected from the set of characters'A','B','C, ... 'Z','a,'b, ... 'z,
'0'...'9"and'-', except that the - ' may not appear asthefirst or last character.

There are three types of system-names:
1. computer-name

2. implementor-name

3. language-name

Within a given implementation these three types of system-names form
digoint sets; a given system-name may belong to one and only one of them.
The system-names listed above are individually defined in the glossary in
Appendix C.

A reserved word is a COBOL word that is one of a specified list of words
which may be used in COBOL source programs, but which must not appear
in the programs as user-defined words or system-names. Reserved words can
only be used as specified in the general formats. (See Appendix A).

There are six types of reserved words:
. Key words

. Optional words

. Connectives

. Specia registers

. Figurative constants

. Special-character words

OO0, WNPE

A key word isaword whose presence is required when the format in which
theword appearsisusedin asource program. Within each format, such words
are uppercase and underlined.

Key words are of three types:

1. Verbssuch as ADD, READ, and ENTER.

2. Required words, which appear in statement and entry formats.

3. Words which have a specific functional meaning such as NEGATIVE,
SECTION, etc.

Within each format, uppercase words that are not underlined are called
optional words and may appear at the user's option. The presence or absence
of an optional word does not alter the semantics of the COBOL program in
which it appears.

Series connectives link two or more consecutive operands. , (separator
comma) or ; (separator semicolon).

Certain reserved words are used to name and reference specific constant
values. Thesereserved words are specified under Figurative Constant Values
in this chapter.

A literal isacharacter-string whose valueisimplied by an ordered set of characters of which theliteral
iscomposed or by specification of areserved word which referencesafigurative constant. Every literal
belongs to one of two types, nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends
by quotation marks and consisting of any allowable character in the
computer's character set. Allowed are nonnumeric literals of 1 through
128 charactersin length. To represent asingle quotation mark character

Chapter 2. COBOL Concepts

within a nonnumeric literal, two contiguous quotation marks must be
used. The value of a nonnumeric litera in the object program is the
string of charactersitself, except:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other punctuation characters are part of the value of the nonnumeric literal rather than separators,

all nonnumeric literal are category alphanumeric. (Seethe section called “THE PICTURE CLAUSE”
in chapter 3). In addition, hexadecimal binary values can be attributed to non-numeric literals by,
expressing literalsas: X"nn", wherenisahexadecimal character inthe set 0-9 A-F; nn may berepeated
up to 128 times, but the number of hex digits must be even.

Numeric Literals A numeric literal is a character-string whose characters are selected from
the digits '0' through '9', the plus sign, the minus sign, and/or the decimal
point. Theimplementation allowsfor numeric literals of 1 through 18 digits
in length. The rules for the formation of numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If asignisused,
it must appear as the leftmost character of the literal. If the literal is
unsigned, the literal is positive.

3. A literal must not contain more than one decimal point. The decimal
point is treated as an assumed decimal point, and may appear anywhere
within theliteral except asthe rightmost character. If the literal contains
no decimal point, the literal is an integer.

If aliteral conformsto the rulesfor the formation of numeric literals, but
isenclosed in quotation marks, it isanonnumeric literal and it istreated
as such by the compiler.

4. The value of a numeric literal is the algebraic quality represented by
the characters in the numeric literal. Every numeric literal is category
numeric. (Seethe section called “THE PICTURE CLAUSE” in Chapter
3). The size of a numeric literal in standard data format characters is
equal to the number of digits specified by the user.

Figurative Constant Values
Figurative Constant Values are generated by the compiler and referenced through the use of the
reserved words given below. These words must not be bounded by quotation marks when used as
figurative constants. The singular and plural forms of figurative constants are equivalent and may be
used interchangeably.

Thefigurative constant values and the reserved words used to reference them are shown in Table 2-1.

Table 2.1. Figurative Constants and their Reserved Words

CONSTANT REPRESENTATION

ZERO Represents the value '0", or one or more of the
ZEROS character '0' depending on context.

ZEROES

SPACE Represents one or more of the character space from
SPACES the computer's character set.

Chapter 2. COBOL Concepts

CONSTANT REPRESENTATION

HIGH-VALUE Represents one or more of the character that has

HIGH-VALUES the highest ordinal position in the program collating
sequence.

LOW-VALUE Represents one or more of the character that has

LOW-VALUES the lowest ordinal position in the program collating
sequence.

QUOTE Represents one or more of the character ' " '. The

QUOTES word QUOTE or QUOTES cannot be used in place

of a quotation mark in a source program to bound a
nonnumeric literal. Thus, QUOTE ABD QUOTE is
incorrect as a way of stating the nonnumeric literal
"ABD".

ALL literd Represents one of more repetitions of the single
character comprising the literal (literal may not be
more than one character in length). The literal must
be either anonnumeric literal or afigurative constant
other than ALL literal. When a figurative constant
is used, the word ALL is redundant and is used for
readability only.

When a figurative constant represents a string of one or more characters, the length of the string i s
determined by the compiler from context according to the following rules:

1. When afigurative constant is associated with another data item, as when the figurative constant is
moved to or compared with another data item, the string of characters specified by the figurative
constant is repeated character by character on the right until the size of the resultant string is equal
to the size in characters of the associated data item. This is done prior to and independent of the
application of any JUSTIFIED clause that may be associated with the data item.

2. When afigurative constant is not associated with another dataitem, aswhen the figurative constant
appears in a DISPLAY or STOP statement, the length of the string is one character. DISPLAY
SPACE is, of course, an exception.

A figurative constant may be used wherever a literal appears in a format, except that whenever the
literal is restricted to having only numeric characters in it, the only figurative constant permitted is
ZERO (ZEROS, ZEROES).

When thefigurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program,
the actual character associated with each figurative constant depends upon the program collating
seguence specified. (See THE OBJECT-COMPUTER PARAGRAPH, and THE SPECIAL-NAMES
PARAGRAPH in Chapter 3).

Each reserved word which is used to reference afigurative constant value is a distinct character-string
with the exception of the construction'ALL literal whichiscomposed of two distinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of charactersin the COBOL character
set used as symbols. See the section called “THE PICTURE CLAUSE” for the PICTURE character-
string and for the rules that govern their use.

Any punctuation character which appears as part of the specification of a PICTURE character-string
is not considered as a punctuation character, but rather as a symbol used in the specification of that
PICTURE character-string.

Comment-Entries

10

Chapter 2. COBOL Concepts

A comment-entry is an entry in the Identification Division that may be any combination of characters
from the computer's character set.

CONCEPT OF COMPUTER INDEPENDENT DATA
DESCRIPTION

To make data as computer independent as possible, the characteristics or properties of the data are
described in relation to a standard dataformat rather than an equipment-oriented format. This standard
dataformat isoriented to general data processing applicationsand usesthe decimal system to represent
numbers (regardless of the radix used by the computer) and the remaining characters in the CIS
COBOL character set to describe nonnumeric data items.

Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises from the need
to specify subdivisions of a record for the purpose of data reference. Once a subdivision has been
specified, it may be further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are called elementary
items; consequently, arecord is said to consist of a sequence of elementary items, or the record itself
may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into groups. Each
group consists of a named sequence of one or more elementary items. Groups, in turn, may be
combined into groups of two or more groups, etc. Thus, an el ementary item may belong to more than
one group.

Level-Numbers

A system of level-numbers shows the organization of elementary items and group items. Sincerecords
are the most inclusive data items, level-numbers for records start at 01. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater in value than 49. A maximum
of 49 levelsin arecord is alowed. Thereis a specia level-number, 77, which is an exception to this
rule (see below). Separate entries are written in the source program for each level-number used.

A group includes al group and elementary items following it until alevel-number less than or equal
to the level-number of that group is encountered. All items which are immediately subordinate to a
given group item must be described using identical level-numbers greater than the level-number used
to describe that group item. Note that group items must not exceed 8192 Bytesin length.

Two types of entries exist for which there is no true concept of level. These are;
1. Entriesthat specify noncontiguous working storage and linkage data items
2. Entriesthat specify condition-names.

Entries that specify noncontiguous data items, which are not subdivisions of other items, and are not
themselves subdivided, have been assigned the special level-number 77.

Concept of Classes of Data

The five categories of data items (see the section called “THE PICTURE CLAUSE” in Chapter
3) are grouped into three classes : aphabetic, numeric, and aphanumeric. For aphabetic and
numeric, the classes and categories are synonymous. The a phanumeric class includes the categories
of aphanumeric edited, numeric edited and aphanumeric (without editing). Every elementary item
except for an index data item belongs to one of the classes and to one of the categories. The class
of agroup item is treated at object time as alphanumeric regardless of the class of elementary items

11

Chapter 2. COBOL Concepts

subordinate to that group item. Table 2-2 depicts the relationship of the class and categories of data
items.

Table 2.2. Data L evels, classes and categories

LEVEL OF ITEM CLASS CATEGORY
Alphabetic Alphabetic
Numeric Numeric
Elementary Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric
Alphabetic
Numeric
Non-Elementary Group Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form, depending on
the equipment. In addition, there are several ways of expressing decimal. Since these representations
are actually combinations of bits, they are commonly called binary-coded decimal forms. The four
standard formats used for storing numeric datain CIS COBOL are as follows:

1. Asalphanumeric characters stored one per byte in ASCII representation.

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause in Chapter 3)
one per bytein ASCI| representation. If they are signed and the signis specified asINCLUDED, bit
6 of the leading or trailing byte of the field is set for negative, depending on the field definition. If
aSEPARATE signis specified asaone byte ASCII + or -, asignis added asthe leading or trailing
byte. If no SIGN clause is specified, bit 6 of the trailing digit is set to indicate negative by default.

As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in pure binary form.
If the field is signed the number is held in its twos-complement form. Storage is then dependent
on the number of 9'sin the PICTURE clause (see the section caled “THE PICTURE CLAUSE"
in Chapter 3) and on whether the field is SIGNed or not (see The SIGN Clause in Chapter 3).

Table 2-3 shows the storage requirements for each COMP(UTATIONAL) PICTURE Clause.

Table 2.3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE
Clause.

Bytes Required Number of Characters
Signed Unsigned
1 1-2 1-2
2 34 3-4
3 5-6 5-7
4 7-9 8-9
5 10-11 10-12
6 12-14 12-14
7 15-16 15-16
8 17-18 17-18

12

Chapter 2. COBOL Concepts

4. Asnumeric characters defined by USAGE IS COMPUTATIONAL-3 or USAGE IS COMP-3in
packed internal decimal form. Storage is dependent on the number of 9'sin the PICTURE clause.
The decimal numbers are stored as signed strings of variable length of 1 through 18 digits. The
sign of the packed decimal number is always stored in place of the least significant quartet of the
low order byte. Each byte contains two decimal positions (four bits per digit) and the digits (0 - 9)
are encoded as BCD numbers (0000 - 1001). Numbers are represented in the field as right-justified
valueswith a+ or - sign as shown in the example below. The maximum number of digits permitted
in arithmetic operandsiis 18.

EXAMPLE:

a For COMPUTATIONAL-3 and PICTURE 9999, the number +1234 would be stored asfollows:

0 1 2 3 4 F
0000 0001 0010 0011 0100 1111

where F represents the non-printing plus sign.

b. For COMPUTATIONAL-3 and PICTURE S9999, the number +1234 would be stored as
follows:

Storage would be as in a above except that the least significant digit would be replaced by C
(1100) representing the plus sign.

c. For COMPUTATIONAL-3and PICTURE S9999, the number -1234 would be stored asfollows:

Storage would be as in a above except that the least significant byte would be replaced by D
(1101) representing the minus sign.

Table 2-4 shows the storage requirements for each COMP-3 clause.

Table 2.4. Numeric Data Storage for the COMPUTATION-3 PICTURE
Clause.

Bytes Required Number of Digits
(Signed or Unsigned)

1
2-3
4-5
6-7
8-9

10-11

12-13

14-15

16-17

18

© 00 N O OB WN B

=
o

Algebraic Signs

Algebraic signsfall into two categories: operational signs, which are associated with signed numeric
data items and signed numeric literals to indicate their algebraic properties; and editing signs, which
appear on edited reports to identify the sign of the item.

13

Chapter 2. COBOL Concepts

The SIGN Clause permits the programmer to state explicitly, the location of the operational sign. The
Clause is optional; if it is not used operational signswill be represented as defined by setting bit 6 of
thetrailing digit for ASCII numbers. (see above).

Editing signs are inserted into a data item through the use of the sign control symbols of THE
PICTURE CLAUSE.

Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category of the
receiving item. These rules are:

1. If thereceiving dataitem is described as numeric:

a. Thedataisaligned by decimal point and is moved to the receiving character positions with zero
fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it had
an assumed decimal point immediately following its rightmost character and is aligned as in
paragraph a. above.

2. If thereceiving dataitem isanumeric edited dataitem, the data moved to the edited item is aligned
by decimal point with zerofill or truncation at either end as required within the receiving character
positions of the data item, except where editing requirements cause replacement of the leading
zZeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric
edited or aphabetic, the sending data is moved to the receiving character positions and aligned at
theleftmost character position in the dataitem with space fill or truncation to the right, asrequired.

If the JUSTIFIED Clause is specified for the receiving item, these standard rules are modified as
described in THE JUSTIFIED CLAUSE in Chapter 3.

Uniqueness of Reference

Subscripting

Subscripts can be used only when reference is made to an individual element within alist or table
of like elements that have not been assigned individual data-names (see THE OCCURS CLAUSE in
Chapter 4). The subscript can be represented either by anumeric literal that is an integer or by a data-
name, The data-name must be a numeric elementary item that represents an integer. The subscript
may be signed and, if signed, it must be positive. The lowest possible subscript valueis 1. Thisvalue
points to the first element of the table. The next sequential elements of the table are pointed to by
subscripts whose values are 2, 3, The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is delimited by the balanced
pair of separators left parenthesis and right parenthesis following the table element data-name. The
table element data-name appended with a subscript is called a subscripted data-name or an identifier.
When more than one subscript is required, they are written in the order of successively lessinclusive
dimensions of the data organization.

Theformat is:
data-name (subscript-1 [, subscript-2 [, subscript-31])
Indexing

References can be made to individual elementswithin atable of like elements by specifying indexing
for that reference. Anindex is assigned to that level of the table by using the INDEXED BY phrasein

14

Chapter 2. COBOL Concepts

the definition of atable. A name given in the INDEXED BY phrase is known as an index-name and
is used to refer to the assigned index. The value of an index corresponds to the occurrence number
of an element in the associated table. An index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by a SET statement.

Direct indexing is specified by using an index-name in the form of a subscript. Relative indexing is
specified when the index-name is followed by the operator + or -, followed by an unsigned integer
numeric literal al delimited by the balanced pair of separators left parenthesis and right parenthesis
following the table element data-name. The occurrence number resulting from relative indexing is
determined by incrementing (where the operator + is used) or decrementing (when the operator - is
used), by the value of the literal, the occurrence number represented by the value of the index. When
more than one index-name is required, they are written in the order of successively less inclusive
dimensions of the data organization.

At thetime of execution of astatement which refersto an indexed table element, the value contained in
theindex referenced by the index-name associated with the table element must neither correspond to a
valuelessthan one nor to avalue greater than the highest permissible occurrence number of an element
of the associated table. This restriction also applies to the value resultant from relative indexing.

The general format for indexing is:
{dat a-nane |condition-nane} ({index-nane-1|literal-1|[{+]|-}literal-2
][},{i ndex-nane-2|literal -3}[{+]|-|literal-4}][,{index-nanme-3|literal-5
I[{+]-}literal-6]}]])

Identifier

Anidentifier is aterm used to reflect that a data-name, if not unique in a program, must be followed
by a syntactically correct combination of subscripts or indices necessary to ensure uniqueness.

The general formats for identifiers are:

Format 1:

data-name-1 [(subscript-1[, subscript-2[, subscript-3]] (]
Format 2:

data-name-1 ({ index-name-1 | literal-1} [{ + |-} literal-2]
[,{ index-name-2 |literal-3} [{ + |-} literal-4] [, { index-name-3 | literal-5} [{ + |-} literal-6]]]

Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is being used as an
index, or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. Anindex may be modified only by the SET, SEARCH, and PERFORM statements. Data items
described by the USAGE IS INDEX clause permit storage of the values associated with index-
names as datain aform specified by the implementor. Such dataitems are called index dataitems.

4. Literal-1, literal-3, literal-5, in the above format must be positive numeric integers. Literal-2,
literal-4, literal-6 must be unsigned numeric integers.

Condition-Name

Each condition-name must be unique.

PROGRAM STRUCTURE

15

Chapter 2. COBOL Concepts

A CIS COBOL program consists of four divisions:
1. IDENTIFICATION DIVISION - An identification of the program.

2. ENVIRONMENT DIVISION - A description of the equipment to be used to compile and run the
program.

3. DATA DIVISION - A description of the data to be processed.

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be performed on the
data

Each division, is divided into sections which are further divided into paragraphs, which in turn are
made up of sentences.

THE "ANSI SWITCH" COMPILER DIRECTIVE

Some of the 'red-tape’ statements required by a strict ANSI interpretation, are optional under CIS
COBOL. It is possible to force the compiler to insist on a strict ANSI interpretation by using the
"FLAG" directive. In the remainder of this Chapter these statements are marked [}. Elsewherein this
manual areference is made to the ANSI switch when this applies.

If the operator enters the FLAG directive at compile time ANSI requirements implemented in CIS
COBOL are mandatory depending on their level as specified by the Federal Compiler Testing Center
under the direction of the General Services Administration (GSA). See the description of the Compiler
FLAG directive in the CIS COBOL Operating Guide.

IDENTIFICATION DIVISION
GENERAL DESCRIPTION

The Identification Division must be included in every ANSI COBOL source program, This division
identifies both the source program and the resultant output listing. In addition, the user may include
the date the program is written, the date the compilation of the source program is accomplished and
such other information as desired under the paragraphsin the general format shown below.

ORGANISATION

Paragraph headers identify the type of information contained in the paragraph. The name of the
program must be given in the first paragraph, which is the PROGRAM-ID paragraph. The other
paragraphs are optional and may be included in this division at the user's choice, in order of
presentation shown by the format below.

STRUCTURE

Thefollowing isthe general format of the paragraphsin the Identification Division and it defines the
order of presentation in the source program.

General format

FIDENTIFICATION DIVISION.}
[PROGRAM-ID. program-name}
[AUTHOR. [comment-entry]...]
[INSTALLATION. [comment-entry]...]
[DATE-WRITTEN. [comment-entry]...]
[DATE-COMPILED. [comment-entry]...]
[SECURITY. [comment-entry]...]

16

Chapter 2. COBOL Concepts

ENVIRONMENT DIVISION
GENERAL DESCRIPTION

The Environment Division specifiesastandard method of expressing those aspects of adataprocessing
problem that are dependent upon the physical characteristics of a specific computer. This division
allows specification of the configuration of the compiling computer and the object computer. In
addition, information relating to input-output control, special hardware characteristics and control
techniques can be given.

The Environment Division must be included in every COBOL source program.

ORGANIZATION

Two sections make up the Environment Division: the Configuration Section and the Input-Output
Section.

The Configuration Section deals with the characteristics of the source computer and the object
computer. This section is divided into three paragraphs. the SOURCE-COMPUTER paragraph,
which describes the computer configuration on which the source program is compiled; the OBJECT-
COMPUTER paragraph, which describes the computer configuration on which the object program
produced by the compiler is to be run; and the SPECIAL-NAMES paragraph, which relates the
implementation-names used by the compiler to the mnemonic-names used in the source program.

The Input-Output Section deals with the information needed to control transmission and handling of
data between external media and the object program. This section is divided into two paragraphs: the
FILE-CONTROL paragraph which names and associates the files with external media; and the I-O-
CONTROL paragraph which defines special control techniques to be used in the object program.

STRUCTURE

The following is the general format of the sections and paragraphs in the Environment Division, and
defines the order of presentation in the source program.

General Format

[ENVIRONMENT DIVISION.}
[CONFIGURATION SECTION.}
[SOURCE-COMPUTER. source-computer-entry}
[OBJECT-COMPUTER. object-computer-entry}
[SPECIAL-NAMES. special-names-entry]
FINPUT-OUTPUT SECTION.}
[FILE-CONTROL .} {file-control-entry} ...
[I-O-CONTROL. input-output-control-entry]

DATA DIVISION
OVERALL APPROACH

The Data Division describes the data that the object program is to accept as input, to manipulate, to
create, or to produce as output, Data to be processed falls into three categories:

1. That which is contained in files and enters or leaves the internal memory of the computer from a
specified area or areas.

2. That which is developed internally and placed into intermediate or working storage, or placed into
specific format for output reporting purposes.

17

Chapter 2. COBOL Concepts

3. Constants which are defined by the user.

PHYSICAL AND LOGICAL ASPECTS OF DATA
DESCRIPTION

Data Division Organization

The DATA DIVISION whichisone of therequired divisionsin aprogram, is subdivided into sections.
These are the File, Working-Storage and Linkage sections.

The FILE SECTION defines the structure of data files. Each file is defined by a file description
entry and one or more record descriptions, or by a file description entry and one or more report
description entries. Record descriptions are written immediately following the file description entry.
The WORKING-STORAGE SECTION describes records and noncontiguous data items which are
not part of external data files but are developed and processed internally. It also describes data items
whose values are assigned in the source program and do not change during the execution of the
object program. The LINKAGE SECTION appears in the called program and describes data items
that are to be referred to by the calling program and the called program. Its structure is the same as
the WORKING-STORAGE SECTION.

General Format

The following gives the general format of the sections in the Data Division, and defines the order of
their presentation in the source program.

[DATA DIVISION.}

[FILE SECTION.

[file-description-entry [record-description-entry]...]...]
[WORKING-STORAGE SECTION.

[{ 77-level-description-entry | record-description-entry }]...]
[LINKAGE-SECTION.

[{ 77-level-description-entry | record-description-entry }]...]

PROCEDURE DIVISION
GENERAL DESCRIPTION

The Procedure Division must beincluded in every COBOL source program. Thisdivision may contain
declarative procedures.

Declaratives

Declarative sections must be grouped at the beginning of the Procedure Division preceded by the key
word DECLARATIVES and followed by the key words END DECLARATIVES. (See descriptions
of the USE statement in Chapters 5, 6 and 7 and the Debug Chapter 10).

Procedures

A procedureis composed of aparagraph, or group of successive paragraphs (the first paragraph-name
is optional), or a section, or a group of successive sections within the Procedure Division. If one
paragraph isin a section, then all paragraphs must be in sections. A procedure-name is a word used
to refer to a paragraph or section in the source program in which it occurs. It consists of a paragraph-
name (which may be qualified), or a section-name.

The end of the Procedure Division and the physical end of the program is that physical positionin a
COBOL source program after which no further procedures appear.

18

Chapter 2. COBOL Concepts

A section consists of asection header followed by zero, one, or more successive paragraphs. A section
endsimmediately before the next section or at the end of the Procedure Division or, in the declaratives
portion of the Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more
successive sentences. A paragraph endsimmediately before the next paragraph-name or section-name
or at the end of the Procedure Division or, in the declaratives portion of the Procedure Division, at
the key words END DECLARATIVES.

In CIS COBOL paragraph names may be entirely omitted. If paragraph names are used then they
may be mixed with section names as required, in any order. Note that isis not possible to GO TO or
PERFORM a piece of code unlessit has either a section or a paragraph name.

A sentence consists of one or more statements and is terminated by a period followed by a space.
A statement isasyntactically valid combination of words and symbols beginning witha COBOL verb.

Theterm 'identifier' is defined astheword or words necessary to make unique referenceto adataitem.

Execution

Execution beginswith thefirst statement of the Procedure Division, excluding declaratives. Statements
are then executed in the order in which they are presented for compilation, except where the rules
indicate some other order.

General Format

Procedure Division Header

The Procedure Division isidentified by and must begin with the following header:

PROCEDURE DI VI SI ON[USING data-name-1 [, data-name-2]...] .

Procedure Division Body

The body of the Procedure Division must conform to one of the following formats:
Format 1:

[DECLARATIVES. { section-name SECTION [segment-number] . declarative-sentence
[paragraph-name. [sentence]...]... } ...

END DECLARATIVES.]

{ fsection-name SECTION [segment-number]}

[[paragraph-name} [sentence]...] }
Format 2 :

{ fparagraph-name} [sentence]... } ...

STATEMENTS AND SENTENCES

There are three types of statements:

1. Conditional statements,
2. Compiler directing statements,
3. Imperative statements.

There are three types of sentences:

1. Conditional sentences,
2. Compiler directing sentences,
3. Imperative sentences.

19

Chapter 2. COBOL Concepts

Conditional Statement

A conditional statement specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:
* An |F statement.

* A READ statement that specifiesthe AT END or INVALID KEY phrase.

A WRITE statement that specifiesthe INVALID KEY phrase.

A START, REWRITE or DELETE statement that specifiesthe INVALID KEY phrase.

* An arithmetic statement (ADD, DIVIDE, MULTIPLY, SUBTRACT) that specifies the SIZE
ERROR phrase.

e A CALL statement that specifiesthe ON OVERFLOW phrase.

Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an imperative statement,
terminated by a period followed by a space.

Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its operands. The compiler
directing verbs are COPY, ENTER and USE (see THE COPY STATEMENT in Chapter 9, THE
ENTER STATEMENT in Chapter 3, and THE USE STATEMENT in Chapters5, 6 and 7). A compiler
directing statement causes the compiler to take a specified action during compilation.

Compiler Directing Sentence

A compiler directing sentenceisasingle compiler directing statement terminated by aperiod followed
by a space.

Imperative Statement

An Imperative statement indicates a specific unconditional action to be taken by the object program.
An imperative statement is any statement that is neither a conditional statement, nor a compiler
directing statement. Animperative statement may consist of aseguence of imperative statements, each
possibly separated from the next by a separator.

The imperative verbs are:

ACCEPT DIVIDE? READ*
ADD? EXIT REWRITE?
ALTER GO SET

CALL® INSPECT START?
CANCEL MOVE STOP
CLOSE MULTIPLY? SUBTRACT?
DELETE? OPEN WRITE®
DISPLAY PERFORM

1. Without the optional SIZE ERROR phrase.

2. Without the optional INVALID KEY phrase.

3. Without the optional ON OVERFLOW phrase.

4. Without the optional AT END phrase or INVALID KEY phrase.

5. Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

20

Chapter 2. COBOL Concepts

When 'imperative-statement’ appearsin the general format of statements, 'imperative-statement' refers
to that sequence of consecutive imperative statements that must be ended by a period or an ELSE
phrase associated with a previous | F statement.

Imperative Sentence

An imperative sentence is an imperative statement terminated by a period followed by a space.

REFERENCE FORMAT
GENERAL DESCRIPTION

The reference format, which provides a standard method for describing COBOL source programs,
is described in terms of character positionsin aline on an input-output medium. The CIS COBOL
compiler accepts source programs written in reference format and produces an output listing of the
source program input in reference format.

The rules for spacing given in the discussion of the reference format take precedence over al other
rules for spacing.

The divisions of a source program must be ordered as follows: the Identification Division, then the
Environment Division, then the Data Division, then the Procedure Division. Each division must be
written according to the rules for the reference format.

REFERENCE FORMAT REPRESENTATION

The reference format for aline is represented asin Figure 2-1.

Figure 2.1. Reference Format for a COBOL SourcelLine.

| | | | |
Mar gi n Mar gi n Mar gi n Mar gi n Mar gi n
L C A B R
| | | 1 1 1 1 |
| 1 2 3 4 5 6| 7 | 8 9 0 1] 2 3 |
Com e e o - - D R > Komm e e e e e oo - >

Sequence Number Area A Area A Area B
|

I ndi cator Area
Margin L isimmediately to the left of the leftmost character position of aline.
Margin C is between the 6th and 7th character positions of aline.
Margin A is between the 7th and 8th character positions of aline.
Margin B is between the 11th and 12th character positions of aline.
Margin R isimmediately to the right of the rightmost character position of aline.

The sequence number areaoccupies six character positions (1-6), and isbetween Margin L and Margin
C.

The indicator areais the 7th character position of aline.
Area A occupies character positions 8, 9, 10 and 11, and is between margin A and margin B.

Area B occupies character positions 12 through 72 inclusive; it begins immediately to the right of
Margin 8 and terminates immediately to the left of Margin R.

21

Chapter 2. COBOL Concepts

Sequence Numbers

A sequence number, consisting of six digitsin the sequence area, may be used to label asource program
line.

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line, it may be continued by
starting subsequent ling(s) in area B. These subsequent lines are called the continuation ling(s). The
line being continued is called the continued line. Any word or literal may be broken in such a way
that part of it appears on a continuation line.

A hyphenintheindicator areaof alineindicatesthat thefirst nonblank character in areaB of the current
lineisthe successor of thelast nonblank character of the preceding line without any intervening space.
However, if the continued line contains a nonnumeric literal without closing quotation mark, the first
nonblank character in area B on the continuation line must be a quotation mark, and the continuation
starts with the character immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must be blank.

If thereisno hyphenin theindicator areaof aline, it isassumed that the last character in the preceding
lineisfollowed by a space.

Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line can appear
anywhere in the source program, except immediately preceding a continuation line. (See Figure 2-1).

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

The division header must start in area A. (See Figure 2-1).

Section Header
The section header must start in area A. (See Figure 2-1).

A section consistsof paragraphsinthe Environment and Procedure Divisionsand DataDivision entries
in the Data Division.

Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one or more
sentences, or a paragraph header followed by one or more entries. Comment entries may be included
within a paragraph. The paragraph header or paragraph-name starts in area A of any line following
thefirst line of adivision or a section.

The first sentence or entry in a paragraph begins either on the same line as the paragraph header or
paragraph-nameor in areaB of the next nonblank linethat is not acomment line. Successive sentences
or entries either begin in area B of the same line as the preceding sentence or entry or in area B of the
next nonblank line that is not a comment line.

Note that in CIS COBOL program sentences may commence anywhere in Area A or AreaB.

When the sentences or entries of a paragraph require more than one line they may be continued as
described in CONTINUATION OF LINES in this Chapter.

DATA DIVISION ENTRIES

22

Chapter 2. COBOL Concepts

Each Data Division entry begins with a level indicator or a level-number, followed by a space,
followed by its associated name (except in the Report Section), followed by a sequence of independent
descriptive clauses. Each clause, except the last clause of an entry, may be terminated by either the
separator semicolon or the separator comma. Thelast clauseis alwaysterminated by aperiod followed
by a space.

There are two types of Data Division entries: those which begin with alevel indicator and those which
begin with alevel-number.

A level indicator is the indicator: FD (see THE FILE DESCRIPTION - COMPLETE ENTRY
SKELETON in Chapters 5, 6 and 7)

In those Data Division entries that begin with a level indicator, the level indicator begins in area
A followed by a space and followed in area B with its associated name and appropriate descriptive
information.

Those Data Division entries that begin with level-numbers are called data description entries.

A level-number has a value taken from the set of values 1 through 49, 77. Level-numbersin the range
1 through 9 may be written either asasingle digit or as a zero followed by asignificant digit. At least
one space must separate a level-number from the word following the level-number.

In those data description entries that begin with level-number 01 or 77, the level-number begins in
area A followed by a space and followed in area B by its associated record-name or item-name and
appropriate descriptive information.

Successive data description entries may have the sameformat asthefirst or may beindented according
to level-number. The entries in the output listing need be indented only if the input is indented.
Indentation does not affect the magnitude of alevel-number.

When level-numbers are to be indented, each new level-number may begin any number of spacesto
tile right of margin A. The extent of indentation to the right is determined only by the width of the
physical medium.

DECLARATIVES

The key word DECLARATIVES and the key words END DECLARATIVES that precede and
follow, respectively, the declaratives portion of the Procedure Division must each appear on aline by
themselves, Each must begin in area A and be followed by a period and a space (see Figure 2-1).

COMMENT LINES

A comment lineis any line with an asterisk in the continuation indicator area of the line. A comment
line can appear as any line in a source program after the Identification Division header. Any
combination of characters from the computer's character set may beincluded in area A and area B of
that line (see Figure 2-1). The asterisk and the characters in area A and area B will be produced on
the listing but serve as documentation only. A specia form of comment line represented by a stroke
in the indicator area of the line causes page gjection prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is permitted, except that each
continuation line must contain an ** in the indicator area.

RESERVED WORDS

A full list of reserved wordsis givenin Appendix A.

23

24

Chapter 3. THE NUCLEUS
FUNCTION OF THE NUCLEUS

The Nucleus provides a basic language capability for the internal processing of data within the basic
structure of the four divisions of a program.

IDENTIFICATION DIVISION IN THE NUCLEUS
GENERAL DESCRIPTION

Theldentification Division must beincluded in every COBOL source program. Thisdivisionidentifies
the source program and the resultant output listing. In addition, the user may include the date the
program is written and such other information as desired under the paragraphs in the general format
shown below.

ORGANIZATION

Paragraph headers identify the type of information contained in the paragraph. The name of the
program must be given in the first paragraph, which is the PROGRAM-ID paragraph. The other
paragraphs are optional and may be included in this division at the user's choice, in the order of
presentation shown by the general format below.

Structure

The general format of the paragraphsin the Identification Division is given below and shows the order
of presentation in the source program.

General Format

[IDENTIFICATION DIVISION}
[PROGRAM-ID. program-name.}
[AUTHOR. [comment-entry]...]
[INSTALLATION. [comment-entry]...]
[DATE-WRITTEN. [comment-entry]...]
[DATE-COMPILED. [comment-entry]...]
[SECURITY. [comment-entry]...]

Syntax Rules

1. The Identification Division must begin with the reserved words IDENTIFICATION DIVISION
followed by a period and a space.

2. The comment-entry may be any combination of the characters from the computer's character set

and may be written in area B on one or more lines. The continuation of the comment-entry by the
use of the hyphen in the indicator areais not permitted.

THE PROGRAM-ID PARAGRAPH

Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

25

Chapter 3. THE NUCLEUS

General Format

PROGRAM | D. pr ogr am nane.

Syntax Rules

1. The program-name must conform to the rules for formation of a user-defined word.

General Rules

1. The PROGRAM-ID paragraph must contain the name of the program and must be present in every
program if the FLAG directiveis used.

2. Theprogram-nameidentifiesthe source program and all listings pertaining to a particular program.

THE DATE-COMPILED PARAGRAPH

Function

The DATE-COMPILED paragraph provides the compilation date in the | dentification Division source
program listing.

General Format

DATE- COVPI LED. comrent -entry ...

Syntax Rule
The comment-entry may be any combination of the characters from the computer's character set. The

continuation of the comment entry by use of the hyphen is not permitted; however, the comment entry
may be contained on one or more lines.

General Rule
The paragraph-name DATE-COMPILED causes a date string to be inserted during program
compilation. If aDATE-COMPILED is present, the comment-entry is replaced in its entirety by the

date string. See the CIS COBOL Operating Guide for details of the derivation of the comment-entry
replacement string for your implementation of CIS COBOL compile-time.

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION
The SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to be
compiled.

General Format
SOURCE- COMPUTER. conput er - nane.
Syntax Rule

Computer-name must be one COBOL word defined by the user.

26

Chapter 3. THE NUCLEUS

General Rules

The computer-name provides a means for identifying equipment configuration, in which case the
computer-name and its implied configuration are specified by the user. The SOURCE-COMPUTER
paragraph is treated as for documentation purposes only.

The OBJECT-COMPUTER Paragraph

Function
The OBJECT-COMPUTER Paragraph identifiesthe computer on which the programisto be executed.
General Format

OBJECT- COVMPUTER. computer-name.

[LMEMORY SIZEi nt eger { WORDS | CHARACTERS | MODULES}]
[,LPROGRAM COLLATING SEQUENCE IS al phabet - nane]
[,LSEGMENT-LIMIT ISsegnent - nunber]

Syntax Rules
1. Computer-name must be one COBOL word defined by the user.
2. Segment-number must be an integer in the range 1 through 49.
General Rules

1. The computer-name provides a means for identifying equipment configuration, in which case
the computer-name and its implied configurations are specified by the user. The configuration
definition contains specific information concerning the memory size. The computer-name,
segment-limit and configuration definition are treated as for documentation purposes only.

2. If the PROGRAM COLLATING SEQUENCE Clause is specified, the collating sequence
associated with al phabet-nameis used to determine the truth val ue of any nonnumeric comparisons:

Explicitly specified in relation conditions (see Relation Condition later in this Chapter).

3. If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native collating
sequence is used. Appendix B liststhe full ASCII collating sequence (native) and those characters
usedin COBOL.

4. 1f the PROGRAM COLLATING SEQUENCE Clauseis specified, the program collating sequence
is the collating sequence associated with the al phabet-name specified in that Clause.

5. The PROGRAM COLLATING SEQUENCE Clause is also applied to any honnumeric merge or
sort keys.

The SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means of relating implementor-names to user-specified
mnemonic-names and of relating al phabet-names to character sets and/or collating sequences.

General Format

SPECI AL- NAMVES.

SWITCH {0 ... 7} [IS mnemonic-name] { ,ON STATUS IS condition-name-1 | [,OFF STATUS IS
condition-name-2] | ,OFF STATUS IS condition-name-2 | [,LON STATUS IS condition-name-1]}

[{ ,SYSIN|,SYSOUT } IS mnemonic-name]

[, TAB IS mnemonic-name]

27

Chapter 3. THE NUCLEUS

[, dphabet-name IS{ STANDARD-1|NATIVE}]...
[, CURRENCY SIGN ISliteral-9]

[, DECIMAL-POINT ISCOMMA]

[, CONSOLE ISCRT]

[, CURSOR ISdata-name-1] .

General Rules

1. The status of the switch is specified by condition-names and interrogated by testing the condition-

names (see Switch-Status Condition later in this Chapter).

2. The alphabet-name clause provides a means for relating a name to a specified character code set

and/or collating sequence. When alphabet - name is referenced in the PROGRAM COLLATING
SEQUENCE clause (see THE OBJECT-COMPUTER PARAGRAPH in this Chapter). The
alphabet-name clause specifies a collating sequence. When alphabet-name is referenced in a
CODE-SET clause in afile description entry (see The File Description Complete Entry Skeleton
in Chapter 5), the al phabet-name clause specifies a character code set.

a If the STANDARD-1 phraseis specified, the character code set or collating sequence identified
is that defined in American National Standard Code for Information Interchange, X3.4-1968 .
Appendix B defines the correspondence between the characters of the standard character set and
the characters of the native character set.

b. If the NATIVE phraseis specified, the native character code set or native collating sequence is
used. The native collating sequence isasin ANSI publication X3.4-1968 (see Appendix B) .

. The character that has the highest ordinal position in the program collating sequence specified is

associated with the figurative constant HIGH- VALUE. If more than one character has the highest
position in the program collating sequence, the last character specified.

. The character that has the lowest ordinal position in the program collating sequence specified is

associated with the figurative constant LOW-VALUE. If more than one character has the lowest
position in the program collating sequence, the first character specified is associated with the
figurative constant LOW-VALUE.

. Theliteral which appearsinthe CURRENCY SIGN ISliteral clauseisused inthe PICTURE clause

to represent the currency symbol. The literal is limited to a single character and must not be one
of the following characters.

 digitsOthru 9;
 aphabetic charactersA, B, C,D,L, P, R, S, V, X, Z, or the space;
e special characters™', '+, "', ", (L)L ™, T or =

If this clauseis not present, only the currency sign is used in the PICTURE clause.

. The clause DECIMAL - POINT IS COMMA means that the function of comma and period are

exchanged in the character-string of the PICTURE clause and in numeric literals.

. Theclause CONSOLE IS changesthe defaultsinthe ACCEPT and DISPLAY statementstotheCIS

COBOL interactive extension that enables data to be accepted or displayed at any specified point
onthescreen. See THE ACCEPT STATEMENT andthe DISPLAY STATEMENT inthis Chapter.

The clause CURSOR IS specifies the data-name to contain the CRT cursor address as used by

the ACCEPT statement. If CURSOR IS is hot specified the default cursor position on executing an

ACCEPT statement is the 'Home' position at top left of the CRT screen. The CURSOR IS clause
enables a program to retain a position at the end of execution of the last ACCEPT statement or
to specify the initial position at the start of any ACCEPT statement. Thisis a useful facility when
programming menu-type operator prompts. The operator need then only move the cursor to the
selected option prompt and press RETURN or just press RETURN for the default option.

28

Chapter 3. THE NUCLEUS

Data-name contains the name of the PIC 9999 field in which the most significant 99 represents
a line count in the range one to the maximum number of lines on the user screen, and the least
significant 99 represents a character position in the range one to the maximum positions allowed
by the width of the user screen. If data-name is zero, the effect is as if the CURSOR clause was
not used, i.e., initial cursor position istop |eft of the screen. (See aso the ACCEPT STATEMENT
later in this Chapter).

9. SYSIN and SYSOUT specify the system input stream and system output stream respectively. At
this release they are treated as for documentation purposes only.

10.TAB specifies the skip-to-head-of-form system function that can be used with WRITE
ADVANCING. It istreated as for documentation purposes only at this release.

DATA DIVISION IN THE NUCLEUS
WORKING STORAGE SECTION

The Working-Storage Section is composed of the section header, followed by data description entries
for noncontiguous data items and/or record description entries. Each Working-Storage Section record
name and noncontiguous item name must be unique.

Noncontiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical relationship to one another need
not be grouped into records, provided they do not need to be further subdivided. Instead, they are
classified and defined in a separate data description entry which beginswith the special level-number,
77.

The following data clauses are required in each data description entry:
* Level-number 77

» Data-name

* The PICTURE clause or the USAGE ISINDEX clause

Other data description clauses are optional and can be used to complete the description of the item
if necessary.

Working-Storage Records

Data elements and constants in Working-Storage which bear a definite hierarchic relationship to one
another must be grouped into records according to the rules for formation of record descriptions. All
clauses which are used in record descriptions in the File Section can be used in record descriptions
in the Working-Storage Section.

Initial Values

Theinitial value of any item in the Working-Storage Section except an index dataitem is specified by
using the VALUE clause with the data item. Theinitial value of any index dataitem is unpredictable.

THE DATA DESCRIPTION - COMPLETE ENTRY
SKELETON

Function

A data description entry specifies the characteristics of a particular item of data.

29

Chapter 3. THE NUCLEUS

General Format

level-number { data-name-1 | FILLER }

[; REDEFINES data-name-2]

[{ PICTURE | PIC} IS character-string |

[[USAGE IS] { COMPUTATIONAL | COMP| COMPUTATIONAL-3 | COMP-3 | DISPLAY }]
[:[SIGN IS] { LEADING | TRAILING } [SEPARATE CHARACTER]]

[;{ SYNCHRONIZED |SYNC} { LEFT |RIGHT }]

[; { JUSTIFIED | JUST } RIGHT] [; BLANK WHEN ZERO]

[; VALUE ISIitera]

Syntax Rules

1. Thelevel-number may be any number from 01-49 or 77.

2. The clauses may be written in any order with two exceptions: the data-name-1 or FILLER clause
must immediately follow thelevel-number; the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

3. The PICTURE clause must be specified for every elementary item except an index data item, in
which case use of this clauseis prohibited.

General Rule

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must not be
specified except for an elementary dataitem.

THE BLANK WHEN ZERO CLAUSE

Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

General Format

BLANK VWHEN ZERO

Syntax Rules
The BLANK WHEN ZERO clause can be used only for an elementary item whose PICTURE is
specified asnumeric withimplicit or explicit USAGE ISDISPLAY , or numeric edited. (Seethe section
caled “THE PICTURE CLAUSE” later in this Chapter).

General Rules

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if the
value of theitemis zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the
category of theitem is considered to be numeric edited.

THE DATA-NAME OR FILLER CLAUSE

Function

A data-name specifiesthe name of the databeing described. Theword FILLER specifiesan elementary
item of the logical record that cannot be referred to explicitly.

30

Chapter 3. THE NUCLEUS

General Format

{ data-name | FILLER }

Syntax Rule

1. Inthe File, Working-Storage, Communication and Linkage Sections, a data-name or the key word
FILLER must be the first word following the level-number in each data description entry.

General Rule

1. Thekey word FILLER may be used to namean elementary itemin arecord. Under no circumstances
can aFILLER item bereferred to explicitly.

THE JUSTIFIED CLAUSE

Function

The JUSTIFIED clause specifies non-standard positioning of data within areceiving data item.

General Format

{ JUSTIFIED | JUST } RIGHT

Syntax Rules
1. The JUSTIFIED clause can be specified only at the elementary item level.
2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as numeric or for which

editing is specified.
General Rules

1. When areceiving data item is described with the JUSTIFIED clause and the sending data item
is larger than the receiving data item, the leftmost characters are truncated. When the receiving
dataitem is described with the JUSTIFIED clause and it is larger than the sending data item, the
datais aligned at the rightmost character position in the data item with space fill for the leftmost
character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data within. an el ementary
item apply. (See Standard Alignment Rules.)

LEVEL NUMBER

Function

Thelevel-number shows the hierarchy of datawithin alogical record. In addition, it isused to identify
entries for working storage items, linkage items.

General Format

| evel - nunber

31

Chapter 3. THE NUCLEUS

Syntax Rules

1. A level-number is reguired asthe first element in each data description entry.

2. Data description entries subordinate to a File Description entry must have level-numbers with the
values 01-49. (See THE FILE DESCRIPTION in Chapter 5).

3. Data description entries in the Working-Storage Section and Linkage Section must have level-
numbers with the values 01-49.

General Rules

1. Thelevel-number 01 identifies the first entry in each record description or areport group.

2. The level-number 77 is assigned to identify noncontiguous working storage data items,
noncontiguous linkage data items, and can be used only as described by Format 1 of the data
description skeleton. (Seethe section called “THE DATA DESCRIPTION - COMPLETE ENTRY
SKELETON?" in this Chapter).

3. Multiple level 01 entries subordinate to any given level indicator, represent implicit redefinitions
of the same area.

THE PICTURE CLAUSE

Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary
item.

General Format

{ PICTURE | PIC} IS character-string

Syntax Rules
1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of charactersinthe COBOL character
set used as symbols. The allowable combinations determine the category of the elementary item.

3. The maximum number of characters allowed in the character-string is 30.

4. The PICTURE clause must be specified for every elementary item except an index data item, in
which case use of this clauseis prohibited.

5. PICisan abbreviation for PICTURE

6. The asterisk when used asthe zero suppression symbol and the clause BLANK WHEN ZERO may
not appear in the same entry.

General Rules
There are five categories of datathat can be described with a PICTURE clause: aphabetic, numeric,
alphanumeric, aphanumeric edited, and numeric edited. General rules within these categories are
given below:

Alphabetic Data Rules

1. Its PICTURE character-string can only contain the symbols'A’, 'B'; and

32

Chapter 3. THE NUCLEUS

2. Its contents when represented in standard data format must be any combination of the twenty-six
(26) upper-case |etters of the Roman alphabet and the space from the COBOL character set.

Numeric Data Rules

1. ThePICTURE character-string can only contain the symbols'9', 'P, 'S, and 'V'. The number of digit
positionsthat can be described by the PICTURE character-string must range from 1 to 18 inclusive.

2. If unsigned, the data in standard data format must be a combination of the Arabic numerals'0’, '1',
'2,'3,'4,'5,'6','7", '8, and '9’; if signed, the item may also contain a'+', -' or other representation
of an operational sign. (See THE SIGN CLAUSE later in this Chapter).

Alphanumeric Data Rules

1. The PICTURE character-string isrestricted to certain combinations of the symbols'A’, 'X', '9', and
theitem istreated asif the character-string contained al X's. A PICTURE character-string which
containsall A'sor al 9's does not define an alphanumeric item; and

2. The contents when represented in standard data format can consist of any characters in the
computer's character set.

Alphanumeric Edited Data Rules
1. Its PICTURE character-string is restricted to certain combinations of the following symbols: 'A’,
'X','9,'B','0', and’/' asfollows:
a. Thecharacter-string must contain at least one 'B' and at least one'X' or at least one '0' (zero) and
at least one X' or at least one'/* (stroke) and at least one 'X'; or

b. The character-string must contain at least one '0"' (zero) and at least one 'A' or at least one
'I' (stroke) and at least one ‘A’

2. The contents when represented in standard data format are allowable characters in the computer's
Set.

Numeric Edited Data Rules

1. Its PICTURE character-string is restricted to certain combinations of the symbols 'B', /', 'P, 'V',
'Z','0, 9, L) Y 'CRY, 'DBY, and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and the editing rules as follows:

a. The number of digit positions that can be represented in the PICTURE character-string must
range from 1 to 18 inclusive.

b. Thecharacter-string must contain at least one'0', 'B', '/, 'Z',*",'+,"/",".","-","CR', 'DB', or currency
symbol.

2. The contents of the character positions of these symbols that are allowed to represent a digit in
standard data format, must be one of the numerals.

Elementary Item Size

The size of an elementary item, where size means the number of character positions occupied by
the elementary item in standard data format, is determined by the number of alowable symbols that
represent character positions. An integer which is enclosed in parentheses following the symbols 'A’,
VX9 P R B T 0 ' Y or the currency symbol indicates the number of consecutive
occurrences of the symbol. Note that the following symbols may appear only once in a given
PICTURE: 'S, 'V',"','CR', and 'DB'".

Symbols Used

33

Chapter 3. THE NUCLEUS

The functions of the symbols used to describe an elementary item are explained as follows:;

A -

B -

Each 'A' in the character-string represents a character position which can
contain only aletter of the alphabet or a space.

Each 'B' in the character-string represents a character position into which the
space character will be inserted.

Each 'P' indicates an assumed decimal scaling position and is used to specify
the location of an assumed decimal point when the point is not within the
number that appears in the dataitem. The scaling position character 'P' is not
counted in the size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions (18) in numeric edited
items or numeric items. The scaling position character 'P' can appear only to
the left or right as a continuous string of 'P's within a PICTURE description;
since the scaling position character 'P' implies an assumed decimal point (to
the left of 'P'sif 'P's are leftmost PICTURE characters and to the right if 'P's
are rightmost PICTURE characters), the assumed decimal point symbol 'V'is
redundant as either theleftmost or rightmost character within suchaPICTURE
description. The character 'P and theinsertion character ." (period) cannot both
occur in the same PICTURE character-string. If, in any operation involving
conversion of datafrom oneform of internal representation to another, the data
item being converted is described with the PICTURE character 'P, each digit
position described by a'P' is considered to contain the value zero, and the size
of the dataitem is considered to include the digit positions so described.

The letter 'S is used in a character-string to indicate the presence, but neither
the representation nor, necessarily, the position of an operational sign; it must
be written as the leftmost character in the PICTURE. The S is not counted
in determining the size (in terms of standard data format characters) of the
elementary item unless the entry is subject to a SIGN clause which specifies
the optional SEPARATE CHARACTER phrase. (Seethe SIGN Clausein this
Chapter.)

The 'V' is used in a character-string to indicate the location of the assumed
decimal point and may only appear once in a character-string. The 'V' does
not represent a character position and therefore is not counted in the size of
the elementary item. When the assumed decimal point is to the right of the
rightmost symbol in the string the 'V is redundant.

Each X' in the character-string is used to represent a character position which
contains any allowable character from the computer's character set.

Each 'Z' in a character-string may only be used to represent the leftmost
numeric character positionswhich will be replaced by a space character when
the contents of that character position is zero. Each 'Z' is counted in the size
of theitem.

Each '9' in the character-string represents a character position which contains
anumeral and is counted in the size of the item.

Each'0' (zero) in the character-string represents a character positioninto which
the numeral zero will beinserted. The'0' is counted in the size of the item.

Each '/' (stroke) in the character-string represents a character position into
which the stroke character will be inserted. The /' is counted in the size of
the item.

Each ', (comma) in the character-string represents a character position into
which the character *,' will be inserted. This character position is counted in

Chapter 3. THE NUCLEUS

+,-,CR, DB -

Editing Rules

the size of the item. The insertion character ',' must not be the last character
in the PICTURE character-string.

The character '.' (period) in the character-string is an editing symbol which
representsthe decimal point for alignment purposes and in addition, represents
acharacter position into which the character . will be inserted. The character
"' is counted in the size of the item. For a given program the functions of
the period and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the comma apply to
the period wherever they appear in aPICTURE clause. Theinsertion character
"' must not be the last character in the PICTURE character-string.

These symbols are used as editing sign control symbols. When used, they
represent the character position into which the editing sign control symbol will
be placed. The symbols are mutually exclusive in any one character-string and
each character used in the symbol is counted in determining the size of the
dataitem.

Each*' (asterisk) in the character-string represents al eading numeric character
position into which an asterisk will be placed when the contents of that position
iszero. Each ™' is counted in the size of the item.

The currency symbol in the character-string represents a character position
into which a currency symbol is to be placed. The currency symbol in a
character-string is represented by either the currency sign or by the single
character specified in the CURRENCY SIGN clause in the SPECIAL-
NAMES paragraph. The currency symbol is counted in the size of the item.

There are two general methods of performing editing in the PICTURE clause, either by insertion or
by suppression and replacement. There are four types of insertion editing available. They are:

e Simpleinsertion
» Specia insertion
» Fixedinsertion

* Foating insertion

There are two types of suppression and replacement editing:

 Zero suppression and replacement with spaces

* Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent upon the category to which
theitem belongs. Table 3-1 specifies which type of editing may be performed upon a given category.

Table 3.1. Editing Typesfor Data Categories

CATEGORY TYPE OF EDITING
Alphabetic Simple insertion 'B' only
Numeric None

Alphanumeric None

Alphanumeric Edited Simpleinsertion'0', 'B'and /'

35

Chapter 3. THE NUCLEUS

CATEGORY TYPE OF EDITING
Numeric Edited All, but see NOTE below
Note

Floating insertion editing and editing by zero suppression and replacement are mutually
exclusive in a PICTURE clause. Only one type of replacement may be used with zero
suppression in a PICTURE clause.

Simple Insertion Editing

Simplelnsertion Editing. The',' (comma), 'B' (space), '0' (zero), and /' (stroke) are used astheinsertion
characters. The insertion characters are counted in the size of the item and represent the position in
the item into which the character will be inserted.

Special Insertion Editing

Specia Insertion Editing. The "." (period) is used as the insertion character. In addition to being
an insertion character it also represents the decimal point for alignment purposes. The insertion
character used for the actual decimal point is counted in the size of the item. The use of the assumed
decimal point, represented by the symbol V' and the actual decimal point, represented by theinsertion
character, in the same PICTURE character-string is disallowed. The result of special insertion editing
isthe appearance of the insertion character in the item in the same position as shown in the character-
string.

Fixed Insertion Editing

Fixed Insertion Editing. The currency symbol and the editing sign control symbols,'+',-','CR', 'DB', are
theinsertion characters. Only onecurrency symbol and only one of the editing sign control symbolscan
be used in agiven PICTURE character-string. When the symbols'CR' or 'DB' are used they represent
two character positions in determining the size of the item and they must represent the rightmost
character positions that are counted in the size of the item. The symbol '+ or ', when used, must be
either the leftmost or rightmost character position to be counted in the size of the item. The currency
symbol must be the leftmost character.

Table 3.2. Editing Symbolsin PICTURE Character-Strings

EDITING SYMBOL IN PICTURE|RESULT

CHARACTER-STRING DATA ITEM POSITIVE|DATA ITEM
OR ZERO NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols '+' or *-' are the floating insertion characters
and as such are mutually exclusive in a given PICTURE character-string.

Floating insertion editing isindicated in a PICTURE character-string by using a string of at least two
of the floating insertion characters. This string of floating insertion characters may contain any of the
fixed insertion symbols or have fixed insertion charactersimmediately to theright of thisstring. These
simpleinsertion characters are part of the floating string.

The leftmost character of the floating insertion string represents the leftmost limit of the floating
symbol in the data item. The rightmost character of the floating string represents the rightmost limit
of the floating symbols in the data item.

36

Chapter 3. THE NUCLEUS

The second floating character from the |eft represents the leftmost limit of the numeric data that can
be stored in the data item. Non-zero numeric data may replace all the characters at or to the right of
thislimit.

InaPICTURE character-string, there are only two ways of representing floating insertion editing. One
way isto represent any or all of theleading numeric character positions on theleft of the decimal point
by the insertion character. The other way is to represent all of the numeric character positionsin the
PICTURE character-string by the insertion character.

If theinsertion characters are only to theleft of the decimal point in the PICTURE character-string, the
result isthat asingle floating insertion character will be placed into the character position immediately
preceding either the decimal point or the first non-zero digit in the data represented by the insertion
symbol string, whichever isfarther to theleft in the PICTURE character-string. The character positions
preceding the insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, the result depends upon the value of the data. If the value is zero the entire data item will
contain spaces. If the value is not zero, the result is the same as when the insertion character is only
to the | eft of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving dataitem
must be the number of charactersin the sending dataitem, plus the number of non-floating insertion
characters being edited into the receiving data item, plus one for the floating insertion character.

Zero Suppression Editing

Thesuppression of leading zerosin numeric character positionsisindicated by the use of the al phabetic
character 'Z' or the character *' (asterisk) as suppression symbols in a PICTURE character-string.
These symbolsare mutually exclusivein agiven PICTURE character-string. Each suppression symbol
iscounted in determining the size of theitem. If 'Z" is used, the replacement character will be the space
and if the asterisk is used, the replacement character will be ™',

Zero suppression and replacement isindicated in a PICTURE character-string by using a string of one
or more of the allowable symbols to represent leading numeric character positions which are to be
replaced when the associated character position inthe data containsazero. Any of the simpleinsertion
characters embedded in the string of symbols or to the immediate right of this string are part of the
string.

In a PICTURE character-string, there are only two ways of representing zero suppression. One way
is to represent any or al of the leading numeric character positions to the left of the decimal point
by suppression symbols. The other.way is to represent all of the numeric character positions in the
PICTURE character-string by suppression symboals.

If the suppression symbols appear only to the |eft of the decimal point, any leading zero in the data
which corresponds to a symbol in the string is replaced by the replacement character. Suppression
terminates at the first non-zero digit in the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first.

If al numeric character positions in the PICTURE character-string are represented by suppression
symbols and the value of the data is not zero, the result is the same as if the suppression characters
were only to the left of the decimal point. If the value is zero and the suppression symbol is'Z', the
entire dataitem will be spaces. If the valueis zero and the suppression symbol is"*', the dataitem will
beall *' except for the actual decimal point.

Thesymbols'+', -, *' 'Z', and the currency symbol, when used as floating replacement characters, are
mutually exclusive within a given character-string.

Precedence Rules

37

Chapter 3. THE NUCLEUS

Table 3-3 shows the order of precedence when using characters as symbols in a character-string. An
X" at an intersection indicates that the symbol(s) at the top of the column may precede, in a given
character-string, the symbol(s) at the left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The currency symbol isindicated by the symbol ‘cs.

At least one of the symbols'A’, 'X', 'Z','9" or *', or at least two of the symbols '+, -' or 'cs must be
present in a PICTURE string.

Table 3.3. PICTURE Character Precedence Chart.

First symbol |Nonfloating Insertion Symbols | Floating Insertion|Other Symbols
Symbols
Second B |0 |/ . {+{+|{C {Z {Z |{x}{{£}|cs |cs |9 |A |S |V |P |P
symbol -} |-} |DB *1 1*} X
Nonfloatirg |x [X |X [X [X [X X X X [X X (X |X [x |X X X
Insertionfo 1y x [x [x [x |x X X X X X (X |X [x |X X X
Symbols
[X [x |xX |x |X |X X X X [X X (X |X [x |X X X
X X (X [X X [X X X (X [X X [X |X |X X X
X X X [x X X |X X X X
+
f}l
{+|x [x |x |x |x X X |X X X |X X X |X
-¥?
{CRx [x |Xx |Xx |x X X |X X X |X X X |X
DB}
cs X
Floating |[{Z|x |x |x |X X X X
Insertion|*}
Symbols {Z|x [x |x |x |x |X X X |X X X
*}2
{+|x [x |x [X X X
_}1
+ X X X [X |X X X |X X X
-¥?
cst{x [x [x [x X X
cflx [x [x |x |x [x X |X X X
Other 9 |X |X [X |X [x |X X |X X X X X [x |X X
Symbols A |[X [X |X X [X
X
S
Vo [X |X [X |X X X |X X X X X X
PLIx [x [x [x X X |X X X X X X
P? X X X |X X

In Table 3-3, non-floating insertion symbols '+ and '-', floating insertion symbols'Z', *' '+, *-', and 'cs,
and other symbol 'P' appear twice in the PICTURE character precedence chart. The leftmost column
and uppermost row for each symbol represents its use to the left of the decimal point position. The
second appearance of symbol in the row and column represents its use to the right of the decimal
point position.

38

Chapter 3. THE NUCLEUS

THE REDEFINES CLAUSE

Function

The REDEFINES clause allows the same computer storage area to be described by different data
description entries.

General Format

| evel - nunber dat a- nane- 1; REDEFINES dat a- nanme- 2

Note

Level-number, data-name-1 are shown in the above format to improve clarity. Level-number
and data-name-1 are not part of the REDEFINES clause.

Syntax Rules
1. The REDEFINES clause, when specified, must immediately follow data-name-1.
2. Thelevel-numbers of data-name-1 and data-name-2 must be identical.

3. This clause must not be used in level 01 entries in the File Section. (See General Rule 2 of THE
DATA RECORDS CLAUSE in Chapter 5).

4. This clause must not be used in level 01 entries in the Communication Section.

5. The data description entry for data-name-2 cannot contain an OCCURS clause. Neither the original
definition nor the redefinition can include an item whose sizeis variable as defined in the OCCURS
clause. (See THE OCCURS CLAUSE in Chapter 4).

6. No entry having alevel-number numerically lower than the level-number of data-name-2 and data-
name-1 may occur between the data description entries of data-name-2 and data-name-1.

General Rules

1. Redefinition starts at data-name-2 and ends when alevel-number less than or equal to that of data-
name-2 is encountered.

2. When the level-number of data-name-1 is other than 01, it must specify the same number of
character positionsthat the dataitem referenced by data-name-2 contains. It isimportant to observe
that the REDEFINES clause specifies the redefinition of a storage area, not of the data items
occupying the area.

3. Multiple redefinitions of the same character positions are permitted. The entries giving the new
descriptions of the character positions must follow the entries defining the area being redefined,
without intervening entries that define new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally defined the area.

4. The entries giving the new description of the character positions must not contain any VALUE
clauses.

5. Multiple level 01 entries subordinate to any given level indicator represent implicit redefinitions
of the same area.

THE SIGN CLAUSE

39

Chapter 3. THE NUCLEUS

Function

The SIGN clause specifies the position and the mode of representation of the operational sign when
it is necessary to describe these properties explicitly.

General Format

[SIGN 1S] { LEADING | TRAILING } [SEPARATE CHARACTER]

Syntax Rules

1.

The SIGN clause may be specified only for a numeric data description entry whose PICTURE
contains the character 'S, or a group item containing at least one such numeric data description
entry.

. Thenumeric datadescription entriesto which the SIGN clause appliesmust be described asUSAGE

ISDISPLAY.

. At most one SIGN clause may apply to any given numeric data description entry.

. If the CODE-SET clause is specified, any signed numeric data description entries associated with

that file description entry must be described with the SIGN IS SEPARATE clause.

General Rules

1.

The optional SIGN clause, if present, specifies the position and the mode of representation of the
operational sign for the numeric data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it applies. Th, SIGN clause applies only
to numeric data description entries whose PICTURE contains the character 'S; the 'S indicates the
presence of, but neither the representation nor, necessarily, the position of the operational sign.

. A numeric data description entry whose picture contains the character 'S', but to which no optional

SIGN clause applies, has an operational sign, but neither the representation nor, necessarily, the
position of the operational sign is specified by the character 'S' In this (default) case, general rules
3 through 5 do not apply to such signed numeric data items. The representation of the default
operational sign isdefined in Chapter 2, the section called “ Selection of Character Representation
and Radix”.

. If the optional SEPARATE CHARACTER phraseis hot present, then:

a. The operational sign will be presumed to be associated with the leading (or, respectively,
trailing) digit position of the elementary numeric data item.

b. Theletter 'S in a PICTURE character-string is not counted in determining the size of the item
(in terms of standard data format characters).

. If the optional SEPARATE CHARACTER phraseis present, then:

a. The operationa sign will be presumed to be the leading (or, respectively, trailing) character
position of the elementary numeric data item; this character position is not a digit position.

b. Theletter 'S in a PICTURE character-string is counted in determining the size of the item (in
terms of standard data format characters).

c. The operational signs for positive and negative are the standard data format characters '+' and
"', respectively.

. Every numeric datadescription entry whose PICTURE containsthe character 'S isasigned numeric

data description entry. If a SIGN clause applies to such an entry and conversion is necessary for
purposes of computation or comparisons, conversion takes place automatically.

40

Chapter 3. THE NUCLEUS

THE SYNCHRONIZED CLAUSE

Function

The SYNCHRONIZED clause specifiesthe alignment of an elementary item on the natural boundaries
of the computer memory.

General Format

{ SYNCHRONIZED | SYNC} [{ LEFT |RIGHT }]

Syntax Rules

1

2.

This clause may only appear with an elementary item.

SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1

2.

The SYNCHRONIZED clause is accepted for documentation purposes only.

Thisclause specifiesthat the subject dataitemisto bealigned in the computer such that no other data
item occupies any of the character positions between the leftmost and rightmost natural boundaries
delimiting this data item. If the number of character positions required to store this data item is
less than the number of character positions between those natural boundaries, the unused character
positions (or portions thereof) must not be used for any other data item. Such unused character
positions, however, are included in:

a. Thesize of any group item(s) to which the elementary item belongs; and

b. The character positions redefined when this data item is the object of a REDEFINES clause.

. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the elementary item is

to be positioned between natural boundaries in such away as to effect efficient utilization of the
elementary dataitem.

. SYNCHRONIZED LEFT specifies that the elementary item is to be positioned such that it will

begin at the | eft character position of the natural boundary in which the elementary item is placed.

. SYNCHRONIZED RIGHT specifies that the elementary item is to be positioned such that it will

terminate on the right character position of the natural boundary i.n which the elementary itemis
placed.

. Whenever a SYNCHRONIZED item is referenced in the source program, the original size of the

item, as shown in the PICTURE clausg, is used in determining any action that depends on size,
such asjustification, truncation or overflow.

. If the data description of an item contains the SYNCHRONIZED clause and an operational sign,

the sign of the item appearsin the normal operational sign position, regardless of whether the item
is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

. When the SYNCHRONIZED clause is specified in a data description entry of adataitem that also

contains an OCCURS clause, or in a data description entry of a data item subordinate to a data
description entry that contains an OCCURS clause, then:

a. Each occurrence of the dataitem is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that same table are generated tor
each occurrence of those data items.

41

Chapter 3. THE NUCLEUS

9. This clause is hardware dependent.

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a dataitem in the computer storage.

General Format

[USAGE IS] { COMPUTATIONAL | COMP | DISPLAY | COMPUTATIONAL-3 | COMP-3}

Syntax Rules

1. The PICTURE character-string of a COMPUTATIONAL or COMPUTATIONAL-3 item can
contain only '9's, the operational sign character 'S, the implied decimal point character 'V', one or
more 'P's. (See the section called “ THE PICTURE CLAUSE” earlier in this Chapter).

2. COMP s an abbreviation for COMPUTATIONAL.

General Rules

1. The USAGE clause can be written at any level. If the USAGE clause is written at group level, it
applies to each elementary item in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

2. This clause specifies the manner in which a data item is represented in the storage of a computer.
It does not affect the use of the data item, although the specifications for some statements in the
Procedure Division may restrict the USAGE clause of the operandsreferred to. The USAGE clause
may affect the radix or type of character representation of the item.

3. A COMPUTATIONAL or COMPUTATIONAL-3 item is capable of representing a value to be
used in computations and must be numeric. If agroup itemisdescribed asCOMPUTATIONAL(-3),
the elementary items in the group are COMPUTATIONAL(-3). The group item itself is not
COMPUTATIONAL(-3) and cannot be us ed in computations.

4, The USAGE ISDISPLAY clause indicates that the format of the data is a standard data format.

5. If the USAGE clause is not specified for an elementary item, or for any group to which the item
belongs, the usage isimplicitly DISPLAY.

6. Space requirements for the various USAGE storage options are given under the section called
“Selection of Character Representation and Radix” in Chapter 2.

THE VALUE CLAUSE

Function

TheVALUE clause definesthe value of constants, theinitial value of working storageitems, theinitial
value of dataitemsin the Communication Section.

General Format
VALUE islitera
Syntax Rules

1. The VALUE clause cannot be stated for any items whose size is variable. (See THE OCCURS
CLAUSE in Chapter 4).

42

Chapter 3. THE NUCLEUS

2.

3.

A signed numeric literal must have associated with it asigned numeric PICTURE character-string.

All numeric literal in aVALUE clause of an item must have a value which is within the range of
valuesindicated by the PICTURE clause, and must not have avalue which would requiretruncation
of nonzero digits. Nonnumeric literals in a VALUE clause of an item must not exceed the size
indicated by the PICTURE clause.

General Rules

1

The VALUE clause must not conflict with other clausesin the data description of theitem or in the
data description within the hierarchy of the item. The following rules apply:

a. If the category of theitem is numeric, al literalsin the VALUE clause must be numeric. If the
literal definesthe value of aworking storageitem, theliteral isalignedin the dataitem according
to the standard alignment rules. (See Standard Alignment Rules in Chapter 2).

b. If the category of the item is alphabetic, alphanumeric, alphanumeric edited or numeric edited,
all literals in the VALUE clause must be nonnumeric literals. The literal is aligned in the data
item asif the data item had been described as alphanumeric. (See STANDARD ALIGNMENT
RULESin Chapter 2). Editing charactersin the PICTURE clause areincluded in determining the
size of the data item (see the section called “THE PICTURE CLAUSE” earlier in this Chapter)
but have,no effect on initialization of the data item. Therefore, the VALUE for an edited item
ispresented in an edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED clause that
may be specified.

Data Description Entries

Rules governing the use of the VALUE clause differ with the respective sections of the Data Division:

1.

2.

The VALUE clause cannot be used in the File Section.

In the Working-Storage Section, the VALUE clause may be used to specify the initial value of a
data item; in which case the clause causes the item to assume the specified value at the start of
the object program. If the VALUE clause is not used in an item's description, the initial valueis
undefined.

. The VALUE clause cannot be used in the Linkage Section.

. The VALUE clause must not be stated in adata description entry that contains an OCCURS clause,

or in an entry that is subordinate to an entry containing an OCCURS clause. (See THE OCCURS
CLAUSE in Chapter 4).

. The VALUE clause must not be stated in a data description entry that contains a REDEFINES

clause, or in an entry that is subordinate to an entry containing a REDEFINES clause.

. If the VALUE clauseisused in an entry at the group level, the literal must be afigurative constant

or a nonnumeric literal, and the group area is initialized without consideration for the individual
elementary or group items contained within this group. The VALUE clause cannot be stated at the
subordinate levels within this group.

. The VALUE clause must not be written for a group containing items with descriptions, including

JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE ISDISPLAY).

PROCEDURE DIVISION IN THE NUCLEUS
CONDITIONAL EXPRESSIONS

Chapter 3. THE NUCLEUS

Conditional expressions identify conditions that art, tested to enable the object program to select
between aternate paths of control depending upon the truth value of the condition. Conditional
expressions are specified in the IF and PERFORM statements. There are two categories of conditions
associated with conditional expressions: simple conditions and relation conditions. Each may be
enclosed within any number of paired parentheses, in which case its category is not changed.

Simple Conditions

The simple conditions are the relation, class, switch-status, conditions. A simple condition has atruth
value of 'true’ or 'false’. Theinclusion in parentheses of simple conditions does not change the simple
truth value.

Relation Condition

A relation condition causes a comparison of two operands, each of which may be the data item
referenced by anidentifier, aliteral. A relation condition has atruth value of ‘true' if the relation exists
between the operands. Comparison of two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses. However, for all other comparisons the operands must
have the same usage. If either of the operandsis agroup item, the nonnumeric comparison rules apply.

The general format of arelation condition is as follows:

{ identifier-1|literal-1} { IS[NOT] GREATER THAN | IS[NOT] LESS THAN | IS[NOT] EQUAL
TO|IS[NOT] > | IS[NOT] < | IS[NOT] =} { identifier-2 | literal-2 }

Note

The required relational characters '<’, '>' and '=" are not underlined to avoid confusion with
other symbols such as'# (Greater than or equal to)

The first operand (identifier-1 or literal-1) is called the subject of the condition; the second operand
(identifier-2 or literal-2) is called the object of the condition. The relation condition must contain at
least one reference to avariable.

The relational operator specifies the type of comparison to be made in a relation condition. a space
must precede and follow each reserved word comprising the relational operator. When used, 'NOT'
and the next key word or relation character are one relational operator that defines the comparison to
be executed for truth value; e.g., 'NOT EQUAL' isatruth test for an 'unequal'.

Comparison 'NOT GREATER' is a truth test for an 'equal’ or 'less comparison. The meaning of the
relational operatorsisas shownin Table 3-4.

Table 3.4. Relational Operators

M eaning Relational Operator
Greater than or not greater than IS[NOT] GREATER THAN
IS[NOT] >
Lessthan or not less than IS[NOT] LESSTHAN
IS[NQOT] <
Equal to or not equal to IS[NOT] EQUAL TO
IS[NOT] =
The required relational characters '>', ‘&', and '=" are not underlined to avoid confusion with other
symbols such as'# (Greater than or equal to).

Comparison of Numeric Operands:

44

Chapter 3. THE NUCLEUS

For operands whose class is numeric a comparison is made with respect to the algebraic value of the
operands. The length of the literal, in terms of number of digits represented, is not significant. Zerois
considered aunique val ue regardless of the sign. Comparison of these operandsis permitted regardless
of the manner in which their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

Comparison of Nonnumeric Operands:

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with
respect to a specified collating sequence of characters (see The OBJECT-COMPUTER Paragraph in
this Chapter). If one of the operands is specified as numeric, it must be an integer data item or an
integer literal and:

1. If the nonnumeric operand is an elementary dataitem or anonnumeric literal, the numeric operand
is treated as though it were moved to an elementary aphanumeric data item of the same size
as the numeric data item (in terms of standard data format characters), and the contents of
this alphanumeric data item were then compared to the nonnumeric operand. (See THE MOVE
STATEMENT in this Chapter, and the PICTURE Character 'P under the heading Symbols Used
earlier in this Chapter).

2. If the numeric operand isagroup item, the numeric operand istreated asthough it were moved to a
group item of the same size as the numeric dataitem (in terms of standard data format characters),
and the contents of this group item were then compared to the nonnumeric operand. (See THE
MOVE STATEMENT in this Chapter, and the PICTURE character 'P' under the Heading Symbols
Used earlier in this Chapter).

3. A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format charactersin the operand. Numeric
and nonnumeric operands may be compared only when their usage is the same.

There are two cases to consider:

1. Operands of equal size - If the operands are of equal size, comparison effectively proceeds by
comparing characters in corresponding character positions starting from the high order end and
continuing until either a pair of unequal characters is encountered or the low order end of the
operand is reached, whichever comes first. The operands are determined to be equal if al pairs of
characters compare equally through the last pair, when the low order end is reached.

The first encountered pair of unegqual characters is compared to determine their relative position
in the collating sequence. The operand that contains the character that is positioned higher in the
collating sequenceis considered to be the greater operand.

2. Operands of unequal size - If the operands are of unequal size, comparison proceeds as though the
shorter operand were extended on the right by sufficient spacesto make the operands of equal size.

Class Condition

The class condition determines whether the operand is numeric, that is, consists entirely of the
characters '0', '1', '2', '3, ..., '9", with or without the operational sign, or aphabetic, that is, consists
entirely of the characters'A’', 'B', 'C, ..., 'Z', space. The general format for the class condition is as
follows:

identifier IS[NOT] { NUMERIC | ALPHABETIC}

The usage of the operand being tested must be described as display. When used, 'NOT" and the next
key word specify one class condition that defines the class test to be executed for truth value; e.g.
'NOT NUMERIC' isatruth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes the item as
alphabetic or as a group item composed of elementary items whose data description indicates the

45

Chapter 3. THE NUCLEUS

presence of operational sign(s). If the data description of the item being tested does not indicate the
presence of an operational sign, the item being tested is determined to be numeric only if the contents
are numeric and an operational signis not present. If the data description of the item does indicate the
presence of an operational sign, the item being tested is determined to be numeric only if the contents
are numeric and a valid operational sign is present. Valid operational signs for data items described
with the SIGN IS SEPARATE clause are the standard data format characters, '+' and '-'

The ALPHABETIC test cannot be used with an item whose data description describes the item as
numeric. The item being tested is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters'A’ thru 'Z' and the space.

Switch-Status Condition

A switch-status condition determines the 'on’ or 'off' status of an implementor-defined switch. The
implementor-name and the 'on" or ‘off' value associated with the condition must be named in the
SPECIAL-NAMES paragraph of the Environment Division. The general format for the switch-status
condition isas follows:

condition-name

Theresult of thetest istrueif the switch is set to the specified position corresponding to the condition-
name.

COMMON PHRASES AND GENERAL RULES FOR
STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear frequently: the ROUNDED phrase,
the SIZE ERROR phrase.

These are described below. A resultant-identifier is that identifier associated with a result of an
arithmetic operation.

The Rounded Phrase

If, after decimal point alignment, the number of places in the fraction of the result of an arithmetic
operation is greater than the number of places provided for the fraction of the resultant-identifier,
truncation is relative to the size provided for the resultant-identifier. When rounding is requested the
absolute value of the resultant-identifier isincreased by one whenever the most significant digit of the
the excessis greater than or equal to five.

When the low-order integer positionsin aresultant-identifier are represented by the character 'P inthe
PICTURE for the resultant-identifier, rounding or truncation occurs relative to the rightmost integer
position for which storageis allocated.

The Size Error Phrase

If, after decimal point alignment, the absolute value of aresult exceeds the largest value that can be
contained in the associated resultant-identifier a size error condition exists. Division by zero aways
causes a size error condition. The size error condition applies only to the final results, except in
MULTIPLY and DIVIDE statements, in which casethe size error condition appliesto theintermediate
results as well, If the ROUNDED phrase is specified rounding takes place before checking for size
error. When such a size error condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified as follows:

SIZE ERROR Phrase Not Specified

When a size error condition occurs, the value of those resultant-identifier(s) affected is undefined.
Vaues of resultant-identifier(s) for which no size error condition occurs are unaffected by size errors
that occur for other resultant-identifier(s) during execution of this operation.

46

Chapter 3. THE NUCLEUS

SIZE ERROR Phrase Specified

When asize error condition occurs, then the values of resultant-identifier(s) affected by the size errors
are not atered. After completion of the execution of this operation, the imperative statement in the
SIZE ERROR phrase is executed.

Arithmetic Statements

The arithmetic statements are the ADD, DIVIDE, MULTIPLY, and SUBTRACT statements.
Common features are as follows:

1. The data descriptions of the operands need not be the same; any necessary conversion and decimal
point alignment are supplied throughout the cal culation.

2. The maximum size of each operand is 18 decimal digits. The composite of operands, which is
a hypothetical data item resulting from the superimposition of specified operands in a statement
aligned on their decimal points (Seethe section called “THE ADD STATEMENT”, THE DIVIDE
STATEMENT, THE MULTIPLY STATEMENT and THE SUBTRACT STATEMENT later in
this Chapter) must not contain more than 18 decimal digits.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE, SET,
statement share apart of their storage areas, the result of the execution of such astatement is undefined.

Incompatible Data

Except for the class condition (See Class Condition in this Chapter), when the contents of adataitem
are referenced in the Procedure Division and the contents of that data item are not compatible with
the class specified for that data item by its PICTURE clause, then the result of such a reference is
undefined. If a numeric display field contains one or more spaces the spaces are usually treated as if
they were zero. This may present problemsin portability if relied upon.

CRT Devices

The CRT is driven directly by the run time system via a buffer. The COBOL programmer moves
data into and out of this buffer by means of ACCEPT and DISPLAY statements. Each ACCEPT or
DISPLAY action isrelative to the start of the CRT buffer unless POSITION is specified. The syntax
islimited to inputting to or outputting from a single data name. The data name may be a group item
and several such group items may redefine the same area of storage.

The use of FILLER data items in record descriptions used for input or output to a CRT device is
subject to special rules. On output, any FILLER item in arecord results in suppression of output for
the character positions it defines. On input, any FILLER item suppresses operator keying into the
character positionsit defines.

THE ACCEPT STATEMENT

Function

The ACCEPT statement causes data keyed at the CRT console to be made available to the program
in aspecified dataitem

General Formats

Format 1

ACCEPT identifier [FROM CONSOLE]

47

Chapter 3. THE NUCLEUS

Format 2

ACCEPT data-name-1[AT { data-name-2 | literal-1}] FROM CRT

Syntax Rule

Literal-1 must be numeric.

General Rules

1

Format 1 isthe standard ANSI ACCEPT statement

Format 2 is the extended ACCEPT format. The two formats are distinguished by their FROM
phrases and the default assumes FROM CONSOLE. The default can, however, be changed by
specifying CONSOLE IS CRT in the SPECIAL-NAMES clause so that FROM CRT becomes the
default. This changed default is not shown in the syntax above. Note: Specifying the AT phrase
implies Format 2, even if FROM CRT is omitted.

Format 1

2.

The ACCEPT statement reads one line of input data from the system console device. This input
data replaces the contents of the dataitem named by the identifier.

. The line of input is line-edited according to the operating system rules for line-editing (see

Operating Systems User Guide). The line isterminated by pressing the CR (Carriage Return) key
or by exceeding 120 charactersin length.

. If the input line is of the same size as the receiving data item, the transferred datais stored in the

receiving dataitem.

. If theinput lineis not of the same size as the receiving data item, then:

a. If the size of the receiving data item exceeds the size of the input line, the transferred data is
stored aligned to the left in the receiving dataitem and the dataitemisfilled with trailing spaces.

b. If the size of the transferred data exceeds 120 bytes, only the first 120 characters of the input
line are stored in the receiving data item. The remaining characters of the input line which do
not fit into the receiving dataitem are ignored.

Format 2

6.

The ACCEPT statement causes the transfer of datafrom the CRT to data-name-1. The contents of
data-name-1 is replaced by this data.

. data-name-1 is taken as a definition of the screen areain which elementary data items correspond

to areas on the screen into which the operator can key information. FILLER fields correspond to
areas on the screen which are inaccessibl e to the operator. data-name-1 must not be subscripted.

. Elementary dataitems within data-name-1 may be alphanumeric, numeric usage display, or edited.

Numeric items are treated as two separate integer numeric fields and edited fields are treated as
Alphanumeric fields except as described in rule 12.

. AT data-name-2 or literal-1 defines the position on the screen of the leftmost character of the data.

Either form must refer to a PIC 9999 field. The most significant 99 istaken asthe line count in the
range one to the maximum lines on the user screen. The least significant 99 is taken as a character
position in the range one to the maximum positions allowed by the screen width of the user CRT.

10.data-name-1 may refer to a record, group or elementary item, but it may not be subscripted.

REDEFINES may be used within data-name-1, in which case the first description of the datais
used and subsequent descriptions are ignored. OCCURS and nested OCCURS may also be used

48

Chapter 3. THE NUCLEUS

with the effect that the repeated data-item is expanded into the full number of itemsit occurs and
one definition is thus automatically repeated for many fields.

11.Immediately upon execution of the ACCEPT statement the cursor is positioned to the CRT location
corresponding to the left-most non-FILLER character position in data-name-1. Alternatively, when
CURSOR is specified in the SPECIAL-NAMES paragraph, the cursor is positioned at the position
held in the CURSOR data-name in the same format as the screen position is held in data-name-2.
If the cursor data-name has the value SPACE or ZERO, the effect is as if the CURSOR was not
specified; if avalid screen position is specified that is not within anon-FILLER item, the cursor is
positioned at the nearest non-FILLER character position. CURSOR data-name holdsthelast cursor
position at the end of execution of an ACCEPT statement.

12.If FROM CRT is not specified, the default is FROM CONSOLE (see rule 1 above).

13.As the operator keys characters, the cursor moves to the right one character position at atime in
locations corresponding to datafields. The operator always keysinto the current cursor position. At
the end of alinethe cursor moves down oneline and to the leftmost non-FIL L ER character position.

14.If the dataitem is integer numeric, only numeric characters (0 - 9) will be accepted into that item.
Keying the decimal point character (. or , as specified in the DECIMAL POINT phrase) when
accepting a numeric item causes the item to be right justified and zero-filled from the | eft.

15.When the cursor location reaches a position corresponding to a FILLER item in a data-name,
it immediately skips to the next non-FILLER character position, or if there is no such position
remaining in the portion of the CRT specified by the data-name, it remainsin its current position.

16.The operator can terminate input by pressing the CR (Carriage Return) key at which time control
is passed to the next statement after ACCEPT. Before control is passed to the next statement the
following takes place:

a. The numeric value of each numeric-edited data-field is formed internally from only the keyed
characters0to 9, +, -, . or , and then moved back to the numeric-edited field with the ANSI
PICTURE editing applied. The field may thus be different to that shown on the CRT just before
the Carriage Return was pressed.

b. When CURSOR IS is specified in the SPECIAL-NAMES paragraph, the cursor position when
the Carriage Return is pressed is returned in the data-name specified by the CURSOR IS clause,
except when itsvalue at the start of the ACCEPT function caused it the be treated as unspecified.

17 Before keying CR, the operator can reposition the cursor to overwrite data aready keyed or to skip
character positions by use of the character position keys shown in Table 3-5.

NOTE: The actual key identification and functions shown in this table vary according to the CRT
used and the way it is configured (See the CIS COBOL Operating Guide).

Table 3.5. Cursor Repositioning Keys

Key Function

Backs up the cursor one position

—

t Backs up the cursor to the start of the non-FILLER field prior to the
current cursor position.

| Movesthe cursor on to the start of the next non-FILLER field in advance
of the current cursor position.

Movesthe cursor on one position without overwriting existing contents.

Moves the cursor back to the start of the first non-FILLER field in the
CRT area corresponding to data-name-1.

THE ADD STATEMENT

H+

49

Chapter 3. THE NUCLEUS

Function

The ADD statement causes two or more humeric operands to be summed and the result to be stored.

General Format

Format 1

ADD{ identifier-1 | literal-1} [, { identifier-2 | literal-2}]... TO identifier-m [ROUNDED]
[, identifier-nf ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

ADD { identifier-1 | literal-1} , { identifier-2 | literal-2 } [, { identifier-3 | literal-3 }]... GIVING
identifier-m [ROUNDED] [, identifier-n [ROUNDED]] [; ON SIZE ERROR imperative-statement]

Syntax Rules

1. InFormats 1 and 2, each identifier must refer to an elementary numeric item, except that in Format
2 each identifier following the word GIVING must refer to either an elementary numeric item or
an elementary numeric edited item.

2. Each literal must be anumeric literal.

3. The composite of operands must not contain more than 18 digits (see The Arithmetic Statements
in this Chapter).

a. In Format 1 the composite of operands is determined by using all of the operands in a given
Statement.

b. In Format 2 the composite of operands is determined by using all of the operandsin a given
statement excluding the data items that follow the word GIVING.

General Rules

1. Seethe section called “ The Rounded Phrase’, The Size Error Phrase, The Arithmetic Statements,
Overlapping Operands and the section called “Incompatible Data’ in this Chapter.

2. If Format 1is used, the values of the operands preceding the word TO are added together, then the
sum is added to the current value of identifier-m storing the result immediately into identifier-m.

3. If Format 2 is used, the value of the operands preceding the word GIVING are added together, then
the sum is stored as the new value of identifier-m, the resultant identifiers.

4. The compiler ensures that enough places are carried so as not to lose any significant digits during
execution.

THE ALTER STATEMENT

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

50

Chapter 3. THE NUCLEUS

Syntax Rule

1. Procedure-name-1 is the name of a paragraph that contains a single sentence consisting of a GO
TO statement without the DEPENDING phrase.

2. Procedure-name-2 is the name of a paragraph or section in the Procedure Division.

General Rule

Execution of the ALTER statement modifiesthe GO TO statement in the paragraph named procedure-
name-1, so that subsequent executions of the modified GO TO statements cause transfer of control
to procedure-name-2. Modified GO TO statements in independent segments may, under some
circumstances, be returned to their initial states (see Independent Segmentsin Chapter 8).

THE DISPLAY STATEMENT

Function

The DISPLAY statement causes data to be transferred from specified dataitems to the CRT screen.

General Formats
Format 1
DI SPLAY { identifier-1 | literal-1} [, { identifier-2 | literal-2}]... [UPON CONSOLE]
Format 2

DI SPLAY{ data-name-1 |literal-3} [AT { data-name-2 | literal-4}] UPON { CRT | CRT-UNDER}

Syntax Rules
Format 1
1. Each literal may be any figurative constant, except ALL.
2. If theliteral is numeric, it must be an unsigned integer.
Format 2
3. Literal-3 must be alphanumeric. Literal-4 must be numeric.

4. data-name-1 may refer to arecord, group or elementary item, but it must not be subscripted.

General Rules

1. Format 1 isthe standard ANSI DISPLAY statement.
Format 2 is the extended DISPLAY format.

The two formats are distinguished by their UPON phrases and the default assumes UPON
CONSOLE. The default can, however, be changed by specifying CONSOLE IS CRT in the
SPECIAL-NAMES clause so the UPON CRT becomes the default. This changed default is not
shown in the syntax above. Note: Specifying the AT phrase implies Format 2, even if the UPON
phrase is omitted.

Format 1

2. The DISPLAY statement causes the contents of each operand to be transferred to the CRT in the
order listed as one line of output data.

51

Chapter 3. THE NUCLEUS

3. The size of the datatransfer can be up to 132 bytes.

4. If afigurative constant is specified as one of the operands, only asingle occurrence of thefigurative
constant is displayed.

5. If the CRT is capable of displaying data of the same size as the data item being output, the data
item istransferred.

6. If the CRT is not capable of displaying data of the same size as the data item being transferred,
one of the following applies.

a. If the size of the dataitem being displayed exceeds the size of the data that the CRT is capable
of receiving in asingle transfer, the data beginning with the leftmost character is stored aligned
to the left in the receiving CRT.

b. If thesize of the dataitem that the CRT is capable of receiving exceedsthe size of the databeing
transferred, the transferred datais stored aligned to the left in the receiving CRT.

7. When a DISPLAY statement contains more than one operand, the size of the sending item is the
sum of the sizes associated with the operands, and the values of the operands are transferred in the
sequence in which the operands are encountered.

Format 2
8. The DISPLAY statement is used to output data to the CRT in the screen positions specified.

9. data-name-1 is taken as a definition of the screen area into which data items that correspond to
areas on the screen are moved. FILLER fields correspond to areas on the screen into which data
is not moved.

10.Elementary data items within data-name-1 may be aphanumeric, integer numeric, numeric or
edited.

11.AT data-name-2 or literal-4 defines the position on the screen of the leftmost character of the. data.
Either form must refer to a PIC 9999 field. The most significant 99 is taken as a line count in the
range one to the maximum number of lines on the user screen. The least significant 99 is taken as
a character position in the range one to the maximum of characters per line on the user screen.

12 data-name-1 may refer to a record, group or elementary item, but it may not be subscripted.
REDEFINES may be used, in which case the first description of the datais used and subsegquent
descriptions are ignored. OCCURS and nested OCCURS may also be used with the effect that the
repeated dataritem is expanded into the full number of times it occurs and one definition is thus
automatically repeated for many fields.

13DISPLAY SPACE has the effect of clearing the screen at run time (i.e. filling the whole screen
with spaces). DISPLAY " " (one space character), however, displays only one space character.

14.The CRT-UNDER phrase causes the elementary items moved to the CRT to be displayed with
the underline feature present. This feature is dependent on the CRT hardware functions and is not
available on all makes of CRT (see the CIS COBOL Operating Guide).

THE DIVIDE STATEMENT

Function

The DIVIDE statement divides one numeric data item into others and sets the values of data items
equal to the quotient.

General Format

Format 1

52

Chapter 3. THE NUCLEUS

DI VI DE { identifier-1 | literal-1} INTO identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

DI VI DE { identifier-1|literal-1} INTO { identifier-2 | literal-2} GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 3

DI VI DE{ identifier-1 | literal-1} BY { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Syntax Rules

1

2.

Each identifier must refer to an elementary numeric item, except that any identifier associated with
the GIVING phrase must refer to either an elementary numeric item or an elementary numeric
edited item.

Each literal must be anumeric literal.

General Rules

1

See the section called “ The Rounded Phrase’, The Size Error Phrase, The Arithmetic Statements,
Overlapping Operands and the section called “Incompatible Data” in this Chapter for a description
of these functions.

. When Format is used, the value of identifier-1 or literal-1 is divided into the value of identifier-2.

The value of the dividend (identifier-2) is replaced by this quotient.

. When Format 2 is used, the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2

and the result is stored in identifier-3.

. When Format 3 is used, the value of identifier-1 or literal-1 is divided by the value of identifier-2

or literal-2 and the result is stored in identifier-3.

THE ENTER STATEMENT

Function

The ENTER statement provides a means of alowing the use of more than one language in the same
program.

General Format

ENTER language-name [routine-name]

Syntax Rule

1

This statement is for documentation purposes only.

General Rule

1.

Access to other languages can be achieved by means of CALL.

THE EXIT STATEMENT

53

Chapter 3. THE NUCLEUS

Function

The EXIT statement provides a common end point for a series of procedures.

General Format

EXIT

Syntax Rules

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

General Rule

An EXIT statement serves only to enable the user :0 assign a procedure-name to a given point in a
program. Such an EXIT statement has no other effect on the compilation or execution of the program.

THE GO TO STATEMENT

Function

The GO TO statement causes control to be transferred from one part of the Procedure Division to
another.

General Format
Format 1
GO TO{procedure-name-1}
Format-2

GO TOprocedure-name-1 [, procedure-name-2]... , procedure-name-n DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described without any positions to the right
of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph can consist only of a
paragraph header followed by a Format 1 GO TO statement.

3. If aGO TO statement represented by Format 1 appears in a consecutive sequence of imperative
statements within a sentence, it appears as the last statement in that sequence.

General Rules

1. WhenaGO TO statement, represented by Format 1 is executed, control istransferred to procedure-
name-1 or to another procedure-name if the GO TO statement has been modified by an ALTER
Statement.

2. When aGO TO statement represented by Format 2 is executed, control istransferred to procedure-
name-1, procedure-name-2, etc., depending on the value of the identifier being 1, 2, ..., n. If the
value of the identifier is anything other than the positive or unsigned integers 1, 2, ..., n, then no
transfer occurs and control passes to the next statement in the normal sequence for execution.

THE IF STATEMENT

Chapter 3. THE NUCLEUS

Function

The IF statement causes a condition to be evaluated (see CONDITIONAL EXPRESSIONS in this
Chapter). The subsequent action of the object program depends on whether the value of the condition
istrue or false.

General Format

| F condition; [THEN] { statement-1 | NEXT SENTENCE } { ; ELSE statement-2 | ; ELSE NEXT
SENTENCE }

Syntax Rules

1. Statement-1 and statement-2 represent either an imperative statement or a conditional statement,
and either may be followed by a conditional statement.

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal
period of the sentence.

General Rules
1. When an IF statement is executed, the following transfers of control occur:

a. If the condition istrue, statement-1 is executed if specified. If statement-1 contains a procedure
branching or conditional statement, control isexplicitly transferred in accordance with therules
of that statement. If statement-1 doesnot contain aprocedure branching or conditional statement,
the EL SE phrase, if specified, isignored and control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of statement-1,
the EL SE phrase, if specified, isignored and control passes to the next executable sentence.

c. If the condition is false, statement-1 or its surrogate NEXT SENTENCE is ignored, and
statement-2, if specified, is executed. If statement-2 contains a procedure branching or
conditiona statement, control is explicitly transferred in accordance with the rules of that
statement. |f statement-2 does not contain a procedure branching or conditional statement,
control passes to the next executable sentence. If the EL SE statement-2 phrase is not specified,
statement-1 isignored and control passes to the next executable sentence.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is specified, statement-1 is
ignored, if specified, and control passes to the next executable sentence.

2. Statement-1 and/or statement-2 may contain an IF statement. In this case the |F statement is said
to be nested.

IF statements within IF statements may be considered as paired IF and ELSE combinations,
proceeding from left to right. Thus, any EL SE encountered isconsidered to apply to theimmediately
preceding | F that has not been already paired with an EL SE.

THE INSPECT STATEMENT

Function

The INSPECT statement provides the ability to tally (Format 1), replace (Format 2), or tally and
replace (Format 3) occurrences of single charactersin a data item.

General Format

Format 1

55

Chapter 3. THE NUCLEUS

| NSPECT identifier-1 TALLYING identifier-2 FOR , { ALL | LEADING | CHARACTERS }
{ identifier-3 | literal-1} [{ BEFORE | AFTER} INITIAL { identifier-7 | literal-5}]

Format 2

| NSPECT identifier-1 REPLACING

{ CHARACTERSBY identifier-6 | literal-4 |, { ALL |[LEADING |FIRST } , { identifier-5 | literal-3}
BY { identifier-6 | literal-4} }

[{ BEFORE | AFTER} INITIAL { identifier-7 | literal-5}]

Format 3

| NSPECT identifier-1 TALLYING identifier-2 FOR , { ALL | LEADING | CHARACTERS }
{ identifier-3 | litera-1} [{ BEFORE | AFTER} INITIAL { identifier-4 | literal-2}]
REPLACING

{ CHARACTERSBY identifier-6 |literal-4|, { ALL [LEADING |FIRST } , { identifier-5|literal-3}
BY { identifier-6 | literal-4} }

[{ BEFORE | AFTER} INITIAL { identifier-7 | literal-5}]

Syntax Rules
All Formats

1. Identifier-1 must reference either agroup item or any category of elementary item, described (either
implicitly or explicitly) asusageis DISPLAY .

2. ldentifier-3 ... identifier-n must reference either an elementary al phabetic, al phanumeric or numeric
item described (either implicitly or explicitly) as usageis DISPLAY .

3. Each literal must be nonnumeric and may be any figurative constant, except ALL.

4. In Level 1, literal-1, literal-2, literal-3, literal-4, and literal-5, and the data items referenced by
identifier-3, identifier-4, identifier-5, identifier-6, and identifier-7 must be one character in length.

Formats 1 and 3 Only
5. Identifier-2 must reference an elementary numeric data item.

6. If either literal-1 or literal-2 is a figurative constant, the figurative constant refers to an implicit
one character dataitem.

Formats 2 and 3 Only

7. The size of the data referenced by literal-4 or identifier-6 must be equal to the size of the data
referenced by literal-3 or identifier-5. When a figurative constant is used as literal-4, the size of
the figurative constant is equal to the size of literal-3 or the size of the data item referenced by
identifier-5.

8. When the CHARACTERS phraseisused, literal-4, literal-5, or the size of the dataitem referenced
by identifier-6, identifier-7 must be one character in length.

9. When afigurative constant is used as literal-3, the data referenced by literal-4 or identifier-6 must
be one character in length.

General Rules
All Formats

1. Inspection (which includesthe comparison cycle, the establishment of boundariesfor the BEFORE
or AFTER phrase, and the mechanism for tallying and/or replacing) begins at the leftmost character
position of the data item referenced by identifier-1, regardless of its class, and proceeds from left
to right to the rightmost character position as described in general rules 4 through 6.

56

Chapter 3. THE NUCLEUS

2. For use in the INSPECT statement, the contents of the data item referenced by identifier-1,
identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 will be treated as follows:

a If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 are
described as alphanumeric, the INSPECT statement treats the contents of each such identifier
as a character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 are
described as al phanumeric edited, numeric edited or unsigned numeric, the dataitemisinspected
as though it had been redefined as alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference the redefined data item.

c. If any of the identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 are
described as signed numeric, the data item is inspected as though it had been moved to an
unsigned numeric data item of the same length and then the rules in general rule 2b had been
applied. (See THE MOVE STATEMENT later in this Chapter).

3. In genera rules 4 through 11 al references to literal-1, literal-2, literal-3, literal-4, and literal-5
apply equally to the contents of the data item referenced by identifier-3, identifier-4, identifier-5,
identifier-6, and identifier-7, respectively.

4. During inspection of the contents of the dataitem referenced by identifier-1, each properly matched
occurrence of literal-1 is tallied (Formats 1 and 3) and/or each properly matched occurrence of
literal-3 is replaced by literal-4 (Formats 2 and 3). Data items to be referenced by the INSPECT
verb should be placed such that they Lie within the first 10,000 bytes of intermediate code.

5. The comparison operation to determine the occurrences of literal-1 to be tallied and/or occurrences
of literal-3 to be replaced, occurs as follows:

a. Theoperandsof the TALLYING and REPLACING phrases are considered in the order they are
specified in the INSPECT statement from left to right. The first literal-1, literal-3 is compared
to an equal number of contiguous characters, starting with the leftmost character position in the
data item referenced by identifier-1. Literal-1, literal-3 and that portion of the contents of the
dataitem referenced by identifier-1 match if, and only if, they are equal, character for character.

b. If no match occurs in the comparison of the first literal-1, literal-3, the comparison is repeated
with each successive literal-1, literal-3, if any, until either a match is found or there Is no next
successive literal-1, literal-3. When there is no next successive literal-1, literal-3, the character
position in the data item referenced by identifier-1 immediately to the right of the leftmost
character position considered in the last comparison cycleis considered asthe leftmost character
position, and the comparison cycle begins again with the first literal-1, literal-3.

¢. Whenever a match occurs, tallying and/or replacing takes place as described in general rules 8
through 10. The character position in the dataitem referenced by identifier-1 immediately to the
right of the rightmost character position that participated in the match is now considered to be
the leftmost character position of the data item referenced by identifier-1, and the comparison
cycle starts again with the first literal-1, literal-3.

d. The comparison operation continues until the rightmost character position of the data item
referenced by identifier-1 has participated in a match or has been considered as the leftmost
character position. When this occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character operand participates in the
cycle described in paragraphs 5a through 5d above, except that no comparison to the contents
of the data item referenced by identifier-1 takes place. This implied character is considered
alwaysto match the leftmost character of the contents of the dataitem referenced by identifier-1
participating in the current comparison cycle.

6. The comparison operation defined in general rule 5isaffected by the BEFORE and AFTER phrases
asfollows:

57

Chapter 3. THE NUCLEUS

a. If theBEFORE or AFTER phraseisnot specified, literal-1, literal-3 or theimplied operand of the
CHARACTERS phrase participates in the comparison operation as described in general rule 5.

b. If the BEFORE phraseis specified, the associated literal-1, literal-3 or theimplied operand of the
CHARACTERS phrase participates only in those comparison cycles which involve that portion
of the contents of the dataitem referenced by identifier-1 from itsleftmost character position up
to, but not including, thefirst occurrence of literal-2, literal -5 within the contents of the dataitem
referenced by identifier-1. The position of this first occurrence is determined before the first
cycle of the comparison operation described in general rule 5 is begun. If, on any comparison
cycle, literal-1, literal-3 or the implied operand of the CHARACTERS phraseis not eligible to
participate, it is considered not to match the contents of the dataitem referenced by identifier-1.
If there is no occurrence of literal-2 literal-5 within the contents of the data item referenced
by identifier-1, its associated literal-1, literal-3, or the implied operand of the CHARACTERS
phrase participates in the comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1, literal-3 or the implied operand of
the CHARACTERS phrase may participate only in those comparison cycles which involve
that portion of the contents of the data item referenced by identifier-1 from the character
position immediately to the right of the rightmost character position of the first occurrence
of literal-2, literal-5 within the contents of the data item referenced by identifier-1 and the
rightmost character position of the dataitem referenced by identifier-1. The position of thisfirst
occurrenceis determined before thefirst cycle of the comparison operation described in general
rule 5 is begun. If, on any comparison cycle, literal-1, literal-3 or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not to match the contents
of the dataitem referenced by identifier-1. If there is no occurrence of literal-2, literal-5 within
the contents of the dataitem referenced by identifier-1, its associated literal-1, literal-3, or the
implied operand of the CHARACTERS phraseis never eligible to participate in the comparison
operation.

Format 1

7. The contents of the data item referenced by identifier-2 are not initialized by the execution of the
INSPECT statement.

8. Therulesfor tallying are as follows:

a If the ALL phrase is specified, the contents of the data item referenced by identifier-2 is
incremented by onefor each occurrence of literal-1 matched within the contents of the dataitem
referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the data item referenced by identifier-2
are incremented by one for each contiguous occurrence of literal-1 matched within the contents
of the dataitem referenced by identifier-1, provided that the leftmost such occurrenceis at the
point where comparison began in the first comparison cycle in which literal-1 was eligible to
participate.

c. Ifthe CHARACTERSphraseisspecified, the contents of the dataitem referenced by identifier-2
are incremented by one for each character matched, in the sense of general rule 5e, within the
contents of the data item referenced by identifier-1.

Format 2
9. Therequired words ALL, LEADING, and FIRST are adjectives.
10.The rulesfor replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched in the sense of general
rule 5e in the contents of the data item referenced by identifier-1 is replaced by literal-4.

Chapter 3. THE NUCLEUS

b. When the adjective ALL is specified, each occurrence of literal-3 matched in the contents of the
dataitem referenced by identifier-1 is replaced by literal-4.

¢. When the adjective LEADING is specified, each contiguous occurrence of literal-3 matched in
the contents of the data item referenced by identifier-1 is replaced by literal-4, provided that
the leftmost occurrence is at the point where comparison began in the first comparison cyclein
which literal-3 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of literal-3 matched within the
contents of the dataitem referenced by identifier-1 is replaced by literal-4.

Format 3

1. -. A Format 3 INSPECT statement isinterpreted and executed as though two successive INSPECT
statements specifying the same identifier-1 had been written with one statement being a Format 1
statement with TALLYING phrasesidentical to those specified in the Format 3 statement, and the
other statement being a Format 2 statement with REPLACING phrases identical to those specified
inthe Format 3 statement. The general rules given for matching and counting apply to the Format 1
statement and the general rules given for matching and replacing apply to the Format 2 statement.

EXAMPLES

Four examples of the use of the INSPECT statement follow:

| NSPECT word TALLYI NG count FOR ALL "L", REPLACI NG LEADI NG "A" BY "E"
AFTER I NI TI AL "L".

Whereword = CALLAR, count 2, word = CALLAR.
Where word = SALAMI, count 1, word= SALEMI.
Whereword = LATTER, count 1, word LETTER.

| NSPECT word REPLACI NG ALL "A" BY "G' BEFORE I NI TI AL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

| NSPECT word TALLYI NG count FOR CHARACTERS AFTER I NI TI AL "J"
REPLACI NG ALL "A" BY "B"

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUIMAB, count = 5, word = JUIMBB.

| NSPECT word REPLACI NG CHARACTERS BY "B" BEFORE I NI TIAL "A".

word before; 12 XZABCD
word after: BBBBBABCD

THE MOVE STATEMENT

Function

The MOV E statement transfers data, in accordance with the rules of editing, to one or more data areas.

59

Chapter 3. THE NUCLEUS

General Format

Format 1

MOVE { identifier-1 | literal } TO identifier-2 [, identifier-3..]

Syntax Rules

1

Identifier-1 and literal represent the sending area; identifier-2, identifier-3, ... represent the
receiving area.

. An index data item cannot appear as an operand of a MOVE statement. (See THE USAGE

CLAUSE in this Chapter).

General Rules

1.

Thedatadesignated by theliteral or identifier-1ismovedfirst toidentifier-2, thentoidentifier-3,
The rules referring to identifier-2 also apply to the other receiving areas. Any subscripting or
indexing associated with identifier-2, ..., is evaluated immediately before the datais moved to the
respective data item.

Any subscripting or indexing associated with identifier-1 is evaluated only once, immediately
before datais moved to the first of the receiving operands. The result of the statement:
MOVE a (b) TO b, c (b)

is equivalent to:

MOVE a (b) TO tenp
MOVE tenp TO b
MOVE tenp TO c (b)

where 'temp’ is an intermediate result item provided by the implementor.

See the section called “ Incompatible Data” in this Chapter.

. Any MOVE in which the sending and receiving items are both elementary items is an elementary

move. Every elementary item belongs to one of the following categories: numeric, aphabetic,
alphanumeric, numeric edited, aphanumeric edited. These categories are described in the
PICTURE clause. Numeric literal s belong to the category numeric, and nonnumeric literal sbelongs
to the category al phanumeric. The figurative constant ZERO belongs to the category numeric. The
figurative constant SPA CE belongsto the category alphabetic. All other figurative constants belong
to the category alphanumeric. The following rules apply to an elementary move between these
categories:

a. Thefigurative constant SPACE, a phanumeric edited, or alphabetic dataitem must not be moved
to anumeric or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item or a numeric edited data
item must not be moved to an alphabetic data item.

¢. A non-integer numeric literal or a non-integer numeric data item must not be moved to an
alphanumeric or aphanumeric edited dataitem.

d. A move from anumeric edited field to anumeric field will work provided:

i. the sourcefield is not blank

60

Chapter 3. THE NUCLEUS

ii. the source field does not contain non-stored editing charactersi.e. P, Sor V

iii.zero is not used as an edited character.

e. All other elementary moves are legal and are performed according to the rules given in general

rule 4.

3. Any necessary conversion of data from one form of internal representation to another takes place
during legal elementary moves, along with any editing specified for the receiving data item:

a. When an aphanumeric edited or alphanumeric item is a receiving item, alignment and any

necessary space filling takes place as defined under STANDARD ALIGNMENT RULES in
this Chapter. If the size of the sending item is greater than the size of the receiving item, the
excess charactersaretruncated on theright after thereceivingitemisfilled. If the sendingitemis
described asbeing signed numeric, the operational signwill not be moved:; if the operational sign
occupies a separate character position (see THE SIGN CLAUSE in this Chapter), that character
will not be moved and the size of the sending item will be considered to be one less than its
actua size (in terms of standard data format characters).

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and
any necessary zero-filling takes place as defined under the STANDARD ALIGNMENT RULES
in Chapter 2, except where zeroes are replaced because of editing requirements. When asigned
numeric item is the receiving item, the sign of the sending item is placed in the receiving item.
(See THE SIGN CLAUSE in this Chapter). Conversion of the representation of the sign takes
place as necessary. If the sending item isunsigned, a positive sign is generated for the receiving
item.

When an unsigned numeric item is the receiving item, the absolute value of the sending item is
moved and no operational sign is generated for the receiving item.

When a dataitem described as al phanumeric isthe sending item, datais moved asiif the sending
item were described as an unsigned numeric integer.

¢. When areceiving field is described as alphabetic, justification and any necessary space-filling
takes place as defined under the STANDARD ALIGNMENT RULES in Chapter 2. If the size of
the sending item is greater than the size of the receiving item, the excess characters are truncated
on the right after the receiving item isfilled.

. Any move that is not an elementary move is treated exactly as if it were an alphanumeric to

alphanumeric elementary move, except that thereisno conversion of datafrom oneform of internal
representation to another. In such a move, the receiving area will be filled without consideration
for the individual elementary or group items contained within either the sending or receiving area.

5. Datain Table 3-6 summarizes the legality of the various types of MOVE statements. The general
rule reference indicates the rule that prohibits the move or the behavior of alegal move.

Table 3.6. MOVE Statement Data Categories.

Category of Sending Data Item |Category of Receiving Data Item*
ALPHABETIC Alphabetic Alphanumeric | Numeric Integer | Numeric Edited

Edited

Alphanumeric |Numeric Non-

Integer
Yes/3c Yes/3a No/2a No/2a

ALPHANUMERIC Yes/3c Yes/3a Yes/3b Yes/3b
ALPHANUMERIC EDITED Yes/3c Yes/3a No/2a No/2a
NUMERIC INTEGER No/2b Yes/3a Yes/3b Yes/3b

61

Chapter 3. THE NUCLEUS

Category of Sending Data Item |Category of Receiving Data Item?

NUMERIC NON-INTEGER No/2b No/2c Yes/3b Yes/3b

NUMERIC EDITED No/2b Yed3a Yes/2d No/2a

1 - The relevant rule number is quoted in these columns

THE MULTIPLY STATEMENT

Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data
items equal to the resullts.

General Format
Format 1

MULTI PLY { identifier-1|literal-1} BY identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

MULTI PLY { identifier-1|literal-1} BY { identifier-2 | literal-2} GIVING identifier-3[ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that in Format 2 each identifier
following the word GIVING must refer to either an elementary numeric item or an elementary
numeric edited item.

2. Each literal must be a numeric literal.

General Rules

1. Seethe section called “ The Rounded Phrase”, The Size Error Phrase, The Arithmetic Statements,
Overlapping Operands and the section called “Incompatible Data’ in this Chapter.

2. When Format 1 isused, thevalue of identifier-1 or literal-1 ismultiplied by the value of identifier-2.
The value of the multiplier (identifier-2) is replaced by this product; similarly for identifier-1 or
literal-1 and identifier-3, etc.

3. When Format 2 is used, the value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2
and the result is stored in identifier-3, identifier-4, etc.

THE PERFORM STATEMENT

Function

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return
control implicitly whenever execution of the specified procedure is complete.

General Format
Format 1

PERFORMprocedure-name-1 [{ THROUGH | THRU } procedure-name-2]

62

Chapter 3. THE NUCLEUS

Format 2

PERFORMprocedure-name-1 [{ THROUGH | THRU } procedure-name-2] { identifier-1 | integer-1}
TIMES

Format 3

PERFORMprocedure-name-1 [{ THROUGH | THRU } procedure-name-2] UNTIL condition-1

Syntax Rules

1.

2.

3.

Each identifier represents a numeric elementary item described in the Data Division. In Format 2,
identifier-1 must be described as a numeric integer.

The words THRU and THROUGH are equivalent.

Where procedure-name-1 and procedure-name-2 are both specified and either is the name of a
procedurein the declarative section of the program then both must be procedure-namesin the same
declarative section.

General Rules

1

When the PERFORM statement is executed, control is transferred to the first statement of the
procedure named procedure-name-1 (except as indicated in general rules 4b, 4c, and 4d). This
transfer of control occurs only once for each execution of a PERFORM statement. For those cases
where atransfer of control to the named procedure does take place, an implicit transfer of control
to the next executable statement following the PERFORM statement is established as follows:

a. If procedure-name-1isa paragraph-name and procedure-name-2 is not specified, then thereturn
is after the last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified, then thereturnis
after the last statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, then the return is after the last
statement of the paragraph.

d. If procedure-name-2isspecified and itisasection-name, then thereturnisafter thelast statement
of the last paragraph in the section.

. Thereisno necessary relationship between procedure-name-1 and procedure-name-2 except that a

consecutive sequence of operationsis to be executed beginning at the procedure named procedure-
name-1 and ending with the execution of the procedure named procedure-name-2. In particular, GO
TO and PERFORM statements may occur between procedure-name-1 and the end of procedure-
name-2. If there are two or more logical paths to the return point, then procedure-name-2 may be
the name of a paragraph consisting of the EXIT statement, to which all of these paths must lead.

. If control passes to these procedures other than via a PERFORM statement the procedures are

executed right through to the next executable statement in the main program as if they were just
part of the main program,

. The PERFORM statements operate as follows with rule 3 above applying to all formats:

a. Format 1 isthe basic PERFORM statement. A procedure referenced by this type of PERFORM
statement is executed once and then control passes to the next executable statement following
the PERFORM statement.

b. Format 2isthe PERFORM TIMES. The procedures are performed the number of times specified
by integer-1 or by theinitial value of the data item referenced by identifier-1 for that execution.
If, a the time of execution of a PERFORM statement, the value of the data item referenced

63

Chapter 3. THE NUCLEUS

by identifier-1 is equal to zero or is negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the procedures the specified
number of times, control istransferred to the next executabl e statement foll owing the PERFORM
statement. During execution of the PERFORM statement, references to identifier-1 cannot alter
the number of times the procedures are to be executed from that which was indicated by the
initial value of identifier-1.

¢. Format 3isthe PERFORM...UNTIL. The specified procedures are performed until the condition
specified by the UNTIL phrase is true. When the condition is true, control is transferred to
the next executable statement after the PERFORM statement. If the condition is true when the
PERFORM statement is entered, no transfer to procedure-name-1 takes place, and control is
passed to the next executable statement following the PERFORM statement.

5. If a sequence of statements referred to by a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the included PERFORM must itself either
be totally included in, or totally excluded from, the logical sequence referred to by the first
PERFORM. Thus, an active PERFORM statement, whose execution point begins within the range
of another active PERFORM statement, must not allow control to passto the exit of the other active
PERFORM statement; furthermore, two or more such active PERFORM statements may not have
acommon exit. See Figure 3-1.

Figure 3.1. PERFORM Statement in Sequence.

X PERFORM a THRU m X PERFORM a THRU m

] Cemmmmm e o - + m e e e oo -
m Comm e — o + +

- Y +
|
f - +
| |
m e e e oo - +
|
] Commmm e oo - +

d PERFORM f THRU |
6. A PERFORM statement that appearsin asection that isnot an independent segment can havewithin
itsrange, in addition to any declarative sections whose execution is caused within that range, only
one of the following:
a. Sections and/or paragraphs wholly contained in one or more non-independent segments.

b. Sections and/or paragraphs wholly contained in a single independent segment.

C.

Chapter 3. THE NUCLEUS

7. A PERFORM statement that appears in an independent segment can have within its range, in
addition to any declarative sections whose execution is caused within that range, only one of the
following:

a. Sections and/or paragraphs wholly contained in one or more non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent segment as that
PERFORM statement.

8. PERFORM statements must not be nested to greater than 22 levels.

THE STOP STATEMENT

Function

The STOP statement causes a permanent or temporary suspension of the execution of the object
program.

General Format

STOP{ RUN | literal }

Syntax Rules
1. Theliteral may be numeric or non-numeric or may be any figurative constant, except ALL.
2. If theliteral is numeric, then it must be an unsigned integer.

3. If a STOP RUN statement appears in a consecutive sequence of imperative statements within a
sentence, it must appear asthe last statement in that sequence.

General Rules
1. If the RUN phraseis used, then the operating system ending procedure is instituted.

2. If STOP literal is specified, the literal is communicated to the operator. Continuation of the object
program begins with the execution of the next executable statement in sequence.

THE SUBTRACT STATEMENT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items
from one or more items, and set the values of one or more items equal to the results.

General Format
Format 1

SUBTRACT { identifier-1 |literal-1} , { identifier-2 | literal-2} FROM identifier-m [ROUNDED]
[, identifier-n [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT { identifier-1 | literal-1} , { identifier-2 | literal-2 } FROM identifier-m GIVING
identifier-n [ROUNDED] [, identifier-o [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

65

Chapter 3. THE NUCLEUS

Syntax Rules

1.

Each identifier must refer to a numeric elementary item except that in Format 2, each identifier
following the word GIVING must refer to either an elementary numeric item or an elementary
numeric edited item.

. Each litera must be anumeric literal.

. The composite of operands must not contain more than 18 digits. (See The Arithmetic Statements

in this Chapter).

a. In Format 1 the composite of operands is determined by using all of the operands in a given
Statement.

b. In Format 2 the composite of operands is determined by using all of the operandsin a given
statement excluding the data items that follow the word GIVING.

General Rules

1

See the section called “The Rounded Phrase”, The Size Error Phrase, The Arithmetic Statement,
Overlapping Operands and the section called “ Incompatible Data’ in this Chapter.

. InFormat 1, al literals or identifiers preceding the word FROM are added together and thistotal is

subtracted from the current value of identifier-m storing the result immediately into identifier-m,
and repeating this process respectively for each operand following the word FROM.

. In Format 2, all literals or identifiers preceding the word FROM are added together, the sum is

subtracted from literal-m or identifier-m and the result of the subtraction is stored as the new value
of identifier-n, identifier-n, etc.

. The compiler ensures enough places are carried so as not to lose significant digits during execution.

66

Chapter 4. TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING
MODULE

The Table Handling module provides a capability for defining tables of contiguous data items and
accessing an item relative to its position in the table. Language facilities are provided for specifying
how many times an item isto be repeated. Each item may be identified through use of a subscript or
an index (see Chapter 2).

Table Handling provides a capability for accessing items in variable length. tables of multiple
dimensions. The maximum number of multiple dimensions if the ANSI switch is on (see Chapter 2)
isrestricted to three.

DATA DIVISION IN THE TABLE HANDLING
MODULE

THE OCCURS CLAUSE

Function

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies
information required for the application of subscripts or indices.

General Format

OCCURS integer-2 TIMES [INDEXED BY index-name-1 [, index-name-2]...]...

Syntax Rules

1. An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this
entry, is to be referred to by indexing. The index-name identified by this clause is not defined
elsawhere sinceitsallocation and format are dependent on the hardware, and not being data, cannot
be associated with any data hierarchy.

2. The OCCURS clause cannot be specified in adata description entry that has 01 or 77 level-number
(if ANSI switch has been set).

3. Index-name-1, index-name-2, ... must be unique words within the program.

General Rules

1. The OCCURS clauseisused in defining tables and other homogeneous sets of repeated dataitems.
Whenever the OCCURS clause is used, the data-name which is the subject of this entry must
be either subscripted or indexed whenever it is referred to in a statement other than USE FOR
DEBUGGING. Further, if the subject of this entry isthe name of agroup item, then all data-names
belonging to the group must be subscripted or indexed whenever they are used as operands, except
as the object of a REDEFINES clause. (See under headings Subscripting, Indexing and Identifier
in Chapter 2).

2. Except for the OCCURS clause itself, all data description clauses associated with an item whose
description includes an OCCURS clause apply to each occurrence of the item described. (See
restriction in general rule 2 under Data Description Entries Other Than Condition in Chapter 3).

67

Chapter 4. TABLE HANDLING

3. The number of occurrences of the subject entry is defined as the value of integer-2 representing
the exact number of occurrences.

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a dataitem in the computer storage.

General Format

[USAGE IS] INDEX

Syntax Rules

1. Anindex dataitem can be referenced explicitly only in a SET statement, a relation condition, the
USING phrase of a Procedure Division header, or the USING phrase of a CALL statement.

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or el ementary items described with the USAGE ISINDEX clause.

General Rules

1. The USAGE clause can be written at any level. If the USAGE clause is written at a group level,
it applies to each elementary item in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of agroup to which the item belongs.

2. An elementary item described with the USAGE IS INDEX clause is called an index data item
and contains a value which must correspond to an occurrence number of a table element. The
elementary item cannot be a conditional variable. The compiler will alocate a 2 byte binary field
with animplied picture of 9(4) COMPUTATIONAL. If agroup item is described with the USAGE
ISINDEX clause the elementary itemsin the group are all index dataitems. The group itself is not
an index dataitem and cannot be used :n the SET statement or in arelation condition.

3. Anindex dataitem can be part of agroup whichisreferredtoinaMOV E or input-output statement,
in which case no conversion will take place.

PROCEDURE DIVISION IN THE TABLE
HANDLING MODULE

RELATION CONDITION

Comparisons Involving Index-Names And/or Index Data Items
Relation tests may be made between the following dataitems:

» Two index-names. The result is the same as if the corresponding occurrence numbers were
compared.

» Anindex-name and a data item (other than an index data item) or literal. The occurrence number
that corresponds to the value of the index-name is compared to the dataitem or literal.

» Anindex dataitem and an index-name or another index dataitem. The actual values are compared
without conversion.

68

Chapter 4. TABLE HANDLING

 Theresult of the comparison of an index dataitem with any dataitem or literal not specified above

is undefined.

OVERLAPPING OPERANDS

When asending and areceiving item in a SET statement share a part of their storage areas, the result
of the execution of such a statement is undefined.

THE SET STATEMENT

Function

The SET statement establishes reference points for table handling operations by setting index-names
associated with table elements.

General Format

Format 1

SET { identifier-1 [, identifier-2]... | index-name-1 [, index-name-2]... } TO { identifier-3 | index-
name-3 | integer-1}

Format 2

SET index-name-4 [, index-name-5]... { UPBY | DOWN BY } { identifier-4 | integer-2 }

Syntax Rules

1. All references to index-name-1, identifier-1, and index-name-4 apply equally to index-name-2,

2.

3.

4,

identifier-2, and index-name-5, respectively.

Identifier-1 and identifier-3 must name either index data items, or elementary items described as
an integer.

Identifier-4 must be described as an elementary numeric integer.

Integer-1 and integer-2 may be signed. Integer-1 must be positive.

General Rules

1.

Index-names are considered related to a given table and are defined by being specified in the
INDEXED BY clause.

. If index-name-3 is specified, the value of theindex before the execution of the SET statement must

correspond to an occurrence number of an element in the associated table.

If index-name-4, index-name-5 is specified, the value of the index both before and after the
execution of the SET statement must correspond to an occurrence number of an element in the
associated table If index-name-1, index-name-2 is specified, the value of the index after the
execution of the SET statement must correspond to an occurrence number of an element in the
associated table. The value of the index associated with an index-name after the execution of a
PERFORM statement may be undefined. (See THE PERFORM STATEMENT in Chapter 3).

. In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table element that corresponds in
occurrence number to the table element referenced by index-name-3, identifier-3, or integer-1.
If identifier-3 is an index data item, or if index-name-3 is related to the same table as index-
name-1, no conversion takes place.

69

Chapter 4. TABLE HANDLING

b. If identifier-1 is an index data item, it may be set equal to either the contents of index-name-3
or identifier-3 where identifier-3 is also an index item; no conversion takes place in either case.

c. If identifier-1 is not an index data item, it may be set only to an occurrence number that
corresponds to the value of index-name-3. Neither identifier-3 nor integer-1 can be used in this
case.

d. The processis repeated for index-name-2 , identifier-2, etc., if specified. Each time the value of
index-name-3 or identifier-3 isused as it was at the beginning of the execution of the statement.
Any subscripting or indexing associated with identifier-1, etc., is evaluated immediately before
the value of the respective dataitem is changed.

4. InFormat 2, the contents of index-name-4 are incremented (UP BY') or decremented (DOWN BY)
by a value that corresponds to the number of occurrences represented by the value of integer-2
or identifier-4; thereafter, the process is repeated for index-name-5, etc. Each time the value of
identifier-4 is used as it was at the beginning of the execution of the statement.

5. Datain Table 4-1 represents the validity of various operand combinations in the SET statement.
The general rule reference indicates the applicable general rule.

Table4.1. SET Statement Valid Operand Combinations.

Sending Item Receiving Item®

Integer Data ltem Index-Name Index Data Item
Integer Litera No/3c Valid/3a No/3b
Integer Data ltem No/3c Valid/3a No/3b
Index-Name Valid/3c Valid/3a Valid/3b?
Index Data ltem No/3c Valid/3a? Valid/3b?

1 = Rule numbers under General Rules above are referred to.

2 = No conversion takes place

70

Chapter 5. SEQUENTIAL INPUT AND
OUTPUT

INTRODUCTION TO THE SEQUENTIAL 1-O
MODULE

The Sequential I-O module providesacapability to accessrecordsof afilein established sequence. The
sequenceis established asaresult of writing the recordsto thefile. It also providesfor the specification
of re-run points and the sharing of memory areas among files.

LANGUAGE CONCEPTS

Organization

Sequential files are organized such that each record in the file except the first has a unique predecessor
record, and each record except the last has a unique successor record. These predecessor-successor
relationships are established by the order of WRITE statements when the file is created. Once
established, the predecessor-successor relationships do not change except in the case where records
are added to the end of thefile.

Access Mode

In the sequential access mode, the sequence in which records are accessed is the order in which the
records were originally written.

Current Record Pointer

The current record pointer is a conceptual entity used in this document to facilitate specification of
the next record to be accessed within a given file. The concept of the current record pointer has no
meaning for afile opened in the output mode. The setting of the current record pointer is affected only
by the OPEN and READ statements.

[-O Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into the specified
two-character data item during the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE
statement and before any applicable USE procedure is executed, to indicate to the COBOL program
the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS dataitem is known as Status Key 1 and is set to
indicate one of the following conditions upon completion of the input-output operation.

'0' - indicates Successful Completion

'1' - indicates At End

'3' - indicates Permanent Error

'9' - indicates an Operating System Error Message

The meaning of the above indications are as follows:

0 Successful Completion. The input-output statement was successfully executed.

71

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

1 AtEnd. The sequential READ statement was unsuccessfully executed as aresult of an attempt to

read arecord when no next logical record existsin thefile

3 Permanent Error. The input-output statement was unsuccessfully executed as the result of a
boundary violation for asequential file or asthe result of an input-output error, such as data check

parity error, or transmission efror.

9 Operating System Error Message. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the Operating System Error Message. This valueis used
only to indicate a condition not indicated by other defined values of status key 1, or by specified

combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as Status Key 2 and is
used to further describe the results of the input-output operation. This character will contain a value

as follows:

« If no further information is available concerning the input-output operation, then status key 2

containsavalue of '0'.

» When status key 1 contains a value of '3' an irrecoverable error has occurred. Thisis treated as a

fatal error by the Operating System.

* When status key 1 contains a value of '9', the value of status key 2 is the operating system
error message number (for those operating systems which designate errors numerically). The CIS
COBOL Operating Guide specific to your operating system contains details of this status-key-2

representation. Note that it is not possible to extract this number directly.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in the
following table. An'X" at an intersection indicates a valid permissible combination.

Status Key 1

Status Key 2

No Further Information (0)

Successful Completion (0)

X

At End (1) X
Permanent Error (3) X
Implementor Defined (9) O/S Error Number

The AT END Condition

ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-O

The AT END condition can occur as aresult of the execution of a READ statement. For details of the

causes of the condition, see THE READ STATEMENT later in this Chapter.

MODULE

INPUT-OUTPUT SECTION
The FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and alows specification of other file-related

information. (See also Appendix | in this manual).

72

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

General Format

FI LE- CONTRCL. file-control-entry ...

The FILE CONTROL Entry

Function

Thefile control entry names afile and may specify other file-related information.

General Format

SELECT file-name

ASSIGN TO({ external-file-name-literal |file-identifier } [, external-file-name-literal |file-identifier]
[; ORGANIZATION IS SEQUENTIAL | LINE SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1]

Syntax Rules

1

The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

. Each file described in the Data Division must be named once and only once as file-name in the

FILE-CONTROL paragraph. Eachfile specifiedinthefile control entry must haveafiledescription
entry in the Data Division.

. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clauseis

implied.

. Data-name-1 must be defined in the Data Division as a two-character data item of the category

alphanumeric and must not be defined in the File Section.

. When the ORGANIZATION IS SEQUENTIAL clauseis not specified, the ORGANIZATION IS

SEQUENTIAL clauseisimplied.

General Rules

1

The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. See Appendix F in the CIS COBOL Operating Guide. The first assignment takes effect.
Subsequent assignments within any one ASSIGN clause are for documentation purposes only.

The ORGANIZATION clause specifies the logical structure of afile. The file organization is
established at the time afileis created and cannot subsequently be changed.

. When LINE SEQUENTIAL ORGANIZATION is specified, the file is treated as consisting of

variable length records, each record containing one line of data. The definition of a line of data
varies with different operating systems. Some terminate line "records" with the Carriage Return
and Line Feed characters, or one of them, and some pad out as fixed length records. CIS COBOL
therefore is always compatible with the Editor software in any Operating System in this respect.

. Records in the file are accessed in the sequence dictated by the file organization. This sequence

is specified by predecessor-successor record relationships established by the execution of WRITE
statements when thefile is created or extended.

. When the FILE STATUS clause is specified, a value will be moved by the operating system into

the data item specified by data-name-1 after the execution of every statement that references that
file either explicitly or implicitly. Thisvalueindicates the status of execution of the statement (See
the section called “1-O Status’ in this Chapter).

The I-O-CONTROL Paragraph

73

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

Function

The I-O CONTROL paragraph specifies the points at which re-run is to be established, the memory
areawhich isto be shared by different files, and the location of files on amultiple file reel.

General Format

| - O- CONTROL. [; RERUN [ON { file-name-1 | implementor-name } | EVERY {{ [END OF]
{ REEL | UNIT } |integer-1 RECORDS} | OF file-name-2 | integer-2 CLOCK-UNITS | condition-
name}]...[; SAME AREA FOR file-name-3 [, file-name-4]...]... .

Syntax Rules

1. The I-O-CONTROL paragraph is optional. The whole clause is for documentation only when
present.

2. File-name-1 must be a sequentially organized file.

3. The END OF REEL/UNIT clause may only be used if file-name-2 is a sequentially organized file
and is for documentation purposes only.

4. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is specified,
implementor-name must be given in the RERUN clause.

5. Morethan one RERUN clause may be specified for a given file-name-2.

6. Thefilesreferenced inthe SAME AREA clause need not all have the same organization or access.

General Rules

1. The RERUN clauseistreated as for documentation purposes only.

2. The SAME AREA clause istreated as for documentation purposes only.

DATA DIVISION IN THE SEQUENTIAL I-O MODULE
FILE SECTION

In aCIS COBOL program the file description entry (FD) represents the highest level of organisation
inthe File Section. The File Section header isfollowed by afile description entry consisting of alevel
indicator (FD), a file-name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records, the value of implementor-
defined label items, the names of the datarecordswhich comprisethefile. Theentry itself isterminated
by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-
name if required, followed by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries. The structure of a record description is
defined in CONCEPT OF LEVEL Sin Chapter 2, whilethe elementsallowed in arecord description are
shown in the the section called “THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON”"
in Chapter 3.

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

74

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

Function

Thefile description furnishesinformation concerning the physical structure, identification, and record
names pertaining to agiven file.

General Format
FDfile-name[; BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS}]
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
[LABEL { RECORD IS|RECORDSARE } { STANDARD |OMITTED }]
[; VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...] [; DATA { RECORD IS |

RECORDS ARE } data-name-3 [, data-name-4]]
[; CODE-SET IS aphabet-name]

Syntax Rules

1. Theleve indicator FD identifiesthe beginning of afile description and must precede thefile-name.

2. The clauses which follow the name of the file are optional in many cases, and their order of
appearanceisimmaterial. All clauses are optional when the ANSI switch is unset (See Chapter 2).

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.
General Format

BLOCK CONTAI NS integer { RECORDS | CHARACTERS}
General Rule

This clause is required for documentation purposes only.

THE CODE-SET CLAUSE

Function

The CODE-SET clause specifies the character code set used to represent data on the external media
General Format

CODE- SET | S alphabet-name
Syntax Rules

1. Whenthe CODE-SET clauseis specified for afile, all datain that file must be described as usageis
DISPLAY and any signed numeric data must be described with the SIGN 1S SEPARATE clause.

2. The aphabet-name clause referenced by the CODE-SET clause must not specify theliteral phrase.
3. The CODE-SET clause may only be specified for non-disk files.
General Rule

The CODE-SET clause is specified for documentation purposes only.

75

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data records with their
associated file.

General Format
DATA { RECORD IS| RECORDS ARE } data-name-1 [, data-name-2]
Syntax Rule

Data-name-1 and data-name-2 are the names of data records and should have 01 |evel-number record
descriptions, with the same names, associated with them.

General Rules
1. The presence of more than one data-name indicates that the file contains more than one type of
datarecord. These records may be of differing sizes, different formats, etc. The order in which they

arelisted is not significant.

2. Conceptualy, all data records within afile share the same area. Thisisin no way altered by the
presence of more than one type of data record within the file.

THE LABEL RECORDS CLAUSE
Function

The LABEL RECORDS clause specifies whether labels are present.
General Format

LABEL { RECORD IS | RECORDSARE } { STANDARD | OMITTED }
Syntax Rule

This clause isrequired in every file description entry, when the ANSI switch is set.
General Rule

This clause is used for documentation purposes only.

THE RECORD CONTAINS CLAUSE

Function
The RECORD CONTAINS clause specifies the size of data records.
General Format
RECORD CONTAINS [integer-1 TQ] integer-2 CHARACTERS
General Rule
The size of each datarecord is completely defined within the record description entry, therefore this

clauseis never required. The RECORD CONTAINS clause is specified for documentation purposes
only.

76

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

THE VALUE OF CLAUSE

Function

The VALUE OF clause specifies the description of anitem in the label records associated with afile.
General Format

VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...
General Rules

1. Thisclauseis used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever aliteral is specified.

PROCEDURE DIVISION IN THE SEQUENTIAL I-O
MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files.

General Format

CLOSE file-name-1{ REEL | UNIT }

Syntax Rule

The REEL or UNIT phrase must only be used for sequential files, and are for documentation purposes
only.

General Rules
1. A CLOSE statement may only be executed for afilein an open mode.

2. Theactiontakenif thefileisin the open mode when a STOP RUN statement is executed isto close
the file. The action taken for afile that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for that program is to leave the file open.

3. If a CLOSE statement has been executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an intervening OPEN statement for that
fileis executed.

4. Following the successful execution of a CLOSE statement the record area associated with file-
name is no longer available. The unsuccessful execution of such a CLOSE statement leaves the
availabhility of the record area undefined.

THE OPEN STATEMENT

Function

The OPEN statement initiatesthe processing of files. It also performs checking and/or writing of labels
and other input-output operations.

77

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

General Format

OPEN({ INPUT file-name-1[, file-name-2]... OUTPUT file-name-3 [, file-name-4]... I-O file-name-5
[, filee-name-6]... EXTEND file-name-7 [, file-name-8§]... }

Syntax Rules

1. Thel-O phrase can only be used for disk files, except for filesin line sequential organization.

2. The EXTEND phrase can only by used for sequential files and line sequential files.

General Rules

1. The successful execution of an OPEN statement determines the availability of the file and results
in the file being in an open mode.

2. The successful execution of an OPEN statement makes the associated record area available to the

program.

3. Prior to the successful execution of an OPEN statement for a given file, no statement can be

executed that references that file, either explicitly or implicitly.

4. An OPEN statement must be successfully executed prior to the execution of any of the permissible

input-output statements. In Table 5-1, 'X' at an intersection indicates that the specified statement,
used in the sequential access mode, may be used with the sequential file organization and open
mode given at the top of the column.

Table 5.1. Permissable Combinations of Statements and OPEN Modes for
Sequential 1/0.

Statement Open Mode

READ Input Output Input-Output Extend
X X

WRITE X X

REWRITE X

This OPEN mode is not supported for ORGANIZATION line sequentid files.

5. A filemay be opened with the INPUT, OUTPUT, EXTEND and I-O phrases in the same program.

Following theinitial execution of an OPEN statement for afile, each subsequent OPEN statement
execution for that same file must be preceded by the execution of a CL OSE statement, for that file.

6. Execution of the OPEN statement does not obtain or release the first data record.

7. The ASSIGNed namein the SELECT statement for afile is processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN statement causes the
ASSIGNed name to be checked in accordance with the operating system conventions for
opening files for input.

b. When the OUTPUT phrase is specified, the execution of the OPEN statement causes the
ASSIGNed nameto be written in accordance with the operating system conventionsfor opening
filesfor output.

8. Thefile description entry for file-name-1, file-name-5, must be equivalent to that used when this

file was created.

9. If the storage medium for the file permits rewinding, execution of the OPEN statement causes the

file to be positioned at its beginning.

78

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

10.For files being opened with the INPUT or 1-O phrase, the OPEN statement sets the current record
pointer to thefirst record currently existing within thefile. If no records exist in thefile, the current
record pointer is set such that the next executed READ statement for the file will result inan AT
END condition. If the file does not exist, OPEN INPUT will cause an error status.

11.When the EXTEND phrase is specified, the OPEN statement positions the file immediately
following the last logical record of that file. Subsequent WRITE statements referencing the file
will add recordsto the file as though the file had been opened with the OUTPUT phrase. If thefile
does not exist it will be created.

12.The I-O phrase permits the opening of adisk for both input and output operation except for filein
ORGANIZATION LINE SEQUENTIAL.

13.Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is
created. At that time the associated file contains no data records.

THE READ STATEMENT

Function

The READ statement makes available the next logical record from afile,

General Format

READ file-name RECORD [INTO identifier] [; AT END imperative- statement]

Syntax Rules

1. TheINTO phrase must not be used when the input file contains logical records of various sizes as
indicated by their record descriptions. The storage area associated with identifier and the record
area associated with file-name must not be the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure is specified for file-name,

General Rules

1. The associated file must be open in the INPUT or 1-O mode at the time this statement is executed.
(See THE OPEN STATEMENT in this Chapter).

2. The record to be made available by the READ statement is determined as follows:

a. If the current record pointer was positioned by the execution of the OPEN statement, the record
pointed to by the current record pointer is made available.

b. If the current record pointer was positioned by the execution of a previous READ statement,
the current record pointer is updated to point to the next existing record in the file and then that
record is made available.

3. The execution of the READ statement causes the value of the FILE STATUS data item, if any,
associated with file-name to be updated. (See the section called “1-O Status’ in this Chapter)

4. Regardless of the method used to overlap access time with processing time, the concept of the
READ statement is unchanged in that a record is available to the object program prior to the
execution of any statement following the READ statement.

5. Whenthelogical records of afileare described with more than one record description, these records
automatically share the same storage area; thisis equivalent to an implicit redefinition of the area.

79

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

The contents of any dataitems which lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

. If the INTO phrase is specified, the record being read is moved from the record area to the area

specified by identifier according to therul es specified for the MOV E statement. Theimplied MOVE
does not occur if the execution of the READ statement was unsuccessful. Any subscripting or
indexing associated with identifier is evaluated after the record has been read and immediately
before it is moved to the data item.

. When the INTO phraseis used, the record being read is available in both the input record areaand

the data area associated with identifier.

. If, at thetime of execution of aREAD statement, the position of current record pointer for that file

is undefined, the execution of that READ statement is unsuccessful.

. If theend of areel or unit is recognized during the execution of a READ statement, an end-of-file

status condition exists.

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. Thefirst datarecord of the new reel/unit is made available.

10.If, at the time of the execution of a READ statement, no next logical record exists in the file, the

AT END condition occurs, and the execution of the READ statement is considered unsuccessful.
(See the section called “I-O Status”).

11.When the AT END condition is recognized the following actions are taken in the specified order:

a. A valueisplaced into the FILE STATUS dataitem, if specified for thisfile, to indicate an AT
END condition. (See the section called “1-O Status’).

b. If the AT END phrase is specified in the statement causing the condition, control is transferred
tothe AT END imperative-statement. Any USE procedure specified for thisfileisnot executed.

c. If the AT END phraseis not specified, then a USE procedure must be specified, either explicitly
or implicitly, for thisfile and that procedure is executed.

When the AT END condition occurs, execution of the input-output statement which caused the
condition is unsuccessful.

12 Following the unsuccessful execution of any READ statement, the contents of the associated record

area and the position of the current record pointer are undefined.

13.When the AT END condition has been recognized, a READ statement for that file must not be

executed without first executing a successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

THE REWRITE STATEMENT

Function

Th

e REWRITE statement logically replaces arecord existing in adisk file.

General Format

REVRI TE record-name [FROM identifier]

80

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

Syntax Rules

1

2.

Record-name and identifier must not refer to the same storage area.

Record-name is the name of alogical record in the File Section of the Data Division and may be
qualified.

General Rules

1

8.

The file associated with record-name must be a disk file and must be open in the I-O mode at the
time of execution of this statement. (See THE OPEN STATEMENT in this Chapter).

. The last input-output statement executed for the associated file prior to the execution of the

REWRITE statement must have been a successfully executed READ statement. The operating
system logically replaces the record that was accessed by the READ statement.

. The number of character positions in the record referenced by record-name must be equal to the

number of character positionsin the record being replaced.

. The logical record released by a successful execution of the REWRITE statement is no longer

availablein the record area,

. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of:

MOVE identifier TO record-nane

followed by the execution of the same REWRITE statement without the FROM phrase. The
contents of the record area prior to the execution of the implicit MOV E statement have no effect
on the execution of the REWRITE statement.

. The current record pointer is not affected by the execution of a REWRITE statement.

. The execution of the REWRITE statement causesthe value of the FILE STATUS dataitem, if any,

associated with the file to be updated. (See the section called “1-O Status’ in this Chapter).

The REWRITE statement cannot be used with line sequentia files.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in addition to the
standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARD { EXCEPTION | ERROR } PROCEDURE ON { fil e- name-1 |
INPUT | OUTPUT |1-O | EXTEND }

Syntax Rules

1.

2.

A USE statement, when present, must immediately follow a section header in the declaratives
section and must be followed by a period followed by a space. The remainder of the section must
consist of zero, one or more procedural paragraphs that define the procedure to be used.

The USE statement itself isnever executed; it merely definesthe conditionscalling for the execution
of the USE procedures.

81

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

General Rules

1. Ifthe AT END phase hasnot been specifiedin theinput-output statement, the designated procedures
are executed by the input-output system after completing the standard input-output error routine
upon recognition of the AT END condition

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any non-declarative procedures.
Conversely, in the nondeclarative portion there must be no reference to procedure-names that
appear in the declarative portion, except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that would cause the
execution of a USE procedure that had previously been invoked and had not yet returned control
to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output file. It can also be used for vertical
positioning of lineswithin alogical page.

General Format

VRl TE record-name [FROM identifier-1] [BEFORE | AFTER ADVANCING integer LINE | LINES
| TAB | PAGE]

Syntax Rules
1. Record-name and identifier-1 must not reference the same storage area.

2. When TAB is specified the result is to cause the paper to throw to the standard vertical tabulation
position.

3. Therecord-nameisthe name of alogical record in the File Section cf the Data Division.

4. Integer may be zero.

General Rules

1. Theassociated filemust beopeninthe OUTPUT modeat thetime of the execution of this statement.
(See THE OPEN STATEMENT in this Chapter).

2. The logical record released by the execution of the WRITE statement is no longer available in
the record area unless the execution of the WRITE statement was unsuccessful due to a boundary
violation.

3. The results of the execution of the WRITE statement with the FROM phrase is equivalent to the
execution of:

a The statement:

MOVE identifier-1 TO record-nane

according to the rules specified for the MOV E statement, followed by:

82

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE statement have no
effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area referenced by
identifier-1 isavailable, even though theinformation in the areareferenced by record-name may
not be. (See general rule 2.)

4. The current record pointer is unaffected by the execution of a WRITE statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any,
associated with the file to be updated. (See the section called “1-O Status’ in this Chapter).

6. The maximum record size for a file is established at the time the file is created and must not
subsequently be changed.

7. The number of character positions on adisk required to store alogical record in afile may or may
not be equal to the number of character positions defined by the logical description of that record
in the program.

8. The execution of the WRITE statement releases alogical record to the operating system.

9. The ADVANCING phrase allows control of thevertical positioning of each line on arepresentation
of aprinted page.

a. With ORGANIZATION SEQUENTIAL if the ADVANCING phrase is not used, automatic
advancing is provided when output is directed to alist-device to act asif the user had specified
AFTER ADVANCING 1 LINE. If the ADVANCING phrase is used, advancing is provided as
follows:

i. If integer is specified, the representation of the printed page is advanced the number of lines
equal to the value of integer.

ii. If the BEFORE phraseis used, the line is presented before the representation of the printed
page is advanced.

iii.If the AFTER phraseis used, thelineis presented after the representation of the printed page
is advanced.

iv. If PAGE is specified, the record is presented on the logical page before or after (depending
on the phrase used) the device is repositioned to the next logical page.

b. With ORGANIZATION LINE SEQUENTIAL, if the ADVANCING phrase is not used,
automatic advancing of one line is provided to act in accordance with the convention of your
operating system text editor (usually as if the user had specified BEFORE ADVANCING 1
LINE).

If the ADVANCING phrase is used, advancing is provided according to rules 9a(i) through
9a(iv) above.

If the ADVANCING phrase is used or the output is directed to alist device, the resulting file is
restricted in its use. general, the file cannot be read to automatically retrieve the logical records
written. In particular, if the BEFORE ADVANCING and AFTER ADVANCING clauses are
both used (implicitly or explicitly) when writing the file, it may not be opened as an input file
with ORGANIZATION LINE SEQUENTIAL.

10.When an attempt is made to write beyond the externally defined boundaries of a sequential file, an
exception condition exists and the contents of the record area are unaffected. The following action
takes place:

83

Chapter 5. SEQUENTIAL INPUT AND OUTPUT

Thevaueof the FILE STATUS dataitem, if any, of the associated fileis set toavaueindicating
aboundary violation. (See the section called “1-O Status’ in this Chapter).

. IfaUSE AFTER STANDARD EXCEPTION declarativeisexplicitly or implicitly specified for
the file, that declarative procedure will then be executed.

. IfaUSE AFTER STANDARD EXCEPTION declarativeisnot explicitly or implicitly specified
for thefile, the result is undefined.

Chapter 6. RELATIVE INPUT AND
OUTPUT

INTRODUCTION TO THE RELATIVE I-O
MODULE

The Relative 1-O module provides a capability to access records of a mass storage file in either
a random or sequential manner. Each record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's ordinal position in the file. (See the CIS COBOL
Operating Guide for the maximum number of recordsin arelativefile.)

LANGUAGE CONCEPTS

Organization

Relative file organization is permitted only on disk devices. A relative file consists of records which
areidentified by relative record numbers. The file may be thought of as composed of a serial string of
areas, each capable of holding alogical record. Each of these areasis denominated by arelative record
number. Records are stored and retrieved based on this number. For example, the tenth record is the
one addressed by relative record number 10 and is in the tenth record area, whether or not records
have been written in the first through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the relative record numbers of all records which currently exist within the file. In the random access
mode, the sequencein which records are accessed is controlled by the programmer. The desired record
is accessed by placing its relative record number in arelative key dataitem. In the dynamic access
mode, the programmer may change at will from sequential accessto random access using appropriate
forms of input-output statements.

Current Record Pointer

The current record printer is a conceptual entity used in this document to facilitate specification of
the next record to be accessed within a given file. The concept of the current record pointer has no
meaning for afile opened in the output mode. The setting of the current record pointer is affected only
by the OPEN, START and READ statements.

[-O Status

If the FILE STATUS clauseis specified in afile control entry, avalueis placed into the specified two-
character dataitem during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE
or START statement and before any applicable USE procedureis executed, to indicate to the COBOL
program the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS dataitem isknown as Status Key 1 and is set to
indicate one of the following conditions upon completion of the input-output operation.

'0' - indicates Successful Completion
'1'- indicates At End
'2' - indicates Invalid Key

85

Chapter 6. RELATIVE INPUT AND OUTPUT

‘3" - indicates Permanent Error
'9' - indicates an Operating System Error Message

The meaning of the above indications are as follows:

0

1

Successful Completion. The input-output statement was successfully executed.

At End. The Format 1 READ statement was unsuccessfully executed as a result of an attempt to
read arecord when no next logical record existsin thefile.

Invalid Key. The input-output statement was unsuccessfully executed as a result of one of the
following:

* Duplicate Key

* No Record Found

¢ Boundary Violation

Permanent Error. Theinput-output statement was unsuccessfully executed asthe result of aninput-
output error, such as data check, parity error or transmission error.

Operating System Error Message. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the Operating System Error Message. This valueis used
only to indicate a condition not indicated by other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

Therightmost character position of the FILE STATUS dataitem is known as status key 2 and is used
to further describe the results of the input-output operation. This character contains avalue asfollows:

* If no further information is available concerning the input-output operation, then status key 2

contains avalue of '0'

» When status key 1 contains a value of '2' indicating an INVALID KEY condition, status key 2 is

used to designate the cause of that condition by the following values:
2- Indicatesaduplicate key value. An attempt has been madeto write arecord that would creste

aduplicate key in arelativefile.

3- Indicatesno record found. An attempt has been made to access arecord, identified by akey,

and that record does not exist in thefile,

4- Indicates a boundary violation. An attempt has been made to write beyond the externally-

defined boundaries of arelativefile. Thisisnormally treated as afatal error by the Operation
System.

» When status key 1 contains a value of '9' the value of status key 2 is the operating system

error message number (for those operating systems which designate errors numerically), The CIS
COBOL Operating Guide specific to your operating system contains details of the status-key-2
representation. Note that it is not possible to extract this number directly.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in the
table. An'X" at an intersection indicates a valid permissible combination.

StatusKey 1 Status Key 2

No Further |Duplicate |No Record |Boundary
Information Key (2) Found (3) |Violation

() (4)

Successful X
Completion (0)
At End (1) X

86

Chapter 6. RELATIVE INPUT AND OUTPUT

Invalid Key (2) X X X
Permanent Error (3) | X

Implementor Operating System Error Message Number
Defined (9)

The INVALID KEY Condition

The INVALID KEY condition can occur as aresult of the execution of a START, READ, WRITE,
REWRITE or DELETE statement. For details of the causes of the condition, see The START
Statement, The READ Statement, The WRITE Statement, The REWRITE Statement, and The
DELETE Statement later in this chapter.

When the INVALID KEY condition is recognised, the Operating System takes these actions in the
following order:

1. Avaueisplacedintothe FILE STATUSdataitem, if specified for thisfile, toindicatean INVALID
KEY condition. (See the section called “I-O Status’ in this Chapter).

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is
transferred to the INVALID KEY imperative statement. Any USE procedure specified for thisfile
is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified, either explicitly
or implicitly, for thisfile, that procedure is executed.

WhentheINVALID KEY condition occurs, execution of the input-output statement which recogni sed
the condition is unsuccessful, and the file is not affected.

The AT END Condition

The AT END condition can occur as aresult of the execution of a READ statement. For details of the
causes of the condition, see The READ Statement later in this chapter.

ENVIRONMENT DIVISION IN THE RELATIVE I-
O MODULE

INPUT-OUTPUT SECTION
The File-Control Paragraph

Function

The FILE-CONTROL paragraph names each file and alows specification of other file-related
information. (See also Appendix F in the CIS COBOL Operating Guide).

General Format
FI LE- CONTROL {file-control-entry} ...
The File-Control Entry
Function
Thefile control entry names afile and may specify other file-related information.

General Format

87

Chapter 6. RELATIVE INPUT AND OUTPUT

SELECT file-name

ASSIGN TO { externa-file-name-literal | file-identifier } [, { external-file-name-literal | file-
identifier } |

; ORGANIZATION ISRELATIVE

[

; ACCESS MODE IS { SEQUENTIAL ,RELATIVE KEY IS data-name | { RANDOM |

DYNAMIC} ,RELATIVE KEY ISdata-name}]
[; FILE STATUS IS data-name-2]

Syntax Rules

1

5.

6.

The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

. Each file described in the Data Division must be named once and only once as file-name in the

FILE-CONTROL paragraph. Eachfile specifiedinthefile control entry must haveafiledescription
entry in the Data Division.

. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clauseis

implied.

. Data-name-2 must be defined in the Data Division as a two-character data item of the category

alphanumeric and must not be defined in the File Section, the Report Section, or the Communication
Section.

Data-name-1 must not be defined in arecord description entry associated with that file-name.

The data item referenced by data-name-1 must be defined as an unsigned integer.

General Rules

1

The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. See Appendix F in the CIS COBOL Operating Guide. The first assignment takes place.
Subsequent assignments within any one ASSIGN clause are for documentation purposes only.

. When the access mode is sequentia , records in the file are accessed in the sequence dictated by

the file organization. This sequence is the order of ascending relative record numbers of existing
recordsin thefile.

. When the FILE STATUS clause is specified, a value will be moved by the operating system into

the data item specified by data-name-2 after the execution of every statement that references that
file either explicitly or implicitly. Thisvalueindicatesthe status of execution of the statement. (See
the section called “1-O Status” in this Chapter).

. If the access mode is random, the value of the RELATIVE KEY dataitem indicates the record to

be accessed.

. When the access madeisdynamic, recordsin thefile may be assessed sequentially and/or randomly.

(See General Rules3and 5) .

. All records stored in arelative file are uniquely identified by relative record numbers. The relative

record number of a given record specifies the record's logical ordinal position in the file. The first
logical record hasarelative record number of 1, and subsequent logical records haverelative record
numbersof 2, 3,4,

. The dataitem specified by data-name-1 is used to communicate a relative record number between

the user and the Operating System.

The I-O-CONTROL Paragraph

88

Chapter 6. RELATIVE INPUT AND OUTPUT

Function

Thel-O-CONTROL paragraph specifiesthe points at which rerun isto be established and the memory
areawhich isto be shared by different files.

General Format

| -O- CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY { integer-1
RECORDS OF file-name-2 | integer-2 CLOCK-UNITS | condition-name}]... [; SAME AREA FOR
file-name-3 [, file-name-4]...]... .

Syntax Rules

1

2.

7.

The I-O-CONTROL paragraph is optional. The whole clause is for documentation purposes only.

File-name-1 must be a sequentially organized file.

. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is specified,

implementor-name must be given in the RERUN clause.

. More than one RERUN clause may be specified for a given file-name-2, subject to the following

restriction:

When multiple integer-1 RECORDS clauses are specified, no two of them may specify the same
file-name-2.

. Only one RERUN clause containing the CLOCK-UNITS clause may be specified.

. Morethan one SAME clause may beincluded in a program but file-name must not appear in more

than one SAME AREA clause.

The files referenced in the SAME AREA clause need not all have the same organization or access.

General Rules

1.

2.

The RERUN clauseis treated as for documentation purposes only.

The SAME AREA clauseistreated as for documentation purposes only.

DATA DIVISION IN THE RELATIVE I-O
MODULE

FILE SECTION

InaCIS COBOL program the file description entry (FD) represents the highest level or organization
inthe File Section. The File Section header isfollowed by afile description entry consisting of alevel
indicator (FD), a file-name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records, the value of implementor-
defined label items, and the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-

89

Chapter 6. RELATIVE INPUT AND OUTPUT

name if required, followed by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries. The structure of a record description is
defined in CONCEPTS OF LEVEL Sin Chapter 2 while the elements allowed in arecord description
are shown in the section called “THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON"
in Chapter 3.

THE FILE DESCRIPTION-COMPLETE ENTRY
SKELETON

Function

Thefile description furnishesinformation concerning the physical structure, identification, and record
names pertaining to agiven file.

General Format
FDfile-name[; BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS} |
[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
[LABEL { RECORD IS|RECORDSARE } { STANDARD |OMITTED }]

[; VALUE OF implementor-name-1 IS literal-1 [, implementor-name-2 1S literal-2]...] [; DATA
{ RECORD IS| RECORDS ARE } data-name-3 [, data-name-4]]

Syntax Rules
1. Thelevd indicator FD identifiesthe beginning of afile description and must precede thefile-name.
2. Theclauseswhich follow the name of thefile are cases, and their order of appearanceisimmaterial.

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.
General Format
BLOCK CONTAI NS integer-2 { RECORDS | CHARACTERS}

General Rules

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data records with their
associated file.

General Format

DATA { RECORD IS| RECORDS ARE } data-name-1 [, data-name-2]

90

Chapter 6. RELATIVE INPUT AND OUTPUT

Syntax Rule

Data-name-1 and data-name-2 are the names of datarecords and should have 01 |evel-number record
descriptions, with the same names, associated with them.

General Rules
1. The presence of more than one data-name indicates that the file contains more than one type of

datarecord. These records may be of differing sizes, different formats, etc. The order in which they
arelisted is not significant.

2. Conceptually, al data records within a file share the same area. Thisisin no way atered by the
presence of more than one type of data record within thefile.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.
General Format

LABEL { RECORD IS | RECORDSARE } { STANDARD | OMITTED }
Syntax Rule

This clause isrequired in every file description entry, when the ANSI switch is set.
General Rule

This clause is used for documentation purposes only.

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.
Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS
General Rule

The size of each datarecord is completely defined within the record description entry, therefore this
clauseis never required.

THE VALUE OF CLAUSE

Function
The VALUE of clause specialises the description of anitem in the label records associated with afile.

General Format

VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...

91

Chapter 6. RELATIVE INPUT AND OUTPUT

Syntax Rules

1. Data-name-1, data-name-2, etc, should be qualified when necessary, but cannot be subscripted or
indexed, nor can they be items described with the USAGE IS INDEX clause

2. Data-name-1, data-name-2 etc, must be in the Working-Storage Section
General Rules

1. Thisclauseis used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever aliteral is specified.

PROCEDURE DIVISION IN THE RELATIVE I-O
MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the procession of files. The LOCK is for documentation purposes
only.

General Format

CLOSE file-name-1 [WITH LOCK] [, file-name-2 [WITH LOCK]]...

Syntax Rule

The files referenced in the CLOSE statement need not all have the same organization or access.

General Rules

1. A CLOSE statement may only be executed for afilein an open mode.

2. Theaction taken if afileisin the open mode when a STOP RUN statement is executed is to close
thefile. The action taken for afile that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for the program isto close thefile.

3. If a CLOSE statement has been executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an intervening OPEN statement for that
fileis executed.

4. Following the successful execution of a CLOSE statement, the record area associated with file-
name is no longer available. The unsuccessful execution of such a CLOSE statement leaves the
availabhility of the record area undefined.

THE DELETE STATEMENT

Function

The DELETE statement logically removes arecord from a mass storage file.

General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

92

Chapter 6. RELATIVE INPUT AND OUTPUT

Syntax Rules

1

TheINVALID KEY phrase must not be specified for aDEL ETE statement which references afile
which isin sequential access mode.

. The INVALID KEY phrase must be specified for a DELETE statement which references a file

which isnot in sequential access mode and for which an applicable USE procedure is not specified

General Rules

1.

The associated file must be open in the I-O mode at the time of the execution of this statement.
(See THE OPEN STATEMENT later in this Chapter).

. For files in the sequential access mode, the last input-output statement executed for file-name

prior to the execution of the DELETE statement must have been a successfully executed READ
statement. The Operating System logically removes from the file the record that was accessed by
that READ statement.

. For afilein random or dynamic access mode, the Operating System logically removesfrom thefile

that record identified by the contents of the RELATIVE KEY dataitem associated with file-name.
If the file does not contain the record specified by the key, an INVALID key condition exists. (See
the section called “The INVALID KEY Condition” in this Chapter).

. After the successful execution of a DELETE statement, the identified record has been logically

removed from the file and can no longer be accessed.

. The execution of a DELETE statement does not affect the contents of the record area associated

with file-name.

. The current record pointer is not affected by the execution of a DELETE statement.

. The execution of the DELETE statement causes the value of the specified FILE STATUS data

item, if any, associated with the file-name to be updated. See the section called “1-O Status’ in
this chapter.

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs checking and/or writing of labels
and other input-output operations.

General Format

OPEN { INPUT file-nane-1 [, fil e-nanme-2]... | OUTPUT file-nanme-3 [, file-
name-4]...|1-Ofil e-nane-5[,fil e- nane-6]...}...

Syntax Rule

Thefilesreferenced in the OPEN statement need not all have the same organization or access.

General Rules

1.

2.

The successful execution of an OPEN statement determines the availability of the file and results
in the file being in an open mode.

The successful execution of the OPEN statement makes the associated record area avail able to the
program.

93

Chapter 6. RELATIVE INPUT AND OUTPUT

3. Prior to the successful execution of an OPEN statement for a given file, no statement can be

executed that references that file, either explicitly or implicitly.

. An OPEN statement must be successfully executed prior to the execution of any of the permissible

input-output statements. In Table 6-1, X' at an intersection indicates that the specified statement,
used in the access mode given for that row, may be used with the relative file organization and the
open mode given at the top of the column.

Table 6.1. Permissible Combinations of Statements and Open Modes for
Relativel/O

File Access| Statement Open Mode
Mode

Input Output I nput-Output
Sequential READ X X

WRITE X
REWRITE
START X
DELETE
Random READ X
WRITE X
REWRITE
START
DELETE
Dynamic READ X
WRITE X
REWRITE
START X
DELETE

X | X | X| X| X| X

X | X | X| X| X| X

. Afilemay beopened withtheINPUT, OUTPUT, AND I-O phrasesin the same program. Following

the initial execution of an OPEN statement for afile, each subsequent execution for that sanefile
must be preceded by the execution of a CLOSE statement, for that file.

. Execution of the OPEN statement does not obtain or release the first data record.

. The file description entry for file-name-1, file-name-2, file-name-5 or file-name-6 must be

equivalent to that used when this file was created.

. For files being opened with the INPUT or |-O phrase, the OPEN statement sets the current record

pointer to thefirst record currently existing within thefile. If no records exist in thefile, the current
record pointer is set such that the next executed Format 1 READ statement for the file will result
inan AT END condition. If the file does not exist, INPUT will cause an error status.

. The I-O phrase permits the opening of afile for both input and output operations. If the file does

not exist, it will be created. In sequential access mode it will then be used for input; any attempt
to WRITE to it will cause an error.

10.Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is

created. At the time the associated file contains no data. If afile of the same number exists it will
be deleted. If write protected, an error status occurs.

THE READ STATEMENT

94

Chapter 6. RELATIVE INPUT AND OUTPUT

Function

For sequentia access, the READ statement makes available the next logical record from afile. For
random access, the READ statement makes available a specified record from adisk file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1

The INTO phrase must not be used when the input file contains logical records of various sizes as
indicated by their record descriptions. The storage area associated with identifier and the record
area associated with file-name must not be the same storage area.

. Format must be used (without the NEXT phrase) for all filesin sequential access mode.

. The NEXT phrase must be specified for files in dynamic access mode, when records are to be

retrieved sequentially.

. Format 2 isused for filesin random access mode or for filesin dynamic access mode when records

are to be retrieved randomly.

. The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE

procedure is specified for file-name.

General Rules

1.

5.

The associated files must be openinthe INPUT or I-O mode at the time this statement is executed.
See THE OPEN STATEMENT in this Chapter.

. The record to be made available by a Format 1 READ statement is determined as follows:

a. Therecord, pointed to by the current record pointer, is made available provided that the current
record pointer was positioned by the START or OPEN statement and therecord isstill accessible
through the path indicated by the current record pointer; if the record is no longer accessible,
which may have been caused by the deletion of the record, the current record pointer is updated
to point to the next existing record in the file and that record is then made available.

b. If the current record pointer was positioned by the execution of a previous READ statement,
the current record pointer is updated to point to the next existing record in the file and then that
record is made available.

. The execution of the READ statement causes the value of the FILE STATUS data item, if any,

associated with filename to be updated. (See the section called “1-O Status’ in this Chapter).

. Regardless of the method used to overlap access time with processing time, the concept of the

READ statement is unchanged in that a record is available to the object program prior to the
execution of any statement following the READ statement.

When thelogical records of afileare described with more than one record description, these records
automatically share the same storage areg; thisis equivalent to an implicit redefinition of the area.
The contents of any data items which lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

95

Chapter 6. RELATIVE INPUT AND OUTPUT

6. If the I-O phrase is specified, the record being read is moved from the record area to the area
specified by identifier according to the rules specified for the MOVE statement without the
CORRESPONDING phrase. The implied MOVE does not occur if the execution of the READ
statement was unsuccessful. Any subscripting or indexing associated with identifier is evaluated
after the record has been read and immediately before it is moved to the data item.

7. When the INTO phraseis used, the record being read is available in both the input record area and
the data area associated with identifier.

8. If, at the time of execution of a Format 1 READ statement, the position of current record pointer
for that file is undefined, the execution of that READ statement is unsuccessful.

9. If, at the time of the execution of a Format 1 READ statement, no next logical record exists in
the file, the AT END condition occurs, and the execution of the READ statement is considered
unsuccessful. (See the section called “1-O Status’ in this Chapter).

10.When the AT END condition is recognized the following actions are taken in the specified order:

a. A vaueisplaced into the FILE STATUS dataitem, if specified for thisfile, to indicate an AT
END condition. (See the section called “1-O Status’ in this Chapter)

b. If the AT END phraseis specified in the statement causing the condition, control is transferred
tothe AT END imperative-statement. Any USE procedure specified for thisfileis not executed.

c. Ifthe AT END phraseis not specified, then a USE procedure must be specified, either explicitly
or implicitly, for thisfile, and that procedure is executed. When the AT END condition occurs,
execution of the input-output statement which caused the condition is unsuccessful.

11.Following the unsuccessful execution of any READ statement, the contents of the associated record
area and the position of the current record pointer are undefined.

12.When the AT END condition has been recognised, a Format 1 READ statement for that file must
not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful OPEN statement for
that file.

b. A successful START statement for that file.
c. A successful Format 2 READ statement for that file.

13.For afilefor which dynamic access modeis specified, aFormat 1 READ statement with the NEXT
phrase specified causes the next logical record to be retrieved from the file as described in general
rule 2.

14.1f the RELATIVE KEY phraseis specified, the execution of a Format 1 READ statement updates
the contents of the RELATIVE KEY dataitem such that it contains the relative record number of
the record made available.

15.The execution of a Format 2 READ statement sets the current record pointer to, and makes
available, the record whose relative record number is contained in the data item named in the
RELATIVE KEY phrasefor thefile. If the file does not contain such arecord, the INVALID KEY
condition exists and execution of the READ statement is unsuccessful. (Seethe section called “ The
INVALID KEY Condition” in this Chapter).

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces arecord existing in adisk file.

96

Chapter 6. RELATIVE INPUT AND OUTPUT

General Format

REVRI TE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1.

2.

3.

Record-name and identifier must not refer to the same storage area.

Record-name is the name of alogical record in the File Section of the Data Division.

General Rules

1.

Thefile associated with record-name must be open in the I-O mode at the time of execution of this
statement. (See THE OPEN STATEMENT in this Chapter)

. For filesin the sequential access mode, the last input-output statement executed for the associated

file prior to the execution of the REWRITE statement must have been a successfully executed
READ statement. The Operating System logically replaces the record that was accessed by the
READ statement.

. The number of character positions in the record referenced by record-name must be equal to the

number of character positions in the record being replaced.

. The logical record released by a successful execution of the REWRITE statement is no longer

available in the record area.

. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of:

MOVE identifier TO record-nane

followed by the execution of the same REWRITE statement without the FROM phrase. The
contents of the record area prior to the execution of the implicit MOV E statement have no effect
on the execution of the REWRITE statement.

. The current record pointer is not affected by the execution of a REWRITE statement.

. The execution of the REWRITE statement causesthe value of the FILE STATUS dataitem, if any,

associated with the file to be updated. (See the section called “1-O Status’ in this Chapter).

. For a file accessed in either random or dynamic access mode, the Operating System logically

replaces the record specified by the contents of the RELATIVE KEY dataitem associated with the
file. If thefile does not contain the record specified by thekey, theINVALID KEY condition exists.
(See the section called “The INVALID KEY Condition” in this Chapter). The updating operation
does not take place and the data in the record area is unaffected.

THE START STATEMENT

Function

The START statement provides a basis for logical positioning within a relative file, for subsequent
sequential retrieval of records.

General Format

START fileename[KEY ISEQUAL TO |IS=|ISGREATER THAN |IS>|ISNOT LESS THAN
| ISNOT < data-name

97

Chapter 6. RELATIVE INPUT AND OUTPUT

[;INVALID KEY imperative-statement]]

NOTE: Therequired relational characters'>', and '<' and '=" are not underlined to avoid confusion with
other symbols such as'# (greater than or equal to).

Syntax Rules

1. File-name must be the name of afile with sequential or dynamic access.
2. Data-name may be qualified.

3. TheINVALID KEY phrase must be specified if no applicable USE procedure is specified for file-
name.

4. Data-name, if specified, must be the data item specified in the RELATIVE KEY phrase of the
associated file control entry.

General Rules

1. File-name must be open in the INPUT or 1-O mode at the time that the START statement is
executed. (See THE OPEN STATEMENT in this Chapter).

2. If the KEY phrase is not specified the relational operator 'I1S EQUAL TO' isimplied.

3. The type of comparison specified by the relational operator in the KEY phrase occurs between
a key associated with arecord in the file referenced by file-name and a data item as specified in
genera Ruleb5.

a. The current record pointer is positioned to the first logical record currently existing in the file
whose key satisfies the comparison.

b. If the comparison is not sattified by any record in thefile, an INVALID KEY condition exists,
the execution of the START statement is unsuccessful, and the position of the current record
pointer is undefined. (See the section called “The INVALID KEY Condition” in this Chapter).

4. The execution of the START statement causes the value of the FILE STATUS data item, if any,
associated with file-name to be updated. (See the section called “1-O Status’ in this Chapter).

5. The comparison described in general rule 3 uses the data item referenced by the RELATIVE KEY
clause associated with file-name.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in addition to the
standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARD{ EXCEPTION | ERROR } PROCEDURE ON { file-name-1 | INPUT
| OUTPUT |1-O}

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the declaratives
section and must be followed by a period followed by a space. The remainder of the section must
consist of zero, one or more procedura paragraphs that define the procedures to be used.

98

Chapter 6. RELATIVE INPUT AND OUTPUT

2.

The USE statement itself isnever executed; it merely definesthe conditionscalling for the execution
of the USE procedures.

General Rules

1

If the INVALID KEY or AT END phrases have not been specified in the input-output statement,
the designated procedures are executed by the input-output system after completing the standard
input-output error routine, or upon recognition of the INVALID KEY or AT END conditions.

. After execution of a USE procedure, control is returned to the invoking routine.

. Within a USE procedure, there must not be any reference to any nondeclarative procedures.

Conversely, in the nondeclarative portion there must be no reference to procedure-names in the
declarative portion, except that PERFORM statements may refer to a USE statement or to the
procedures associated with such a USE statement.

. Within a USE procedure, there must not be the execution of any statement that would cause the

execution of a USE procedure that had previously been invoked and had not yet returned control
to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases alogical record for an output or input-output file.

General Format

VARl TE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1

2.

3.

Record-name and identifier must not reference the same storage area.
The record-name is the name of alogical record in the File Section of the Data Division.

The INVALID KEY phrase must be specified if an applicable USE procedure is not specified for
the associated file.

General Rules

1

The associated file must be open in the OUTPUT or I-O mode at the time of the execution of this
statement. (See THE OPEN STATEMENT Chapter).

. Thelogical record released by the execution of the WRITE statement is no longer available in the

record area unless the execution of the WRITE statement is unsuccessful dueto an INVALID KEY
condition.

. The results of the execution of. the WRITE statement with the FROM phrase is equivalent to the

execution of

a The statement:

MOVE identifier TO record-nane
according to the rules specified for the MOV E statement, followed by:

b. The same WRITE statement without the FROM phrase.

99

Chapter 6. RELATIVE INPUT AND OUTPUT

The contents of the record area prior to the execution of the implicit MOVE statement have no
effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area referenced by
identifier is available, even though the information in the area referenced by record-name may
not be. (See genera rule 2 above).

. The current record pointer is unaffected by the execution of a WRITE statement.

. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any,

associated with the file to be updated. (See the section called “1-O Status’ in this Chapter).

. The maximum record size for a file ts established at the time the file is created and must not

subsequently be changed.

. The number of character positions on a mass storage device required to store alogical record in a

file may or may not be equal to the number of character positions defined by the logical description
of that record in the program.

. The execution of the WRITE statement releases alogical record to the operating system.

. When afileisopened in the output mode, records may be placed into thefile by one of thefollowing:

a. If the access modeis sequential, the WRITE statement will cause arecord to be released to the
Operating System. The first record will have a relative record number of one and subsequent
records released will have relative record numbers of 2, 3, 4. If the RELATIVE KEY dataitem
has been specified in the file control entry for the associated file, the relative record number of
the record just released will be placed into the RELATIVE KEY data item by the Operating
System during execution of the WRITE statement.

b. If the access mode is random or dynamic, prior to the execution of the WRITE statement the
value of the RELATIVE KEY data item must be initialised in the program with the relative
record number of be associated with the record in the record area. That record is then released
to the Operating System by execution of the WRITE statement.

10.When afile is opened in the I-O mode and the access mode is random or dynamic, records are to

be inserted in the associated file. The value of the RELATIVE KEY data item must be initialised
by the program with the relative record number to be associated with the record in the record area.
Execution of a WRITE statement then causes the contents of the record area to be released to the
Operating System.

11.The INVALID KEY condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE KEY data item specifies a
record which aready existsin thefile, or

b. When an attempt is made to write beyond the externally defined boundaries of the file.

12When the INVALID KEY condition is recognised, the execution of the WRITE statement is

unsuccessful, the contents of the record area are unaffected, and the FILE STATUS data item,
if any, of the, associated file is set to a value indicating the cause of the condition. Execution
of the program proceeds according to the rules stated in the section called “The INVALID KEY
Condition” in this Chapter (see also the section called “1-O Status’ in this Chapter).

100

Chapter 7. INDEXED INPUT AND
OUTPUT

INTRODUCTION TO THE INDEXED I-O
MODULE

The Indexed 1-O module provides a capability to access records of a mass storage file in either a
random or sequential manner. Each record in an indexed file is uniquely identified by the value of
one key within that record.

LANGUAGE CONCEPTS

Organization

A file whose organization is indexed is a mass storage file in which data records may be accessed by
the value of akey. A record description includes a key data item, which is associated with an index.
The index provides a logical path to the data records according to the contents of a data item within
each record which isthe record key.

The dataitem named in the RECORD KEY clause of thefile control entry for afileisthe record key
for that file. For purposes of inserting, updating and deleting recordsin afile, each record isidentified
solely by the value of its record key. This value must, therefore, be unique and must not be changed
when updating the record. The key length must not exceed 32 bytes. See the CIS COBOL Operating
Guide for the maximum recordsin afile.

Access Modes

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the record key values.

In the random access mode, the sequence in which records are accessed is controlled by the
programmer. The desired record is accessed by placing the value of its record key in the record key
dataitem.

In the dynamic access mode, the programmer may change at will from sequential access to random
access using appropriate forms of input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this document to facilitate specification of
the next record to be accessed within a given file. The concept of the current record pointer has no
meaning for afile opened only in the output mode. The setting of the current record pointer is affected
only by the OPEN, START and READ statements.

[-O Status

If the FILE STATUS clauseis specified in afile control entry, avalueis placed into the specified two-
character dataitem during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE
or START statement and before any applicable USE procedureis executed, to indicate to the COBOL
program the status or that input-output operation.

Status Key 1

101

Chapter 7. INDEXED INPUT AND OUTPUT

The leftmost character position of the FILE STATUS dataitem is known as status key 1 and is set to
indicate one of the following conditions upon completion of the input-output operation.

'0" - Successful Completion
'1'- AtEnd

'2' - Invalid Key

'3' - Permanent Error

'9' - Operating System Error Message

The meaning of the above indications are as follows:

0

1

Successful Completion. The input-output statement was successfully executed.

At End. The Format 1 READ statement was unsuccessfully executed as a result of an attempt to
read arecord when no next logical record existsin thefile.

Invalid Key. The input-output statement was unsuccessfully executed as a result of one of the
following:

¢ Seguence Error

e Duplicate Key

* No Record Found

e Boundary Violation

Permanent Error. Theinput-output statement was unsuccessfully executed asthe result of aninput-
output error, such as data check, parity error or transmission error.

Operating System Error Message. The input-output statement was unsuccessfully executed as a
result of a condition that is specified by the Operating System Error Message. This valueis used
only to indicate a condition not indicated by other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

Therightmost character position of the FILE STATUSdataitemisknown asstatuskey 2 andisused to
further describe theresults of theinput-output operation. This character will contain avalue asfollows:

If no further information is available concerning the input-output operation, then status key 2 contains
avaueof '0'.

When statuskey 1 containsavalue of '2' indicatingan INVALID KEY condition, statuskey 2 contains
values to designate the cause of that condition as follows:

1-

Indicates a sequence error for a sequentially accessed indexed file. The ascending sequence
requirements of successive record key values have been violated (see The WRITE Statement
later in this Chapter), or the record key value has been changed by the COBOL program
between the successful execution of aREAD statement and the execution of thenext REWRITE
statement for that file.

Indicates a duplicate key value. An attempt has been made to write arecord that would create
aduplicate key in an indexed file.

Indicates no record found. An attempt has been made to access a record, identified by a key,
and that record does not exist in thefile,

Indicates a boundary violation. An attempt has been made to write beyond the externally-
defined boundaries of a indexed file. This is normally treated as a fatal error by Operating
Systems.

When statuskey 1 containsavalue of '9' the value of statuskey 2 isthe operating system error message
number (for those operating systemswhich designate errors numerically). The CISCOBOL Operating
Guide specific to your operating system contains details of the status-key-2 representation.

102

Chapter 7. INDEXED INPUT AND OUTPUT

Note that it is not possible to extract this number directly.
Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and status key 2 are shown in the
following table. An X" at an intersection indicates a valid permissible combination.

Status Key 1 Status Key 2
No Further | Sequence |Duplicate |No Record |Boundary
Information Error (1) |Key (2) Found (3) |Violation
© 4

Successful X X

Completion (0)

At End (1) X

Invalid Key (2) X X X X

Permanent Error (3) | X

Implementor Operating System Error Message Number

Defined (9)

The INVALID KEY Condition
The INVALID KEY condition can occur as aresult of the execution of a START, READ, WRITE,
REWRITE or DELETE statement. For details of the causes of the condition see THE START
STATEMENT, THE READ STATEMENT, THE WRITE STATEMENT, and THE DELETE
STATEMENT later in this Chapter.

When the INVALID KEY condition is recognised, the Operating System takes these actions in the
following order:

1. Avalueisplacedintothe FILE STATUSdataitem, if specified for thisfile, toindicatean INVALID
KEY condition. (See the section called “I-O Status”).

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is
transferredtotheINVALID KEY imperative statement. Any USE procedure specified for thisfileis
not executed. When the INVALID KEY condition occurs, execution of the input-output statement
which recognised the condition is unsuccessful and the fileis not affected.

The AT END Condition

The AT END condition can occur as aresult of the execution of a READ statement. For details of the
causes of the condition, see THE READ STATEMENT later in this Chapter.

ENVIRONMENT DIVISION IN THE INDEXED I-
O MODULE

INPUT-OUTPUT SECTION
The File Control Paragraph

Function

The FILE-CONTROL paragraph names each file and alows specification of other file-related
information. (See also appendix F in the CIS COBOL Operating Guide).

103

Chapter 7. INDEXED INPUT AND OUTPUT

General Format

FI LE- CONTROL {file-control-entry} ...

The File Control Entry

Function

Thefile control entry names afile and may specify other file-related information.

General Format

SELECT file-name

ASSIGN TO { externa-file-name-literal | file-identifier } [, { external-file-name-literal | file-
identifier }]

; ORGANIZATION ISINDEXED

[; ACCESSMODE IS{ SEQUENTIAL | RANDOM | DYNAMIC}]

; RECORD KEY IS data-name-1

[; FILE STATUS IS data-name-3]

Syntax Rules

1

The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

. Each file described 1:1 the Data Division must be named once and only once as file-name in the

FILE-CONTROL paragraph. Eachfile specifiedinthefile control entry must haveafiledescription
entry in the Data Division.

. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clauseis

implied.

. Data-name-3 must be defined in the Data Division as a two-character data item of the category

alphanumeric and must not be defined in the File Section.

. The data items referenced by data-name-1 must each be defined as a data item of the category

alphanumeric within arecord description entry associated with that file-name.

General Rules

1.

The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. See Appendix F in the CIS COBOL Operating Guide. The first assignment takes effect.
Subsequent assignments within any one ASSIGN clause are for documentation purposes only.

. When the access modeis sequential, recordsin the file are accessed in the sequence dictated by the

file organization. For indexed files this sequence is the order of ascending record key values.

. When the FILE STATUS clause is specified, a value will be moved by the operating system into

the data item specified by data-name-3 after the execution of every statement that references that
file either explicitly or implicitly. Thisvalueindicates the status of execution of the statement. (See
the section called “1-O Status” in this Chapter).

. If the access mode is random, the value of the record key data item indicates the record to be

accessed.

. When the access mode is dynamic, records in the file may be accessed sequentially and/or

randomly. (See general rules 4 and 6).

104

Chapter 7. INDEXED INPUT AND OUTPUT

8. The data description of data-name-1 as well as relative locations within arecord must be the same
as that used when the file was created.

The I-O Control Paragraph

Function

The |-O-CONTROL paragraph specifiesthe points at which rerunisto be established and the memory
areawhich isto be shared by different files.

General Format
| -O CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY { integer-1

RECORDS OF file-name-2 | integer-2 CLOCK-UNITS | condition-name}]...
[; SAME AREA FOR file-name-3 [, file-name-4]...]... .

Syntax Rules

1. Thel-O-CONTROL paragraph is optional. The whole clause is for documentation purposes only
when present.

2. File-name-1 must be a sequentially organized file.

3. When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS clause is specified,
implementor-name must be given in the RERUN clause.

4. When multiple integer-1 RECORDS clauses are specified, no two of them may specify the same
file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be specified.

6. More than one SAME clause (SAME AREA) may be included in a program but a file-name must
not appear in more than one SAME AREA clause.

7. Thefilesreferenced in the SAME AREA clause need not all have the same organization or access.
General Rules
1. The RERUN clauseistreated as for documentation purposes only.

2. The SAME AREA clause istreated as for documentation purposes only.

DATA DIVISION IN THE INDEXED I-O
MODULE

FILE SECTION

In a COBOL program the file description entry (FD) represents the highest level of organisation in
the File Section. The File Section header is followed by a file description entry consisting of alevel
indicator (FD), a file-name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records, the value of implementor-
defined label items, and the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTION STRUCTURE

105

Chapter 7. INDEXED INPUT AND OUTPUT

A record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-
name if required, followed by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary considerably, depending
upon whether or not it is followed by subordinate entries. The structure of a record description is
defined in CONCEPTS OF LEVELSin Chapter 2 while the elements allowed in arecord description
are shown in the section called “THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON"
in Chapter 3.

THE FILE DESCRIPTION - COMPLETE ENTRY
SKELETON

Function

Thefile description furnishes information concerning the physical structure, identification, and record
names pertaining to agiven file.

General Format

FDfile-name[; BLOCK CONTAINS integer-2 { RECORDS | CHARACTERS}]

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

[; LABEL { RECORD IS| RECORDS ARE } { STANDARD |OMITTED } }

; VALUE OF data-name-1 IS litera-1 [, data-name-2 IS literal-2]... [; DATA { RECORD IS |
RECORDS ARE } data-name-3 [, data-name-4]... .]

Syntax Rules

1. Thelevel indicator FD identifiesthe beginning of afile description and must precede the file-name.

2. The clauses which follow the name of the file are optional in many cases, and their order of
appearance isimmaterial. All clauses are optional when the ANSI switch is unset.

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAI NS integer-2 { RECORDS | CHARACTERS}

General Rule

The clauseis required for documentation purposes only.

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data records with their
associated file.

106

Chapter 7. INDEXED INPUT AND OUTPUT

General Format
DATA { RECORD IS| RECORDS ARE } data-name-1 [, data-name-2]

Syntax Rules

Data-name-1 and data-name-2 are the names of data records and must have 01 level-number record
descriptions, with the same names, associated with them.

General Rules
1. The presence of more than one data-name indicates that the file contains more than one type of

datarecord. These records may be of differing sizes, different formats, etc. The order in which they
arelisted is not significant.

2. Conceptualy, all data records within afile share the same area. Thisisin no way atered by the
presence of more than one type of data record within the file.

THE LABEL RECORDS CLAUSE

Function
The LABEL RECORDS clause specifies whether labels are present.
General Format

LABEL { RECORD IS| RECORDS ARE } { STANDARD | OMITTED }

General Rule

This clause is used for documentation purposes only.

THE RECORD CONTAINS CLAUSE

Function
The RECORD CONTAINS clause specifies the size of data records.
General Format
RECORD CONTAINS Jinteger-1 TQ] integer-2 CHARACTERS
General Rule
The size of each datarecord is completely defined within the record description entry, therefore this

clauseis never required. The RECORD CONTAINS clause is specified for documentation purposes
only.

THE VALUE OF CLAUSE

Function
The VALUE OF clause specialises the description of anitemin thelabel records associated with afile.

General Format

VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]...

107

Chapter 7. INDEXED INPUT AND OUTPUT

General Rules

1. Thisclauseis used for documentation purposes only.

2. A figurative constant may be substituted in the format above wherever aliteral is specified.

PROCEDURE DIVISION IN THE INDEXED I-O
MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files. The LOCK phrase is for documentation
purposes only.

General Format

CLOSE file-name-1 [WITH LOCK] [, file-name-2 [WITH LOCK]]...

Syntax Rule

Thefilesreferenced in the CLOSE statement need not all have the same organization or access.

General Rules

1. A CLOSE statement may only be executed for afilein an open mode.

2. The action taken if afileisin the open mode when a STOP RUN statement is executed is to close
the file. The action taken for afile that has been opened in a called program and not closed in that
program prior to the execution of a CANCEL statement for that program is to close thefile.

3. If a CLOSE statement has been executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an intervening OPEN statement for that
fileis executed.

4. Following the successful execution of a CLOSE statement, the record area associated with file-

name is no longer available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

THE DELETE STATEMENT

Function

The DELETE statement logically removes arecord from afile.
General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]
Syntax Rules

1. TheINVALID KEY phase must not be specified for a DELETE statement which references afile
which isin sequential access mode.

108

Chapter 7. INDEXED INPUT AND OUTPUT

General

1

. The INVALID KEY phrase must be specified for a DELETE statement which references a file

whichisnot in sequential access mode and for which an applicable USE procedureis not specified.

Rules

The associated file must be open in I-O mode at the time of the execution of this statement. (See
THE OPEN STATEMENT later in this Chapter).

. For files in the sequential access mode, the last input-output statement executed for file-name

prior to the execution of the DELETE statement must have been a successfully executed READ
statement. The record that was accessed by that READ statement islogically removed from thefile.

. For afilein random or dynamic access mode, the record identified by the contents of the record key

data item associated with file-name is logically removed from the file. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See the section called “The
INVALID KEY Condition” in this Chapter).

. After the successful execution of a DELETE statement, the identified record has been logically

removed from the file and can no longer be accessed.

. The execution of a DELETE statement does not affect the contents of the record area associated

with file-name.

. The current record pointer is not affected by the execution of a DELETE statement.

. Theexecution of the DELETE statement causesthevalue of the specified FILE STATUS dataitem,

if any, associated with file-nameto be updated. (Seethe section called “1-O Status” in this Chapter).

THE OPEN STATEMENT

Function

Th

e OPEN statement initiates the processing of files. It also performs checking and/or writing of labels

and other input-output operations.

General Format

OPEN { INPUT file-nane-1 [, file-nanme-2].. | OUTPUT file-nane-3 [, file-
nane- 4]...|1-Ofil e-nane-5[,fil e- nanme-6]...}...

Syntax Rules

1.

Thefilesreferenced in the OPEN statement need not all have the same organization or access.

General Rules

1.

The successful execution of the OPEN statement determines the availability of the file and results
in thefile being in an open mode.

. The successful execution of the OPEN statement makes the associated record area available to the

program.

. Prior to the successful execution of an OPEN statement for a given file, no statement can be

executed that references that file, either explicitly or implicitly.

. An OPEN statement must be successfully executed prior to the execution of any of the permissible

input-output statements. In Table 7-1, Permissible Statements, ‘X" at an intersection indicates that

109

Chapter 7. INDEXED INPUT AND OUTPUT

the specified statement, used in the access mode given for that row, may be used with the indexed
file organisation and the open mode given at the top of the column.

Table 7.1. Permissible Combinations of Statements and Open Modes for
Indexed 1/0

File Access| Statement Open Mode
Mode

Input Output Input-Output
Sequential READ X X
WRITE X
REWRITE
START X
DELETE
Random READ X
WRITE X
REWRITE
START
DELETE
Dynamic READ X
WRITE X
REWRITE
START X
DELETE

X| X | X[X| X| X

X | X | X| X| X| X

. A file may be opened with the INPUT, OUTPUT and I-O phrases in the same program. Following

theinitial execution of an OPEN statement for afile, each subsequent OPEN statement execution
for that same file must be preceded by the execution of a CLOSE statement for that file.

. Execution of the OPEN statement does not obtain or release the first data record.

. The assigned name in the select statement for afile is processed as follows:

a. Whenthe INPUT phraseis specified , the execution of the OPEN statement causes the assigned
name to be checked in accordance with the operating system conventions for opening files for
input.

b. Whenthe OUTPUT phraseisspecified, the execution of the OPEN statement causesthe assigned
name to be written in accordance with the opera ting system conventions for opening files for
output.

. The file description entry for file-name-1 , file-name-2, file-name-5, or file-name-6 must be

equivalent to that used when thisfile was created.

. For files being opened with the INPUT or |-O phrase, the OPEN statement sets the current record

pointer to thefirst record currently existing within thefile. If no records exist in thefile, the current
record pointer is set such that the next executed Format 1 READ statement for the file will result
inan AT END condition. If the file does not exist, INPUT will cause an error status.

10.The I-O phrase permits the opening of afile for both input and out put operations. If the file does

not exist, it will be created.

11.Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is

created. At that time the associated file contains no data records. If afile of the same name exists
it will be deleted. If write protected, an error status occurs.

110

Chapter 7. INDEXED INPUT AND OUTPUT

THE READ STATEMENT

Function

For sequential access, the READ statement makes available the next logical record from afile. For
random access, the READ statement makes available a specified record from a mass storage file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1.

The INTO phrase must not be used when the input file contains logical records of various sizes as
indicated by their record descriptions. The storage area associated with identifier and the storage
areawhich isthe record area associated with file-name must not be the same storage area.

. Format 1 must be used (without the NEXT phrase) for all filesin sequential access mode.

. Format 2 isused for filesin random access mode or for filesin dynamic access mode when records

areto be retrieved randomly.

. The NEXT phrase must be specified for files in dynamic access mode, when records are to be

retrieved sequentially.

General Rules

1

The associated file must be open in the INPUT or I-O mode at the time this statement is executed.
(See THE OPEN STATEMENT in this Chapter).

. Therecord to be made available by a Format 1 READ statement is determined as follows:

a. Therecord, pointed to by the current record pointer, is made available provided that the current
record pointer was positioned by the START or OPEN statement and therecord isstill accessible
through the path indicated by the current record pointer; if the record is no longer accessible,
which may have been caused by the deletion of the record, the current record pointer is updated
to point to the next existing record in key sequence and that record is then made available.

b. If the current record pointer was positioned by the execution of a previous READ statement, the
current record pointer is updated to point to the next existing record in the file in key sequence
and then that record is made available.

. The execution of the READ statement causes the value of the FILE STATUS data item, if any,

associated with file-name to be updated. (See the section called “1-O Status” in this Chapter).

. Regardless of the method used to overlap access time with processing time, the concept of the

READ statement is unchanged in that a record is available to the object program prior to the
execution of any statement following the READ statement.

. When thelogical records of afile are described with more than one record description, theserecords

automatically share the same storage area; thisis equivalent to an implicit redefinition of the area.
The contents of any dataitems which lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

111

Chapter 7. INDEXED INPUT AND OUTPUT

6. If the INTO phrase is specified, the record being read is moved from the record area to the area
specified by identifier according to therul es specified for the MOV E statement. Theimplied MOVE
does not occur if the execution of the READ statement was unsuccessful. Any subscripting or
indexing associated with identifier is evaluated after the record has been read and immediately
before it is moved to the data item.

7. When the INTO phraseis used, the record being read is available in both the input record area and
the data area associated with identifier.

8. If, at the time of execution of a Format 1 READ statement, the position of current record pointer
for that file is undefined, the execution of that READ statement is unsuccessful.

9. If, at the time of the execution of a Format 1 READ statement, no next logical record exists in
the file, the AT END condition occurs, and the execution of the READ statement is considered
unsuccessful. (See the section called “1-O Status’ in this Chapter). -

10.When the AT END condition is recognised the following actions are taken in the specified order:

a. A vaueisplaced into the FILE STATUS dataitem, if specified for thisfile, to indicate an AT
END condition. (See the section called “I-O Status’ in this Chapter).

b. If the AT END phraseis specified in the statement causing the condition, control is transferred
tothe AT END imperative statement. Any USE procedure specified for thisfileisnot executed.

c. If the AT END phraseis not specified, then a USE procedure must be specified, either explicitly
or implicitly, for thisfile, and that procedure is executed,

When the AT END condition occurs, execution of the input-output statement which caused the
condition is unsuccessful.

11.Following the unsuccessful execution of any READ statement, the contents of the associated record
area and the position of the current record pointer are undefined.

12.When the AT END condition has been recognised, a Format 1 READ statement for that file must
not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful OPEN statement for
that file.

b. A successful START statement for that file.
c. A successful Format 2 READ statement for that file.

13.For afile which dynamic access mode is specified, a Format 1 READ statement with the NEXT
phrase specified causes the next logical record to be retrieved from that file as described in general
rule 2 above.

14.Execution of a Format 2 READ statement causes the value of the key that to be compared with
the value contained in the corresponding data item of the stored records in the file, until the first
record has an equa value is found. The current record pointer is positioned to this record which
is then made available. If no record can be so identified, the INVALID KEY condition exists and

execution of the READ statement is unsuccessful. (See the section called “The INVALID KEY
Condition” in this Chapter).

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces arecord existing in a mass storage file.

112

Chapter 7. INDEXED INPUT AND OUTPUT

General Format

REVRI TE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1

2.

3.

Record-name and identifier must not refer to the same storage area.
Record-name is the name of alogical record in the File Section of the Data Division.

The INVALID KEY phrase must be specified in the REWRITE statement for files for which an
appropriate USE procedure is not specified.

General Rules

1

Thefile associated with record-name must be open in the I-O mode at the time of execution of this
statement. (See THE OPEN STATEMENT in this Chapter)

. For filesin the sequential access mode, the last input-output statement executed for the associated

file prior to the execution of the REWRITE statement must have been a successfully executed
READ statement. The Operating System logically replaces the record that was accessed by the
READ statement.

. The number of character positions in the record referenced by record-name must be equal to the

number of character positionsin the record being replaced.

. The logical record released by a successful execution of the REWRITE statement is no longer

available in the record area

. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of:

MOVE identifier TO record-nane

followed by the execution of the same REWRITE statement without the FROM phrase. The
contents of the record area prior to the execution of the implicit MOV E statement have no effect
on the execution of the REWRITE statement.

. The current record pointer is not affected by the execution of a REWRITE statement.

. The execution of the REWRITE statement causesthe value of the FILE STATUS dataitem, if any,

associated with the file to be updated. (See the section called “1-O Status”).

. For afileinthe sequential access mode, the record to be replaced is specified by the value contained

in the record key. When the REWRITE statement is executed the value contained in the record
key data item of the record to be replaced must be equal to the value of the record key of the last
record read from thisfile.

. For afile in the random or dynamic access mode, the record to be replaced is specified by the

record key dataitem.

10.The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the record key dataitem of the record
to be replaced is not equal to the value of the record key of the last record read from thisfile or,

b. The value contained in the record key data item does not equal that of any record stored in the
file, or

113

Chapter 7. INDEXED INPUT AND OUTPUT

c. The updating operation does not take place and the data in the record area is unaffected. (See

the section called “The INVALID KEY Condition” in this Chapter).

THE START STATEMENT

Function

The START statement provides a basis for logical positioning within an indexed file, for subsequent
sequential retrieval of records.

General Format

START file-name [KEY ISEQUAL TO | IS=|ISGREATER THAN | IS> | ISNOT LESS THAN
| ISNOT < data-name
[;INVALID KEY imperative-statement] |

NOTE: The required relational characters '>', '<' and '=' are not underlined to avoid confusion with
other symbols such as'# (greater than or equal to).

Syntax Rules

1

2.

File-name must be the name of an indexed file.

File-name must be the name of afile with sequential or dynamic access.

3. TheINVALID KEY phrase must be specified if no applicable USE procedure is specified for file-

4,

name.

If file-name is the name of an indexed file, and if a KEY phrase is specified, data-name may
reference adataitem specified asthe record key associated with file-name, or it may reference any
data item of category a phanumeric subordinate to the data-name of a data item specified as the
record key associated with file-name whose | eftmost character position corresponds to the leftmost
character position of that record key data item.

General Rules

1

2.

3.

File-name must be open in the INPUT or I-O mode at the time that the START statement is
executed, (See THE OPEN STATEMENT in this Chapter).

If the KEY phraseis not specified, '|SEQUAL TO'isimplied.

The type of comparison specified by the relational operator in the KEY phrase occurs between
a key associated with a record in the file referenced by file-name and a data item as specified
in genera rule 5. If file-name references an indexed file and the operands are of unequal size,
comparison proceeds as though the longer one were truncated on the right such that its length is
equal to that of the shorter. All other nonnumeric comparison rules apply except that the presence
of the PROGRAM COLLATING SEQUENCE clause will have no effect on the comparison. (See
Comparison of Nonnumeric Operands).

a. The current record pointer is positioned to the first logical record currently existing in the file
whose key satisfies the comparison.

b. If the comparison isnot satisfied by any recordinthefll.e,an INVALID KEY condition exists,
the execution of the START statement is unsuccessful, and the position of the current record
pointer is undefined. (See the section called “The INVALID KEY Condition” in this Chapter)

. The execution of the START statement causes the value of the FILE STATUS data item, if any,

associated with file-name to be updated. (See the section called “1-O Status’).

114

Chapter 7. INDEXED INPUT AND OUTPUT

5. If the KEY phrase is specified, the comparison described in general rule 3 uses the data item
referenced by data-name.

6. If the KEY phrase is not specified, the comparison described in general rule 3 uses tile dataitem
referenced in the RECORD KEY clause associated with file-name.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in addition to the
standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARD{ EXCEPTION | ERROR } PROCEDURE ON { file-name-1 | INPUT
| OUTPUT |1-O}

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the declaratives
section and must be followed by a period followed by a space. The remainder of the section must
consist of zero, one or more procedural paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; i t merely defines the conditions calling for the
execution of the USE procedures.

General Rules

1. If the INVALID KEY phrase on the AT END phrase have not been specified in the input-output
statements the designated procedures are executed by the input-output system after completing the
standard input-output routine upon recognition of the INVALID KEY or AT END condition.

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any nondeclarative procedures.
Conversely, in the nondeclarative portion there must be no reference to procedure-names that
appear in the declarative portion, except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that would cause the
execution of a USE procedure that had previously been invoked and had not yet returned control
to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases alogical record for an output or input-output file.

General Format

WRI TE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not reference the same storage area.

115

Chapter 7. INDEXED INPUT AND OUTPUT

. The record-name is the name of alogical record in the File Section of the Data Division.

. The INVALID KEY phrase must be specified if an applicable USE procedure is not specified for

the associated file.

General Rules

1.

The associated file must be open in the OUTPUT or 1-O mode at the time of the execution of this
statement. (See THE OPEN STATEMENT in this Chapter).

. Thelogical record released by the execution of the WRITE statement is no longer available in the

record area unless the execution of the WRITE statement is unsuccessful dueto an INVALID KEY
condition.

. The results of the execution of the WRITE statement with the FROM phrase is equivalent tn the

execution of:

a The statement:

MOVE identifier TO record-nane

according to the rules specified for the MOV E statement, followed by:
b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOV E statement have no
effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information in the area referenced by
identifier is available, even though the information in the area referenced by record-name may
not be. (See genera rule 2 above).

. The current record pointer is unaffected by the execution of a WRITE statement.

. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any,

associated with the file to be updated. (See the section called “1-O Status’ in this Chapter).

. The maximum record size for a file is established at the time the file is created and must not

subsequently be changed.

. The number of character positions on a mass storage device required to store alogical recordin a

file may or may not be equal to the number of character positions defined by thelogical description
of that record in the program.

. The execution of the WRITE statement releases alogical record to the operating system.

. Execution of the WRITE statement causes the contents of the record area to be released. The

Operating System utilizes the content of the record key in such away that subsequent access of the
record may be made based upon the specified record key.

10.The value of the record key must be unique within the recordsin thefile.

11.The data item specified as the record key must be set by the program to the desired value prior to

the execution of the WRITE statement.

12.If sequential accessmodeis specified for thefile, records must be rel eased to the Operating System

is ascending order of record key values.

13.If random or dynamic access mode is specified, records may be released to the Operating System

in any program-specified order.

116

Chapter 7. INDEXED INPUT AND OUTPUT

14.The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for afile opened in the output mode, and the value of
the record key is not greater than the value of the record key of the previous record, or

b. When the file is opened in the output or I-O mode, and the value of the record key is equal to
the value of arecord key of arecord already existing in thefile, or

¢. When an attempt is made to write beyond the externally defined boundaries of thefile.

15When the INVALID KEY condition is recognised the execution of the WRITE statement is
unsuccessful, the contents of the record area are unaffected and the FILE STATUS data item, if
any, associated with file-name of the associated file is set to a value indicating the cause of the
condition. Execution of the program proceeds according to the rules stated under the section called
“The INVALID KEY Condition” (See also the section called “[-O Status’ in this Chapter).

117

118

Chapter 8. SEGMENTATION

INTRODUCTION TO THE SEGMENTATION
MODULE

The Segmentation module provides a capability to specify object program overlay requirements.

Segmentation provides a facility for specifying permanent and independent segments. All sections
with the same segment-number must be contiguous in the source program. All segments specified as
permanent segments must be continuous in the source program.

GENERAL DESCRIPTION OF
SEGMENTATION

COBOL segmentation is a facility that provides a means by which the user may communicate with
the compiler to specify object program overlay requirements.

COBOL segmentation deals only with segmentation of procedures. As such, only the Procedure
Division is considered in determining segmentation regquirements for an object program.

ORGANIZATION

Program Segments

Although it is not mandatory, the Procedure Division for a source program is usually written as a
consecutive group of sections, each of which is composed of aseries of closely related operations that
are designed to collectively perform a particular function. However, when segmentation is used, the
entire Procedure Division must bein sections. In addition, each section must be classified asbelonging
either to the fixed portion or to one of the independent segments of the object program.

Fixed Portion

The fixed portion is defined as that part of the object program which is logically treated as if it were
always in memory. This portion of the program is composed of fixed permanent segments.

A fixed permanent segment is a segment in the fixed portion which cannot be overlaid by any other
part of the program.

Independent Segments

An independent segment is defined as part of the object program which can overlay, and can be
overlaid by another independent segment. An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to that segment for the first time during the
execution of a program. On subsequent transfers of control to the segment, an independent segment
isasoinitsinitial state when:

1. Control is transferred to that segment as a result of the implicit transfer of control between
consecutive statements from a segment with a different segment-number.

2. Control istransferred explicitly to that segment from a segment with a different segment-number
(with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment isin itslast-used state when:

119

Chapter 8. SEGMENTATION

1. Control istransferred implicitly to that segment from a segment with a different segment-number
(except as noted in paragraph 1),

2. Control is transferred explicitly to that segment as the result of the execution of an EXIT
PROGRAM statement.

SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system of segment-numbers and the
following criteria:

1. Logic Requirements - Sections which must be available for reference at all times, or which
are referred to very frequently, are normally classified as belonging to one of the permanent
segments; sections which are used less frequently are normally classified as belonging to one of
the independent segments, depending on logic requirements.

2. Frequency of Use - Generally, the more frequently a section is referred to, the lower its segment-
number, the less frequently it is referred to, the higher its segment-number,

3. Relationship to Other Sections - Sections which frequently communicate with one another should
be given the same segment-numbers

SEGMENTATION CONTROL

Thelogical sequence of the program is the same asthe physical sequence except for specific transfers
of control. Control may be transferred within a source program to any paragraph in a section; that is,
it is not mandatory to transfer control to the beginning of a section.

STRUCTURE OF PROGRAM SEGMENTS
SEGMENT-NUMBERS

Section classification is accomplished by means of a system of segment-numbers. The segment-
number is included in the section header.

GENERAL FORMAT

section-name SECTION [segment-number]

SYNTAX RULES

1. The segment-number must be an integer ranging in value from 0 through 99.
2. If the segment-number is omitted from the section header, the segment-number is assumed to be 0.

3. Sectionsin the declaratives must contain segment-numbers less than 50.

GENERAL RULES

1. All sections which have the same segment-number constitute a program segment. All sections
which have the same segment-number must be together in the source program.

2. Segments with segment-number O through 49 belong to the fixed portion of the object program.
All sections with segment-number O through 49 must be together in the source program.

3. Segments with segment-number 50 through 99 are independent segments.

120

Chapter 8. SEGMENTATION

RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the ALTER and PERFORM
Statement.

THE ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different segment-number.

THE PERFORM STATEMENT

A PERFORM statement that appearsin asection that isnot in an independent segment can have within
its range, in addition to any declarative sections whose execution is caused within that range, only
one of the following:

* Sections and/or paragraphs wholly contained in one or more non-independent segments.
* Sections and/or paragraph wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within itsrange, in addition
to any declarative sections whose execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent segment as that PERFORM
Statement.

EXTRA INTERMEDIATE CODE FILES

When segmentation is used, extraintermediate code files are generated by the compiler as follows:
filename.Inn - Intermediate code files one for each independent segment

filename.ISR - Inter-Segment Reference table one per segmented program

filename.Dnn - Dictionary files one for each independent segment except the last

where:

filename is the name without the extension of the principal intermediate code file

nn is a segment number that identifies the particular segment

Note

Thefilename.Dnn files are written and used solely by the compiler, and need not be retained
after compilation. The filename.Inn files and the filename.I SR file must be retained as part
of the object program and must also be copied when the program is copied.

121

122

Chapter 9. LIBRARY
INTRODUCTION TO THE LIBRARY MODULE

The Library module provides a capability for specifying text that is to be copied from a source user-
library file. Thisisusually created using any suitable source text editor.

CIS COBOL libraries consist of disk files that contain source to be made available to the compiler.
The effect of theinterpretation of the COPY statement isto insert text into the source program, where
it will be treated by the compiler as part of the source program.

THE COPY STATEMENT
FUNCTION

The COPY statement incorporates text into a CIS COBOL source program.

GENERAL FORMAT

COPY text-name | external-file-name-literal .

SYNTAX RULES

1. Text-name defines a unique external file name which conforms to the rules for COBOL user-
defined words. In atext-name lower case istranslated into upper case. External-file-name-literal is
an alphanumeric literal enclosedin quotesthat conformsto the operating system rulesfor filenames.

2. The COPY statement must be preceded by a space and terminated by the separator period.

3. A COPY statement may occur in the source program anywhere a character-string or a separator
may occur except that a COPY statement must not occur within a COPY statement.

GENERAL RULES

1. The compilation of a source program containing COPY statement is logically equivaent to
processing all COPY statements prior to the processing of the resulting source program.

2. The effect of processing a COPY statement is that the library text associated with text-name is
copied into the source program, logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character period, inclusive.

3. Thelibrary text is copied unchanged.

4. If the unit identifier is not explicitly specified, default is to the drive from which the compiler is
loaded.

5. The text produced as a result of the complete processing of a COPY statement must not contain
a COPY statement.

123

124

Chapter 10. DEBUG AND
INTERACTIVE DEBUGGING

INTRODUCTION

Standard ANSI COBOL debugging provides a means by which the user can describe the conditions
under which procedures are to be monitored during the execution of the object program.

The CIS COBOL Run-Time Debug Package is an extension to ANSI COBOL that provides break-
point facilitiesin the user's program. Programs may berun from the start until aspecified break-pointis
reached, when control ispassed back to the user. At this point, data areas may beinspected or changed.

CIS COBOL RUN-TIME DEBUG EXTENSION

The Run-Time debug is entered asan option by the user and the user programisthen tested lineby line,
paragraph by paragraph and so on as required. The commands to the package can reference procedure
statements and data areas by means of a4-digit hexadecimal code output by the compiler against each
line of the compilation listing. Powerful macros of commands can be used to give very sophisticated
debugging facilities. The precise details for using the package vary according to the host operating
system, and are therefore contained in the CIS COBOL Operating Guide for your Operating System.

STANDARD ANSI COBOL DEBUG

The decisions of what to monitor and what information to display are explicitly in the domain of the
user. The COBOL Debug facility simply provides a convenient access to pertinent information.

The features of the language that support the COBOL Debug module are:
» A compile time switch -- WITH DEBUGGING MODE.

* An object time switch.

A USE FOR DEBUGGING statement.
» A special register -- DEBUG-ITEM.
» Debugging lines.

The reserved word DEBUG-ITEM is the name for a special register generated automatically by the
compiler that supports the debugging facility. Only one DEBUG-ITEM is alocated per program. The
names of the subordinate dataitemsin DEBUG-ITEM are also reserved words.

COMPILE TIME SWITCH

The DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER paragraph in the
Environment Division. It serves as a compile-time switch over debugging statements written in the
program.

When DEBUGGING MODE is not specified in aprogram, al the debugging lines are compiled asif
they were comment lines and their syntax is not checked.

COBOL DEBUG OBJECT TIME SWITCH

An object time switch dynamically activates the debugging code inserted by the compiler. Thisswitch
cannot be addressed in the program; it is controlled outside the COBOL environment. If the switch

125

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

is 'on', the effects of any USE FOR DEBUGGING statements written in the source program are
permitted. If the switch is'off', all the effects described in the USE FOR DEBUGGING Statement, are
inhibited. Recompilation of the source program is not required to provide or take away this facility.

The object time switch has no effect on the execution of the object programif the WITH DEBUGGING
MODE clause was not specified in the source program at compile time. The switch is described in
the CISCOBOL Operating Guide.

ENVIRONMENT DIVISION IN COBOL DEBUG
The WITH DEBUGGING MODE Clause

Function

TheWITH DEBUGGING MODE clause indicates that all debugging sectionsand all debugging lines
are to be compiled. If this clause is not specified, all debugging lines and sections are compiled as if
they were comment lines.

General Format

SOURCE- COMPUTER. computer-name [WITH DEBUGGING MODE] .

General Rules

1. If theWITH DEBUGGING MODE clauseis specified in the SOURCE-COMPUTER paragraph of
the Configuration Section, of aprogram, all USE FOR DEBUGGING statementsand all debugging
lines are compiled.

2. If the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph of the Configuration Section of aprogram, any USE FOR DEBUGGING statements and
all associated debugging sections, and any debugging lines are compiled as if they were comment
lines.

PROCEDURE DIVISION IN COBOL DEBUG
The USE FOR DEBUGGING Statement

Function

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the
associated debugging section.

General Format

section-name SECTION [segment number] . USE FOR DEBUGGING ON { procedure-name-1 | ALL
PROCEDURES} [, { procedure-name-2 | ALL PROCEDURES}...]

Syntax Rules

1. Debugging section(s), if specified, must appear together immediately after the DECLARATIVES
header.

2. Except in the USE FOR DEBUGGING statement itself, there must be no reference to any non-
declarative procedure within the debugging section.

3. Statements appearing outside of the set of debugging sections must not reference procedure-names
defined within the set of debugging sections.

126

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

. Except for the USE FOR DEBUGGING statement itself, statements appearing within a given

debugging section may reference procedure-names defined within a different USE procedure only
with a PERFORM statement.

. Procedure-names defined within debugging sections must not appear within USE FOR

DEBUGGING statements.

. Any given procedure-name may appear in only one USE FOR DEBUGGING statement and may

appear only oncein that statement.

. The ALL PROCEDURES phrase can appear only oncein a program.

. Whenthe ALL PROCEDURES phrase is specified, procedure-name-1, procedure-name-2, ... must

not be specified in any USE FOR DEBUGGING statement.

. References to the specia register DEBUG-ITEM are restricted to references from within a

debugging section.

General Rules

1.

In the following general rules all references to procedure-name-1, apply equally to procedure-
name-2.

. Automatic execution of adebugging section is not caused by a statement appearing in a debugging

section.

. When procedure-name-1 is specified in a USE FOR DEBUGGING statement that debugging

section is executed:
a. Immediately before each execution of the named procedure;
b. Immediately after the execution of an ALTER statement which references procedure-name-1.

. The ALL PROCEDURES phrase causes the effects described in genera rule 3 to occur for every

procedure-name in the program, except those appearing within a debugging section.

. The associated debugging section is not executed.for a specific operand more than once as a result

of the execution of a single statement, regardless of the number of times that operand is explicitly
specified. In the case of a PERFORM statement which caused iterative execution of areferenced
procedure, the associated debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an imperative verb identifies a
separate statement for the purpose of debugging.

. A reference to procedure-name-1 as a qualifier does not constitute reference to that item for the

debugging described in the general rules above.

. Associated with each execution of a debugging section is the specia register DEBUG-ITEM,

which provides information about the conditions that caused the execution of a debugging section.
DEBUG-ITEM hasthe following implicit description:

01 DEBUG | TEM

02 DEBUG- LI NE PICTURE IS X(6).

02 FI LLER PI CTURE IS X VALUE SPACE.

02 DEBUG- NAME PICTURE IS X(30).

02 FI LLER PICTURE IS X(19) VALUE SPACE.

02 DEBUG CONTENTS PICTURE IS X(n).

. Prior to each execution of adebugging section, the contents of the dataitem referenced by DEBUG-

ITEM are space-filled. The contents of dataitems subordinate to DEBUG-ITEM are then updated,
according to the following general rules, immediately before control is passed to that debugging
section. The contents of any data item not specified in the following general rules remains spaces.

127

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

Updating is accomplished in accordance with the rules for the MOV E statement, the sole exception
being the move to DEBUG-CONTENTS when the move is treated exactly as if it was an
alphanumeric to alphanumeric elementary move with no conversion of data from one form of
internal representation to another.

9. Thecontentsof DEBUG-LINE istherelevant COBOL sourceline number. This providesthe means
of identifying a particular source statement.

10.DEBUG-NAME contains the first 30 characters of the name that caused the debugging section to
be executed.

Subscripts/indices, if any, are not entered into DEBUG-NAME.

11.DEBUG-CONTENTS is a data item that is large enough to contain the data required by the
following general rules.

12f the first execution of the first nondeclarative procedure in the program causes the debugging
section to be executed, the following conditions exist:
a. DEBUG-LINE identifies the first statement of that procedure.
b. DEBUG-NAME contains the name of that procedure.
c. DEBUG-CONTENTS contains 'START PROGRAM'.

13.If areference to procedure-name-1 in an ALTER statement causes the debugging section to be
executed, the following conditions exist:
a. DEBUG-LINE identifies the ALTER statement that references procedure-name-1.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains the applicable procedure-name associated with the TO phrase
of the ALTER statement.

14.If the transfer of control associated with the execution of aGO TO statement causes the debugging
section to be executed, the following conditions exist:
a. DEBUG-LINE identifiesthe GO TO statement whose execution transfers control to procedure-
name-1.
b. DEBUG-NAME contains procedure-name-1.

15.If thetransfer to control from the control mechanism associated with aPERFORM statement causes
the debugging section associated with procedure-name-1 to be executed, the following conditions
exist:
a. DEBUG-LINE identifies the PERFORM statement that references procedure-name-1.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains 'PERFORM LOOP.

16.If procedure-name-1 is a USE procedure that is to be executed, the following conditions exist:
a. DEBUG-LINE identifies the statement that causes execution of the USE procedure.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains 'USE PROCEDURE..

17.If animplicit transfer of control from the previous sequential paragraph to procedure-name-1 causes
the debugging section to be executed, the following conditions exist:
a. DEBUG-LINE identifies the previous statement.
b. DEBUG-NAME contains procedure-name-1.
c. DEBUG-CONTENTS contains'FALL THROUGH'.

DEBUGGING LINES

A debugging lineisany linewith a'D' intheindicator areaof theline. Any debugging linethat consists
solely of spaces from margin A to margin R is considered the same as ablank line.

The contents of a debugging line must be such that a syntactically correct program is formed with or
without the debugging lines being considered as comment lines.

128

Chapter 10. DEBUG AND INTERACTIVE DEBUGGING

A debugging line will be considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that
each continuation line must contain a'D' in the indicator area, and character-strings may not be broken
across two lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph.

129

130

Chapter 11. INTERPROGRAM
COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM

COMMUNICATION MODULE

The Inter-Program Communication module provides a facility by which a program can communicate
with oneor more programs. This providesaprogrammer with amodular programming capability. Each
module when CALLed isloaded dynamically by the Run Time System. Communication is provided

by:
» The ability to transfer control from one program to another within arun unit

e The ability for both programs to have access to the same data items.

DATA DIVISION IN THE INTER-PROGRAM
COMMUNICATION MODULE

LINKAGE SECTION

The Linkage Section in aprogram is meaningful if and only if the object program isto function under
the control of a CALL statement, and the CALL statement in the calling program contains a USING
phrase.

The Linkage Section is used for describing data that is available through the calling program but is
to be referred to in both the calling and the called program. No space is alocated in the program
for dataitems referenced by data-names in the Linkage Section of that program. Procedure Division
referencesto thesedataitemsare resolved at object timeby equating thereferencein the called program
to the location used in the calling program. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program always refer to separate indices.

Data items defined in the Linkage Section of the called program may be referenced within the
Procedure Division of the called program only if they are specified as operands of the USING phrase
of the Procedure Division header or are subordinate to such operands, and the object program is under
the control of a CALL statement that specifiesa USING phrase.

The structure of the Linkage Section isthe same asthat previously described for the Working-Storage
Section, beginning with a section header, followed by data description entries for noncontiguous data
items and/or record description entries.

Each Linkage Section record-name and noncontiguous item name must be unique within the called
program since it cannot be qualified, Dataitems defined in the Linkage Section of the called program
must not be associated with data items defined in the Report Section of the calling program.

Of thoseitems defined in the Linkage Section only data-name-1, data-name-2, ... in the USING phrase
of the Procedure Division header, data items subordinate to these data-names, and condition-names
and/or index-names associated with such data-names and/or subordinate dataitems, may be referenced
in the Procedure Division.

Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to one another need not be grouped
into records and are classified and defined as noncontiguous elementary items. Each of these data
itemsis defined in a separate data description entry which begins with the special level-number 77.

131

Chapter 11. INTERPROGRAM COMMUNICATION

The following data clauses are required in each data description entry:
* Level-number 77

» Data-name

* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the description of the item
if necessary.

PROCEDURE DIVISION IN THE INTER-
PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER

The Procedure Division isidentified by and must begin with the following header:

PROCEDURE DI VI SION [USI NG data-name-1 [, data-nanme-2] ...]

The USING phrase is present if and only if the object program is to function under the control of a
CALL statement, and the CALL statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header must be defined as a
data item in the Linkage Section of the program in which this header occurs, and it must have a 01
or 77 level-number.

Within acalled program, Linkage Section dataitems are processed according to their data descriptions
given in the called program.

When the USING phrase is present, the object program operates as if data-name-1 of the Procedure
Division header in the called program and data-name-1 in the USING phrase of the CALL statement
inthe calling program refer to asingle set of datathat isequally availableto both the called and calling
programs. Their descriptions must define an equal number of character positions; however they need
not be the same name. In like manner, there is an equivalent relationship between data-name-2, ...,
in the USING phrase of the called program and data-name-2, ..., in the USING phrase of the CALL
statement in the calling program. A data-name must not appear more than oncein the USING phrase
in the Procedure Division header of the called program; however, agiven data-name may appear more
than once in the same USING phrase of a CALL statement.

THE CALL STATEMENT

Function

The CALL statement causes control to be transferred from one object program to another, within the
run unit.

General Format

Format 1

CALL { identifier-1 | literal-1 } [USING data-name-1 [, data-name-2]...] [ON OVERFLOW
imperative-statement]

Format 2

132

Chapter 11. INTERPROGRAM COMMUNICATION

CALL { literal-2 | identifier-2} [USING data-name-3 [, data-name-4]... |

Syntax Rules

1

2.

General

1

. Literal-1 must be a nonnumeric literal.
Identifier-1 must be defined as an a phanumeric data item usage display.

. The USING phrase is included in the CALL statement only if there is a USING phrase in the
Procedure Division header of the called program and the number of operandsin each USING phrase
must be identical.

. Each of the operandsin the USING phrase must have been defined asadataitem in the File Section,
Working-Storage Section, or Linkage Section, and must have a level-number of 01 or 77.

. Literal-2 must be a nonnumeric literal.

. ldentifier-2 must must be defined as an a phanumeric dataitem with anumeric value, e.g. CALL "3"
or CALL D-NAM where D-NAM is defined as class a phanumeric, and usage display, containing
anumeric value.

Rules

The program whose nameis specified by thevalue of literal-1 or identifier-1isacalled intermediate
code module, literal-2 is a called run time subroutine; the program in which the CALL statement
appearsis the calling program.

. The execution of a CALL statement causes control to pass to the called program.

. Informat 1, acalled intermediate code module is loaded from disk the first timeit is caled within
arun-unit and the first timeit is called after a CANCEL to the called program.

On al other entries into the called program, the state of the program remains unchanged from its
state when last executed. This includes all data fields, the status and positioning of all files, and
all alterable switch settings.

. Informat 2, a called run time subroutine is alwaysin the state in which it last exited.

. If during the execution of a CALL statement, it is determined that the available portion of run-
time memory is incapable of accommodating the program specified in the CALL statement, the
next sequential instruction is executed. If ON OVERFLOW has been specified, the associated
imperative statement is executed before the next instruction is executed.

. Called programs may contain CALL statements. However, a called program must not contain acall
statement that directly or indirectly calls the calling program.

. The data-names, specified by the USING phrase of the CALL statement, indicate those data items
availabletoacalling program that may bereferred to in the called program. The order of appearance
of the data-names in the USING phrase of the CALL statement and the USING phrase in the
Procedure Division header is critical. Corresponding data-names refer to asingle set of datawhich
isavailableto the called and calling program. The correspondence is positional, not by name. Inthe
case of index-names, no such correspondence is established. Index-namesin the called and calling
program always refer to separate indices.

. The CALL statement may appear anywhere within asegmented program. Therefore, whena CALL
statement appears in a section with a segment-number greater than or equal to 50, that segment is
initslast used state when the EXIT PROGRAM statement returns control to the calling program.

THE CANCEL STATEMENT

133

Chapter 11. INTERPROGRAM COMMUNICATION

Function

The CANCEL statement rel eases the memory areas occupied by the referred to program.

General Format
CANCEL { identifier-1 | literal-1} [{ identifier-2 | literal-2}]...
Syntax Rules

1. Literal-1, litera-2, ... , must each be a nonnumeric literal.

2. ldentifier-1, identifier-2, must each be defined as an al phanumeric dataitem such that its value can
be a program name.

General Rules

1. After the execution of a CANCEL statement, the program referred to ceases to have any logical
relationship to the run unit in which the CANCEL statement appears. A subsequently executed
CALL statement naming the same program will result in that program being initiated in itsinitial
state. The memory areas associated with the named programs are rel eased so asto be made available
for disposition by the operating system.

2. A program named in the CANCEL statement must not refer to any program that has been called
and has not yet executed an EXIT PROGRAM statement.

3. A logical relationship to a cancelled subprogram is established only by execution of a subsegquent
call statement.

4. A called program is cancelled either by being referred to as the operand of a CANCEL statement
or by the termination of the run unit of which the program isa member.

5. No action is taken when a CANCEL statement is executed naming a program that has not been
caled in this run unit or has been called and is at present cancelled. Control passes to the next
statement.

THE EXIT PROGRAM STATEMENT

Function
The EXIT PROGRAM statement marks the logical end of acalled program.
General Format
EXI T PROGRAM
Syntax Rules
1. The EXIT PROGRAM statement must appear in a sentence by itself.
2. The EXIT PROGRAM sentence must be the only sentence in the paragraph.
General Rule
An execution of an EXIT PROGRAM statement in a called program causes control to be passed to

the calling program. Execution of an EXIT PROGRAM statement in a program which is not called
behaves as if the statement were an EXIT statement. (See THE EXIT STATEMENT in Chapter 3) .

134

Chapter 12. PROGRAMMING
TECHNIQUES, USEFUL HINTS AND
PROGRAM SIZING

PROGRAMMING TECHNIQUES

Although COBOL is written in an essentially free form, the user will nevertheless obtain many
advantagesfrom afew self-imposed disciplines. It issuggested that these should includethefollowing:

1

Use of the first 256 bytes of working-storage for variables which are frequently referenced will
produce more compact and efficient code.

. Use subscripts as sparingly as possible because each subscript has a storage requirement

approximately equal to the size of anormal instruction.

. For ACCEPT and DISPLAY thecompiler generatesoneinstruction per el ementary item of thedata-

name being displayed/accepted. Therefore redefine agroup of fieldsasasinglefield for DISPLAY
whenever possible and avoid unnecessary numbers of small fieldsin ACCEPT.

. Use FILLER instead of adata-name for any elementary field not referenced explicitly because the

word FILLER is compacted to one character in the Data Dictionary.

. Keep the number of digitsin numeric fields as small as possible.
. Whenever possible move a group instead of several elementary moves.

. CISCOBOL provides for values greater than decimal 99 to be stored in anonnumeric field of one

character, eg,PI C X " 7F"

Thisisan extension to the ANSI COBOL standard X3.23 (1974). (See under Nonnumeric Literals
in Chapter 2).

Note, however, that the rules for moving such a field comply with the ANSI standard in that the
contents will be truncated if over decimal 99.

If your operating system returns an error number greater than 99 in the error Status Key 2 byte
(see I-O Status in chapters 5, 6 and 7) careful redefinition of dataritemsis required if you wish to
display this status with its correct decimal value. See the appendix that describes disk filesin your
operating system specific CIS COBOL Operating Guide for a sample program.

USEFUL HINTS

When writing interactive programs the following facilities of CIS COBOL should be remembered:

1

By use of the CURSOR IS facility and the ACCEPT statement it is easy to program conditionally
depending on the cursor position after a menu type of prompt. The operator need then only move
the cursor to the option required to reply to the prompt, or just press RETURN in the default case.

. By use of the ACCEPT FROM CONSOLE facility it is easy to pass parameters to your program

viathe Run command line. See THE ACCEPT STATEMENT in Chapter 3.

. Remember alwaysto end your CIS COBOL program with a period. Invalid intermediate code can

result if thisfinal period is missing.

135

Chapter 12. PROGRAMMING TECHNIQUES,
USEFUL HINTS AND PROGRAM SIZING

4. Note that the data part of an indexed sequential file may be accessed relatively. However, the first
record (relatively) isinaccessible. since relative file access begins at record number 1, as specified
in the ANSI COBOL standard X3.23(1974).

5. Never define a Linkage Section in the main program, only in sub-programs. The CIS COBOL
Compiler will not treat such a Linkage Section as an error but it can result in memory content
corruption at run time.

6. Be careful to specify literal filenamesin Select statements in quotation marks ("...."). Thisis the
only indication to the compiler that aliteral filename is desired.

(Filename identifiers are not declared in the Working Storage Section or €lsewhere explicitly). The
omission of quotation marks where required will result in an undefined file being accessed at run
time.

Table 12.1. Data Dictionary Entry Sizing

User-defined name Number of Bytes
File-name 18+n
Record-name 8+n
Key-name 8+n
Status-name 8+n
Paragraph-name 6+n
Alphanumeric < 32 characters 8+n?
Alphanumeric 5 32 characters 7+n?
Numeric integer 8+n?
Numeric non integer 7+n?
Numeric edited 8+n?
7+n+X

1. n=number of charactersin user-defined name.
ForaFILLER,n=1.
x number of charactersin PICture, after coalescing repetitions.
eg.9999.9 =3bytes
9@ .9 = 3bytes
Z(2)9(4).9(3)=4bytes
2. Subtract 1 byteif itemisin thefirst 256 bytes of Working-Storage.
Add 4 bytesif item has an OCCURS clause associated with it.

Add 2 bytes if item is subordinate to an item described with OCCURS.

136

Appendix A. RESERVED WORD LIST

This appendix contains a full list of COBOL and CIS COBOL reserved words. A shaded reserved

word isaCIS COBOL extension to ANS|I COBOL.

The/ symbol denotes that the text up to that point is a reserved word, as is the whole word.

e.g., In INDEX/ED, INDEX and INDEXED are reserved words IN SPACE/S, SPACE and SPACES

are reserved words.

ACCEPT
ACCESS

ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALTER

AND

ARE

AREA
ASCENDING
ASSIGN

AT

AUTHOR
AUTOMATIC
BEFORE
BLANK

BLOCK

BY

CALL

CANCEL
CHARACTER/S
CLOCK-UNITS
CLOSE

COBOL
CODE-SET
COLLATING
COMMA
COMMIT
COMP-M
COMP-N
COMP-3
COMP/UTATIONAL/-3
CONFIGURATION
CONSOLE
CONTAINS
COPY

CRT
CRT-UNDER
CURRENCY
CURSOR

DATA
DATE-COMPILED
DATE-WRITTEN
DEBUGGING
DECIMAL-POINT

DYNAMIC
ELSE

END

ENTER
ENVIRONMENT
EQUAL
ERROR
EVERY
EXCEPTION
EXCESS-3
EXCLUSIVE
EXIT

EXTEND

FD

FILE
FILE-CONTROL
FILLER

FIRST

FOR

FROM

GIVING

GO

GREATER
HIGH-VALUE/S
I-O/-CONTROL
IDENTIFICATION
IF

INDEX/ED
INITIAL
INPUT/-OUTPUT
INSPECT
INSTALLATION
INTO

INVALID

IS

JUST/IFIED
KEPT

KEY

LABEL
LEADING
LEFT

LESS

LIMIT/S
LINE/S
LINKAGE
LOCK
LOW-VALUE/S

NEGATIVE
NEXT

NOT
NUMERIC
OBJECT-COMPUTER
OCCURS

OF

OFF
OMITTED

ON

OPEN

OR
ORGANIZATION
OUTPUT
OVERFLOW
PAGE
PERFORM
PIC/TURE
POSITIVE
PROCEDURE/S
PROCEED
PROGRAM
PROGRAM-ID
QUOTE/S
RANDOM

RD

READ
RECORD/S
REDEFINES
REEL
RELATIVE
RELEASE
REMAINDER
REPLACING
RERUN
RETURN
REWRITE
RIGHT
ROLLBACK
ROUNDED
RUN

SAME

SD

SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT

SORT
SORT-MERGE
SOURCE-COMPUTER
SPACE/S
SPECIAL-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
SUBTRACT
SWITCH
SYNC/HRONIZED
SYSIN
SYSOUT

TAB

TABLE
TALLYING
THAN

THEN
THROUGH
THRU

TIMES

TO

TRAILING
TYPE

UNIT

UNTIL

UP

UPON

USAGE

USE

USING
VALUE/S
VARYING
WHEN

WITH
WORDS
WORKING-STORAGE
WRITE
ZERO/ESor S

137

Appendix A. RESERVED WORD LIST

DECLARATIVES
DELETE
DEPENDING
DESCENDING
DISPLAY
DIVIDE
DIVISION

DOWN

MANUAL
MEMORY
MERGE
MODE
MODULES
MOVE
MULTIPLY
NATIVE

SELECT
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET

SIGN

SIZE

TSV OILACT

Note that the Level |1 COBOL product contains the following additional reserved words. If you wish
to ensure that your CIS COBOL programs are upward compatible with Level 11 COBOL do not use

these words as user-names.

ALSO
ALTERNATE
BOTTOM
COMMUNICATION
COMPUTE
CORR/ESPONDING
COUNT

DATE

DAY
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2

DELIMITED
DELIMITER
DESTINATION
DISABLE
DUPLICATES
EGI

ENABLE
END-OF-PAGE
EOP

EMI

ES|

FOOTING

IN

KEPT
LENGTH

LINAGE/-COUNTER
MESSAGE
MULTIPLE
NO
OPTIONAL
POINTER
POSITION
QUEUE
RECEIVE
REMOVAL
RENAMES
RESERVE
RETURN
REVERSED
REWIND

SEARCH
SEND

STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SYMBOLIC
TAPE
TERMINAL
TEXT

TIME

TOP
UNSTRING

138

Appendix B. CHARACTER SETS AND

COLLATING SEQUENCE

COBOL

HEX
5E
5F
60
61

62

63

65

66
67

68
69

6A
6B
6C
6D
6E
6F
70
71

72
73
74
75
76
77
78
79

7A
7B
7C
7D
7E
7F

DEL

COBOL |ASCII

HEX
2F
30
31

32

33

35
36

37

38

39

3A
3B
3C
3D
3E
3F
40

41

42

43

45

46

47

48

49

4A
4B
4C
4D
4E
4F
50
51

52

53

COBOL |ASCII

HEX

01

02

03

05

06

07

08

09

0A
0B
0C
0b
OE
OF
10
11
12
13
14
15
16
17
18
19

1B
1C
1D
1E
1F
20
21

22
23
24

ASCII
NUL

SOH

STX

ETX

EOT

ENQ

ACK
BEL
BS
HT
LF
vT

FF

CR

Sl

DLE
DC1
DC2
DC3

DC4

NAK
SYN

ETS

CAN
EM

SUB

ESC
FS
GS

RS

us

space

139

Appendix B. CHARACTER SETSAND COLLATING SEQUENCE

ASCII HEX COBOL |ASCII HEX COBOL |ASCII HEX COBOL

% 25 X T 54

& 26 X U 55

' 27 X Vv 56

(28 wW 57

) 29 X 58

* 2A Y 59

+ 2B V4 5A

, 2C 5B X

- 2D 5C X
2E 5D X

140

Appendix C. GLOSSARY

INTRODUCTION

The terms in this Chapter are defined in accordance with their meaning as used in this document
describing CIS COBOL and may not have the same meaning for other languages.

These definitions are also intended to be either reference material or introductory materia to be
reviewed prior to reading the detailed language specifications that are contained in this manual. For
this reason, these definitions are, in most instances, brief and do not include detailed syntactical rules.

DEFINITIONS

Access Mode.

Actual Decimal Point.

Alphabet-Name.

Alphabetic Character.

Alphanumeric Character.

Arithmetic Expression.

Arithmetic Operator.

Ascending Key.

Assumed Decimal Point.

At End Condition.

The manner in which records are to be operated upon within
afile

The physical representation, using either of the decimal point
characters . (period) or , (comma) of the decimal point position
in adataitem.

A user-defined word in the SPECIAL-NAMES paragraph of
the Environment Division that assigns a name to a specific
character set and/or collating sequence.

A character that belongs to the following set. of letters:
AB,CD,EFGH,IJIKLMNOPQRSTUVWX,Y,Z
and the space. Also ab,c,d,ef,g,h,i,j.k,l,m,n,0,p,qr,stuv,xy
and z which are converted to their upper case equivalents.

Any character in the computer's character set.

An arithmetic expression can be an identifier or a numeric
elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses.

A single character, or afixed two-character combination, that
belongs to the following set:

Character M eaning

+ Addition

- Subtraction

* Multiplication
/ Division

A key upon the values of which datais ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparison of the data items.

A decimal point position which does not involve the existence
of an actual character in adataitem. The assumed decimal point
has logical meaning but no physical representation.

A condition caused in one of two circumstances:
1. Duringtheexecution of aREAD statement for asequentially
accessed file.

141

Appendix C. GLOSSARY

Called Program.

Calling Program.
Character.

Character Set (CIS COBOL).

Character Position.

Character-String.

Class Condition.

Clause.

Collating Sequence.

2. During the execution of aRETURN statement when no next
logical record exists for the associated sort or merge file.

A program which isthe object of a CALL statement combined
at run time with the calling program to produce arun unit.

A program which executes a CALL to another program.
The basic indivisible unit of the language.

The complete CIS COBOL character set consists of al
characters listed below:

Character M eaning

01,..,9 Numeric digit

AB..Z Uppercase al phabetic

ab..,z L owercase alphabetic
Space (Blank)

+ Plus Sign

- Minus Sign

* Asterisk

/ Stroke (Virgule or Slash)

= Equal Sign

$ Currency Sign

, Comma

; Semicolon
Period (Decimal Point,
Fullstop)

' Quotation Mark

(Left Parenthesis

) Right Parenthesis

> Greater Than Symbol

< Less Than Symbol

A character position is the amount of physical storage required
to store a single standard data format character described as
usage in DISPLAY. Further characteristics of the physical
storage are defined by the implementor.

A sequence of contiguous characters which form a CIS
COBOL word, a literal, a PICTURE character-string or a
comment-entry.

The proposition, for which atruth value can be determined, that
the content of anitemiswholly alphabetic or iswholly numeric.

A clause is an ordered set of consecutive CIS COBOL
character-strings whose purpose is to specify an attribute of an
entry.

The sequence in which the characters that are acceptable in a
computer are ordered for purposes of sorting, merging and or
comparing.

142

Appendix C. GLOSSARY

Column. A character position within a print line. The columns are
numbered from one, by one, starting at the left-most character
position of the print line and extending to the right-most
character position of the print line.

Comment Entry. An entry in the ldentification Division that may be any
combination of characters from the computer character set.

Comment Line. A source program line represented by an asterisk in the
indicator areaof theline and any charactersfrom the computer's
character setinarea A and areaB of that line. The comment line
serves only for documentation in aprogram. A special form of
comment line represented by a stroke (/) in the indicator area
of theline and any characters from the computer's character set
in area A and area B of that line causes page €jection before
printing the comment.

Compile Time. Thetimeat which an CISCOBOL source program istransated
by the compiler to an CIS COBOL intermediate code program.

Compiler-Directing Statement. A statement, beginning with a compiler-directing verb,
that causes the compiler to take a specific action during
compilation.

Computer-Name. A system-name that identifies the computer upon which the

program is to be compiled or run.

Condition. A status of aprogram at execution time for which atruth value
can be determined. Where the term “condition” (condition-1,
condition-2,) appears in these language specifications in or
in reference to “condition” (condition-1, condition-2, ...) of
a genera format, it is a conditional expression consisting of
either asimple condition optionally parenthesised, or anegated
simple condition.

Condition-Name. The user-defined word assigned to a status of an implementor-
defined switch or device.

Conditional Expression. A simple condition specified in an IF, or PERFORM. (See
Simple Condition and Complex Condition.)

Conditional Statement. A conditional statement specifies that the truth value of a
condition isto be determined, and that the subsequent action of
the run-time program is dependent on this truth value.

Configuration Section. A section of the Environment Division that describes overall
specifications of source and run computers.

Connective. A reserved word that is used to:

1. Associateadata-name, paragraph-name, condition-name, or
text-name with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions (logical connectives). (See Logica
Operator.)

Contiguous Items. Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to one
another.

143

Appendix C. GLOSSARY

Counter.

CRT.

Currency Sign.

Currency Symbol.

Current Record.

Current Record Pointer.

Cursor.

Data Clause.

Data Description Entry .

Data Dictionary.

Data Item.

Data-name.

Debugging Line.

Declaratives.

Declarative-Sentence.

A dataitem used for storing numbers or number representations
in a manner that permits these numbers to be increased or
decreased by the value of another number, or to be changed or
reset to zero or to an arbitrary positive or negative value.

An interactive input/output device comprising a cathode ray
tube and akeyboard by which an Operator can enter and receive
visua data.

The character “$" (dollar sign) in the CIS COBOL character
Set.

The character defined by the CURRENCY SIGN clause in
the SPECIAL- NAMES paragraph. If no CURRENCY SIGN
clauseispresentinaClS COBOL source program, the currency
symbol isidentical to the currency sign.

Therecord which isavailablein the record area associated with
thefile.

A conceptua entity that is used in the selection of the next
record.

Theindicator on aCRT screen that marksthe line and character
position which theinput/output control iscurrently referencing.

A clause that appears in a data description entry in the Data
Division and provides information describing a particular
atribute of adataitem.

An entry in the Data Division that is composed of a level-
number followed by adata-name, if required, and then followed
by a set of data clauses as required.

A dictionary file of user def in ed names constructed by the
Compiler containing the number of bytes for each entry.

A character or set of contiguous characters (excluding in either
case literals) defined as a unit of data by the CIS COBOL
program.

A user-defined word that names a data item described in adata
description entry inthe Data Division. When used inthe general
formats, “data-name” represents a word which can neither be
subscripted, nor indexed unless specifically permitted by the
rules for that format.

A debugging line is any line with “D” in the indicator area of
theline.

A set of one or more special purpose sections written at the
beginning of the Procedure Division, the first of which is
preceded by the key word DECLARATIVES and the last of
whichisfollowed by thekey wordsEND DECLARATIVES. A
declarativeiscomposed of asection header, followed by aUSE
compiler directing sequence, followed by a set of associated
paragraphs (0 or more).

A compiler-directing sentence consisting of a single USE
statement terminated by the separator period (.).

144

Appendix C. GLOSSARY

Default Disk. The disk from which the compiler or run-time system isloaded
and from which, in the absence of a specific drive identifier,
any copy file or called code will be loaded if required.

Delimiter. A character (or sequence of contiguous characters) that
identifies the end of a string of characters, and separates that
string of characters from the following string of characters. A
delimiter is not part of the string of charactersthat it delimits.

Descending Key. A key upon the values of which data is ordered starting with
the highest value of key down to the lowest value of key, in
accordance with the rules for comparing data items.

Digit Position. A digit position is the amount of physical storage required
to store a single digit. This amount varies depending on the
usage of the data item describing the digit position. Further
characteristics of the physica storage are defined by the
implementor.

Division. A set of sections or paragraphs (0 or more) that are formed and
combined in accordance with a specific set of rules is caled
a division body. There are four divisions in a CIS COBOL
program: Identification, Environment, Data and Procedure.

Division Header. A combination of words followed by a period and a space that
indicate the beginning of adivision. The division headers are:

| DENTI FI CATI ON DI VI SI ON.

ENVI RONVENT DI VI SI ON.

DATA DI VI SI ON.

PROCEDURE DI VI SI ON USI NG dat a-nane-1 data-r

Dynamic Access. An access mode in which specific logical records can be
obtained from or placed into a disk file in a non-sequential
manner (see Random Access) and obtained from a file in a
sequential manner (see Sequential Access) during the scope of
the same OPEN statement.

Editing Character. A single character or a fixed two character combination
belonging to the same set:

Character Meaning

B Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

VA Zero Suppress

* Check Protect

$ Currency Sign

. Comma

. Period (Decimal Point)
/ Stroke (Virgule, Slash)

145

Appendix C. GLOSSARY

Elementary Item.

End of Procedure Division.

Environment Clause.

Extend Mode.

Figurative Constant.

File.

File Clause.

FILE-CONTROL.

File Description Entry.

File-Name.

File Organization.

File Section.

Format.

FORMS Program.

Group Item.
High Order End.

[-O-CONTROL.

I-O Mode.

Identifier.

A data item that is described as not being further logicaly
subdivided.

The physical position in a CIS COBOL source program after
which no further procedures appear. Any descriptive set of
consecutive clausesterminated by aperiod (.) and writtenin the
I dentification Division, Environment Division or DataDivision
of an CIS COBOL source program.

A clausethat appearsas part of an Environment Division entry.

With the EXTEND phrase specified, the state of a file after
execution of an OPEN statement, and before the execution of
a CLOSE statement for thefile.

A compiler-generated value referenced through the use of
certain reserved words.

A collection of records.

A clause that appears as part of any of the following Data
Division entries: File Description (FD)

The name of an Environment Division paragraph in which the
datafiles for agiven source program are declared.

An entry in the File Section of the Data Division that is
composed of the level indicator FD, followed by a file-name,
and then followed by a set of file clauses as required.

A user-defined word that names a file described in a file
description entry or a sort-merge file description entry within
the File Section of the Data Division.

The permanent logical file structure established at the time that
afileis created.

The section of the Data Division that contains file description
entries together with their associated record descriptions.

A specific arrangement of a set of data.

A screen formatting program that automatically generates CIS
COBOL CRT input/output coding from actual screen layout.

A named contiguous set of elementary or group items.
The leftmost character of a string of characters.

The name of an Environment Division paragraph in
which object program requirements for specific input/output
techniques, rerun points, sharing of same areas by several data
files, and multiple file storage on a single input/output device
are specified.

The state of afile after execution of an OPEN statement, with
the 1-O phrase specified for that file, and before the execution
of aCLOSE statement for that file.

A data-name, followed as required by the syntactically correct
combination of subscripts and indices necessary to make
unique reference to adataitem.

146

Appendix C. GLOSSARY

I mperative Statement.

Implementor-Name.

Index.

Index Data ltem.

Indexed File.

Indexed Organization.

Indicator Area.

Input File.

Input Mode.

Input-Output File.

Input-Output Section.

Integer.

Intermediate Code

Invalid Key Condition.

Issue Disk.

Key.

Key of Reference.

Key Word.

Level-Number.

A statement that begins with an imperative verb and specifies
an unconditional action to be taken. An imperative statement
may consist of a sequence of imperative statements.

A system-name that refersto a particular feature avail- able on
the implementors computing system.

A computer storage position or register, the contents of which
represent the identification of a particular element in atable.

A dataitem in which the value associated with an index-name
can be stored in aform specified by the implementor.

A file with indexed organization.

The permanent logical file structure in which each record is
identified by the value of one or more keys within that record.

The leftmost parameter position of a CIS COBOL source
record that indicates the use of the record.

A filethat is opened in the input mode.

The state of a file after execution of an OPEN statement,
with the INPUT phrase specified, for that file and before the
execution of a CLOSE statement for that file.

A filethat is opened in the I-O mode.

The section of the Environment Division that names the files
and the external media used by a program and which provides
information required for transmission and handling of data
during execution of the run-time program.

A numeric literal or a numeric dataitem that does not include
any character positions to the right of the assumed decimal
point. Where the term 'integer' appears in general formats,
integer must not be anumeric dataitem, and must not be signed,
nor zero unless explicitly allowed by the rules of that format.

The code produced by the CIS COBOL compiler from the
source code entered, and which the Run Time System 'fast
loads' for execution.

A condition, at object time, caused when a specified value of
the key associated with anindexed or relativefileis determined
to beinvalid.

The flexible diskette or which the CIS COBOL software is
supplied to users.

A dataitem which identifies the location of arecord, or a set of
dataitems which serve to identify the ordering of data.

The key currently being used to access records within an
indexed file.

A reserved word whose presence is required when the format
in which the word appearsis used in a source program.

A user-defined word which indicates the position of a data
item in the hierarchical structure of alogical record or which

147

Appendix C. GLOSSARY

Library-Name.

Library-Text.

Line Sequential File Organization

Linkage Section.

Literal.

Logica Operator.

Logical Record.

Low Order End.

Mnemonic-Name.

Native Character Set.

Native Collating Sequence.

Negated Simple Condition.

Next Executable Sentence.

Next Executable Statement.

Next Record.

Non contiguous Items.

Nonnumeric ltem.

indicates special properties of adatadescription entry. A level-
number is expressed as a one or two digit number. Level-
numbers in the range 1 through 49 indicate the position of a
dataiteminthehierarchical structure of alogical record. Level-
numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. Level-
number 77 identifies specia properties of a data description
entry.

A user-defined word that names a CIS COBOL library source
filethat isto be used by the compiler for agiven source program
compilation.

A sequence of character-strings and/or separatorsin a COBOL
library.

A sequential file containing variable length records separated
by the C/R (carriage return) and L/F (line feed) characters.

The section in the Data Division of the called program that
describes data items available from the calling program. These
data items may be referred to by both the calling and called
program.

A character-string whose value isimplied by the ordered set of
characters comprising the string.

The reserved word 'NOT". It can be used for logical negation.

The most inclusive data item. The level-number for a record
is01.

The rightmost character of a string of characters.

A User-defined word that is associated in the Environment
Division with a specified implementor-name.

The implementor-defined character set associated with the
computer specified in the OBJECT-COMPUTER paragraph.

The implementor-defined collating sequence associated
with the computer specified in the OBJECT-COMPUTER

paragraph.

The 'NOT" logical operator immediately followed by asimple
condition.

The next sentence to which control will be transferred after
execution of the current statement is complete.

The next statement to which control will be transferred after
execution of the current statement is complete.

The record which logically follows the current record of afile.

Elementary data items, in the Working-Storage and Linkage
Sections, which bear no hierarchic relationship to other data
items.

A data item whose description permits its contents to be
composed of any combination of characters taken from the

148

Appendix C. GLOSSARY

computer's character set. Certain categories of nonnumeric
items may be formed from more restricted character sets.

Nonnumeric Literal. A character-string bounded by quotation marks. The string
of characters may include any character in the computer's
character set. To represent a single quotation mark character
within a nonnumeric literal, two contiguous gquotation marks

must be used.

Numeric Character. A character that belongs to the following set of digits: 0, 1, 2,
3,4,5,6,7,8,9.

Numeric Item. A data item whose description restricts its contents to a value

represented by characters chosen from the digits '0' through
'9; if signed, the item may also contain a '+, '-' or other
representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric charactersthat also
may contain either a decimal point, or an algebraic sign, or
both. The decimal point must not be the rightmost character.
The algebraic sign, if present, Must be the leftmost character.

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the
computer environment, within which the run-time program is
executed, is described.

Open Mode. The state of afile after execution of an OPEN statement for that
fileand before the execution of aCL OSE statement for that file.
The particular open mode is specified in the OPEN statement
as either INPUT, OUTPUT, 1-O or EXTEND.

Operand. Whereas the general definition of operand is 'that component
which is operated upon', for the purposes of this publication,
any lowercase word (or words) that appears in a statement or
entry format may be considered to be an operand and, as such,
isan implied reference to the dataindicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or a
numeric literal, to indicate whether its value is positive or
negative.

Optional Word. A reserved word that isincluded in a specified format only to

improve the readability of the language and whose presence is
optional to the user when the format in which the word appears
is used in a source program.

Output File. A filethat is opened in either the output mode or extend mode.

Output-Mode. The state of afile after execution of an OPEN statement, with
the OUTPUT or EXTEND phrase specified for that file and
before the execution of a CLOSE statement for that file.

Paragraph. In the Procedure Division, a paragraph-name followed by a
period and a space and optionally by one, or more sentences.
In the Identification and Environment Divisions, a paragraph
header followed by zero, one, or more entries.

Paragraph Header. A reserved word, followed by a period and a space that
indicates the beginning of a paragraph in the Identification and
Environment Divisions. The permissible paragraph headers
are

149

Appendix C. GLOSSARY

Paragraph-Name.

Phrase.

Prime Record Key.

Procedure.

Procedure-Name.

Punctuation Character.

Random Access.

Record.

In the Identification Division:

PROGRAM: | D.
AUTHOR.

I NSTALLATI ON.
DATE- WRI TTEN.
DATE- COVPI LED.
SECURI TY.

In the Environment Division:

SOURCE- COVPUTER.
OBJECT- COVPUTER.
SPECI AL- NAMES.

FI LE- CONTROL.

| - O- CONTRCL.

A user-defined word that identifies and begins a paragraph in
the Procedure Division.

A phrase is an ordered set of one or more consecutive
COBOL character-stringsthat form a portion of a CIS COBOL
procedural statement or of a COBOL clause.

A key whose contents uniquely identify a record within an
indexed file.

A paragraph or group of logically successive paragraphs, or
a section or group of logically successive sections, within the
Procedure Division.

A user-defined word which is used to name a paragraph or
section in the Procedure Division. It consists of a paragraph-
name or a section-name.

A character that belongsto the following set:

Character M eaning
, comma
; semicolon
period
guotation mark
(left parenthesis
) right parenthesis
space
= equal sign
An access mode in which the program-specified value of akey
data item identifies the logical record that is obtained from,
deleted from or placed into arelative or indexed file.

(see Logical Record)

150

Appendix C. GLOSSARY

Record Area.

Record Description.

Record Description Entry.

Record Key.

Record-Name.

Reference-Format.

Relation.

Relation Character.

Relation Condition.

Relational Operator.

Relative File.
Relative Key.

Relative Organization.

Reserved Word.

Routine-Name.

A storage area allocated for the purpose of processing the
record described in a record description entry in the File
Section.

(See Record Description Entry)

The total set of data description entries associated with a
particular record.

A key, either the prime record key or an aternate record key,
whose contents identify a record within an indexed file.

A user-defined word that names arecord described in arecord
description entry in the Data Division.

A format that provides a standard method for describing
COBOL source programs.

(See Relational Operator)

A character that belongs to the following set:

Character M eaning
> greater than
< less than

= equal to

The proposition, for which a truth value can be determined,
that the value of an arithmetic expression or data item has
a specified relationship to the value of another arithmetic
expression or dataitem. (See Relational Operator),

A reserved word, arelation character, a group of consecutive
reserved words, or a group of consecutive reserved words
and relation characters used in the construction of a relation
condition. The permissible operators and their meaning are;

Relational Operator M eaning

ISNOT GREATER THAN Greater than or not greater
ISNOT > than

ISNOT LESSTHAN Lessthan or not less than
ISNOT <

ISNOT EQUAL THAN Equal to or not equal to
ISNOT =

A filewith relative organization.
A key whose contentsidentify alogical record in arelativefile.

The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which
specifiesthe record's logical ordinal position in thefile.

A COBOL word specified in the list of words which may be
used in COBOL source programs, but which must not appear
in the programs as user-defined words or system-names.

A user-defined word that identifies a procedure written in a
language other than COBOL.:

151

Appendix C. GLOSSARY

Run Time Debug.

Run Time.

Run Time System-(RTS).

Run Unit.

Section.

Section Header.

Section-Name.

Segment-Number.

Sentence.

Separator.

Sequential Access.

An option available to CIS COBOL programmers entered
as a user option enabling break-point facilities in run time
programs.

The time at which the intermediate code produced by the
compiler isinterpreted by the Run Time System for execution.

The software that interprets the intermediate code produced by
the CIS COBOL compiler and enables it to be executed by
providing interfaces to the operating system and CRT.

A set of one or more intermediate code programs which
function, at run time, as a unit to provide problem solutions.

A set of none, one, or more paragraphs or entries, called a
section body, thefirst of which is preceded by a section header.
Each section consists of the section header and the related
section body.

A combination of words followed by a period and a space that
indicates the beginning of a section in the Environment, Data
and Procedure Division.

In the Environment and Data Divisions, a section header is
composed of reserved words followed by a period and a space.
The permissible section headers are:

In the Environment Division:

CONFI GURATI ON SECTI ON
I NPUT- QUTPUT SECTI ON

In the Data Division:

FI LE SECTI ON
WORKI NG- STORAGE SECTI ON
LI NKAGE SECTI ON

In the Procedure Division, a section header is composed of
a section-name, followed by the reserved word SECTION,
followed by asegment-number (optional), followed by aperiod
and a space.

A user-defined word which names a section in the Procedure
Division.

A user-defined word which classifies sectionsin the Procedure
Division for purposes of segmentation. Segment-numbers may
contain only the characters '0', '1', ..., '9'. A segment-number
may be expressed either as a one or two digit number, and is
checked for syntax only.

A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

A punctuation character used to delimit character-strings.

An access mode in which logical records are obtained from
or placed into afile in a consecutive predecessor-to-successor

152

Appendix C. GLOSSARY

Sequentia File.

Sequentia Organization.

Sign Condition.

Simple Condition.

SOURCE-COMPUTER.

Source Program.

Specia Character.

Specia-Character Word.

logical record sequence determined by the order of recordsin
thefile.

A file with sequential organization.

The permanent logical file structure in which a record is
identified by a predecessor-successor relationship established
when therecord is placed into the file.

The proposition, for which atruth value can be determined, that
the algebraic value of adataitem or an arithmetic expression is
either less than, greater than, or equal to zero.

Any single condition chosen from the set:

relation condition
class condition
switch-status condition
sign condition
(simple-condition)

The name of an Environment Division paragraph in which the
computer environment, within which the source program is
compiled, is described.

Although it is recognised that a source program may be
represented by other forms and symbols, in this document
it aways refers to a syntactically correct set of COBOL
statements beginning with an ldentification Division and
ending with the end of the Procedure Division. In contexts
wherethereisno danger of ambiguity, theword 'program' alone
may be used in place of the phrase 'source program'.

A character that belongs to the following set:

Character Meaning

+ Plus Sign

- Minus Sign

* Asterisk

/ Stroke (Virgule or Slash)
= Equal Sign

$ Currency Sign

, Comma

; Semicolon

Period (Decimal Point,
Fullstop)

' Quotation Mark

Left Parenthesis
Right Parenthesis
Greater Than Symbol
Less Than Symbol

A V — —~

A reserved word which is an arithmetic operator or a relation
character.

153

Appendix C. GLOSSARY

SPECIAL-NAMES.

Special Registers.

Standard Data Format.

Statement.

Subprogram.

Subscript.

Subscripted Data-Name.

Switch-Status Condition.

Symbol Function.

System-Name.

Syntax.

Table.

Table Element.

Text-Name.

Text-Word.

Unary Operator.

User-Defined Word.

Variable.

The name of an Environment Division paragraph in which
implementor-names are related to user specified mnemonic-
names.

Compiler generated storage areas whose primary useisto store
information produced in conjunction with the user of specified
COBOL features.

The concept used in describing the characteristics of data in
a COBOL Data Division under which the characteristics or
properties of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite length and
breadth, rather than a form oriented to the manner in which
the data is stored internally in the computer, or on a particular
external medium.

A syntactically valid combination of words and symbols
written in the Procedure Division beginning with a verb.

(See Called Program).

An integer whose value identifies a particular element in a
table.

Anidentifier that is composed of a data-name followed by one
or more subscripts enclosed in parenthesis.

The proposition, for which atruth val ue can be determined, that
an implementor-defined switch, capable of being set to an ‘on'
or 'off' status, has been set to a specified status.

The use of specified characters in the PICTURE clause to
represent data types.

A COBOL word which is used to communicate with the
operating environment.

The order in which elements must be put together to form a
program.

A set of logically consecutive items of datathat are defined in
the Data Division by means of the OCCURS clause.

A dataitem that belongsto the set of repeated items comprising
atable.

A user-defined word which identifies library text.

Any character-string or separator, except space, in a COBOL
library or in pseudo-text.

A plus (+) or aminus (-) sign, which precedes a variable or a
left parenthesis in an arithmetic expression and which has the
effect of multiplying the expression of +1 or -1 respectively.

A COBOL word that must be supplied by the user to satisfy the
format of a clause or statement.

A data item whose value may be changed by execution of the
object program. A variable used in an arithmetic expression
must be a numeric elementary item.

154

Appendix C. GLOSSARY

Verb. A word that expresses an action to be taken by a COBOL
compiler or run time program.

Word. A character-string of hot more than 30 characters which forms
a user-defined word, a system-name, or areserved word.

Working-Storage Section. The section of the Data Division that describesworking storage
data items, composed either of noncontiguous items or of
working storage records or of both.

77 Level-Description-Entry. A data description entry that describes a noncontiguous data
item with the level-number 77.

155

156

Appendix D. COMPILE-TIME ERRORS

The error descriptions that correspond to error numbers as printed on listings produced by the CIS
COBOL compiler are asfollows:

ERROR DESCRIPTION

01 Compiler Error; consult your Technical Support Service

02 Illegal format of data-name

03 Illegal format of literal or invalid use of 'ALL'

04 Illegal format of character

05 Data-name declared twice

06 Too many data or procedure names have been declared - compilation
abandoned

07 Illegal character in column 7, or continuation line error

08 Nested COPY statement or unknown file specified

09 "' missing

10 The statement starts in the wrong area of the source line

22 'DIVISION' missing

23 'SECTION' missing

24 'IDENTIFICATION' missing

25 'PROGRAM-ID' missing

26 'AUTHOR' missing

27 'INSTALLATION' missing

28 'DATE-WRITTEN' missing

29 'SECURITY' missing

30 'ENVIRONMENT' missing

31 'CONFIGURATION' missing

32 'SOURCE-COMPUTER' missing

33 OBJECT-COMPUTER or SPECIAL-NAMES clausein error

34 'OBJECT-COMPUTER' missing

36 'SPECIAL-NAMES missing

37 SWITCH Clausein error

38 DECIMAL-POINT Clausein error

39 CONSOLE Clausein error

40 Illegal currency symbol

42 'DIVISION' missing

43 'SECTION' missing

44 'INPUT-OUTPUT' missing

45 'FILE-CONTROL' missing

46 'ASSIGN' missing

47 'SEQUENTIAL' or 'RELATIVE' or 'INDEXED' missing

48 'ACCESS missing on indexed or relative file

49 'SEQUENTIAL' or 'DYNAMIC' missing

50 I1legal combination ORGANIZATION/ACCESS/KEY

157

Appendix D. COMPILE-TIME ERRORS

ERROR
51
52
53

55
56
57*
58 *
62
63

65
66
67
68
69
70
71
72
73
74

75
76

7
78
79
81
82
83

85
86
87
88
89
90
91
92
101
102
103

DESCRIPTION

Unrecognised clause in SELECT statement

RERUN clause contains syntax error

SAME AREA clause contains syntax error

File-name missing or illegal

'DATA DIVISION' missing

'PROCEDURE DIVISION' missing or unknown statement
'EXCLUSIVE', '"AUTOMATIC' or ' MANUAL' missing
Non-exclusive lock mode specified for restricted file
'DIVISION' missing

'SECTION' missing

File-name not specified in SELECT statement

RECORD SIZE integer missing

Illegal level number or level 01 required

FD qualification contains syntax error
'WORKING-STORAGE' missing

'PROCEDURE DIVISION' missing or unknown statement
Unrecognized clause in Data Description or previous.' missing
Incompatible clauses in Data Description

BLANK isillegal with non-numeric data-item

PICTURE clause too long

VALUE with non-elementary item, wrong data-type or value
truncated

VALUE clausein error or illegal for PICTURE type

FILLER/SYNCHRONIZED/JUSTIFIED/BLANK clause for non-
elementary item

Preceding item at thislevel has 0 or more than 8192 bytes
REDEFINES of different levels or unequal field lengths.

Data Division exceeds 32K and data-item has address above 7FFF
Data Description clause inappropriate or repeated
REDEFINES data-name not declared

USAGE must be COMP, DISPLAY or INDEX

SIGN must be LEADING or TRAILING

SYNCHRONIZED must be LEFT or RIGHT

JUSTIFIED must be RIGHT

BLANK must be ZERO

OCCURS must be numeric, non-zero and unsigned

VALUE must be aliteral, numeric literal or figurative constant
PICTURE string hasillegal precedence or illegal character
INDEXED data-name missing or already declared

Numeric edited PICTURE string istoo large

Unrecognised verb

|F EL SE mismatch

Data-item has wrong data-type or is not declared

158

Appendix D. COMPILE-TIME ERRORS

ERROR
104
10S
106
107
108
109
110
111
112 *
113 *
115*
116
117

118
119
120
141
142
143
144
145
146
147
148
149
150
151
152
153
154
157

160

DESCRIPTION

Procedure name has been declared twice

Procedure name is the same as a data-name

Name required

Wrong combination of data-types

Conditional statement not allowed; imperative statement expected
Malformed subscript

ACCEPT or DISPLAY wrong

Illegal syntax used with I-O verb

LOCK clause specified for file with lock mode EXCLUSIVE
KEPT specified for uncommittable file

KEPT omitted for comittable file

| F statements nested too deep (maximum 8)

Structure of Procedure Division wrong (e.g. DECLARATIVES not
first)

Reserved Word missing or incorrectly used

Too many subscripts in one statement

Too many operands in one statement

Inter-segment procedure name declared twice

IF EL SE mismatch at the end of source input
Data-Item has wrong data-type or is not declared
Procedure name undeclared

INDEX name declared twice

Cursor address field not declared or not 4 byteslong
KEY declaration missing or FD missing

STATUS declaration missing

FILE STATUS data-item has the wrong format
Paragraph to be ALTERed is not declared
PROCEDURE DIVISION in error

USING parameter is not declared in the linkage section
USING parameter is not level 01 or 77

USING parameter is used twice in the parameter list

Structure of Procedure Division wrong (e.g. DECLARATIVES not
first)

Too many operandsin one statement

* The error codes marked by an asterisk apply only when the optional FILESHARE product isin use.

I n addition to these numbered error messages, the following message can be displayed with subsequent
termination of the compilation:

FATAL 1-O ERROR. fil enane

where filename is the erroneous file.

Any intermediate code file produced is not usable.

The following conditions will cause this error:

159

Appendix D. COMPILE-TIME ERRORS

Disk overflow

File directory overflow
Filefull

Impossible I-O device usage

Other operating system dependent conditions can also cause this error.

Note

You will notice that the numbers of the numbered error messages listed above are not
continuous, i.e., there are gaps in the numbering. The compiler should never have cause to
generate an error message with a number not listed above. If you ever encounter such a
number, consult your Micro Focus Product Technical Support office.

160

Appendix E. RUN-TIME ERRORS

Run-time error messages are preceded by the name and segment number of the currently executing
intermediate code file.

There are two types of runtime errors. Recoverable and Fatal.
(a) Recoverable errors

If the programmer has specified the STATUS clause in the FILE-CONTROL paragraph of aprogram
error handling is the programmer's responsibility. Thiswill generally only apply to errors that are not
considered fatal by the operating system. (See File Statusin Chapters 5, 6 and 7)

(b) Fatal errors

All errors except those above are fatal. They may come from the operating system or from the run-
time system. Fatal errors cause a message to be output to the console which includes a 3-digit error
code and reference to the COBOL statement subsequent to that in which the error occurred. These
fall into two classes:

(i) Exceptions These cover arithmetic overflow, subscript out of range, too many levels of
perform nesting.

(i) 1-O errors These exclude those for which STATUS is not selected as above.

Error Description

151 Random read on sequential file

152 REWRITE on file not open I-O

153 Subscript out of range

154 Perform nesting exceeds 22 levels

156 Invalid file operation

157 Object filetoo large

158 REWRITE on line-sequential file

159 Malformed line-sequential file

161 Illegal intermediate code

162 Arithmetic overflow or underflow

164 Specified CALL code not supplied or Attempt to call a COBOL
module recursively (i.e when is already active)

165 Incompatible releases of compiler and run-time system

168 Memory arrangement failure

169 Invalid indirect sequential file key length (>32 characters)

170 Illegal operation in Indexed Sequential

171 Attempt to read I-S record in output/extend mode

172 Attempt to delete |-S record in non 1-O mode

173 Attempt to write I-S record in input mode

174 Attempt to CALL/CANCEL on active program

176 Illegal inter-segment reference

180 COBOL file malformed

181 Fatal file malformation

161

Appendix E. RUN-TIME ERRORS

Error Description

194 (CPIM 1.4 |Filesizetoo large (>0.5MB) or Failure to Open on Extent
only)

195 DELETE/REWRTTE not preceded by a READ

196 Relative (or Indexed) - Record number too large (>65535)
197 File savefailure

198 Program load failure (using CHAIN)

199 Indexed sequential file name too long (>20 characters)
200 Insufficient space to load Animator

See also appendix D in the CIS COBOL Operating Guide specific to your operating system.

162

Appendix F. SYNTAX SUMMARY

All the syntax for CIS COBOL is summarized below.
E denotes that the featureis a CIS COBOL extension to ANSI COBOL.

D denotes that the feature is documentary only in CIS COBOL.

GENERAL FORMAT FOR IDENTIFICATION
DIVISION

[IDENTIFICATION DIVISION.}
[PROGRAM-ID.} program name
[AUTHOR.] [comment entry]...
[INSTALLATION.] [comment entry]...
[DATE-WRITTEN.] [comment entry]...
[DATE-COMPILED.] [comment entry]...
[SECURITY.] [comment entry]...

GENERAL FORMAT FOR ENVIRONMENT
DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry [WITH DEBUGGING MODE] .
OBJECT-COMPUTER. object-computer-entry

[LMEMORY SIZEi nt eger { WORDS | CHARACTERS | MODULES}]

[,PROGRAM COLLATING SEQUENCE IS al phabet - nane]

SPECIAL-NAMES.

SWITCH {0 ... 7} [IS mnemonic-name] { ,ON STATUS IS condition-name-1 | [,OFF STATUS IS
condition-name-2] | ,OFF STATUS IS condition-name-2 | [,ON STATUS IS condition-name-1]}
[{.SYSIN|,SYSOUT } IS mnemonic-name]

[, TAB IS mnemonic-name]

[, CURRENCY SIGN ISliteral-9]

[, DECIMAL-POINT ISCOMMA]

[, CONSOLE ISCRT]

[, CURSOR IS data-name-1] .

INPUT-OUTPUT SECTION.

FILE-CONTROL.

file-control-entry ...

[-O-CONTROL. [; RERUN [ON { file-name-1 | implementor-name }] EVERY {{ [END OF]
{ REEL | UNIT } |integer-1 RECORDS} | OF file-name-2 | integer-2 CLOCK-UNITS | condition-
name} ...

[; SAME AREA FOR file-name-3 [, file-name-4]...]... .

GENERAL FORMAT FOR FILE-CONTROL
ENTRY

Sequential SELECT:

SELECT file-name ASSIGN TO { external-file-name-literal | file-identifier } [, externa-file-name-
literal | file-identifier]

163

Appendix F. SYNTAX SUMMARY

[; ORGANIZATION IS SEQUENTIAL | LINE SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data-name-1]

Relative Select:

SELECT file-name

ASSIGN TO { externd-file-name-literal | file-identifier } [, { externa-file-name-litera | file-
identifier }]

; ORGANIZATION ISRELATIVE

[; ACCESS MODE IS { SEQUENTIAL ,RELATIVE KEY IS dataname | { RANDOM |
DYNAMIC} ,RELATIVEKEY ISdataname}]

[; FILE STATUS IS data-name-2]

Indexed Select:

SELECT file-name

ASSIGN TO { externd-file-name-literal | file-identifier } [, { externa-file-name-litera | file-
identifier }]

; ORGANIZATION ISINDEXED

[; ACCESSMODE IS{ SEQUENTIAL | RANDOM | DYNAMIC}]

; RECORD KEY IS data-name-1

[; FILE STATUS IS data-name-3]

GENERAL FORMAT FOR THE DATA
DIVISION

DATA DIVISION.

[FILE SECTION.

FD file-name

[; BLOCK CONTAINS integer { RECORDS | CHARACTERS}]

[; RECORD CONTAINS [integer-1 TQO] integer-2 CHARACTERS]

; LABEL { RECORD IS| RECORDS ARE } { STANDARD |OMITTED }
; VALUE OF data-name-1 IS literal-1 [, data-name-2 IS literal-2]....

; DATA { RECORD IS | RECORDS ARE } data-name-1 [, data-name-2]...
[; CODE-SET IS aphabet-name] .

[file-description-entry [record-description-entry]...]...]
[WORKING-STORAGE SECTION.

[{ 77-level-description-entry | record-description-entry }]...]
[LINKAGE-SECTION.

[{ 77-level-description-entry | record-description-entry }]...]

GENERAL FORMAT FOR DATA
DESCRIPTION ENTRY

level-number { data-name-1 | FILLER }

[; REDEFINES data-name-2]

[{ PICTURE | PIC} IS character-string |

[[USAGE IS] { COMPUTATIONAL | COMP| COMPUTATIONAL-3 | COMP-3 | DISPLAY }]
[:[SIGN IS] { LEADING | TRAILING } [SEPARATE CHARACTER]]

[;{ SYNCHRONIZED |SYNC} { LEFT |RIGHT }]

[; { JUSTIFIED | JUST } RIGHT] [; BLANK WHEN ZERO]

[; VALUE ISIitera]

164

Appendix F. SYNTAX SUMMARY

GENERAL FORMAT FOR PROCEDURE
DIVISION

Declarative format:

PROCEDURE DIVISION [USING data-name-1 [, data-name-2]...] .

[DECLARATIVES. { section-name SECTION [segment-number] . declarative-sentence
[paragraph-name. [sentence]...]... } ...

END DECLARATIVES.]

{ fsection-name SECTION [segment-number]}
[[paragraph-name} [sentence]...] }

Non-declarative format:

PROCEDURE DIVISION [USING data-name-1[, data-name-2]..] .

GENERAL FORMAT FOR VERBS

ACCEPT data-name-1 [AT { data-name-2 | literal-1}] FROM CRT
ACCEPT identifier [FROM CONSOLE]

ADD{ identifier-1 | literal-1} [, { identifier-2 | literal-2}]... TO identifier-m [ROUNDED]
[, identifier-n[ROUNDED]]... [; ON SIZE ERROR imperative-statement]

ADD { identifier-1 | literal-1} , { identifier-2 | literal-2 } [, { identifier-3 | literal-3 }]... GIVING
identifier-m [ROUNDED] [, identifier-n [ROUNDED]] [; ON SIZE ERROR imperative-statement]

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

CALL { identifier-1 | literal-1 } [USING data-name-1 [, data-name-2]...]| [ON OVERFLOW
imperative-statement]

CANCEL { identifier-1 | literal-1} [{ identifier-2 | literal-2}]...

DELETE file-name RECORD [;INVALID KEY imperative-statement]

DI SPLAY { identifier-1|literal-1} [, { identifier-2 | literal-2}]... [UPON CONSOLE]

DI SPLAY { data-name-1|literal-3} [AT { data-name-2 | literal-4}] UPON { CRT | CRT-UNDER}

DI VI DE { identifier-1 | literal-1} INTO identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

DI VI DE { identifier-1|literal-1} INTO { identifier-2 | literal-2} GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

DI VI DE { identifier-1 | literal-1} BY { identifier-2 | literal-2 } GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

ENTER language-name [routine-name]
EXI T [PROGRAM]
GO TO{procedure-name-1}

GO TOprocedure-name-1 [, procedure-name-2]... , procedure-name-n DEPENDING ON identifier

165

Appendix F. SYNTAX SUMMARY

| F condition; [THEN] { statement-1 | NEXT SENTENCE } { ; ELSE statement-2 | ; ELSE NEXT
SENTENCE }

| NSPECT identifier-1 TALLYING identifier-2 FOR , { ALL | LEADING | CHARACTERS }
{ identifier-3| literal-1} [{ BEFORE | AFTER} INITIAL { identifier-7 | literal-5} |

| NSPECT identifier-1 REPLACING

{ CHARACTERSBY identifier-6 | literal-4 |, { ALL |LEADING |FIRST } ,{ identifier-5|literal-3}
BY { identifier-6 | literal-4} }

[{ BEFORE | AFTER } INITIAL { identifier-7 | literal-5}]

| NSPECT identifier TALLYING tally-clause REPLACING replacing-clause

MOVE { identifier-1 | literal } TO identifier-2 [, identifier-3 ...]

MULTI PLY { identifier-1 | literal-1} BY identifier-2 [ROUNDED]
[, identifier-3 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

MULTI PLY { identifier-1|literal-1} BY { identifier-2 | literal-2} GIVING identifier-3[ROUNDED]
[, identifier-4 [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

OPEN({ INPUT file-name-1[, file-name-2]... OUTPUT file-name-3 [, file-name-4]... I-O file-name-5
[, file-name-6]... EXTEND file-name-7 [, file-name-8§]... }

PERFORMprocedure-name-1 [{ THROUGH | THRU } procedure-name-2]

PERFORMprocedure-name-1 [{ THROUGH | THRU } procedure-name-2] { identifier-1 | integer-1}
TIMES

PERFORMprocedure-name-1 [{ THROUGH | THRU } procedure-name-2] UNTIL condition-1
READ file-name [NEXT] RECORD [INTO identifier] [; AT END imperative- statement]

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

REWRI TE record-name [FROM identifier] [; INVALID KEY imperative-statement]

SET { identifier-1[, identifier-2]... | index-name-1[, index-name-2]...} { TO|UPBY | DOWN BY }
{ identifier-3 | index-name-3 | integer-1}

START file-name [KEY IS=|1S>|ISNOT < data-name
[;INVALID KEY imperative-statement]]

STOP { RUN | literal }

SUBTRACT { identifier-1|literal-1} , { identifier-2 | literal-2} FROM identifier-m [ROUNDED]
[, identifier-n [ROUNDED]]... [; ON SIZE ERROR imperative-statement]

SUBTRACT { identifier-1 | literal-1} , { identifier-2 | literal-2 }... ... FROM identifier-m GIVING
identifier-n [ROUNDED] [, identifier-o[ROUNDED]]... [; ON SIZE ERROR imperative-statement]

USE AFTER STANDARD{ EXCEPTION | ERROR} PROCEDURE ON { file-name-1 | INPUT |
OUTPUT |1-O | EXTEND }

USE FOR DEBUGGE NG ON{ procedure-name-1 | ALL PROCEDURES} [, { procedure-name-2
| ALL PROCEDURES}...] OUTPUT

VR TE record-name [FROM identifier-1] [BEFORE | AFTER ADVANCING integer LINE | LINES
| TAB | PAGE]

WRI TE record-name [FROM identifier] [; INVALID KEY imperative-statement]

166

Appendix F. SYNTAX SUMMARY

GENERAL FORM FOR COPY STATEMENT

COPY text-name | external-file-name-literal .

167

168

Appendix G. SUMMARY OF
EXTENSIONS TO ANSI COBOL

CIS COBOL is oriented to microcomputer users with the system readily accessible and usually with
aCRT. CIS COBOL therefore provides extensions for interactive working, program control of files,
text file handling and rapid devel opment and testing. These facilities are summarized below.

SCREEN FORMATTING AND DATA ENTRY
THE ACCEPT STATEMENT

An additional format for the ACCEPT statement is provided as follows:
ACCEPT data-name-1 [AT { data-name-2 | literal-1 }] FROM CRT
data-name-2 alows the start of screen to be changed dynamically. It refersto a PIC 9999 field

where the most significant 99 is aline count 1-25 and the least significant 99 isa
character position 1-80.

data-name-1 refersto arecord, group or elementary item but may not be subscripted.
literal-1 isanumeric literal

NOTE: See Chapter 3 for description. See a'so Appendix H for Environment Division changes.

THE DISPLAY STATEMENT

An additional format for the DISPLAY statement is provided as follows:

Format

Dl SPLAY { data-name-1 | literal-3} [AT { data-name-2 | literal-1}] UPON { CRT | CRT-UNDER}

literal-3 isan aphanumeric literal

dataname-1 refersto arecord, group or el ementary item but may not be subscripted

dataname-2 defines the left-most position on the screen. It refersto a PIC 9999 field where the
most significant 99 is aline count 1-25 and the least significant 99 is a character
position 1-80.

NOTE: See Chapter 3 for description.

DISK FILES

Two extensions are offered by CIS COBOL file processing; these are as follows:

1. Line sequential files
2. Runtime input of filenames

LINE SEQUENTIAL FILES

When LINE SEQUENTIAL ORGANIZATION is specified in the FILE CONTROL paragraph
ORGANIZATION IS entry, thefileistreated as consisting of variable length records separated by the
lire delimiter characters. Trailing spaces in output records are replaced by a record terminator which
is operating system dependent.

169

Appendix G. SUMMARY OF EXTENSIONS TO ANSI COBOL

RUN TIME INPUT OF FILENAMES

The ASSIGNed name in the SELECT statement for afileis processed on OPENing as follows:

When the INPUT or OUTPUT phrase is specified, execution of OPEN causes checking of the file
names in accordance with the operating system conventions for opening an input or output file. The
full operating system features for file reallocation and device control are therefore available to the
CIS COBOL program.

LOWER CASE CHARACTERS

Thefull alphanumericlower caseatozisavailablein CISCOBOL. Reserved and user word characters
areread as their upper case equivalents (A to Z).

HEXADECIMAL VALUES

Hexadecimal binary values can be attributed to non-numeric literals in CIS COBOL by expressing
them as X "xx", where x is a hexadecimal character in the set 0-9, A-F; xx can be repeated up to 120
times, but the number of hexadecimal digits must be even.

INTERACTIVE DEBUGGING

ThereisaRun-Time Debug Package to provide break-point facilitiesin the user's program. Programs
may be run from the start until a specified break-point is reached, when control is passed back to the
user. At this point, data areas may be inspected or changed.

The Debug package is entered as an option by the user and the user program is then tested line by line,
paragraph by paragraph and so on as required. The commands to the package can reference procedure
statements and data areas by means of a4-digit hexadecimal code output by the compiler against each
line of the compilation listing. Powerful macros of commands can be used to give very sophisticated
debugging facilities. The precise details for using the package vary according to the host operating
system and are described in the appropriate Operating Guide.

170

Appendix H. SYSTEM DEPENDENT
LANGUAGE FEATURES

This Appendix summarizes those parts of a COBOL program that need to be changed to run them as
CIS COBOL programs and those parts that do not need changing specifically but are ignored by the
CIS COBOL compiler when generating the object program.

MANDATORY CHANGES
ENVIRONMENT DIVISION

The only statements in the environment division that must be specialized for CIS COBOL are shown
below:

Configuration Section

SPECI AL- NAMES. special nanes entry

special names entry must include the following:

CURSCR | S dat a- name- 1
The CURSOR IS data-name-1 clause specifies the data-name which will contain the CRT cursor
address as used by ACCEPT statements. Data-name-1 must be declared in the Working-Storage

section as a4 character item. Theinterpretation of the 4 charactersis given in the ACCEPT statement
description.

Input-Output Section

File names must be as described in Appendix F of the CIS COBOL Operating Guide.

STATEMENTS COMPILED AS
DOCUMENTATION ONLY

COBOL programs not specifically written for compilation as CIS COBOL on microcomputers can
still be compiled. Statements using features that are not available are treated as documentary only, and
are not compiled. A summary of these features follows:

ENVIRONMENT DIVISION
I-O-Control Paragraph

The clauses that refer to a real time clock and magnetic tape in this paragraph are ignored by the
compiler during compilation but do not cause compile times errors. These clauses are as follows:

END OF { REEL |UNIT } of file-name-2
(no magnetic tape)

integer-2 CLOCK UNITS

171

Appendix H. SYSTEM DEPENDENT LANGUAGE FEATURES

(no clock)

DATA DIVISION

File Description Paragraph

The following complete statements in the file description are ignored by the compiler during
compilation but do not cause compile time errors:

BLOCK CONTAINS integer-1 TO integer-2 { RECORDS | CHARACTERS}
CODE-SET IS aphabetic-name
LABEL { RECORD IS| RECORDSARE } { STANDARD |OMITTED }

VALUE OF implementor-name-1 IS literal-1 [, implementor-name-2 IS literal-2]

PROCEDURE DIVISION
CLOSE Statement

The following phrases in the CLOSE statement are ignored by the compiler during compilation but
do not cause compiler-time errors:

{ REEL |UNIT}

(No magnetic tape)

172

Appendix |. LANGUAGE
SPECIFICATION

CIS COBOL is ANSI COBOL as given in "American National Standard Programming Language
COBOL" (ANSI X.3.231974). CISCOBOL implements both levelsof ANSI COBOL. Thefollowing
modules are fully implemented at Level 1:

* Nucleus

e Table Handling

» Sequential Input and Output

» Relative Input and Output

* Indexed Input and Output

e Segmentation

e Library

¢ Inter-Program Communication

e Debug

In addition many Level 2 features are implemented such as:
* Nucleus - Nested IF, PERFORM UNTIL

» Relative and Indexed sequential 1/O - START statement
* Inter-Program Communication - Fully implemented at level 2

This appendix specifies the implementation of Version 4.3 CIS COBOL. The implementation of
each of the eight standard COBOL modules listed above is given under the following headings as
applicable:

Level 1 Implementation
Level 2 Implementation
CISCOBOL Extensions

Appendix F in thismanual isa ClIS COBOL syntax summary.

NUCLEUS

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

1. DATE-COMPILED in the Identification Division is accepted for documentation purposes only.
2. Upto 49 Level Numbers are permitted and 1-9 can be asingle digit.

3. Thecharacters, and ; are permitted as separators

173

Appendix |. LANGUAGE SPECIFICATION

9.

. The character ">, '=" and '<' are permitted in relative conditions.

. The PERFORM ... THROUGH ... UNTIL featureisimplemented.
. Plural forms of the figurative constants can be used.

. |F statements can be nested.

. Mnemonic names are permitted in ACCEPT and DISPLAY statements (See CIS COBOL

extensions 6 and 7 below).

Procedure names can be dl digits.

10.REDEFINES clauses can be nested.

11.Non-numeric operands can be compared.

CIS COBOL Extensions

1

Lower case letters ato z are read as upper case letters A to Z.

. Hexadecimal binary values can be attributed to non-numeric values by expressing literalsas X"nn".
. Reserved word SPA CE can be used to clear the whole CRT screen.

. ANS switch not set enables omission of certain ANSI required "red tape" paragraphs and

statements.

. COMPUTATIONAL-3 or COMP-3 can be specified in the USAGE clause to specify packed

internal decimal storage, (BCD).

. ACCEPT data-name-1 [AT { data-name-2 | literal-1}] FROM CRT

gives enhanced CRT input features

. DI SPLAY { data-name-1 | literal-1 } [AT { data-name-2 | literal-2 }] UPON { CRT | CRT-

UNDER}

gives enhanced CRT output facilities.

. '"CURSOR IS data-name' can be specified in SPECIAL-NAMES and 'data-name’ in WORKING-

STORAGE section to specify CRT cursor address for ACCEPT statements.

SEQUENTIAL, RELATIVE AND INDEXED I-O

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

1

2.

3.

The START statement is fully supported for Relative and Indexed files.
In sequential files, EXTEND is supported.
In OPEN and CLOSE statements:

REEL

174

Appendix |. LANGUAGE SPECIFICATION

UNIT
are accepted for documentation purposes only.
4. LOCK inthe CLOSE statement istreated as documentary only.
5. Dynamic access mode and READ NEXT are supported for relative and indexed files.

6. Only the first assignment in each ASSIGN is actioned, others are treated as documentary only at
compilation.

7. Thel-O-CONTROL paragraphistreated asdocumentary only asareitsRERUN and SAME AREA
clauses.

8. Thefollowing are treated as documentary only in the FD clause:

BLOCK CONTAINS
CODE-SET

DATA RECORDS
LABEL RECORDS
RECORDS CONTAINS
VALUE OF

CIS COBOL Extensions

1. Run Time allocation of file-names. See Appendix F in the CIS COBOL Operating Guide.
2. LINE SEQUENTIAL isan additional file type.
3. All File Description (FD) clauses are optional when ANS switch is unset.

4. Tabbing isavailable, specified by TAB in the WRITE statement.

TABLE HANDLING

Level One Implementation

Fully implemented to Level One.

CIS COBOL Extensions

1. Itemscan be accessed in tablesup to 49 dimensions. Thisextension isrestricted to three dimensions
if the ANS switch is set.

SEGMENTATION

Level One Implementation

Fully implemented to Level One.

LIBRARY

Level One Implementation

Fully implemented to Level One.

175

Appendix |. LANGUAGE SPECIFICATION

DEBUG

Level One Implementation

Fully implemented to Level 1 plus an additional Interactive Run-Time Debug package.

CIS COBOL Extensions

A powerful Run-Time Debug packageisavailable. See Chapter 3in the CISCOBOL Operating Guide.

INTER-PROGRAM COMMUNICATION

Level Two Implementation

Fully implemented to Level Two.

176

Index

A

ACCEPT Statement, 47
AccessMode, 71, 85, 101

ADD Statement, 49

Algebraic Signs, 13

Alignment Rules, Standard, 14
Alphabetic Data Rules, 32
Alphanumeric Data Rules, 33
Alphanumeric Edited Data Rules, 33
ALTER Statement, 50

ANSI (ANS) Compiler Directive, 16
Area, Indicator, 3

Arithmetic Statements, 47

ASSIGN Clause, 73, 88, 104

AT END Condition, 72, 87, 103

B

Blank Lines, 22

BLANK WHEN ZERO Clause, 30
BLOCK CONTAINS Clause, 75, 90, 106
Body, Procedure Division, 19

C

CALL Statement, 132

CANCEL Statement, 133

Character Representation and Radix, 12
Character Sets, 5

Character Strings, 6

Character Strings, PICTURE, 10
CISCOBOL, What It Is, 1

Class Condition, 45

Classes of Data, Concepts, 11
Classification, Segmentation, 120
Clause, ASSIGN, 73, 88, 104

Clause, BLANK WHEN ZERO, 30
Clause, BLOCK CONTAINS, 75, 90, 106
Clause, CODE-SET, 75

Clause, CURSOR IS, 28

Clause, DATA RECORDS, 76, 90, 106
Clause, DATA-NAME or FILLER, 30
Clause, FILE STATUS, 73, 88, 104
Clause, JUSTIFIED, 31

Clause, LABEL RECORDS, 76, 91, 107
Clause, OCCURS, 67

Clause, ORGANIZATION, 73, ,
Clause, PICTURE, 32

Clause, RECORD CONTAINS, 76, 91, 107
Clause, RECORD KEY,

Clause, REDEFINES, 39

Clause, SELECT, 73, 87, 104

Clause, SIGN, 39

Clause, SYNCHRONIZED, 41

Clause, USAGE, 42, 68

Clause, VALUE, 42

Clause, VALUE OF, 77, 91, 107
Clause, WITH DEBUGGING MODE, 126
CLOSE Statement, 77, 92, 108
COBOL Words, 6

CODE-SET Clause, 75

Comment Entries, 10

Comment Lines, 23
COMP(UTATIONAL), 12
Comparison Involving Index-Names, 68
Comparison of Nonnumeric, 45
Comparison of Numeric, 44
Compile Time Debug Switch, 125
Compiler Directive, ANSI, 16
Computer Independent Date, 11
Concept, Classes of Data, 11
Concepts, Computer, 11

Concepts, Language, 5

Concepts, Levels, 11
Condition-Name, 7, 15
Condition-Name Rules, 28
Conditional Expressions, 43
Conditions, AT END, 72, 87, 103
Conditions, Class, 45

Conditions, INVALID KEY, 97, 111
Conditions, Relation, 44
Conditions, Simple, 44

Conditions, Switch-Status, 46
CONFIGURATION SECTION, 26
Connectives, 8

Constants, Figurative, 8
Continuation of Lines, 22

COPY Statement, 123

CRT Devices, 47

Current Record Pointer, 71, 85, 101
CURSOR IS Clause, 28

D

Data Description, Computer, 11

Data Description, Entries, 43

Data Description, Entry, 29

Data Division Entries, 22

Data Divisionin Indexed I-O, 105
Data Divisionin Inter-Program, 131
Data Division in Nucleus, 29

Data Division in Relative, 89

Data Division in Sequential, 74
DATA RECORDS Clause, 76, 90, 106
DATA-NAME or FILLER Clause, 30
DATE-COMPILED Paragraph, 26
Debug, 125

DEBUG, Environment, 126

DEBUG, Object Time Switch, 125

DEBUG, Procedure Divisionin COBOL, 126

DEBUG, Run Time, 125
Declarations, 18
Declaratives, 23

DELETE Statement, 92, 108
DISPLAY Statement, 51

177

Index

DIVIDE Statement, 52
Division Format, 22
Division Header, 22

E

Editing Symbols, 36

Editing Types for Data Categories, 35
Elementary Item Size Rules, 33

Elements, 2

ENTER Statement, 53

Entries, Comment, 11

Entry, FILE-CONTROL, 73, 87, 104
Environment Division in COBOL DEBUG, 126
Environment Division in Indexed 1-O, 103
Environment Division in Nucleus, 26
Environment Division in Relative, 87
Environment Division in Sequential, 72
Execution, Procedure Division, 19

EXIT PROGRAM Statement, 134

EXIT Statement, 53

Expressions, Conditional, 44
ExtraIntermediate Code Files, 121

F

Figurative Constant Values, 9
Figurative Constants, 8

File Description Entry, 74, 90, 106
FILE Section, 74, 89, 105

FILE STATUS Clause, 73, 87, 104
FILE-CONTROL Entry, 73, 87, 104
FILE-CONTROL Paragraph, 72, 87, 103
FILLER or DATA-NAME Clause, 30
Fixed Insertion Editing Rules, 36
Fixed Portion, 119

Formats, Division, 22

Formats, General, 2

Formats, Paragraph, 22

Formats, Reference, 21

Formats, Section, 22

Formats, Source, 3

G

Genera Formats, 2
GO TO Statement, 54

H

Header, Division, 22

Header, Paragraph, 22

Header, Procedure Division, 19
Header, Section, 22
Hexadecimal Characters, 9
Hints, Useful, 135

I

[-O Control Paragraph, 73, 88, 105
Identification Division, 16, 25
Identifier, 15

IF Statement, 54

Incompatible Data, 47

Independent Segments, 119

Index Data ltems, 68

Index-Names, 68

Indexed 1-O Module, 101

Indexed I-O Module, Data Division, 105
Indexed 1-O Module, Environment Division, 103
Indexed 1-O Module, Procedure Division, 108
Indexing, 14

Indicator Area, 3

I nput-Output Section, 72, 87, 103

Input-Output Status, 71, 85, 101

Insertion Editing Rules, Fixed, 36

Insertion Editing Rules, Floating, 36

Insertion Editing Rules, Simple, 36

Insertion Editing Rules, Special, 36

INSPECT Statement, 55

Inter-Program Communication, Data Division, 131

Inter-Program Communication, Procedure Division,

132
Intermediate Code Files, Extra, 121
INVALID KEY Condition, ,

J
JUSTIFIED Clause, 31

K
Keys, Status, 71, 85, 102

L

LABEL RECORDS Clause, 76, 91, 107
Language Concepts, 5, 71, 85, 101
Language Structure, 5

Levels, Concepts of, 11

Levels, Number, 11, 31

Library Module, 123

Lines, Blank, 22

Lines, Comment, 23

Lines, Continuation of, 22

Lines, Debugging, 128

Linkage Section, 131

Literals, Nonnumeric, 8

Literals, Numeric, 9

M

Mnemonic-Name, 7

Mode, Access, 71, 85, 101
MOVE Statement, 59
MULTIPLY Statement, 62

N

Name, Condition, 7
Name, Mnemonic, 7
Name, Paragraph, 7
Name, Section, 7
Name, System, 8

178

Index

Name, User-Defined, 6
Nonnumeric Literals, 8

Nucleus Function, 25

Nucleus, DataDivisionin, 29
Nucleus, Environment Divisionin, 26
Nucleus, Identification, 25
Nucleus, Organization, 25
Nucleus, Procedure Division in, 43
Nucleus, Structure, 25

Number, Level, 11, 31

Number, Sequence, 3, 22

Numeric Data Rules, 33

Numeric Edited Data Rules, 33
Numeric Literals, 9

Numeric Operands, 44

O

OBJECT Time DEBUG Switch, 125
OBJECT-COMPUTER Paragraph, 27
OCCURS Clause, 67

OPEN Statement, 77, 93, 109

Operand Comparison, 44

Operand, Overlapping, 47, 69
Organisation, Data Division, 18
Organisation, Environment Division, 17
Organisation, Identification Division, 16
Organisation, Indexed, 101
Organisation, Nucleus, 25

Organisation, Procedure Division, 19
Organisation, Relative, 85

Organisation, Segmentation, 119
Organisation, Sequential, 71
ORGANIZATION IS INDEXED, 104
ORGANIZATION ISLINE SEQUENTIAL, 73
ORGANIZATION ISRELATIVE, 88
ORGANIZATION IS SEQUENTIAL, 73
Organization, LINE SEQUENTIAL, 73
Overlapping Operands, 47, 69

P

Paragraph Format, 22

Paragraph, DATE-COMPILED, 26
Paragraph, FILE-CONTROL, 72, 87, 103
Paragraph, I-O CONTROL, 74, 89, 105
Paragraph, OBJECT-COMPUTER, 27
Paragraph, PROGRAM-ID, 25
Paragraph, SOURCE-COMPUTER, 26
Paragraph, SPECIAL-NAMES, 27
Paragraph-Name, 7

PERFORM Statement, 62, 121

Phrase, ROUNDED, 46

Phrase, SIZE ERROR, 46

PICTURE Character Strings, 10
PICTURE Clause, 32

Portion, Fixed, 119

Precedence Rules, 37

Procedure Division Header, 19, 132

Procedure Division in COBOL Debug, 126
Procedure Division in Indexed I-O, 108
Procedure Division in Nucleus, 43
Procedure Division in Relative, 92
Procedure Division in Sequential, 77
Procedure Divison in the
Communication Module, 132
Procedure Division, Body, 19
Procedure Division, Execution, 19
Procedure Division, General, 19
Procedures, 18

Program Segments, 119

Program Structure, 2, 15, 120
PROGRAM-ID Paragraph, 25
Programming Techniques, 135

R

READ Statement, 79, 94, 111

RECORD CONTAINS Clause, 76, 91, 107
Record Description Structure, 74, 89, 105
RECORD KEY Clause, 104

Record Pointer, Current, 71, 85, 101
REDEFINES Clause, 39

Reference, Uniqueness of, 14

Relation Condition, 44

Relation Condition, Table, 68

Relative I-O Module, Data Division, 89
Relative I-O Module, Environment Division, 87
Relative I-O Module, Procedure Division, 92
Reserved Words, 8, 23

REWRITE Statement, 80, 96, 112
ROUNDED Phrase, 46

Rules, Alignment, Standard, 14

Rules, Alphabetic Data, 32

Rules, Alphanumeric Data, 33

Rules, Alphanumeric Edited Data, 33
Rules, Editing, 35

Rules, Editing, Fixed, 36

Rules, Editing, Floating, 36

Rules, Editing, Simple, 36

Rules, Editing, Special, 36

Rules, Editing, Zero, 37

Rules, Elementary Item Size, 33

Rules, General, 2

Rules, Numeric Data, 33

Rules, Numeric Edited Data, 33

Rules, Precedence, 38

Rules, Symbols Used, 33

Rules, Syntax, 25

Run Time Debug, 125

S

Section Format, 22

SECTION, CONFIGURATION, 26
Section, FILE, 74, 89, 105

Section, Input-Output, 72, 87, 103
Section, Linkage, 131

Inter-Program

179

Index

SECTION, WORKING-STORAGE, 29
Section-Name, 7

Segmentation, 119

Segmentation Classification, 120
Segmentation Control, 120
Segmentation Organisation, 119
Segments, Independent, 119

Segments, Program, 119

SELECT Clause, 73, 87, 104

Selection of Character, 12

Sentences, 19

Sentences, Compiler Directing, 20
Sentences, Conditional, 20

Sentences, Imperative, 21

Separators, 5

Sequence Number, 3, 22

Sequential I-O Module, Data Division, 74

Sequentia |-O Module, Environment Division, 72
Sequentia I-O Module, Procedure Division, 77

SET Statement, 69

SIGN Clause, 39

Signs, Algebraic, 13

Simple Conditions, 44

Simple Insertion Editing Rules, 36
SIZE ERROR Phrase, 46

Sizing, 136

Source Format, 3
SOURCE-COMPUTER Paragraph, 26
Specia Insertion Editing Rules, 36
SPECIAL-NAMES Paragraph, 27
Standard Alignment Rules, 14
START Statement, 97, 114
Statement, ACCEPT, 47
Statement, ADD, 50

Statement, ALTER, 50

Statement, CALL, 132

Statement, CANCEL, 133
Statement, CLOSE, 77, 92, 108
Statement, COPY, 123

Statement, DELETE, 92, 108
Statement, DISPLAY/, 51
Statement, DIVIDE, 52
Statement, ENTER, 53

Statement, EXIT, 53

Statement, EXIT PROGRAM, 134
Statement, GO TO, 54

Statement, IF, 54

Statement, INSPECT, 55
Statement, MOVE, 59

Statement, MULTIPLY, 62
Statement, OPEN, 77, 93, 109
Statement, PERFORM, 62
Statement, READ, 79, 94, 111
Statement, REWRITE, 80, 96, 112
Statement, SET, 69

Statement, START, 97, 114
Statement, STOP, 65

Statement, SUBTRACT, 65

Statement, USE, 81, 98, 115
Statement, USE FOR DEBUGGING, 126
Statement, WRITE, 82, 99, 115
Statements, Arithmetic, 47
Statements, Compiler Directing, 20
Statements, Conditional, 20
Statements, Imperative, 20

Status Keys, 71, 85, 101

Status, Input-Output, 71, 85, 101
STOP Statement, 65

Structure, Data Division, 18
Structure, Environment Division, 17
Structure, Identification Division, 16
Structure, Language, 5

Structure, Nucleus, 25

Structure, Procedure Division, 19
Structure, Program, 2, 15

Structure, Program Segments, 120
Structure, Record Description, 74, 89, 106
Subscripting, 14

SUBTRACT Statement, 65
Suppression Editing, Zero, 37
Switch Status Condition, 46

Switch, Compile Time Debug, 125
Symbols Used Rules, 33
SYNCHRONIZED Clause, 41
Syntax Rules, 2

Syntax Rules, in Nucleus, 25
System-Name, 8

T

Table Handling, 67

Table Handling, Data Division in, 67
Table Handling, Procedure Division in, 68
Techniques, Programming, 135

U

Uniqueness of Reference, 14

USAGE Clause, 42, 68

USE FOR DEBUGGING Statement, 126
USE Statement, 81, 98, 115

Useful Hints, 135

User-Defined Words, 6

Vv

VALUE Clause, 42
VALUE OF Clause, 77, 91, 107

wW

WITH DEBUGGING MODE Clause, 126
Words, COBOL, 6

Words, Key, 8

Words, Optional, 8

Words, Reserved, 8, 23

Words, User Defined, 6

Working-Storage Noncontiguous, 29
Working-Storage Records, 29

180

Index

WORKING-STORAGE Section, 29
WRITE Statement, 82, 99, 115

Z
Zero-Suppression Editing Rules, 37

181

182

Colophon

Thisbook wasreconstructed into DocBook format from ascanned PDF found on the Internet. The PDF file already
had OCR performed and the text was embedded in the file.

Theoriginal waspublished by Acorn Computers Limited in cooperation with the British Broadcasting Corporation.

Source version: 1.0.2

183

184

	CIS COBOL Language Reference Manual
	Table of Contents
	PREFACE
	AUDIENCE
	MANUAL ORGANIZATION
	RELATED PUBLICATIONS
	NOTATION IN THIS MANUAL

	Chapter 1. Introduction
	WHAT IS CIS COBOL?
	PROGRAM STRUCTURE

	FORMATS AND RULES
	GENERAL FORMAT
	SYNTAX RULES
	GENERAL RULES
	ELEMENTS

	SOURCE FORMAT
	SEQUENCE NUMBER
	INDICATOR AREA

	Chapter 2. COBOL Concepts
	LANGUAGE CONCEPTS
	CHARACTER SET
	LANGUAGE STRUCTURE
	Separators
	Character-Strings
	COBOL Words
	Literals
	Figurative Constant Values
	PICTURE Character-Strings
	Comment-Entries

	CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION
	Concept of Levels
	Level-Numbers

	Concept of Classes of Data
	Selection of Character Representation and Radix
	Algebraic Signs
	Standard Alignment Rules
	Uniqueness of Reference
	Subscripting
	Indexing
	Identifier
	Condition-Name

	PROGRAM STRUCTURE
	THE "ANSI SWITCH" COMPILER DIRECTIVE

	IDENTIFICATION DIVISION
	GENERAL DESCRIPTION
	ORGANISATION
	STRUCTURE
	General format

	ENVIRONMENT DIVISION
	GENERAL DESCRIPTION
	ORGANIZATION
	STRUCTURE
	General Format

	DATA DIVISION
	OVERALL APPROACH
	PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION
	Data Division Organization
	General Format

	PROCEDURE DIVISION
	GENERAL DESCRIPTION
	Declaratives
	Procedures
	Execution
	General Format
	Procedure Division Header
	Procedure Division Body

	STATEMENTS AND SENTENCES
	Conditional Statement
	Conditional Sentence
	Compiler Directing Statement
	Compiler Directing Sentence
	Imperative Statement
	Imperative Sentence

	REFERENCE FORMAT
	GENERAL DESCRIPTION
	REFERENCE FORMAT REPRESENTATION
	Sequence Numbers
	Continuation of Lines
	Blank Lines

	DIVISION, SECTION, PARAGRAPH FORMATS
	Division Header
	Section Header
	Paragraph Header, Paragraph-Name and Paragraph

	DATA DIVISION ENTRIES
	DECLARATIVES
	COMMENT LINES

	RESERVED WORDS

	Chapter 3. THE NUCLEUS
	FUNCTION OF THE NUCLEUS
	IDENTIFICATION DIVISION IN THE NUCLEUS
	GENERAL DESCRIPTION
	ORGANIZATION
	Structure
	General Format
	Syntax Rules

	THE PROGRAM-ID PARAGRAPH
	Function
	General Format
	Syntax Rules
	General Rules

	THE DATE-COMPILED PARAGRAPH
	Function
	General Format
	Syntax Rule
	General Rule

	ENVIRONMENT DIVISION IN THE NUCLEUS
	CONFIGURATION SECTION
	The SOURCE-COMPUTER Paragraph
	Function
	General Format
	Syntax Rule
	General Rules

	The OBJECT-COMPUTER Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	The SPECIAL-NAMES Paragraph
	Function
	General Format
	General Rules

	DATA DIVISION IN THE NUCLEUS
	WORKING STORAGE SECTION
	Noncontiguous Working-Storage
	Working-Storage Records
	Initial Values

	THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules
	General Rule

	THE BLANK WHEN ZERO CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE DATA-NAME OR FILLER CLAUSE
	Function
	General Format
	Syntax Rule
	General Rule

	THE JUSTIFIED CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	LEVEL NUMBER
	Function
	General Format
	Syntax Rules
	General Rules

	THE PICTURE CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules
	Alphabetic Data Rules
	Numeric Data Rules
	Alphanumeric Data Rules
	Alphanumeric Edited Data Rules
	Numeric Edited Data Rules
	Elementary Item Size
	Symbols Used

	Editing Rules
	Simple Insertion Editing
	Special Insertion Editing
	Fixed Insertion Editing
	Floating Insertion Editing
	Zero Suppression Editing

	Precedence Rules

	THE REDEFINES CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE SIGN CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE SYNCHRONIZED CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE USAGE CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE VALUE CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules
	Data Description Entries

	PROCEDURE DIVISION IN THE NUCLEUS
	CONDITIONAL EXPRESSIONS
	Simple Conditions
	Relation Condition
	Comparison of Numeric Operands:
	Comparison of Nonnumeric Operands:

	Class Condition
	Switch-Status Condition

	COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS
	The Rounded Phrase
	The Size Error Phrase
	SIZE ERROR Phrase Not Specified
	SIZE ERROR Phrase Specified

	Arithmetic Statements
	Overlapping Operands
	Incompatible Data
	CRT Devices

	THE ACCEPT STATEMENT
	Function
	General Formats
	Syntax Rule
	General Rules

	THE ADD STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE ALTER STATEMENT
	Function
	General Format
	Syntax Rule
	General Rule

	THE DISPLAY STATEMENT
	Function
	General Formats
	Syntax Rules
	General Rules

	THE DIVIDE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE ENTER STATEMENT
	Function
	General Format
	Syntax Rule
	General Rule

	THE EXIT STATEMENT
	Function
	General Format
	Syntax Rules
	General Rule

	THE GO TO STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE IF STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE INSPECT STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE MOVE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE MULTIPLY STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE PERFORM STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE STOP STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE SUBTRACT STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 4. TABLE HANDLING
	INTRODUCTION TO THE TABLE HANDLING MODULE
	DATA DIVISION IN THE TABLE HANDLING MODULE
	THE OCCURS CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE USAGE CLAUSE
	Function

	General Format
	Syntax Rules
	General Rules

	PROCEDURE DIVISION IN THE TABLE HANDLING MODULE
	RELATION CONDITION
	Comparisons Involving Index-Names And/or Index Data Items

	OVERLAPPING OPERANDS
	THE SET STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 5. SEQUENTIAL INPUT AND OUTPUT
	INTRODUCTION TO THE SEQUENTIAL I-O MODULE
	LANGUAGE CONCEPTS
	Organization
	Access Mode
	Current Record Pointer
	I-O Status
	Status Key 1
	Status Key 2
	Valid Combinations of Status Keys 1 and 2
	The AT END Condition

	ENVIRONMENT DIVISION IN THE SEQUENTIAL I-O MODULE
	INPUT-OUTPUT SECTION
	The FILE-CONTROL Paragraph
	Function
	General Format

	The FILE CONTROL Entry
	Function
	General Format
	Syntax Rules
	General Rules

	The I-O-CONTROL Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	DATA DIVISION IN THE SEQUENTIAL I-O MODULE
	FILE SECTION
	RECORD DESCRIPTION STRUCTURE
	THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules

	THE BLOCK CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE CODE-SET CLAUSE
	Function
	General Format
	Syntax Rules
	General Rule

	THE DATA RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rules

	THE LABEL RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rule

	THE RECORD CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE VALUE OF CLAUSE
	Function
	General Format
	General Rules

	PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE
	THE CLOSE STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE OPEN STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE READ STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE REWRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE USE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE WRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 6. RELATIVE INPUT AND OUTPUT
	INTRODUCTION TO THE RELATIVE I-O MODULE
	LANGUAGE CONCEPTS
	Organization
	Access Modes
	Current Record Pointer
	I-O Status
	Status Key 1
	Status Key 2
	Valid Combinations of Status Keys 1 and 2
	The INVALID KEY Condition
	The AT END Condition

	ENVIRONMENT DIVISION IN THE RELATIVE I-O MODULE
	INPUT-OUTPUT SECTION
	The File-Control Paragraph
	Function
	General Format

	The File-Control Entry
	Function
	General Format
	Syntax Rules
	General Rules

	The I-O-CONTROL Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	DATA DIVISION IN THE RELATIVE I-O MODULE
	FILE SECTION
	RECORD DESCRIPTION STRUCTURE
	THE FILE DESCRIPTION-COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules

	THE BLOCK CONTAINS CLAUSE
	Function
	General Format
	General Rules

	THE DATA RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rules

	THE LABEL RECORDS CLAUSE
	Function
	General Format
	Syntax Rule
	General Rule

	THE RECORD CONTAINS CLAUSE
	Function
	Format
	General Rule

	THE VALUE OF CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	PROCEDURE DIVISION IN THE RELATIVE I-O MODULE
	THE CLOSE STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE DELETE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE OPEN STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE READ STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE REWRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE START STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE USE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE WRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 7. INDEXED INPUT AND OUTPUT
	INTRODUCTION TO THE INDEXED I-O MODULE
	LANGUAGE CONCEPTS
	Organization
	Access Modes
	Current Record Pointer
	I-O Status
	Status Key 1
	Status Key 2
	Valid Combinations of Status Keys 1 and 2
	The INVALID KEY Condition
	The AT END Condition

	ENVIRONMENT DIVISION IN THE INDEXED I-O MODULE
	INPUT-OUTPUT SECTION
	The File Control Paragraph
	Function
	General Format

	The File Control Entry
	Function
	General Format
	Syntax Rules
	General Rules

	The I-O Control Paragraph
	Function
	General Format
	Syntax Rules
	General Rules

	DATA DIVISION IN THE INDEXED I-O MODULE
	FILE SECTION
	RECORD DESCRIPTION STRUCTURE
	THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON
	Function
	General Format
	Syntax Rules

	THE BLOCK CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE DATA RECORDS CLAUSE
	Function
	General Format
	Syntax Rules
	General Rules

	THE LABEL RECORDS CLAUSE
	Function
	General Format
	General Rule

	THE RECORD CONTAINS CLAUSE
	Function
	General Format
	General Rule

	THE VALUE OF CLAUSE
	Function
	General Format
	General Rules

	PROCEDURE DIVISION IN THE INDEXED I-O MODULE
	THE CLOSE STATEMENT
	Function
	General Format
	Syntax Rule
	General Rules

	THE DELETE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE OPEN STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE READ STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE REWRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE START STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE USE STATEMENT
	Function
	General Format
	Syntax Rules

	THE WRITE STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	Chapter 8. SEGMENTATION
	INTRODUCTION TO THE SEGMENTATION MODULE
	GENERAL DESCRIPTION OF SEGMENTATION
	ORGANIZATION
	Program Segments
	Fixed Portion
	Independent Segments

	SEGMENTATION CLASSIFICATION
	SEGMENTATION CONTROL

	STRUCTURE OF PROGRAM SEGMENTS
	SEGMENT-NUMBERS
	GENERAL FORMAT
	SYNTAX RULES
	GENERAL RULES

	RESTRICTIONS ON PROGRAM FLOW
	THE ALTER STATEMENT
	THE PERFORM STATEMENT

	EXTRA INTERMEDIATE CODE FILES

	Chapter 9. LIBRARY
	INTRODUCTION TO THE LIBRARY MODULE
	THE COPY STATEMENT
	FUNCTION
	GENERAL FORMAT
	SYNTAX RULES
	GENERAL RULES

	Chapter 10. DEBUG AND INTERACTIVE DEBUGGING
	INTRODUCTION
	CIS COBOL RUN-TIME DEBUG EXTENSION
	STANDARD ANSI COBOL DEBUG
	COMPILE TIME SWITCH
	COBOL DEBUG OBJECT TIME SWITCH
	ENVIRONMENT DIVISION IN COBOL DEBUG
	The WITH DEBUGGING MODE Clause
	Function
	General Format
	General Rules

	PROCEDURE DIVISION IN COBOL DEBUG
	The USE FOR DEBUGGING Statement
	Function
	General Format
	Syntax Rules
	General Rules

	DEBUGGING LINES

	Chapter 11. INTERPROGRAM COMMUNICATION
	INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE
	DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE
	LINKAGE SECTION
	Noncontiguous Linkage Storage

	PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE
	THE PROCEDURE DIVISION HEADER
	THE CALL STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE CANCEL STATEMENT
	Function
	General Format
	Syntax Rules
	General Rules

	THE EXIT PROGRAM STATEMENT
	Function
	General Format
	Syntax Rules
	General Rule

	Chapter 12. PROGRAMMING TECHNIQUES, USEFUL HINTS AND PROGRAM SIZING
	PROGRAMMING TECHNIQUES
	USEFUL HINTS

	Appendix A. RESERVED WORD LIST
	Appendix B. CHARACTER SETS AND COLLATING SEQUENCE
	Appendix C. GLOSSARY
	INTRODUCTION
	DEFINITIONS

	Appendix D. COMPILE-TIME ERRORS
	Appendix E. RUN-TIME ERRORS
	Appendix F. SYNTAX SUMMARY
	GENERAL FORMAT FOR IDENTIFICATION DIVISION
	GENERAL FORMAT FOR ENVIRONMENT DIVISION
	GENERAL FORMAT FOR FILE-CONTROL ENTRY
	GENERAL FORMAT FOR THE DATA DIVISION
	GENERAL FORMAT FOR DATA DESCRIPTION ENTRY
	GENERAL FORMAT FOR PROCEDURE DIVISION
	GENERAL FORMAT FOR VERBS
	GENERAL FORM FOR COPY STATEMENT

	Appendix G. SUMMARY OF EXTENSIONS TO ANSI COBOL
	SCREEN FORMATTING AND DATA ENTRY
	THE ACCEPT STATEMENT
	THE DISPLAY STATEMENT

	DISK FILES
	LINE SEQUENTIAL FILES
	RUN TIME INPUT OF FILENAMES

	LOWER CASE CHARACTERS
	HEXADECIMAL VALUES
	INTERACTIVE DEBUGGING

	Appendix H. SYSTEM DEPENDENT LANGUAGE FEATURES
	MANDATORY CHANGES
	ENVIRONMENT DIVISION
	Configuration Section
	Input-Output Section

	STATEMENTS COMPILED AS DOCUMENTATION ONLY
	ENVIRONMENT DIVISION
	I-O-Control Paragraph

	DATA DIVISION
	File Description Paragraph

	PROCEDURE DIVISION
	CLOSE Statement

	Appendix I. LANGUAGE SPECIFICATION
	NUCLEUS
	Level One Implementation
	Level Two Implementation
	CIS COBOL Extensions

	SEQUENTIAL, RELATIVE AND INDEXED I-O
	Level One Implementation
	Level Two Implementation
	CIS COBOL Extensions

	TABLE HANDLING
	Level One Implementation
	CIS COBOL Extensions

	SEGMENTATION
	Level One Implementation

	LIBRARY
	Level One Implementation

	DEBUG
	Level One Implementation
	CIS COBOL Extensions

	INTER-PROGRAM COMMUNICATION
	Level Two Implementation

	Index

