
CIS COBOL Operating Guide For Use
With the CP/M Operating System

Version 4.5

CIS COBOL Operating Guide For Use With the CP/M Operating
System: Version 4.5
Copyright © 1978, 1980, 1982 Micro Focus Limited

iii

Acknowledgements
COBOL is an industry language and is not the property of any company or group of companies, or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the Univac® I and II,
Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

iv

v

Table of Contents
PREFACE .. xiii

MANUAL ORGANIZATION .. xiii
AUDIENCE .. xiii
NOTATION IN THIS MANUAL .. xiv
RELATED PUBLICATIONS ... xiv

1. INTRODUCTION .. 1
GENERAL DESCRIPTION .. 1
GETTING STARTED WITH CIS COBOL ... 1

ISSUE DISK .. 1
THE COMPILER .. 2
THE RUNTIME SYSTEM ... 2
CONFIGURATOR .. 2
THE DEMONSTRATION PROGRAMS ... 2
THE RUN-TIME SUBROUTINES .. 2
FIRST STEPS .. 2

Initialization ... 2
Disk Utilization ... 3
Compilation .. 3
Running The Demonstration Programs .. 3

Calculation of π (PI) .. 4
Stock Control Program One (Cursor Control) 4
Stock Control Program Two (Data Input) .. 5

PROGRAM DEVELOPMENT CYCLE .. 5
PROGRAM PREPARATION CONSIDERATIONS .. 7
PROGRAM DESIGN CONSIDERATIONS ... 7

2. COMPILER CONTROLS .. 9
COMMAND LINE SYNTAX ... 9
COMPILER DIRECTIVES ... 9

FLAG .. 9
NOFLAG ... 9
RESEQ .. 9
NOINT .. 10
NOLIST ... 10
COPYLIST ... 10
NOFORM .. 10
ERRLIST ... 10
INT ... 10
LIST .. 10
FORM ... 10
NOECHO ... 10
NOREF .. 10
DATE .. 11
QUIET ... 11
PAGETHROW .. 11
ANIM .. 11
FILESHARE ... 11
RESTRICT ... 11
COMMIT ... 11
DERESTRICT .. 12
EXCLUDED COMBINATIONS .. 12

SUMMARY INFORMATION ON CRT .. 12
LISTING FORMATS ... 13

3. RUN-TIME SYSTEM CONTROLS ... 15
RUN-TIME DIRECTIVES .. 15

COMMAND LINE SYNTAX ... 15

CIS COBOL Operating Guide For Use With the CP/M Operating System

vi

-V (Version) Parameter ... 15
Load Parameter ... 15
Switch Parameter ... 16
Standard ANSI COBOL Debug Switch Parameter 16
Link Parameter .. 17
Program Parameters ... 17

COMMAND LINE EXAMPLES ... 17
INTERACTION IN APPLICATION PROGRAMS ... 18

CRT SCREEN HANDLING .. 18
Screen Layout and Format Facilities ... 19
Cursor Control Facilities ... 19

INTERACTIVE DEBUGGING .. 20
THE P COMMAND .. 20
THE G COMMAND .. 21
THE X COMMAND .. 21
THE D COMMAND .. 22
THE A COMMAND .. 22
THE S COMMAND .. 22
THE '.' COMMAND .. 23
THE T COMMAND .. 23
DEBUG MACRO COMMANDS ... 23

The M Command .. 23
The L Command ... 24
The $ Command .. 24
The C Command ... 24
The ; Command ... 24

4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS 25
CIS COBOL APPLICATION DESIGN FACILITIES .. 25

INTER-PROGRAM COMMUNICATION (CALL) ... 25
SEGMENTATION (OVERLAYING) ... 25
CHAINING .. 25

INTER-PROGRAM COMMUNICATION ... 25
FORMAT OF CIS COBOL “CALL” .. 26

SEGMENTATION .. 26
CHAINING .. 27
MEMORY LAYOUT ... 27
OPERATIONAL FEATURES ... 28

RUN TIME COBOL PROGRAM LINKAGE ... 29
EXAMPLE LINKAGE ... 30
RUN-TIME SUBROUTINES (IN ASSEMBLER OR NON-COBOL
LANGUAGES) ... 30
RESERVING SPACE FOR RUN-TIME SUBROUTINES 30
FORMAT OF RUN-TIME SUBROUTINE AREA .. 30
PARAMETER PASSING TO RUN-TIME SUBROUTINES 31
PLACEMENT OF THE SUBROUTINES IN THE SUBROUTINE AREA 31
SAMPLE RUN WITH RUN-TIME SUBROUTINES ... 31
ASSEMBLER SUBROUTINES PROVIDED BY MICRO FOCUS 32

The CHAIN Subroutine .. 33
The PEEK Subroutine .. 33
The POKE Subroutine .. 34
The GET Subroutine .. 35
The PUT Subroutine .. 35
The ABSCAL Subroutine ... 36
The File Name Manipulation Routines SPLIT and JOIN 37

5. CONFIGURATION UTILITY ... 39
OBJECTIVES ... 39
USING CONFIG ... 39
RUN TIME SUBROUTINES .. 40

CIS COBOL Operating Guide For Use With the CP/M Operating System

vii

MEMORY MANAGEMENT CONSIDERATIONS ... 40
6. INCORPORATING FORMS-2 UTILITY PROGRAM OUTPUT 43

INTRODUCTION ... 43
SCREEN LAYOUT FACILITY ... 43

MAJOR FACILITIES .. 43
CIS COBOL PROGRAMMING FOR FORMS-2 SCREEN LAYOUTS 43

GENERATED PROGRAMS ... 44
CIS COBOL PROGRAMMING FOR FORMS-2 GENERATED FILES 44

7. USING THE ANIMATOR UTILITY PROGRAM ... 45
COMPILATION .. 45

THE ANIM COMPILER DIRECTIVE .. 45
RUNNING PROGRAMS WITH ANIMATOR ... 46

THE +A RUN COMMAND PARAMETER ... 46
MEMORY MANAGEMENT CONSIDERATIONS ... 47

A. SUMMARY OF COMPILER AND RUN-TIME DIRECTIVES 49
COMPILER DIRECTIVES ... 49
RUN TIME DIRECTIVES .. 51

B. COMPILE-TIME ERRORS ... 53
C. RUN-TIME ERRORS .. 57
D. OPERATING SYSTEM ERRORS .. 59
E. INTERACTIVE DEBUG COMMAND SUMMARY .. 61
F. CP/M DISK FILES .. 63

GENERAL ... 63
SPECIFYING FILES ... 63

FIXED FILE ASSIGNMENT .. 63
Environment Division ... 63
Data Division .. 64
Procedure Division .. 64

RUN-TIME FILE ASSIGNMENT .. 64
Environment Division ... 64
Data Division .. 65
Procedure Division .. 65

BLOCK LENGTHS ... 65
CIS COBOL DISK FILE STRUCTURES UNDER CP/M ... 66

SEQUENTIAL .. 66
LINE SEQUENTIAL ... 66
RELATIVE .. 67
INDEXED SEQUENTIAL .. 67
FILE ERROR STATUS .. 68
FILEMARK UTILITY PROGRAM .. 69

OPERATING INSTRUCTIONS ... 69
Loading ... 69
Running ... 69
Error Conditions .. 69

G. EXAMPLE CONFIGURATION SPECIFYING TAB STOP MODIFICATION 71
H. EXAMPLE CONFIGURATION SPECIFYING USER SUBROUTINES 73
I. EXAMPLE CONFIGURATION IN WHICH NO CRT TAILORING IS
PERFORMED ... 75
J. EXAMPLE RUN TIME SUBROUTINES ... 77
K. EXAMPLE USE OF RUN-TIME SUBROUTINES ... 81
L. CONSTRAINTS .. 83

viii

ix

List of Figures
1.1. Program Development Cycle. .. 6
3.1. Run Time System Memory Layout. .. 15
4.1. Sample CALL Tree Structure. ... 26
4.2. Memory Layout using Segmentation and Inter-Program Communication. 28

x

xi

List of Tables
1.1. Issue Disk Contents. .. 2
2.1. Excluded Combinations of Directives .. 12
3.1. Optional Modules by Load Parameter. .. 16
3.2. CRT Cursor Control Keys ... 19

xii

xiii

PREFACE
This manual describes operating procedures for the CP/M resident releases of the CIS COBOL
Compiler and run-time libraries. The compiler converts CIS COBOL source code into an intermediate
code which is then interpreted by the Run-Time System. The manual describes the steps needed
to compile a program and then execute the compiled program, including all necessary run-time
requirements. Operation of the run-time Debug package is also included.

MANUAL ORGANIZATION
Chapters 1 through 4 of this manual describe compiler features and general procedures for loading and
execution of programs including linkage of assembler programs. Chapter 5 describes the operation
of the configuration utility program CONFIG. Chapters 6, 7 and 8 describe the use of the optional
additional software products with CIS COBOL.

The appendices provide summarized information for reference purposes and give configuration
information for various run-time environments. Some appendices are omitted because they are not
pertinent to this version of CIS COBOL.

AUDIENCE
This manual is intended for personnel already familiar with COBOL usage on other equipment.

This manual contains the following chapters and appendices.

"Chapter 1. Introduction", which gives a general description of the CIS COBOL system, its input and
output files, and the run-time libraries provided with the compiler, plus the step-by-step outline of
compilation, linking, locating and executing of sample interactive programs.

"Chapter 2. Compiler Controls", which describes compiler commands directives and listing formats.

"Chapter 3. "Run Time System Controls", which gives general instructions for running programs,
console operation, CRT screen handling and interactive debugging.

"Chapter 4. Program Design Considerations", which describes the facilities available to overlay
programs and invoke other COBOL programs or programs written in other languages from a main
program.

"Chapter 5. CONFIG Utility", which gives the objectives of the CONFIG Utility, instructions for
configuring standard and non-standard CRTs, and instructions for configuring run-time subroutines.

"Chapter 6. Incorporating FORMS-2 Utility Output", which describes the use of the FORMS-2 screen
formatting utility programs output.

"Chapter 7. Using the ANIMATOR Utility Program", which enables debugging a COBOL program
interactively on the screen at COBOL source code level.

"Appendix A. Summary of Compiler and Run Time Directives", summarizes the compiler directives
available in the CIS COBOL compiler.

"Appendix B. Compile-Time Errors", which lists all errors that can be signalled during program
compilation.

"Appendix C. Run-Time Errors", which lists all errors that can be signalled during program execution.

"Appendix D. Operating Systems Errors", which is a listing of the error messages issued by the CP/
M Operating System.

PREFACE

xiv

"Appendix E. Interactive Debug Command Summary", which summarizes the commands that can be
used with the CIS COBOL Interactive Debug program.

"Appendix F. CP/M Disk Files", which is a description of file naming conventions and formats used
by CIS COBOL under CP/M.

"Appendix H. Example Configuration specifying Tab Stop Modification", which is a typical screen
conversation.

"Appendix J. Example Configuration specifying User Subroutines", which is a typical screen
conversation.

"Appendix K. Example Configuration in which No CRT Tailoring is Performed", which is a typical
screen conversation to configure a system without CRT tailoring.

"Appendix M. Example Run Time Subroutines", which contains assembler listings of typical supplied
sample subroutines.

"Appendix N. Example Use of Run Time Subroutines", which is an example of the way in which the
supplied CALL code routines can be used.

"Appendix P. Constraints", which summarises constraints to be when programming using this release
of CIS COBOL.

NOTATION IN THIS MANUAL
Throughout this manual, the following notation is used to describe the format of data input or output:

1. All words printed in small letters are generic terms representing names which will be devised by
the programmer.

2. When material is enclosed in square brackets [], it is an indication that the material is an option
which may be included or omitted as required.

3. The symbol << after a CRT entry or command format in this manual indicates that the CR (carriage
return) or equivalent data input terminator key must be pressed to enter the command.

Headings are presented in this manual in the following order of importance:

 CHAPTER N
 Chapter Heading
 TITLE

ORDER ONE HEADING
ORDER TWO HEADING
Order Three Heading Text two lines down
Order Four Heading
Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters, e.g. one.

Numbers ten (10) upwards are written in text as numbers, e.g. 12.

The phrase "For documentation purposes only" in the text of this manual means that the associated
coding is accepted syntactically by the Compiler, but is ignored when producing the object program.

RELATED PUBLICATIONS
For details of the CIS COBOL Language, refer to the document:

PREFACE

xv

CIS COBOL Language Reference Manual

For details of the CP/M Operating System, Messages, and File Structures refer to the CP/M Operating
System User manuals.

The utility programs ANIMATOR and FORMS-2 are supplied with user manuals as follows:

CIS COBOL ANIMATOR Operating Guide

CIS COBOL FORMS-2 Utility Manual

xvi

1

Chapter 1. INTRODUCTION
GENERAL DESCRIPTION

COBOL (COmmon Business Oriented Language) is the most widely and extensively used language
for the programming of commercial and administrative data processing.

CIS COBOL is a Compact, Interactive and Standard COBOL language system designed for use
on microprocessor based computers and intelligent terminals under control of the CP/M Operating
System. It is designed to run on any 48K byte microcomputer system with CRT and floppy diskettes
under control of CP/M. Although the minimum system is as specified above, for maximum efficiency
a 64K byte microcomputer with double-density diskettes is recommended.

The CIS COBOL compilation system converts CIS COBOL source code into an intermediate code
which is then interpreted by a Run Time System (RTS).

CIS COBOL programs can be created using the standard CP/M text editor to create the CIS COBOL
source files. The Compiler compiles the source programs from here, or they are entered interactively
direct from the CRT. After compilation is finished, the Run Time System is linked with the compiled
output to form a running user program. A listing of the CIS COBOL program is provided by the
Compiler during compilation. Any error messages are included in this listing.

An interactive development software tool that enables run-time debugging of COBOL programs with
the COBOL code simultaneously displayed is available, and is known as ANIMATOR. See Chapter 7.

Supplied with CIS COBOL is an interactive Debug software tool that enables run-time debugging of
the run-time program at object code level. See Chapter 3.

Note

The Interactive Debug software supplied with CIS COBOL cannot be used if ANIMATOR
is used. If you have ANIMATOR software, a decision must be made at compile time as to
which debugging tool is required.

The standard ANSI DEBUG module is also included in CIS COBOL but this cannot be invoked if
ANIMATOR is used.

The CIS COBOL System also incorporates a powerful utility program called FORMS-2.

The purpose of FORMS-2 is to allow the user to define the screen layouts to be used in a CIS COBOL
application, by simply keying text at the keyboard and so producing model forms on the CRT. The
forms can be automatically used to generate a program which will maintain files with the form data
in them.

It provides an ideal medium of communication between the programmer and the end user who may
know nothing of computers. The minimum storage requirement for FORMS-2 is 56k bytes.

The FORMS-2 Utility program is available from your CIS COBOL Dealer.

GETTING STARTED WITH CIS COBOL

ISSUE DISK
Each user is provided with the software that makes up the COBOL development system described
above on a CIS COBOL Issue Disk.

A CIS COBOL Issue Disk contains the software listed in Table 1-1.

Chapter 1. INTRODUCTION

2

Table 1.1. Issue Disk Contents.

COMPILER RUN-TIME SYSTEM CONFIGURATOR

COBOL.COM
COBOL.I01
COBOL.I02
COBOL.I03
COBOL.I04
COBOL.MSG

RUNA.COM CONFIG.COM

DEMONSTRATION
PROGRAMS

RUN-TIME
SUBROUTINES

UTILITY PROGRAMS

PI.CBL
STOCK1.CBL
STOCK2.CBL

CALL.ASM
CALL.HEX
CALL.PRN

FILEMARK.COM

If your issue disk does not include these items, refer to your CIS COBOL Dealer. Note that files
required with ANIMATOR are supplied only if ANIMATOR is purchased, see the ANIMATOR
Operating Guide.

THE COMPILER
The CIS COBOL Compiler has several overlays and loads each overlay file from the logged-in drive.
The root segment is contained in COBOL.COM and the overlays are contained in the other COBOL
files.

THE RUNTIME SYSTEM
The Run Time System (RTS) executes the intermediate code output from the compiler. In addition to
standard ANSI COBOL statements, CIS COBOL contains many extensions for use with interactive
programs. In order to take advantage of these extensions it is necessary to configure the Run Time
System for the CRT conventions to be used, if this is not a standard ADM-3.

CONFIGURATOR
The RTS can be configured to include subroutines written in assembler language. The CONFIG utility
program is used to reserve an area within the run-time system into which the user may enter assembler
or other language subroutines for use by the CALL Statement in a CIS COBOL program.

THE DEMONSTRATION PROGRAMS
PI.CBL, STOCK1.CBL and STOCK2.CBL are simple demonstration programs, supplied in source
form, which show many of the facilities present in CIS COBOL, and which can also be used by
newcomers to familiarize themselves with the system.

THE RUN-TIME SUBROUTINES
These modules are supplied to provide an example of the use of the COBOL CALL facility to
implement run-time sub-routines (See Chapter 4). Copies of the list files can be found in the Run-
Time subroutine appendices at the back of this manual.

FIRST STEPS

Initialization

Initialize and format system disks as required (see DISK UTILIZATION below) and COPY THE
CONTENTS of the Issue disk to become a working CIS COBOL system.

Chapter 1. INTRODUCTION

3

Disk Utilization

CIS COBOL is designed to take full advantage of two-drive flexible-disk systems, or systems with
hard disk facilities.

Where two flexible-disk drives are available for compilation and running, it can be beneficial to
copy the compiler to one system disk and the Run Time System (RTS) to another. By default the
intermediate code is output to the disk containing the source at compilation and if, therefore, this also
contains the RTS, the program can immediately be run. It is the user's responsibility to decide on the
most efficient disk allocation for this system.

Compilation

Compile all the demonstration programs. These are source files and have the extension .CBL.

EXAMPLE:

A>COBOL STOCK1.CBL<<
**CIS COBOL V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD
**COMPILING STOCK1.CBL
**ERRORS=00000 DATA=00661 CODE=00235 DICT=00409:nnnnn/nnnnn GSA FLAG = OFF
ppppp

A>

Note

All the examples in this manual assume that the CIS COBOL software diskette is loaded in
drive A. If the diskette was loaded in drive B, the first line in the above example would be:

B>COBOL STOCK1.CBL<<

After compilation, a directory listing of the disk will show that two new files exist, namely
STOCK1.LST which is the list file, and STOCK1.INT which contains the intermediate code. Similar
procedures should be followed for STOCK2.CBL and PI.CBL.

Note that STOCK2 has an error in it which is present to show error formats and is for demonstration
purposes only. It does not affect the running of the program.

The message produced by the error is:-

nnnnnn MOVE GET-INPUT TO TF-DATE.
103***************** *******

Note

If the file COBOL.MSG is available on the same drive as the compiler, then a textual
diagnostic is printed on the listing and also displayed on the console, for each error found
by the compiler.

Running The Demonstration Programs

Assume that the Run Time System is now configured and has been renamed RUN. This will typically
be the case on a configuration with one CRT. Where there is more than one CRT, it is a good idea to
follow RUN with letters to identify the particular CRT (eg RUND for the Apple Datamedia). RUN
will be used as the norm in this manual. When these programs have been compiled and run, you have
checked out your disk and have mastered the fundamentals of CIS COBOL facilities.

Chapter 1. INTRODUCTION

4

NOTE: In the Appendices G through L the Run Time System is shown with the file-name RUNA.COM
which is the file-name on the issue disk.

Calculation of π (PI)

A>RUN PI.INT<<

CIS RTS V4.5 COPYRIGHT(C) 1978, 1982 MICRO FOCUS LTD. URNXX/nnnn/XX

This clears the screen, followed by -

CALCULATION OF PI

NEXT TERM IS 0.000000000000

 PI IS 3.141592653589

A>

During the execution of PI the next term changes as the iteration progresses.

Stock Control Program One (Cursor Control)

A>RUN STOCK1.INT<<

CIS RTS V4.5 COPYRIGHT(C) 1978, 1982 MICRO FOCUS LTD. URNXX/nnnn/XX

This clears the screen, followed by -

 STOCK CODE < >
 DESCRIPTION < >
 UNIT SIZE < >

This is a skeleton stock data entry program in which stock records are created on a stock file in stock
code order. It allows the cursor control functions to be checked out. The operator has the ability to
"tab" the cursor forwards and backwards from one data input field to the next. The cursor may be
moved backwards and forwards non-destructively one character position at a time in data input fields.
It may also be HOME to the first character position in the first data input field. In addition there is
a numeric validation on numeric fields which permits only numeric characters to be entered, and an
automatic left zero fill on numeric fields. (See CURSOR CONTROLFACILITIES in Chapter 3 for
cursor control keys on the standard CRT)

It also creates an indexed sequential file on disk called STOCK.IT together with its index called
STOCK.IDX.

To create a record, key the data into the unprotected areas defined by < >. When a record is complete,
press the RETURN key and the record will be written to disk. The unprotected areas will then be space
filled ready for the next record to be entered, if the record has been correctly entered. If the record
remains displayed, the record was incorrectly keyed.

To terminate the run, enter spaces into the STOCK CODE field and press RETURN.

This results in:

END OF PROGRAM

Chapter 1. INTRODUCTION

5

Stock Control Program Two (Data Input)

A>RUN STOCK2.INT<<

CIS RTS V4.5 COPYRIGHT(C) 1978, 1982 MICRO FOCUS LTD. URNXX/nnnn/XX

This clears the screen followed by -

 GOODS INWARD

 STOCKCODE < >
 ORDER NO < >
 DELIVERY DATE MM/DD/YY
 NO OF UNITS < >

This is a skeleton stock data input program in which the stock records created by STOCK1 can be
accessed.

The same cursor control features are present as in STOCK1.INT. Note that the DELIVERY DATE
has a different method of prompting than has so far been used.

Terminate in the same way as for STOCK1.

PROGRAM DEVELOPMENT CYCLE
The cycle for development and running of CIS COBOL application programs that must be performed
by the programmer is as shown in Figure 1-1.

Chapter 1. INTRODUCTION

6

Figure 1.1. Program Development Cycle.

PREPARATION:

The source programs are created on diskette with the user's own existing editor program, or can be
keyed in directly to the compiler using the CRT.

COMPILATION:

COBOL PROG.SRC...

... Loads the single pass compiler to convert a source program (PROG.SRC in this example) into an
interpreted object form known as Intermediate Code (PROG.INT). The user may specify the file on
which the listing will appear. If this is a disk file, it may be edited to correct errors and used as input
for the next run of the compiler.

Chapter 1. INTRODUCTION

7

RUNNING:

RUN PROG.INT...

... Loads the run-time system which in turn loads the Intermediate Code. To aid debugging, the CIS
COBOL interactive debugging facility is available. This allows the user to set break points, examine
and modify locations and then continue execution. Once loaded the programs run to process the user
files as required by the application and controlled by the Operator through the CRT.

Once the user program is fully tested it may be permanently linked to the run-time system by use of
the "=" option. See Chapter 3.

PROGRAM PREPARATION CONSIDERATIONS
The CIS COBOL compiler normally accepts source input from a standard source file (specified on
the compiler command line) as produced by the CP/M "ED" Editor or compatible proprietary editor
software.

The CIS COBOL program format is as specified for standard COBOL and is detailed in the CIS
COBOL Language Reference Manual.

NOTES:

1. Each line of source code must be terminated by a Carriage Return/Line Feed character pair,
including the last line.

2. The compiler will reject most non-alphanumeric characters within the input file, e.g. the Tab
character, unless embedded in literal strings.

PROGRAM DESIGN CONSIDERATIONS
CIS COBOL provides the full COBOL facilities for overlaying in memory and for invoking programs
(dynamically) or subroutines whether written in COBOL or assembler languages, as specified in
the COBOL modules Segmentation and Inter-Program Communication. Chapter 4 contains more
information on the use of these features.

8

9

Chapter 2. COMPILER CONTROLS
COMMAND LINE SYNTAX

The command line format is:

COBOL filename [directives]<<

COBOL is the name of the file which contains the compiler

filename is the optional name of the program which contains the CIS COBOL source
statements. If the filename is not given, the console is taken as the input file.

directive is an optional sequence of CIS COBOL directives that can be specified in any order.
Each directive must be separated by one or more spaces. If the sequence is too long to
fit on one line of the screen then it may be continued on a subsequent line by typing an
ampersand sign "&" followed by carriage return. A particular directive may be on one
line only. Where directives have brackets the left-hand bracket may occur zero, one or
more spaces after the body of the directive. To terminate the sequence, press return.

COMPILER DIRECTIVES
A description of each of the available compiler directives follows:

FLAG (level)
This directive specifies the output of validation flags at compile time. The parameter "level" is
specified to indicate flagging as follows:

LOW Produces validation flags for all features higher than the Low Level of compiler certification
of the General Services Administration (GSA).

L-I Produces validation flags for all features higher than the Low-Intermediate level of compiler
certification of the GSA.

H-I Produces validation flags for all features higher than the High-Intermediate level of compiler
certification of the GSA.

HIGH Produces validation flags for all features higher than the High Level of compiler certification
of the GSA.

CIS Produces validation flags for only the CIS COBOL extensions to standard COBOL as it
is specified in the ANSI COBOL Standard X.23 1974. (See the CIS COBOL Language
Reference Manual)1.

NOFLAG
No flags are listed by the compiler. This is the default if the FLAG directive is ommitted.

RESEQ
If specified, the compiler generates COBOL sequence numbers, re-numbering each line in increments
of 10. The default is that sequence numbers are ignored and used for documentation purposes only,
i.e., NORESEQ.

1 Up to version 4.4, the FLAG (level) directive was called the ANS switch. On older versions of the compiler, use ANS as substitute for FLAG
CIS.

Chapter 2. COMPILER CONTROLS

10

NOINT
No intermediate code file is output. The compiler is in effect used for syntax checking only. The default
is that intermediate code is output, i.e., INT (sourcefile.INT).

NOLIST
No list file is produced; used for fast compilation of "clean" programs. The default is a full list, i.e.,
LIST (sourcefile.LST).

COPYLIST
The contents of the file(s) nominated in COPY statements are listed. The list file page headings
will contain the name of any COPY file open at the time a page heading is output. The default is
NOCOPYLIST.

NOFORM
No form feed or page headings are to be output by the compiler in the list file. The default is headings
are output, i.e., FORM(60).

ERRLIST
The listing is limited to those COBOL lines containing any syntax errors or flags together with the
associated error message(s). The default is NOERRLIST.

INT (external-file-name)
Specifies the file to which the intermediate code is to be directed. The default is: source-file.INT.

LIST (external-file-name)
Specifies the file to which the listing is to be directed (this may be a printing device, ie. console or
printer or a disk file) The default is: source-file.LST.

For list to console use: LIST(CON:) or LIST (:CO:)

For list to line printer use: LIST(LST:) or LIST (:LP:)

FORM (integer)
Specifies the number of COBOL lines per page of listing (minimum 5). The default is 60.

NOECHO
Error lines are echoed on the console unless this directive is specified. The default is ECHO.

NOREF
Suppresses output of the 4-digit location addresses on the right hand side of the listing file. REF is
the default.

Note

Using the directive combination

Chapter 2. COMPILER CONTROLS

11

NOREF NOFORM RESEQ

is a useful way of numbering your CIS COBOL source program. Running the compiler with
this combination results in a list file that is an exact duplicate of your source file, with the
sequence number field in columns 1 - 6 in numerical order from 000010 in upward increments
of 10. An extra three lines are appended at the end of the source code but these are ignored
by the compiler if represented in the source. The user can, of course, delete these extra lines
using the system editor software.

DATE (string)
The comment-entry in the DATE-COMPILED paragraph, if present in the program undergoing
compilation, is replaced in its entirety by the character string as entered between parentheses in the
DATE compiler directive. This date is then printed at the top of every listing page under the filename.

QUIET
This directive causes the error text diagnostic messages not to be produced - leaving only the error
number messages in the listing. The default is NOQUIET, which allows error text messages to be
listed.

PAGETHROW (character-code)
Specifies the ASCII character code for physical page throw on the printing device. The character code
is expressed in decimal, and the default is PAGETHROW (12).

ANIM
The ANIM directive compiles the program in such a way as to enable run-time debugging with
the ANIMATOR product and should not be specified if you do not have this product. See Chapter
7. Note that the compiler produces three new ANIMATOR files for your program in addition to
the intermediate code file (.INT) and any listing (.LST) with the extensions .SDB, .SCP and .DDC
respectively. Default is obviously NOANIM. This directive is only for use when compiling programs
for later debugging with the ANIMATOR product.

The remaining Compiler directives are only for use when compiling programs to run under the
FILESHARE file management system product.

FILESHARE
This directive informs the compiler that the program being compiled contains extended syntax
statements that can be used only with the optional FILESHARE product. (See the FILESHARE Users
Guide). Without the directive, FILESHARE syntax will be flagged as being in error, and further
FILESHARE compile directives (see below) will not be accepted.

RESTRICT (organization)
Categorises all files with the organization specified - "INDEXED" or "RELATIVE" - declared within
the program being compiled, as being of type Exclusive access. The default file type is Unrestricted,
but not Committable, (See FILESHARE above).

COMMIT (organization)
Categorises all files with the organization specified - "INDEXED" or "RELATIVE" - declared within
the program being compiled, as being of type Committable, but not Resettable, (See FILESHARE
above).

Chapter 2. COMPILER CONTROLS

12

DERESTRICT (organization)
Categorises all files with the organization specified - "INDEXED" or "RELATIVE" - declared within
the program being compiled, as being of type Unrestricted, but not Committable, (See FILESHARE
above).

Note

A program containing FILESHARE syntax statements may be compiled using the
FILESHARE directive and will run and can be tested in isolation using a single-user RTS.

EXCLUDED COMBINATIONS
Certain of these directives may not be used in combination. Table 2-1 shows the directives that are
excluded if the directive shown adjacent in the left hand column is specified

Table 2.1. Excluded Combinations of Directives

DIRECTIVE EXCLUDED DIRECTIVES

NOLIST LIST
NOFORM
FORM
RESEQ
COPYLIST
ERRLIST
NOREF

ERRLIST RESEQ
COPYLIST
NOREF

SUMMARY INFORMATION ON CRT
The general format of the basic command line is:

COBOL filename [directives]<<

and the Compiler will reply with:

**CIS COBOL V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD.

where 4 is the version number and 5 is the release number.

Each directive is then acknowledged by the Compiler on a separate line, and is either ACCEPTED or
REJECTED. After all the directives have been acknowledged, the Compiler opens its files and starts
to compile. At this point it will display the message:

filename COMPILING

If any file fails to open correctly, the Compiler will display:

filename FAILED TO OPEN

The compilation will be aborted, returning control to the operating system.

Chapter 2. COMPILER CONTROLS

13

When the compilation is complete the Compiler displays the message:

**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmnun:nnnnn/ppppp GSA FLAGS=nnnnn

where:

ERRORS denotes the number of errors found

DATA denotes the size of RAM required i.e. data area of the generated program

CODE denotes the size of ROM required i.e. code area of the generated program

DICT mmmmm denotes the number of bytes used in the data dictionary.

nnnnn denotes the number of bytes remaining in the data dictionary.

ppppp denotes the total number of bytes remaining in the data dictionary.

GSA
FLAGS

denotes the number of compiler validation flags encountered or 'OFF' if the directive
NOFLAG was entered or assumed.

LISTING FORMATS
The general layout of the list file is as follows:

**CIS COBOL V4.5 filename PAGE: nnnn
**
** OPTION SELECTED
** - optional directives as entered in compile command line -
**
statement 1 HHHH
 . .
 . .
 . .
statement n HHHH

**CIS COBOL V4.5 REVISION n URN AA/0300/BA
**COMPILER COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD
**
**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmrnm:nnnnn/ppppp GSA FLAGS=nnnnn

END OF LIST

The first two lines of title information are repeated for each page. The final line is the same as on
the CRT display. The value denoted by HHHH is a hexadecimal value denoting the address of each
dataname or procedure statement. Addresses of datanames are relative to the start of the data area,
while addresses of procedure statements are relative to the start of the code area (There is an overhead
at the start of the data area, and a few bytes of initialization code at the start of the procedure area
for each SELECT statement).

A syntax error is marked in the listing by an error line with the following format:

nnnnnn illegal statement
** nnn *** ... *** *******

where

Chapter 2. COMPILER CONTROLS

14

nnnnnn is the sequence number of the erroneous line

nnn denotes the error number

The asterisks following the error number indicate the character position of the error in the preceding
erroneous source line. The asterisks at the end of the line simply highlight the error line.

Note

The sample program STOCK2 compiled as described under Compilation in Chapter 1
contains a sample error line.

A flag is marked in the listing by a flagging line with the following format:

nnnnnn flagged feature
** level --- ---- -------

where

nnnnnn is the sequence number of the flagged line.

'level' represents the level at which the feature is flagged using the same acronyms as can be entered
in the command line (when setting the lowest required flagging level):

LOW - Low level

L-I - Low-Intermediate level

H-I - High-Intermediate level

HIGH - High level

CIS - CIS COBOL extensions

The flagged feature is pinpointed at the position of the end of the line of characters beneath the flagged
line. The dashes at the end of the line simply highlight the flagging line.

Note

A program in which flags are indicated can still be run. Errors should always be corrected,
however, and the program recompiled before the object program is run.

15

Chapter 3. RUN-TIME SYSTEM
CONTROLS
RUN-TIME DIRECTIVES

COMMAND LINE SYNTAX
The command line syntax for running a CIS COBOL object program is as follows:

RUN [-V] [load param] [switch param] [link param] filename [program params]

filename is the name of the intermediate code file. File and device conventions for CP/M are given in
Appendix F. RUN must have at least one space keyed after it, and filename must have either a space
or RETURN keyed after it. The parameters need not have spaces keyed after them. An example of the
whole RUN command line is given later in this Chapter.

-V (Version) Parameter

The -V parameter inhibits version compatibility checking between the object code (intermediate code)
being run and the V4.5 run-time system. (By default, only intermediate codes produced by the V4.5
compiler may be run by the V4.5 run-time system.) Error 165 will result if -V is not included, and the
int. code was not the product of the V4.5 compiler. Intermediate code produced by the CIS COBOL
compilers V4.3 or V4.4 can be run on the V4.5 run-time system using this directive.

Load Parameter

The optional load parameter provides the Run Time System loader with the load point for the
intermediate code in memory. The user has the option to overlay optional modules to conserve program
space. Additionally the CIS COBOL Interactive Debug may be invoked. The memory layout of the
Run Time System (RTS) is as shown in Figure 3-1.

Figure 3.1. Run Time System Memory Layout.

The default load position excludes the Debug and ANIMATOR modules but implies that Indexed
Sequential is included. The Debug module may be included and invoked by using the parameter “+D”.

The +A parameter invokes the ANIMATOR product and can be used only if you have the ANIMATOR
product. See Chapter 7.

To exclude the Indexed Sequential package and the optional modules above it (see Figure 3-1), the
parameter “-I” should be given.

Chapter 3. RUN-TIME SYSTEM CONTROLS

16

Table 3-1 shows which optional modules will be loaded for the available parameters.

Table 3.1. Optional Modules by Load Parameter.

Optional Module IncludedLoad Parameter

Debug ANIMATORIndexed
Seq.

RTS only

+D Yes Yes Yes Yes

-D or +A No Yes Yes Yes

-A or +I No No Yes Yes

-I No No No Yes

Switch Parameter

CIS COBOL includes the facility of controlling events in a program at run time depending on whether
or not programmable switches are set by the operator. See the description of the SPECIAL-NAMES
paragraph in the CIS COBOL Language Reference Manual. The operator sets these switches at run
time by use of the Switch Parameter to the RUN command. The general format of the Switch Parameter
is:

where:

[] denotes an optional item

{ } denotes a choice

n1 and n2 are any numbers in the range 07. They can be specified in any order and the last
appearance of any specific number takes precedence.

D see Standard ANSI COBOL Debug Switch Parameter below

+ or - set the switch n1, n2, etc. on or off respectively. The default is that all switches are
off initially.

... denotes that the preceding options enclosed in the outermost brackets can be repeated.

See EXAMPLES later in this Chapter.

Standard ANSI COBOL Debug Switch Parameter

Users may also include a parameter to invoke the standard ANSI COBOL Debug module, whether or
not the CIS COBOL Interactive Debug extension to ANSI COBOL is invoked. (See the CIS COBOL
Language Reference Manual for a description of the Debug facilities).

To include the standard ANSI Debug facility a Run Time switch is required. The format is as for a
normal switch parameter (see Switch Parameter above), but the numeric switch character is replaced
by D. See also EXAMPLES later in this chapter.

Note

This facility cannot be invoked if ANIMATOR is in use, i.e., the +A parameter has been
entered.

Chapter 3. RUN-TIME SYSTEM CONTROLS

17

Link Parameter

When the program is fully tested it may be linked with the Run Time System to produce an executable
program that can be directly loaded. This is achieved by including the parameter "=" to the Run Time
System (see the EXAMPLE overleaf). When the intermediate code file has been loaded (following
the lines above) a binary file with the filename SAVE is produced from the current store image. It
is essential to rename the SAVE file, from which to load directly, to prevent it being overwritten on
the next use of '=' parameter. The REName command is used for this, and the new file-name must
be of the form:

filename.COM

See the CP/M operating documentation for the REName command.

Note

Programs cannot be linked if the ANIMATOR is in use (ie., parameters +a and = are mutually
exclusive).

Program Parameters

These are any parameters required by the program, they can be read in on the console file device :CI:
or CON:.

COMMAND LINE EXAMPLES
1. The directive

RUN B:PROG.INT 1 2<<

loads the program PROG from the intermediate file produced by the compiler and passes the user
program parameters 1 and 2 to the program PROG, where they are accessable to the ACCEPT
statement (See the CIS COBOL Language Reference Manual).

2. The directive

PROG<<

loads the PROG program but omits those options omitted when PROG was linked (PROG must
have been previously linked by the "=" link parameter.)

If it is required to load the sample program STOCK1 in future, instead of the RUN command given
in Chapter 1 (A>RUN STOCK1.INT), the following command could be entered:

RUN = STOCK1.INT<<

followed by the REName command:

REN STOCK1.COM=SAVE<<

In subsequent loads only the command STOCK1<<would then be required.

3. The directive

Chapter 3. RUN-TIME SYSTEM CONTROLS

18

RUN +D (+1+2,+3) = PROG.INT<<

loads the program PROG with interactive CIS COBOL Debug and the Indexed Sequential module.
Programmable switches 1, 2 and 3 are set, and a binary file of the program PROG is created, which
can subsequently be loaded directly. A SAVE file is created and the Interactive CIS COBOL Debug
initial display will appear on the CRT when the saved binary PROG is run.

4. The directive

RUN (-2 +5-7+7) PROG.INT<<

loads the program PROG from the intermediate file produced by the compiler, without Interactive
Debug and with programmable switches 5 and 7 on and 2 off. Note that the last setting of switch
7 is accepted. Switches 1, 3, 4 and 6 are off by default.

Note

An overlayed program always expects the overlays to be in the logged-in drive. Disks in other
drives are not searched for overlays.

5. The directive

RUN (+D) PROG.INT<<

loads the program PROG from the intermediate code file produced by the compiler with the
standard COBOL ANSI DEBUG module invoked, but omitting CIS COBOL Interactive Debug.

6. The directive

RUN +D (+2,+4 +D) PROG.INT<<

loads the program PROG with Interactive CIS COBOL Debug and with programmable switches 2
and 4 set, and with the standard ANSI COBOL DEBUG module invoked.

Warning

NEVER TERMINATE A PROGRAM RUN BY POWERING DOWN OF THE
COMPUTER SYSTEM, PARTICULARLY IF THE PROGRAM CONTAINS DISK FILE
PROCESSING.

INTERACTION IN APPLICATION PROGRAMS

CRT SCREEN HANDLING
COBOL is traditionally a batch processing language; CIS COBOL extends the language to make it
interactive. CIS COBOL offers many facilities for automatic formatting of a CRT screen and facilitates
keying of input.

The CIS COBOL programmer can specify areas of the screen into which the operator is able to key
data, and also whether such data is numeric or alphanumeric. This is achieved by defining the screen as
a record in the DATA DIVISION in which the data fields correspond to the input area and FILLER's
correspond to the rest of the screen.

An ACCEPT statement nominates a record description, which permits input to the character positions
corresponding to variables identifed by data-names. Conversely, a DISPLAY statement outputs only

Chapter 3. RUN-TIME SYSTEM CONTROLS

19

from non-FILLER fields in the record description which it nominates. The programmer can thus easily
build up complex conversations for data entry and transaction processing.

While data is being keyed, the operator has full cursor manipulation facilities, each variable acting as
a tab stop. Non-numeric digits may not be entered into fields defined as numeric. Finally, when the
operator has checked that the data is correct, the RETURN key is depressed and the data becomes
available to the program. Because all characters are transferred to the appropriate area as they are
keyed in there is no transmission delay.

Screen Layout and Format Facilities

The following facilities are available for screen layout and formatting:

• Screen as a record description

• FILLER

• REDEFINES

• AT line column

• CURSOR addressing

• Character highlighting (if available on the CRT in use)

• Clear screen

• Numeric validation of PIC 9(n) fields

• Automatic editing of numeric edited data-items

• De-editing of numeric edited to numeric data-items

Cursor Control Facilities

During execution of ACCEPT statements the cursor is manipulated on the CRT screen by the cursor
control keys on the console keyboard as shown in Table 3-2.

Table 3.2. CRT Cursor Control Keys

Function Keys1

Home (referred to as # or HOM in this manual) Ctrl ↓
Tab forward a field ↓
Tab backward a field ↑
Forward space →
Backward space ←
Column Tab TAB

Left Zero2 .

Return RETURN

1 - Where CTL is specified the operator must press the CTL key hold it down and
simultaneously press the character key. Back one space for ADM3A is thus both the CTL
and the H character keys.

2 - The "." for left zero fill is a “,” when

 DECIMAL-POINT IS COMMA

Chapter 3. RUN-TIME SYSTEM CONTROLS

20

Function Keys1

is specified in the user program

INTERACTIVE DEBUGGING
Two levels of debugging are available to the programmer. The first involves optional "debugging
lines" that are included if the "DEBUGGING MODE" switch is present in the "SOURCE-
COMPUTER" sentence. The second is the interactive Debug package that is included at run-time
under the control of the user (see Switch Parameter in this Chapter).

If Debug is included in the RTS, it will announce its presence when the program is loaded as follows:

RUN +D STOCK1.INT<<

CIS RTS V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD URN XX/nnnn/XX

Debug Mark 3.1 title

? prompt

The user now has the following commands available:

P Displays the current program counter (p-c).

G Breakpoint at specified address.

X Execute one CIS COBOL statement at a time.

D Display bytes in the Data Division

A Replace contents of a memory location by a hexadecimal value or ASCII
character.

S Set start of block for correction or display.

/ Display bytes in block above.

. Change bytes in block above.

T Trace paragraphs up to breakpoint specified.

L Output one CR LF on the CRT

M Define Debug command macro with name specified

$ End macro definition

C Displays specified character on the CRT

; Precedes comment to describe a macro just entered.

A description of the use of each of these Debug commands follows.

THE P COMMAND
The P command displays the address at which the program counter (p-c) currently points i. e, where
the current instruction is in the Procedure Division code of a program. This hexadecimal address is
that printed in the right hand column of a program listing.

EXAMPLE:

At the start of a program the p-c is at 0000 as shown below:

?P<< -command

Chapter 3. RUN-TIME SYSTEM CONTROLS

21

0000 -current p-c
? -prompt

NOTES:

1. The location given by the 'P' command is relative to the start of the PROCEDURE DIVISION. All
numbers in the Debug package are expressed as hexadecimal values.

THE G COMMAND
The G command executes from the current p-c until the p-c reaches the value in the parameter to 'G'.
If this value is not the address of an executed instruction, the breakpoint is never reached and the
program continues.

EXAMPLE:

If a breakpoint is required at PARA-22 in the following code:

 . .
 . .
 PARA-22. 017A
 ADD 1 TO COUNT. 017B - hex address
 MOVE FIELD-1 TO FIELD-2. 018C
 . .
 . .

the following command is typed:

?G 017A<<
?

The display of the second question mark above indicates that the G command has executed completely
and thus the breakpoint has been reached.

NOTES:

1. Exactly four hexadecimal digits must be keyed for an address value.

A check on the current address at this point by use of the P command would be as follows:

?P<<
 017A -returns p-c

2. The command G 0000 can be used to cause a breakpoint on entry to the next called subroutine.

THE X COMMAND
When a suspected error is reached, single instructions can be stepped through one at a time by use of
the 'X' command. After each COBOL instruction is executed, the hexadecimal number in the right-
hand column is the address of the first statement on a line. Where COBOL operations are made up of
several individual primitive instructions, DEBUG may appear to halt in the middle of a line. If this
occurs, the RETURN is pressed again.

EXAMPLE:

If an error occurred in the MOVE instruction the X command sequence would be shown as follows :

Chapter 3. RUN-TIME SYSTEM CONTROLS

22

?X<<
 018C
?

To check the contents of "FIELD-2" before and after the move for code in the "DATA DIVISION"
the display would be:

02 FIELD-1 PIC XXX VALUE "ABC". 0030
02 FIELD-2 PIC XXX VALUE "XYZ". 0033
02 FIELD-3 PIC X(8O) VALUE SPACE. 0036
 . .
 . .

THE D COMMAND
To display bytes in the DATA DIVISION, the 'D' command can be used. This displays 16 bytes from
the address specified (again the address is derived from the information on the listing). It displays each
byte as a hexadecimal value plus an ASCII equivalent if it is printable.

EXAMPLE:

?D 0030<<
41-A 42-B 43-C 58-X 59-Y 5A-Z 20- 20- 20-
FIELD-1 FIELD-2 FIELD-3
 ?

If the MOVE is then executed and re-examined the following display results:

?X<<
 019C
?D 0030<<
41-A 42-B 43-C 41-A 42-B 43-C 20- 20- 20-

THE A COMMAND
The "A" command is used to amend data at a specified memory location.

EXAMPLE:

To replace the first character “A” of FIELD-1 by “G”. The value supplied may be a two character hex
value or an ASCII character preceded by quote eg "G or 47.

?A 0030 47<< -amend byte
?D 0030<<
 47-G 42-B 43-C 41-A 42-B 43-C 20- 20- 20-
?

This correction facility allows continued running even if a bug has produced an erroneous result.

THE S COMMAND
Where a number of corrections are required, DEBUG allows specification of a working register which
contains an address. This address can be set or incremented and the contents can be displayed or
modified immediately by use of the 'S' command. The address and contents can then be displayed
by keying '/'.

Chapter 3. RUN-TIME SYSTEM CONTROLS

23

EXAMPLE:

To display the first byte of FIELD-1 operation would be as follows:

?S 0030<< -load address
?/<< -display
 0030 47G
?

THE '.' COMMAND
To amend the byte at the current location '.' is used; this also increments the working register.

EXAMPLE:

To change FIELD1 to “DEF” the display would be:

?S 0030<< -load address
?.44.45.46<< -modify
?D 0030<<
 44-D 45-E 36-F

To increment only the working register use ','.

THE T COMMAND
An advanced form of the 'G' command is the 'T' command. This also executes up to a breakpoint in
the PROCEDURE DIVISION, but also prints the address of each paragraph encountered.

EXAMPLE:

?T 017B<< trace up to 017B

Note

The command T 0000 can be used to trace up to the start of the next called sub-program.

DEBUG MACRO COMMANDS
The user will find that some Debug command sequences are used often when debugging. If these
sequences are long it can become tiresome typing them in. To overcome this and to allow the
development of complex debugging sequences Debug permits the definition of macros comprised both
of basic operations and other macros. Macros are given names of one character.

The M Command

Macros are introduced by the 'M' command followed immediately by the macro name.

EXAMPLE:

To define a macro to execute up to 018C, display the value at 0030, then jump by a single instruction
and display again; the following would be typed:

?MZ G 018C D0030 L X D 0030 $<<
?

Chapter 3. RUN-TIME SYSTEM CONTROLS

24

To invoke this macro its name is typed as follows:

?Z<<
41-A 42-B 43-C 58-X 59-Y 5A-Z First display
0190
41-A 42-B 43-C 41-A 42-B 43-C Second display

There are two other commands introduced in this macro: 'L' and '$'.

The L Command

The 'L' command merely forces a carriage return and line feed to be output on the console.

The $ Command

The '$' command ends a macro definition.

The C Command

To allow macro writers to output characters to the console, the command 'C' is provided. This outputs
its parameter on the console

EXAMPLE:

?C "A<<
A
?

The ; Command

To improve readability of macros, comments may be inserted. These are introduced by the character
';' and terminated by carriage return.

EXAMPLE:

?MZ D 0030 XL D 0030 $; Run macro<<

Macro names must be letters only. Lower case letters are converted internally to upper case.

If an error is made in typing in a macro then it may be reentered. However, there is only a finite amount
of macro space and space is not released if a macro is reentered. If the space runs out or the maximum
nesting of macros is exceeded then the message STACK OVERFLOW will result.

EXAMPLE:

?MZ Z$; macro to crash system<<
?Z<<

After the crash has occurred, the Debug system will return to command mode and will reset the stack
to allow the user to continue. However, if more serious crashes occur i.e. those with no message, then
the system will not recover.

For full details of Debug commands see Appendix E.

25

Chapter 4. CIS COBOL APPLICATION
DESIGN CONSIDERATIONS

CIS COBOL provides the full COBOL facilities for including programs dynamically and for
overlaying in memory and for invoking programs (dynamically) or subroutines whether written in
COBOL or assembler languages, as specified in standard COBOL modules Segmentation and Inter-
Program Communication.

With these facilities available, large and complex CIS COBOL application programs can be run.
System designers in particular should realize that the total size of the application is not constrained by
the intrinsic hardware environment. This Chapter describes the use of these facilities.

Details of the CIS COBOL Language elements to include the Inter-Program Communication and
Segmentation features are given in the CIS COBOL Language Reference Manual.

CIS COBOL APPLICATION DESIGN
FACILITIES

The facilities for Inter-Program Communication, Segmentation and Chaining are summarised below
and described in the remainder of this Chapter.

INTER-PROGRAM COMMUNICATION (CALL)
CIS COBOL enables COBOL applications to be divided at source level into separate independent
modules. Each module is referred to as a program, in line with ANSI 1974 notation. Programs are
called dynamically from a main application program. Programs written in assembler code language
can also be called from a main COBOL application program. In both cases control is transferred by
the use of the CALL statement which may be used with parameters.

SEGMENTATION (OVERLAYING)
CIS COBOL enables a COBOL program with a large Procedure Division to be broken into a COBOL
program with a smaller Procedure Division and multiple overlays providing the remaining Procedure
Division. The overlays are known as independent segments. A segmented program can be CALLed
as can any program.

CHAINING
Chaining is a CIS COBOL feature to pass control from a CIS COBOL application to another
application or utility. The chained application or utility replaces the original CIS COBOL application
in its entirety. The CHAIN facility is a subroutine supplied with the CIS COBOL Run-Time System.
See ASSEMBLER SUBROUTINES PROVIDED BY MICRO FOCUS in this Chapter. Control is not
returned to the program calling CHAIN.

INTER-PROGRAM COMMUNICATION
By use of the Inter-Program Communication feature, control can be passed from one program to
another using the CALL statement and applications can therefore be designed in independent modules
or programs.

Figure 4-1 shows a sample application using inter-program communication.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

26

Figure 4.1. Sample CALL Tree Structure.

The main program A which is permanently resident in memory calls B, C, or H which are subsidiary
functions and stand-alone functions within the application. These programs call other specific
functions as follows:

B calls D, E and F
C calls X Y, or Z conditionally and K or L conditionally.
H calls K.
K calls M N or Q conditionally.
L calls M if it need to.

As the functions B, C and H are stand-alone they do not need to be permanently resident in memory
together, and can therefore be called as necessary using the same physical memory when they are
called. The same applies to the lower functions at their level in the tree structure.

In the example shown in Figure 4-1, the use of CALL and CANCEL would need to be planned so
that a frequently called subroutine such as K would be kept in memory to save load time. On the other
hand because it is called by C or H it cannot be initially called without C or H in memory i.e., the
largest of C or H should call K initially so as to allow space. It is important also to avoid overflow of
programs; see MEMORY LAYOUT in this Chapter, At the "level" of X, Y and Z it does not matter
in which order loading takes place because they do not make calls at a lower "level".

Another case for leaving called programs in memory is if they open files. Otherwise these programs
would have to re-open the files on every call.

The CIS COBOL Run Unit is an application that is written in CIS COBOL and arranged into a number
of separate CIS COBOL programs; these programs communicate with, invoke and cancel each other
by use of COBOL "CALL" and "CANCEL" statements.

FORMAT OF CIS COBOL “CALL”
The general format of the CIS COBOL "CALL" and "CANCEL" statements are given in the CIS
COBOL Language Reference Manual.

SEGMENTATION
By use of the CIS COBOL Segmentation feature all of the Procedure Division can be loaded into the
available memory. Because it cannot, however, be loaded all at once, it is loaded one segment at a
time, to achieve the same effect, in the reduced store space as shown below.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

27

In the case of a COBOL segmented program the compiler allows space for the largest segment in
that program:

The beginnings of the segments of a Procedure Division of a segmented program are denoted in the
CIS COBOL source by a SECTION label, e.g.

 .
 .
 .
SECTION 52.
 MOVE A TO B.
 etc.
 .
 .
 .
SECTION 62.
 MOVE X TO Y.
 etc.
 .
 .
 .

Segmentation can be applied only to the Procedure Division. The Identification, Environment and
Data Divisions are common to all segments; in addition there may be a common Procedure Division.
All this common code is known as the Permanent Segment. Control Flow between Permanent and
Independent Segments is fully specified in the Language Reference Manual.

CHAINING
The CIS COBOL program chaining feature can be used to replace an application or utility in memory
in its entirety. A CALL is made to the supplied CHAIN utility program which allows another linked
program not requiring parameters to be loaded and entered. There is no return to the calling program.
The CHAIN routine is described later in this Chapter.

MEMORY LAYOUT
In order to consider the use of overlaying (Segmentation) and/or multilanguage calling of other
programs together, it is useful to consider the memory layout. Assuming that both features are in use
Figure 4-2 shows the memory layout.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

28

Figure 4.2. Memory Layout using Segmentation and Inter-Program
Communication.

It can be seen in figure 4-2 that called programs are loaded contiguously. If however a program is
cancelled the memory is made available for another called program. Planning of the use of CALL
is therefore required to ensure that space is available. When a program is loaded it is always placed
in the largest contiguous area of unused memory. Care is needed in the design of CALL/CANCEL
sequences as fragmentation of the total available space in memory for loading into can occur due to
inappropriate design.

Figure 4-2 also shows that there is one fixed area of memory allocated by CONFIG for called
Assembler subroutines; see Chapter 5.

OPERATIONAL FEATURES
Each COBOL program in a CIS COBOL application suite, with the exception of the main program,
should have a Linkage Section in the Data Division through which to communicate with COBOL
programs that call them.

All CIS COBOL programs other than the main program must be compiled and their intermediate code
placed in disk files which are accessed at run time. The main program may be in intermediate code
and named as a parameter to RUN, or it may be linked to RUN in the manner described earlier under
RUNTIME DIRECTIVES.

Any number of COBOL programs and assembler code subroutines can be CALLed from a COBOL
program. Operational features of CALL are as follows:

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

29

1. The CALLed intermediate code program file must be present on disk at the time of the first CALL
to the file or fatal error 164 will result.

2. There must be room available in memory for the program to be loaded. The ON OVERFLOW
phrase can be used to specify program action if insufficient space is available. Otherwise the CALL
statement is ignored and the next calling program instruction is performed.

3. Run-time Subroutines must be preconfigured into the RTS.

4. Disks can be changed during or at run time by suitable user-programmed operator messages and
actions. Under CP/M the changed drive will then become READ only (i.e. accessable only for
input.)

5. The CANCEL statement reclaims unused storage when executed at run time.

6. No more than seven programs can have been called concurrently.

If a tree structure of called independent programs is used as shown earlier, each segment can call the
next dynamically by using the technique shown in the following sample coding:

WORKING-STORAGE SECTION.

01 NEXT-PROG PIC X(20) VALUE SPACES.
01 CURRENT-PROG PIC X(20) VALUE "1STPROG.INT".
PROCEDURE DIVISION.
LOOP.
 CALL CURRENT-PROG USING NEXT-PROG.
 CANCEL CURRENT-PROG.
 IF NEXT-PROG = SPACES STOP RUN.
 MOVE NEXT-PROG TO CURRENT PROG.
 MOVE SPACESTO NEXT PROG.
 GO TO LOOP.

The actual programs to be run can then specify their successors as follows:

.

.

.
LINKAGE-SECTION.
01 NEXT-PROG PIC X(20).
.
.
.
PROCEDURE DIVISION USING NEXT-PROG.
.
.
.
.
.
MOVE "SUCCESOR.INT" TO NEXT-PROG.
EXIT PROGRAM,

It can be seen that in this way each independent segment or sub-program cancels itself, and changes
the name in the CALL statement to call the next one by use of the USING phrase.

RUN TIME COBOL PROGRAM LINKAGE
Run-time execution of the COBOL verb CALL depends on the argument used by the CALL.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

30

When the subroutine or subprogram is in COBOL, the parameter is an alphanumeric quantity whose
value is interpreted as a file-name and the appropriate file of intermediate code is loaded from disk
into memory and executed.

When the subroutine is configured into the RTS for the main program (See RUN-TIME
SUBROUTINES - CALL in this Chapter), the CALL parameter is a numeric quantity, its value is
interpreted as the linkage number to the Run Time subroutine table and the corresponding machine
code subroutine is executed.

EXAMPLE LINKAGE

PROCEDURE DIVISION
 .
 .
 .
CALL "A:SUBITM.INT" USING ...
 .
 .
 .
CALL "10" USING ...
 .
 .
 .

For the first CALL in this example to perform correctly the file SUBITM.INT must be present on disk
unit A and must contain a compiled COBOL program. For the second CALL to -perform correctly
the RTS must contain an assembler subroutine (Run-Time subroutine) arranged as subroutine 10. A
description of run-time subroutine inclusion follows.

RUN-TIME SUBROUTINES (IN ASSEMBLER OR NON-
COBOL LANGUAGES)

The run-time system is designed in such a way that the user may write and include assembled or other
language subroutines that can be accessed using the COBOL "CALL" verb. (See the Appendix on
example use of this facility at the back of this manual).

RESERVING SPACE FOR RUN-TIME SUBROUTINES
To reserve space in the run-time system for User Subroutines, it is necessary first of all to run the
CONFIG program (see Chapter 5) to direct it to reserve the space and, from it, to obtain the absolute
address at which the code is to be placed, (See also Appendix K).

FORMAT OF RUN-TIME SUBROUTINE AREA
The code is now created, ensuring that an 'ORG' is placed at its head to position the code at the correct
place in store as specified by the configuration utility. The code is entered using any CP/M editor
software, then assembled and finally linked at this address using the CP/M DDT linker facility.

Each Subroutine is identified by an integer as in the example in Appendix M (CALTOP).

The first part of the Subroutine area must consist of a table of addresses as follows:-

BYTE 0 Highest subroutine number which is available

BYTE 1+2 Address of routine to satisfy CALL "0"

BYTE 3+4 Address of routine to satisfy CALL "1"

BYTE 5+6 Address of routine to satisfy CALL "2"

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

31

If byte 0 contains n, the user need not include all numbers in the range 0 to n, in which case an unused
integer has address 0. Thus if the user wishes to support CALL "0" and CALL "2" only, the table
would be as follows:-

 ORG NNNNH ;PROG ADDRESS FROM CONFIGURATOR
 DB 2D ;3 ROUTINES AVAILABLE
 DW ADDR0 ;ADDRESS OF CALL "0" ROUTINE
 DW 0 ;CALL "1" NOT IMPLEMENTED
 DW ADDR2 ;ADDRESS OF CALL "2" ROUTINE

PARAMETER PASSING TO RUN-TIME SUBROUTINES
Parameter passing in run time subroutines is as follows:

1. If one parameter is passed, its address will be found in register pair B,C.

2. If two parameters are passed, the first parameter address will be passed in B,C the second address
in D,E.

3. If three or more are passed, the last two will be passed as in 2 above, and the rest will be stacked,
in such a way that the first parameter will be the last to be POPped from the stack.

4. The return address to the Run Time System will be found at the top of the stack on entry to the
CALL code.

5. The user need not clear all parameters from the stack, since this will be automatically reset by the
Run Time System, provided the address on the top of the stack on entry is returned to.

6. If register B,C and/or D,E are not used for parameter passing, they will contain 'FFFF' on entry
to the CALL code.

7. After the last parameter has been POPped from the stack, the next POP will return the value FFFF.

8. If only one parameter is passed the entry following the return address on the stack will be FFFF
as will registers D,E.

9. If no parameters are passed, then conditions will be as in 8 above with B,C set to FFFF also.

The use of terminator FFFF allows the user programmer to pass a variable number of parameters to
the subroutine.

PLACEMENT OF THE SUBROUTINES IN THE
SUBROUTINE AREA

The subroutines will typically be written completely independently of the COBOL program in any
language which generates microprocessor order code. They will be assembled or compiled into
absolute modules located at the addresses specified in the table. at the front of the subroutine area.
During development these addresses will typically change with each new compilation, as the sizes of
the various subroutines change.

The subroutine object code will then be patched into the subroutine area using the CP/M DDT utility.

This utility is described in detail in the CP/M Manual describing DDT.

SAMPLE RUN WITH RUN-TIME SUBROUTINES
The following series of operations show a typical CIS COBOL object program run where a CALL
is made to user subroutines.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

32

1. Place CP/M system disc in drive A.

2. Place object pack containing your HEX file in drive B.

3. Key B: to log in drive B.

4. Key A:DDT RUNA.COM - where RUNA.COM is the configured RTS.

5. The system will respond with:-

NEXT PC
6100 0100H

6. Key Ixxxxxx.HEX - the HEX file identity

7. Key R

8. The system will respond with:-

NEXT PC
XXYY 0000H

At this point take a note of the first two digits of NEXT i.e. "XX" in this example - convert them
to decimal from hexadecimal and subtract 1.

EXAMPLE:

NEXT PC
6216 0000H

XX= 62H i.e., 98D-1 = 97D

Make a note of this decimal value.

9. Press the Control and C keys simultaneously.

10.System responds with B

11.Key SAVE NN RUNZ.COM

Where NN is the decimal number noted in (8), and RUNZ .COM is the of your new Run Time
System.

ASSEMBLER SUBROUTINES PROVIDED BY MICRO
FOCUS

The following standard CALL codes are available in the Run Time System.

CHAIN CALL code "260"

PEEK CALL code "261"

POKE CALL code "262"

GET CALL code "263"

PUT CALL code "264"

ABSCAL CALL code "265"

The user may call these routines without making any alteration to the Run Time System.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

33

The CHAIN Subroutine

The CHAIN call allows another linked CIS COBOL program or any program not requiring parameters
to be loaded and entered. There is no return to the calling program.

A parameter list of one variable must be passed with CALL CHAIN:

• The data-name containing the file-name of the program to chain to.

• The file-name must be terminated by at least one space character.

EXAMPLE:

WORKING-STORAGE SECTION.
 .
 .
 .
 .
 03 NEXT-PROG PIC X(10) VALUE "PRIN2.COM".
 .
 .
 .
 .
 03 CHAIN PIC X(3) VALUE "260".
 .
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 .
 CALL CHAIN USING NEXT-PROG.
 .
 .
 .

The PEEK Subroutine

The PEEK call allows an absolute address location to be examined from a user program. The CALL
returns into the user area a copy of the 8 bit value at the absolute address.

A parameter list of two variables must be passed with CALL PEEK:

• The five-character data-name containing the absolute address to be read from.

• The one-character data-name where the value is to be read to.

EXAMPLE:

WORKING-STORAGE SECTION.
 .
 .
 .
 .
 03 PEEK PIC X(3) VALUE "261".
 .

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

34

 .
 .
 .
 03 ADDRESS PIC 9(5) VALUE 1234.
 .
 .
 .
 .
 03 DATA-VAL PIC X.
 .
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 .
 CALL PEEK USING ADDRESS, DATA-VAL.
 .
 .
 .
 .

The POKE Subroutine

The POKE CALL allows an absolute address location to be set from a user program. The CALL
transfers a copy of an 8-bit value in the user program to an absolute address.

A parameter list of two variables must be passed with CALL POKE:

• The five-character data-name containing the absolute address to be written to.

• The one-character data-name whose value is to be written.

EXAMPLE:

WORKING-STORAGE SECTION.
 .
 .
 .
 .
 03 POKE PIC X(3) VALUE "262".
 .
 .
 .
 .
 03 ADDRESS PIC 9(5) VALUE 2345.
 .
 .
 .
 .
 03 DATA-VAL PIC X VALUE "V".
 .
 .
 .
 .
PROCEDURE DIVISION.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

35

 .
 .
 .
 .
 CALL POKE USING ADDRESS, DATA-VAL.

The GET Subroutine

The GET call allows a hardware port to be input from a user program. The CALL inputs the port and
returns the 8 bit value to a user area.

A parameter list of two variables must be passed with CALL GET:

• The three-character data-name containing the port to be input from.

• The one-character data-name to be input to.

EXAMPLE:

WORKING-STORAGE SECTION.
 .
 .
 .
 .
 03 GET PIC X(3) VALUE "263".
 .
 .
 .
 .
 03 PORT PIC 9(3) VALUE 129.
 .
 .
 .
 .
 03 DATA-VAL PIC X.
 .
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 .
 CALL GET USING PORT, DATA-VAL.
 .
 .
 .
 .

The PUT Subroutine

The PUT call allows a hardware port to be output from a user program. The CALL outputs an 8 bit
value to the port from a user area.

A parameter list of two variables must be passed with CALL PUT:

• The three-character data-name containing the port to be written to.

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

36

• The one-character data-name to be written.

EXAMPLE:

WORKING-STORAGE SECTION.
 .
 .
 .
 .
 03 PUT PIC X(3) VALUE "264".
 .
 .
 .
 .
 03 PORT PIC 9(3) VALUE 131.
 .
 .
 .
 .
 03 DATA-VAL PIC X VALUE X"2F".
 .
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 .
 CALL PUT USING PORT, DATA-VAL.
 .
 .
 .
 .

The ABSCAL Subroutine

The ABSCAL call allows a subroutine CALL to an absolute location. No parameters are passed to
the subroutine at the absolute address.

A parameter list of one variable must be passed with CALL ABSCAL:

• The five-character data-name containing the decimal absolute address to be called.

EXAMPLE:

WORKING-STORAGE SECTION.
 .
 .
 .
 03 ABSCAL PIC X(3) VALUE "265".
 .
 .
 .
 03 ADDRESS PIC 9(5) VALUE 5.
 .
 .

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

37

 .
PROCEDURE DIVISION.
 .
 .
 .
 CALL ABSCAL USING ADDRESS.
 .
 .
 .

The File Name Manipulation Routines SPLIT and JOIN

CP/M names can be decomposed into a device code, file name and file extension, and the supplied
sub-programs SPLIT and JOIN can be used by system programmers to decompose and reconstitute
names in this way. Usually SPLIT is called first and then JOIN is used to produce a file name string
with a modified extension.

Important use of these subroutines is made by the CIS COBOL software as follows:

• The compiler to produce default listing and intermediate code filenames from the source file name

• The compiler to produce the file names of its overlays

• Segmented programs to produce the file names for the various segments and the inter-segment
reference file

• The standard CIS COBOL indexed sequential file package t o produce the name of the index file

SPLIT and JOIN can also prove of use to an application programmer where there is a requirement to
process filenames partially specified, and when writing portable software.

A parameter list of four variables must be passed with CALL SPLIT or CALL JOIN:

1. Identifier of the complete name string (minimum length 20 bytes)

2. Identifier of the device substring (minimum length 6 bytes)

3. Identifier of the file name substring (minimum length 10 bytes)

4. Identifier of the file extension substring (minimum length 5 bytes)

SPLIT separates the string found at 1 storing its resultant substrings at 2. 3. and 4. separately; JOIN
takes the substrings found at 2 . 3. and 4. and combines them storing the resulting complete string at 1.

The file name strings are subject to the CP/M maximum length and may be terminated earlier by a
space character. This means that the parameters (1 - 4) specified above must be the identifiers of areas
of WORKING STORAGE each at least as large as their respective minimum length.

The order of the parameters passed to SPLIT and JOIN is of course important:

CALL SPLIT using filename-to-be-split,
device-substring,
name-substring,
extension-substring.

CALL JOIN using concatenated-substrings,
device-substring,
name-substring,
extension-substring.

EXAMPLE:

Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS

38

 WORKING-STORAGE SECTION.
 01 Keyed-filename PIC X(20).
 01 Namstr PIC X(lO).
 01 Devstr PIC X(6).
 01 Extstr PIC X(S).

 01 DISK-filename PIC X(20) value spaces.

 01 Default-device PIC X(2) value "B:".

 01 SPLIT PIC X(3) value "268".

 01 JOIN PIC X(3) value "269".

 .
 .
 .
 Procedure Division.

 ACCEPT keyed-filename.

 Call SPLIT using keyed-filename, devstr, namstr, extstr.

 *
 * Now put default device into device string if user
 * did not specify a particular device.

 *

 IF devstr - spaces move default-device to devstr.

 *

 call JOIN using disk-filename, devstr, namstr, extstr.

 *
 * Now perform file processing on filename specified by
 * the user, and now concatenated in 'disk-filename'
 *
 .
 .
 .

39

Chapter 5. CONFIGURATION UTILITY

OBJECTIVES
The Configuration Utility Program (CONFIG) can be used as follows:

1. To reserve an area within the RTS into which the user may enter assembler or other language
subroutines for use by the CALL statement in a CIS COBOL program. This function may only
be performed once and it is therefore essential to copy the RTS before running CONFIG. (The
subroutine code is written by the user as an absolute segment which he then patches into the area
reserved in the RTS using the CP/M DDT Utility).

2. To modify the default tabbing positions used when ACCEPTing data from the screen.

Note

CONFIG does not provide a capability for the inclusion of user subroutines into linked
programs or programs that already contain user subroutines.

USING CONFIG
A CP/M System disc is loaded in drive A, and the CIS COBOL Issue Disk in drive B. CP/M is bootstrap
loaded and the system responds as follows:

A>B:

B>

To load CONFIG the following entry is typed:

B>CONFIG [filename]

At this point, CONFIG signs on, as shown in the listings in the Appendices. It should be noted here that
whenever CONFIG is waiting for the operator to key something, it will output the" >" sign as a prompt
character. The first request from CONFIG is the file name of the run-time system to be configured if
this has not been entered in the command line. In the appendices the reply RUNA.COM was made.

Once the configuration utility has been given the RTS file name, there will be a short pause during
which it attempts to access the file. Should it fail to find the file (e.g . wrong file name or no .COM
extension) it will display:

FILE OPEN FAILURE, PLEASE ENTER A NEW NAME

and request the file name to be entered again.

NOTES:

1. If the disk identifier is omitted, the configuration utility accesses the logged in disk which is in
drive B.

2. A version check is carried out after successful opening of the RTS file. ONLY Version 4.5 programs
can be configured using CONFIG Version 3.

The RTS allows the use of a 'TAB' character. This allows the user to jump eight characters at a time
on input, as the default.

Chapter 5. CONFIGURATION UTILITY

40

Users have the opportunity to vary this default, by replying Y (Yes). The configuration utility then asks
the operator to key in the character positions at which the tabs should be placed (See Appendix H).

The RTS also provides the ability to supply Assembler code that will service the COBOL "CALL"
verb. A reply of N at this point results in the end of run. The effects of replying Y are described
under RUNTIME SUBROUTINES in this Chapter. See also RUN-TIME SUBROUTINES - CALL
in Chapter 4.

Note

CONFIG does not allow for inclusion of user subroutines in a linked program.

At this point the RTS is ready to be stored on disk and there will be a short delay while this takes place.

RUN TIME SUBROUTINES
The user may include his own subroutines in the RTS, which can be CALLed from a CIS COBOL
program. These may be written in assembler or other languages such as PL/M which generate 8080
or Z80 machine code. If such subroutines are required, then the configuration utility must be used to
determine at what address they should be held.

The standard RTS supplied allows parameters to be used at run time to control the position at which
the COBOL Intermediate Code is to be loaded. Parameters must not be entered if the ANIMATOR
package is in use (+A was entered). Once the configuration utility has configured the Run Time System
to allow run time subroutines to be included, this facility is withdrawn, and the Intermediate Code will
always load at the address determined by the configuration utility . The actual address is dependent
on the answers to questions posed by CONFIG requesting details of the facilities wanted in the RTS
being configured.

The configuration utility will allow the following options:

1. To add the subroutines to the end of the RTS allowing all facilities to be used.

2. To remove the possibility of using the Interactive Debug package, overwrite this with the
subroutines and load the intermediate code beyond this.

3. To overwrite the Indexed Sequential package and the Debug and ANIMATOR package.

4. To overwrite the Indexed Sequential, Debug and ANIMATOR packages.

Having ascertained where the run time subroutines should be located the user is asked to specify the
length of the subroutines in order that the load point for the intermediate code may be determined. It
is important to ensure that the figures input for the length of the subroutines is the maximum that is
likely to be used, as any excess will be overwritten by the intermediate code.

The configuration utility will advise the address at which the subroutines are to be located.

MEMORY MANAGEMENT CONSIDERATIONS
If the modules established by CONFIG as overloadable (based on user replies during the CONFIG
run) have a total contiguous length exceeding that of the assembler routines, the routines can reside in
this free space; otherwise they must be appended at the high-address end of the RTS.

It can therefore be seen that the total length of the RTS, once assembler subroutines are included, may
or may not have increased depending on the two factors above.

The diagram below gives an idea of the length (in decimal) of the RTS overloadable modules in CIS
V4.5.

Chapter 5. CONFIGURATION UTILITY

41

From the above diagram it can be seen that the maximum length of assembler subroutines that can be
embedded in the RTS is of the order of 11,000 bytes - only possible in the case where all of the three
modules DEBUG, ANIMATOR, INDEXED are specified as excludable.

Note that the size of the RTS will NEVER decrease as a result of assembler subroutine inclusion,
because of the fixed module at the top of the RTS.

42

43

Chapter 6. INCORPORATING
FORMS-2 UTILITY PROGRAM
OUTPUT

INTRODUCTION
The FORMS-2 Utility program offers two major facilities to CIS COBOL users:

1. The user can define screen layouts to be used in a CIS COBOL application by simply keying the
text at the keyboard, and so producing a model form on the CRT.

2. The user can automatically generate programs to manipulate data input using the created form. In
particular, indexed sequential files can be generated and maintained automatically, and these files
can, of course, be used with CIS COBOL programs.

The FORMS-2 Utility is available as a separate software package, and is supported by the FORMS-2
Utility Program Users Guide.

SCREEN LAYOUT FACILITY
The FORMS-2 Screen Layout facility generates source COBOL Record Descriptions for screen
layouts.

MAJOR FACILITIES

Users have three major facilities available to them:

1. They may store an image copy on disk of the form they have just defined for subsequent use in this
or another FORMS-2 run. The image can be printed to obtain a hard copy, using the O/S standard
file print utility program.

2. They may generate CIS COBOL source code for the data descriptions required to define the form
just created. This may then be included into a CIS COBOL program by use of the COPY verb.

3. They may choose to generate a Check Out program which allows duplication of many machine
conversations which would take place during a run of the application which is being designed.

CIS COBOL PROGRAMMING FOR FORMS-2 SCREEN
LAYOUTS

All that the user has to do to incorporate FORMS-2 Screen layout output in a program is to specify
the FORMS-2 output file name (filename.DDS) in a COBOL COPY statement. Obviously data item
names in the user program must be specified to correspond with those generated from a user-specified
base name by FORMS-2. Details of FORMS-2 name generation are given in the FORMS-2 Utility
Program Users Guide.

EXAMPLE:

000000 COPY "DEMO.DDS".

Chapter 6. INCORPORATING FORMS-2
UTILITY PROGRAM OUTPUT

44

GENERATED PROGRAMS
The FORMS-2 Utility generates a COBOL program which maintains data stored in the created forms
in an indexed sequential file automatically, with automatic generation of file names from a user-
supplied base name. These files comply with the standards in use by the operating system under which
CIS COBOL is being used.

CIS COBOL PROGRAMMING FOR FORMS-2
GENERATED FILES

No special programming is required to use FORMS-2 generated program files in a CIS COBOL
application program. The files are processed as normal indexed sequential files. It is worth noting
that the files can be fully maintained interactively by use of only the FORMS-2 Utility. In addition to
establishing or deleting files, this includes the following facilities:

• Insertion of new records
• Insertion of the same data in records with different keys
• Display of any selected record/s (Full inquiry facility)
• Insertion or amendment of records dependent on their key
• Deletion of records
• Read and display next record or a message if end of file detected
• Terminate run

Details of the FORMS-2 Indexed Sequential File handling facilities are given in the FORMS-2 Utility
Program Users Guide.

45

Chapter 7. USING THE ANIMATOR
UTILITY PROGRAM

ANIMATOR is a COBOL oriented debugging tool that is available for use with CIS COBOL. The
main aim of ANIMATOR is to free the COBOL programmer from the need to be aware of the internal
representations of either data or procedural code, so that even a trainee programmer already has the
knowledge necessary to debug his programs effectively.

This is achieved by using the screen as a "window" into the source COBOL program and "animating"
execution by moving the cursor from statement to statement as execution proceeds. Speed of execution
can be varied; the user may also switch off animation thus allowing rapid execution up to the area
of interest.

The user can interrupt execution at any point, either by defining break-points or dynamically simply
by pressing the space-bar on the keyboard. Whilst execution is suspended the user can easily examine
any part of the source code by means of simple commands to refresh the screen display. This means
that it is not even necessary to have a printed compilation listing in order to debug a program.

Various other debugging functions are available, invoked by pressing a key. Only the top 20 lines of
the screen are used for the display of source code, the bottom area being used to display menus of
available commands, some of which invoke subordinate command menus.

Where debugging functions require reference to either data items or procedural statements this is
achieved by the user moving the cursor to “point” at the appropriate place in the source code.
Alternatively data items can be referenced by actually typing the COBOL data-name.

Where control of ANIMATOR requires more keyboard input than simply pointing with the cursor or
pressing one of the displayed command characters, COBOL syntax is used. For instance, replacement
of data item values is achieved by typing that value in COBOL literal format (i.e. non-numeric literals
are enclosed in quotes).

The facilities provided in ANIMATOR make it much more than simply a COBOL-oriented debugger.
It can be a valuable training aid, and also provides the ideal means for a programmer to attain
understanding of an unfamiliar program.

ANIMATOR is supplied as a separate product complete with dccumentation. This Chapter describes
CIS COBOL operating considerations in order to use the ANIMATOR utility.

COMPILATION
In order to be able to use ANIMATOR with a CIS COBOL program, a specific directive must be
included in the CIS COBOL compiler command line.

THE ANIM COMPILER DIRECTIVE
The inclusion of directives in the compiler command line is described in Chapter 2 of this manual.
If the ANIM directive is included the compiler will compile the source input in such a way as to
allow run time animation. The compiler generates in addition to the ".INT" file, three other files with
extension identifiers as follows:

.DOC

.SCP

.SCB

These files will be directed to the same drive as the intermediate file produced by the compiler.

Chapter 7. USING THE ANIMATOR UTILITY PROGRAM

46

Note

The intermediate code file includes data specifying whether or not it was produced by
compilation with the ANIM directive specified. An intermediate file produced by compiling
without ANIM cannot be run with animation even if the three extra files mentioned above
are available from a previous compilation when ANIM was specified.

RUNNING PROGRAMS WITH ANIMATOR
To run a CIS COBOL program that has been compiled with the ANIM compiler directive specified,
it is necessary to enter the run command line parameter +A. Chapter 3 of this manual describes the
CIS COBOL Run Command line.

THE +A RUN COMMAND PARAMETER
In addition to specifying a particular load point for a user program (see Chapter 3) the +A parameter
is the animation run time switch, and causes ANIMATOR to be loaded and run providing dynamic
control of the user program. The following files must be present at run time in order to use
ANIMATOR:

File Disk Drive

$ANIM.V45 The logged in drive

filename.CSL
filename.SCP
filename.SCB
filename.DDC

The drive containing the int. code
(Note: the file containing the
COBOL source must have the
extension .CBL)

If $ANIM.V45 is not present on the logged-in drive, a message is displayed on the VDU and
ANIMATOR is permanently switched off. If any of the other files is not present, then the message

Animation of root programs inhibited - missing files

is displayed and ANIMATOR is not activated for the root program, but still may be invoked for called
subprograms.

Note

Deletion/Renaming of files (except $ANIM.V45) can be used to switch off animation for
selected programs within a suite. This facility can be used as an alternative to recompiling
without the ANIM switch.

EXAMPLES:

The directive

RUN +A PROG.INT<<

loads and runs the program PROG with animation. The program must have been compiled with
ANIM and all necessary files (see LOAD Parameter in Chapter 3) must be present. Also, the RTS
must be capable of initiating ANIMATOR (i.e. this facility is available and has not been omitted at
configuration time - see Chapter 5).

The directive

RUN +A = PROG.INT<<

Chapter 7. USING THE ANIMATOR UTILITY PROGRAM

47

is invalid, and results in the message

"=" and "+A" not allowed in conjunction

being displayed on the screen, followed immediately by a return to CP/M.

The directive

RUN +A +I = PROG.INT<<

is invalid (only 1 load parameter allowed) and results in the message

Command line processing error

being displayed on the screen, followed immediately by a return to CP/M.

MEMORY MANAGEMENT CONSIDERATIONS
The size of the RTS with ANIMATOR included is larger by 1920 (decimal) bytes, than it will be when
not included. Additionally, the program $ANIM.V45 will be loaded as and when it is necessary to
animate a program, and will remain in memory thereafter. The diagram that follows gives an idea of
the memory usage by CIS systems components when running with ANIMATOR:

ANIMATOR attempts to load the complete Data Division of the program to be animated into memory;
it then loads as much of the Procedure Division as can be fitted in (ANIMATOR maintains a 'window'
onto the procedure division code). If the entire Data Division of the program cannot be accommodated
in available memory, then the program cannot be animated.

Note

1. In addition to memory usage by CIS COBOL system components, memory may be
reserved by a resident operating system at the top end of memory.

2. ANIMATOR and Interactive Debug (see Chapter 3) are mutually exclusive facilities and
cannot be used concurrently .

Chapter 7. USING THE ANIMATOR UTILITY PROGRAM

48

3. If the RTS has been configured for user subroutines, and at the time of configuration
the ANIMATOR or Interactive Debug modules were excluded (as described under
MEMORY MANAGEMENT CONSIDERATIONS in Chapter 3) it is invalid to supply
a load parameter of "+A" or "+D", since the RTS no longer contains these modules. In
general, attempts to activate a facility which has been omitted in this way will result in
the message:

Pre-assigned Load Point Used

49

Appendix A. SUMMARY OF
COMPILER AND RUN-TIME
DIRECTIVES
COMPILER DIRECTIVES

The general format of the command line for compilation is:

A> COBOL filename [directives]

filename is the name of the file that contains the CIS COBOL source program.

A description of the available compiler directives follows:

FLAG (level)

This directive specifies the output of validation flags at compile time. The parameter "level" is
specified to indicate flagging as follows:

LOW Produces validation flags for all features higher than the Low Level of compiler
certification of the General Services Administration (GSA).

L-I Produces validation flags for all features higher than the Low-Intermediate level of
compiler certification of the GSA.

H-I Produces validation flags for all features higher than the High-Intermediate level of
compiler certification of the GSA.

HIGH Produces validation flags for all features higher than the High Level of compiler
certification of the GSA.

CIS Produces validation flags for only the CIS COBOL extensions to standard COBOL as it
is specified in the ANSI COBOL Standard X.23 1974. (See the CIS COBOL Language
Reference Manual)1.

NOFLAG

No flags are listed by the compiler. This is the default if the FLAG directive is ommitted.

RESEQ

If specified, the compiler generates COBOL sequence numbers, re-numbering each line in
increments of 10. The default is that sequence numbers are ignored and used for documentation
purposes only, i.e., NORESEQ.

NOINT

No intermediate code file is output. The compiler is in effect used for syntax checking only. The
default is that intermediate code is output, i.e., INT (sourcefile.INT).

NOLIST

No list file is produced; used for fast compilation of "clean" programs. The default is a full list,
i.e., LIST (sourcefile.LST).

1 Up to version 4.4, the FLAG (level) directive was called the ANS switch. On older versions of the compiler, use ANS as substitute for FLAG
CIS.

Appendix A. SUMMARY OF COMPILER
AND RUN-TIME DIRECTIVES

50

COPYLIST

The contents of the file(s) nominated in COPY statements are listed. The list file page headings
will contain the name of any COPY file open at the time a page heading is output. The default
is NOCOPYLIST.

NOFORM

No form feed or page headings are to be output by the compiler in the list file. The default is
headings are output, i.e., FORM(60).

ERRLIST

The listing is limited to those COBOL lines containing any syntax errors or flags together with
the associated error message(s). The default is NOERRLIST.

INT (external-file-name)

Specifies the file to which the intermediate code is to be directed. The default is: source-file.INT.

LIST (external-file-name)

Specifies the file to which the listing is to be directed (this may be a printing device, ie. console
or printer or a disk file) The default is: source-file.LST.

For list to console use: LIST(CON:) or LIST (:CO:)

For list to line printer use: LIST(LST:) or LIST (:LP:)

FORM (integer)

Specifies the number of COBOL lines per page of listing (minimum 5). The default is 60.

NOECHO

Error lines are echoed on the console unless this directive is specified. The default is ECHO.

NOREF

Suppresses output of the 4-digit location addresses on the right hand side of the listing file. REF
is the default.

DATE (string)

The comment-entry in the DATE-COMPILED paragraph, if present in the program undergoing
compilation, is replaced in its entirety by the character string as entered between parentheses in the
DATE compiler directive. This date is then printed at the top of every listing page except the first.

QUIET

The full text of error messages is suppressed, only the numbers are produced. The default is
NOQUIET.

PAGETHROW (character-code)

Specifies the ASCII character code for physical printer page throw. Default is PAGETHROW
(12).

ANIM

The program is compiled for run-tim e debugging with the optional ANIMATOR product, (See
Chapter 7). Default is NOANIM.

Appendix A. SUMMARY OF COMPILER
AND RUN-TIME DIRECTIVES

51

FILESHARE

The program to be compiled contains additional FILESHARE syntax that can be read only if you
have the optional FILESHARE product.

RESTRICT (organization), COMMIT (organization), DERESTRICT (organization)

Specifies the shared access mode for all files with the organization entered. Can only be used with
the optional FILESHARE product. See FILESHARE directive above and also Chapter 8.

RUN TIME DIRECTIVES
The command line syntax for running a CIS COBOL object program is as follows:

RUN [-V] [load param] [switch param] [link param] filename
[program params]

where:

-V inhibits the compatibility check between the compiler and RTS versions.

load param loads modules as follows:

switch param is of general format:

n1 and n2 are any program switch numbers (See Language Reference Manual) in the range 0-7

D invokes the standard ANSI COBOL Debug module

+ or - sets the associated switch on or off

link param is the = (equal sign) symbol which is us ed to link the program with the Run Time System
so that it can be directly loaded. Note that it is important to rename the SAVE file generated to avoid
it being overwritten at the next use of the = parameter. (Cannot be used with +A).

filename is the name of the file in which the intermediate code of the program to be loaded is stored

program params are any formats required to be passed to the program from the Operator at load time.
These are user specific.

52

53

Appendix B. COMPILE-TIME ERRORS
The error descriptions that correspond to error numbers as printed on listings produced by the CIS
COBOL compiler are as follows:

ERROR DESCRIPTION

01 Compiler Error; consult your Technical Support Service

02 Illegal format of data-name

03 Illegal format of literal or invalid use of 'ALL'

04 Illegal format of character

05 Data-name declared twice

06 Too many data or procedure names have been declared - compilation
abandoned

07 Illegal character in column 7, or continuation line error

08 Nested COPY statement or unknown file specified

09 '.' missing

10 The statement starts in the wrong area of the source line

22 'DIVISION' missing

23 'SECTION' missing

24 'IDENTIFICATION' missing

25 'PROGRAM-ID' missing

26 'AUTHOR' missing

27 'INSTALLATION' missing

28 'DATE-WRITTEN' missing

29 'SECURITY' missing

30 'ENVIRONMENT' missing

31 'CONFIGURATION' missing

32 'SOURCE-COMPUTER' missing

33 OBJECT-COMPUTER or SPECIAL-NAMES clause in error

34 'OBJECT-COMPUTER' missing

36 'SPECIAL-NAMES' missing

37 SWITCH Clause in error

38 DECIMAL-POINT Clause in error

39 CONSOLE Clause in error

40 Illegal currency symbol

42 'DIVISION' missing

43 'SECTION' missing

44 'INPUT-OUTPUT' missing

45 'FILE-CONTROL' missing

46 'ASSIGN' missing

47 'SEQUENTIAL' or 'RELATIVE' or 'INDEXED' missing

48 'ACCESS' missing on indexed or relative file

49 'SEQUENTIAL' or 'DYNAMIC' missing

50 Illegal combination ORGANIZATION/ACCESS/KEY

Appendix B. COMPILE-TIME ERRORS

54

ERROR DESCRIPTION

51 Unrecognised clause in SELECT statement

52 RERUN clause contains syntax error

53 SAME AREA clause contains syntax error

54 File-name missing or illegal

55 'DATA DIVISION' missing

56 'PROCEDURE DIVISION' missing or unknown statement

57 * 'EXCLUSIVE', 'AUTOMATIC' or 'MANUAL' missing

58 * Non-exclusive lock mode specified for restricted file

62 'DIVISION' missing

63 'SECTION' missing

64 File-name not specified in SELECT statement

65 RECORD SIZE integer missing

66 Illegal level number or level 01 required

67 FD qualification contains syntax error

68 'WORKING-STORAGE' missing

69 'PROCEDURE DIVISION' missing or unknown statement

70 Unrecognized clause in Data Description or previous'.' missing

71 Incompatible clauses in Data Description

72 BLANK is illegal with non-numeric data-item

73 PICTURE clause too long

74 VALUE with non-elementary item, wrong data-type or value
truncated

75 VALUE clause in error or illegal for PICTURE type

76 FILLER/SYNCHRONIZED/JUSTIFIED/BLANK clause for non-
elementary item

77 Preceding item at this level has 0 or more than 8192 bytes

78 REDEFINES of different levels or unequal field lengths.

79 Data Division exceeds 32K and data-item has address above 7FFF

81 Data Description clause inappropriate or repeated

82 REDEFINES data-name not declared

83 USAGE must be COMP, DISPLAY or INDEX

84 SIGN must be LEADING or TRAILING

85 SYNCHRONIZED must be LEFT or RIGHT

86 JUSTIFIED must be RIGHT

87 BLANK must be ZERO

88 OCCURS must be numeric, non-zero and unsigned

89 VALUE must be a literal, numeric literal or figurative constant

90 PICTURE string has illegal precedence or illegal character

91 INDEXED data-name missing or already declared

92 Numeric edited PICTURE string is too large

101 Unrecognised verb

102 IF ELSE mismatch

103 Data-item has wrong data-type or is not declared

Appendix B. COMPILE-TIME ERRORS

55

ERROR DESCRIPTION

104 Procedure name has been declared twice

10S Procedure name is the same as a data-name

106 Name required

107 Wrong combination of data-types

108 Conditional statement not allowed; imperative statement expected

109 Malformed subscript

110 ACCEPT or DISPLAY wrong

111 Illegal syntax used with I-O verb

112 * LOCK clause specified for file with lock mode EXCLUSIVE

113 * KEPT specified for uncommittable file

115 * KEPT omitted for comittable file

116 IF statements nested too deep (maximum 8)

117 Structure of Procedure Division wrong (e.g. DECLARATIVES not
first)

118 Reserved Word missing or incorrectly used

119 Too many subscripts in one statement

120 Too many operands in one statement

141 Inter-segment procedure name declared twice

142 IF ELSE mismatch at the end of source input

143 Data-Item has wrong data-type or is not declared

144 Procedure name undeclared

145 INDEX name declared twice

146 Cursor address field not declared or not 4 bytes long

147 KEY declaration missing or FD missing

148 STATUS declaration missing

149 FILE STATUS data-item has the wrong format

150 Paragraph to be ALTERed is not declared

151 PROCEDURE DIVISION in error

152 USING parameter is not declared in the linkage section

153 USING parameter is not level 01 or 77

154 USING parameter is used twice in the parameter list

157 Structure of Procedure Division wrong (e.g. DECLARATIVES not
first)

160 Too many operands in one statement

* The error codes marked by an asterisk apply only when the optional FILESHARE product is in use.

In addition to these numbered error messages, the following message can be displayed with subsequent
termination of the compilation:

 FATAL I-O ERROR: filename

where filename is the erroneous file.

Any intermediate code file produced is not usable.

The following conditions will cause this error:

Appendix B. COMPILE-TIME ERRORS

56

Disk overflow
File directory overflow
File full
Impossible I-O device usage

Other operating system dependent conditions can also cause this error.

Note

You will notice that the numbers of the numbered error messages listed above are not
continuous, i.e., there are gaps in the numbering. The compiler should never have cause to
generate an error message with a number not listed above. If you ever encounter such a
number, consult your Micro Focus Product Technical Support office.

57

Appendix C. RUN-TIME ERRORS
Run-time error messages are preceded by the name and segment number of the currently executing
intermediate code file.

There are two types of runtime errors: Recoverable and Fatal.

(a) Recoverable errors

If the programmer has specified the STATUS clause in the FILE-CONTROL paragraph of a program
error handling is the programmer's responsibility. This will generally only apply to errors that are not
considered fatal by the operating system.

(b) Fatal errors

All errors except those above are fatal. They may come from the operating system or from the run-
time system. Fatal errors cause a message to be output to the console which includes a 3-digit error
code and reference to the COBOL statement subsequent to that in which the error occurred. These
fall into two classes:

(i) Exceptions These cover arithmetic overflow, subscript out of range, too many levels of
perform nesting.

(ii) I-O errors These exclude those for which STATUS is not selected as above.

Error Description

151 Random read on sequential file

152 REWRITE on file not open I-O

153 Subscript out of range

154 Perform nesting exceeds 22 levels

156 Invalid file operation

157 Object file too large

158 REWRITE on line-sequential file

159 Malformed line-sequential file

161 Illegal intermediate code

162 Arithmetic overflow or underflow

164 Specified CALL code not supplied or Attempt to call a COBOL
module recursively (i.e when is already active)

165 Incompatible releases of compiler and run-time system

168 Memory arrangement failure

169 Invalid indirect sequential file key length (>32 characters)

170 Illegal operation in Indexed Sequential

171 Attempt to read I-S record in output/extend mode

172 Attempt to delete I-S record in non I-O mode

173 Attempt to write I-S record in input mode

174 Attempt to CALL/CANCEL on active program

176 Illegal inter-segment reference

180 COBOL file malformed

181 Fatal file malformation

Appendix C. RUN-TIME ERRORS

58

Error Description

194 File size too large (>0.5MB)

195 DELETE/REWRTTE not preceded by a READ

196 Relative (or Indexed) - Record number too large (>65535)

197 File save failure

198 Program load failure (using CHAIN)

199 Indexed sequential file name too long (>20 characters)

200 Insufficient space to load Animator

59

Appendix D. OPERATING SYSTEM
ERRORS

These errors appear in the same format as CIS COBOL Run-Time errors; conventionally error numbers
1-99 are reserved for the operating system. In the following list fatal errors are marked with an asterisk.

ERROR DESCRIPTION

0 No error

* 1 Insufficient buffer space

2 File not open when access attempted

3 Attempt to open more than 12 files simultaneously

4 Illegal file name

5 Illegal device specification

6 Attempt to write to input file

* 9 No room in diskette directory

12 Attempt to open file already open

13 Attempt to open for input a non-existant file

22 Illegal or impossible access mode to OPEN

* 24 Disk input-output errora

a Could be caused by physical surface damage, incorrect format or invalid address marker.

60

61

Appendix E. INTERACTIVE DEBUG
COMMAND SUMMARY

COMMAND EFFECT

A data-ref val Change value at address given to val (data division)

B Execute until specified location changes

C val Display ASCII character corresponding to val

D data-ref Display 16 bytes from address given

E Execute until specific location changes to specified contents

G proc-ref Execute from current position until given address is reached

L Output carriage return/line feed to console

M name Start definition of macro

N Set relative addressing default to start of user area

O Set relative addressing default to start of segment

P Display current program counter

S data-ref Set work register to address given

T proc-ref Trace all paragraphs executed up to address (Procedure Division)

X Execute one instruction

$ End macro definition

/ Display byte at address in work register

. val Change byte at address in work register to val and increment register

, Increment work register

; Start comment - line up to carriage return is ignored

data-ref 16 bit hex value (4 digits) in data area

proc-ref 16 bit hex value (4 digits) in code area

val 8 bit value (2 hex digits or inverted
commas and ASCII char eg "A")

where:

name single ASCII character

62

63

Appendix F. CP/M DISK FILES
GENERAL

The disk file system used in CIS COBOL is the diskette based CP /M system described in the
INTRODUCTION TO CP/M FEATURES AND FACILITIES Manual. A description of file creation
and management is available in that Introduction.

CIS COBOL offers sequential, relative and indexed organizations.

All file processing information is defined within an interactive CIS COBOL program. File
organization, access method, device assignment and allocation of disk space are defined by the
SELECT statement in the INPUT-DUPUT SECTION of the ENVIRONMENT DIVISION and an FD
entry in the FILE SECTION of the DATA DIVISION.

SPECIFYING FILES
CIS COBOL offers fixed (compile time) file assignment and dynamic (run time) file assignment
facilities.

FIXED FILE ASSIGNMENT
The CP/M file name is assigned to the internal user file-name at compile time as shown in the
specifications that follow.

Environment Division

In the FILE-CONTROL paragraph the general format of the SELECT and ASSIGN TO statements
is as follows:

General Format

SELECT file-name ASSIGN TO { external-file-name-literal | file-identifier }
[, external-file-name-literal | file-identifier]

Parameters

filename - Can be any user-defined CIS COBOL word (see User Defined COBOL Words in Chapter 2)

file-identifier - See Run-Time File Assignment later in this Appendix

external-file-name-literal - Is a standard CP/M file name of the following general format:

{ [drive] filename [extension] | device }

where:

drive - The pre-established CP/M disk drive identifier A: through P:

device - Devices other than disk as follows:1

LPT: PUN:

LST:

Line Printer

:TP:

Punch Device

1 - The availability of any of these devices is dependent upon the availability of the driver software for the device in your version of CP/M.

Appendix F. CP/M DISK FILES

64

:LP: :HP: High Speed Punch

:CI: Keyboard Input :RDR:

:CC: Screen Output :TR:

Reader Device

CON: Console I-O :HR: High Speed Reader

 :BB: Byte Bucket

filename - One through eight alphabetic or numeric characters (no spaces)

extension - One through three alphabetic or numeric characters (no spaces)

Examples or Fixed File Assignment

 SELECT STOCKFILE
 ASSIGN TO "B:WAREHS.BUY".
 SELECT STOCKFILE
 ASSIGN TO ":F1: WAREHS.BUY".

Data Division

The file-name specified as above is then used in the File Description for that program (see File File
Description - Complete Entry Skeleton in Chapters 5, 6 and 7 of the CIS COBOL Language Reference
Manual).

Procedure Division

The file-name specified as above is then also used in the OPEN and CLOSE statements when the file
is required for use in the program. (See THE OPEN STATEMENT and THE CLOSE STATEMENT
in Chapters 5, 6 and 7 of the CIS COBOL Language Reference Manual),

RUN-TIME FILE ASSIGNMENT
The internal user file-name is assigned to a file-identifier (an alphanumeric user-defined COBOL
Word), which automatically sets up a PIC X(15) data area in which to store the external CP/M file
name. The external CP/M file name can then be stored in this data area in the Procedure Division by
the user, and can be altered during the run as required.

The following specifications are required run-time assignment:

Environment Division

In the FILE-CONTROL paragraph the general format of the SELECT and ASSIGN TO statements
is as follows:

General Format

SELECT filename ASSIGN TO fileidentifier

Parameters

file-name - Can be any user-defined CIS COBOL word. (See User defined COBOL Words in Chapter
2 of the CIS COBOL Language Reference Manual).

file-identifier - Is any user-defined CIS COBOL word (See User Defined COBOL Words in Chapter
2 of the CIS COBOL Language Reference Manual),

Example of Run-Time File Assignment

Appendix F. CP/M DISK FILES

65

 SELECT STOCKFILE

 ASSIGN STOCKNAME.

Data Division

The file-name specified as above is then used in the File Description for that program (see THE
FILE DESCIPTION - COMPLETE ENTRY SKELETON in Chapters 5, 6 and 7 of the CIS COBOL
Language Reference Manual).

Procedure Division

The external CP/M file name of the required file (see under FIXED FILE ASSIGNMENT above for
format) is then stored as required in the file-identifier location specified above by the user program
before the file is OPENed for use.

EXAMPLE:

MOVE "B:WAREHS.BUY" TO STOCK-NAME.
OPEN INPUT STOCK-FILE.
.
.
.
CLOSE STOCK-FILE.
.
.
.
MOVE "B:WAREHS.SEL" TO STOCK-NAME.
OPEN INPUT STOCK-FILE.
.
.
.
CLOSE STOCK-FILE.
.
.
.
MOVE "B:PROGA.SRC" TO file-identifier.
OPEN INPUT file-name.

The CP/M file name could have been entered via an ACCEPT statement i.e. by an operator, or stored
as any other variable data.

In this way different external files can be used as a common internal user file during any run of a
program, but care is required to ensure that the correct file is allocated at any given time.

Note

The device assignment B: in the file name above can be replaced by the format :F1: for
compatability with other operating systems.

BLOCK LENGTHS
CP/M uses fixed-length 'CP/M records' (blocks) on disk of 128 bytes per block. Since CIS COBOL
permits block lengths other than 128 bytes, a trailer block is appended by CIS COBOL to CP/M files.
The last two blocks in a file appear as follows:

Appendix F. CP/M DISK FILES

66

The last data block is padded beyond the last data byte with EOF characters (1AH) up to 128 bytes.
If the last data block is full i.e. 128 bytes long, then no padding is inserted. The trailer block contains
the position at which the next data byte would be inserted in 'byte number' and 'block number Within
file' format.

An important corollary of this is that if the CP/M utility PIP is used to move CIS COBOL files it must
treat them as binary files. This means either renaming them to have the extension .COM, or using the
"[0]" parameter (alpha 0).

Files read as line-sequential need not possess the trailer block and need only be terminated by using the
standard CP/M EOF convention. This allows source programs to be prepared using the CP/M editor.

CIS COBOL DISK FILE STRUCTURES UNDER
CP/M

CIS COBOL offers four types of file organization for use by the COBOL programmer - Sequential,
line sequential, relative and indexed sequential (ISAM). A file is a set of records. A record is a set
of contiguous data bytes which are mapped into hardware sectors with which they need not coincide,
i.e. a record can start anywhere within a sector and can span hardware sector boundaries. The data
is held as follows:

SEQUENTIAL
Sequential files are read and written using fixed length records, the length used being that of the longest
record defined in the COBOL program's FD.

Normally the space occupied per record is the same as the program record length and data of any type
may be held on the file: this does not however apply if WRITES are done using BEFORE or AFTER
ADVANCING, as extra control characters are inserted and the data cannot then be read back correctly.

The RTS writes a trailer block to an output file to mark the precise position of the end of data, and
expects to find one on an input file. There are no limits on file size beyond those imposed by the
operating system and/or hardware.

LINE SEQUENTIAL
Line sequential file format is intended to cater for text (ASCII) files as generated by editors and other
similar utilities. This is the only type of CIS COBOL file format in which variable length records are
supported: the two-byte combination 0D0AH (carriage return, line feed) is used as a record delimiter,
and any single byte 1AH (control-Z) as an unconditional file terminator. On input the CR-LF is
removed and the record area padded out with spaces as necessary: on output any trailing spaces in the
program's record area are ignored. Use of ADVANCING phrases other than BEFORE 1 causes the
output of additional device control characters. A file created in this way can still be read by a program,
but the additional control characters are not filtered out and will appear in the record area.

Appendix F. CP/M DISK FILES

67

RELATIVE
Relative file organization provides a means of accessing data randomly by specifying its position in
the file. Records are of fixed length, the length used being that of the longest record defined in the
program's FD. To designate whether or not a record logically exists, two bytes are added to the end
of each record: these contain 0D0AH if the record logically exists on the file and 0000H if it does
not. The total length of a file is determined by the highest relative record number used; CIS COBOL
imposes a limit of 65535 on this value independently of operating system and/or hardware constraints.
Data of any type may be held on the file; the RTS uses a trailer block to determine the precise position
of the end of data.

INDEXED SEQUENTIAL
An indexed sequential (ISAM) file occupies two CP/M files on disk: both are in a relative file format,
one containing the data and the other all indexing and free space information - the index (.IDX) file.

The name for the index file is derived from the name supplied for the ISAM file by substituting the
extension '.IDX' in place of any supplied in the ISAM file name. The name for the Data file is the same
as that supplied for the ISAM file. This means that different ISAM files cannot be distinguished purely
by a change in the file-name extension and also that it is advisable to refrain from using the extension
'.IDX' in other contexts. e.g. 'CLOCK.FLE' as an ISAM file-name produces an index 'CLOCK.IDX'
in addition to the CLOCK.FLE data file.

The index is built up as an inverted tree structure which grows in height as records are added: the
number of index file accesses required to locate a randomly selected record depends principally on
the number of records on the file and the 'keylengths'. An approximate guide to the number of levels
in the tree (and hence the number of accesses required) is

index levels logk (number of records)

where k = 150 / keylength + 2

but will vary slightly on the order in which records are added and deleted.

Faster response times are obtainable when reading a file sequentially, but only if other ISAM
operations do not intervene.

The size (in bytes) of an ISAM file is approximately related to the maximum number of records it
contains as follows:

data = (record length + 2) * max. no of records

index = no of records / k - 1 * 256 where k is as defined above

Note

The necessity of taking regular back-up copies of all types of files cannot be emphasised
too strongly and this should always be regarded as the main safeguard. There are however
situations with indexed files (e.g. media corruption) that can lead to only one of the two files
becoming unuseable. If the index file is lost in this way, it is normally possible to recover
data records from just the data file (although not in key sequence) and cut down on the time
lost due to a failure. As an aid to this, all unused data records are marked as deleted at the
relative file level by appending two bytes to each record which contain LOW-VALUES.
For undeleted records these bytes contain the characters Carriage Return and Line Feed. The
recovery operation may therefore be done with a simple COBOL program by defining the data
file as ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL with records defined as
two bytes longer than in the ISAM file description. The records are then read sequentially,
the data MOVEd from the sequential file record. area into the indexed (ISAM) file record
area, and written to a new version of the indexed file; except for those records with LOW-

Appendix F. CP/M DISK FILES

68

VALUES in the last two (extra) bytes which records should be discarded. Note that these
two bytes (containing carriage-return and line-feed characters in a required record) are not
written to the ISAM file on recovery, by virtue of the record length discrepancy of 2 bytes
in the record definitions.

FILE ERROR STATUS
If a programmer has specified the STATUS clause in the FILE-CONTROL paragraph in a program the
operating system error number as returned by CP/M is available in the Status Key 2 byte in the event
of a file error (See the CIS COBOL Language Reference Manual). If it is required to display this status
with its correct decimal value, careful redefinition of data-items is required in order to avoid truncation
of the value. This is because the facility that enables the storage of a nonnumeric value greater than
decimal 99 as a hexadecimal value is an extension to the ANSI COBOL standard X3.23 (1974) but the
rules for moving or manipulating such data are retricted by the standard to a maximum of decimal 99.

The example that follows illustrates one method of retrieving the value of status key 2 for display
purposes.

Note how truncation has been avoided by redefining the two status bytes as one numeric data item
(length two bytes) capable of storing up to four decimal digits.

** CIS COBOL V4.4 B:STATUS.CBL PAGE: 0001
**
** OPTIONS SELECTED
** RESEQ
**
000010 ENVIRONMENT DIVISION. 0118
000020 INPUT-OUTPUT SECTION. 0118
000030 FILE-CONTROL. 0118
000040 SELECT FILE1 ASSIGN "TST.FIL" 0184
000050 STATUS IS FILE1-STAT. 0186
000060 DATA DIVISION. 01BD
000070 FILE SECTION. 01BD
000080 FD FILE1. 01BD
000090 01 F1-REC PIC X(80). 01BD
000100 WORKING-STORAGE SECTION. 020F
000110 01 FILE1-STAT. 020F 00
000120 02 S1 PIC X. 020F 00
000130 02 S2 PIC X. 0210 01
000140 01 STAT-BIN REDEFINES FILE1-STAT PIC 9(4) COMP. 020F 00
000150 01 DISPLY-STAT. 0211 02
000160 02 S1-DISPL PIC X. 0211 02
000170 02 FILLER PIC X(3). 0212 03
000180 02 S2-DISPL PIC 9999. 0215 06
000190 PROCEDURE DIVISION. 0000
000200 OPEN INPUT FILE1. 001A
000210 IF S1 NOT = 9 GO TO PARA1. 001E
000220 0030
000230 MOVE S1 TO S1-DISPL. 0030
000240 MOVE LOW-VALUES TO S1. 0035
000250 MOVE STAT-BIN TO S2-DISPL. 003A
000260 DISPLAY DISPLY-STAT. 0041
000270 PARA1. 004C 00
000280 STOP RUN. 004D
000290 004E
000300 004E
** CIS COBOL V4.4 REVISION 0 URN MB/1178/BL

Appendix F. CP/M DISK FILES

69

** COMPILER COPYRIGHT (C) 1978,1981 MICRO FOCUS LTD
** ERRORS=00000 DATA=00537 CODE=00231 DICT=00206:17445/17651 GSA FLAGS= OFF

FILEMARK UTILITY PROGRAM
The FILEMARK Utility program is used to write the trailer block that is required by CIS COBOL, in
situations where it is not present. The program writes the trailer block on to the end of any specified
file, without checking the internal format of that file. It is possible, therefore, to append a CIS COBOL
trailer block to any CP/M file.

The program checks whether a CIS COBOL trailer block is already present, and if so, advises the
operator by a displayed message (see ERROR CONDITIONS below), otherwise it appends a trailer
block. FILEMARK can therefore be used to check for the presence of a trailer block.

OPERATING INSTRUCTIONS

Loading

FILEMARK is supplied as a directly loadable program to run under CP/M. It is loaded and run as
follows:

FILEMARK [drive:] filename<<

where:

drive is a CP/M disk drive identifier i.e. A thru P.
filename is a standard CP/M filename in the format: name.ext

Running

The FILEMARK program is interactive in operation and displays messages during successful running
as follows:

FILE FOUND; PROCESS BEGUN

CIS COBOL EOF RECORD SUCCESSFULLY ADDED TO FILE

FILE CLOSED; PROCESSING SUCCESSFULLY COMPLETED

Error Conditions

Any error condition that occurs during running of FILEMARK is conveyed to the user by a self-
explanatory message. Error messages are as follows:

FILE NOT FOUND; RUN ABANDONED

indicates that the specified filename does not exist on the specified drive.

FILE IS MAX. SIZE THUS NO FURTHER RECORDSCAN BE ADDED; RUN ABANDONED

indicates that the addition of a trailer record would cause the file to exceed the maximum size allowed
by CP/M.

ERROR DURING DISK READ; RUN ABANDONED

indicates that a read failure has occurred during the scan of the file.

ERROR WHEN WRITING CIS COBOL EOF RECORD; RUN ABANDONED

indicates that a write failure has occurred while attempting to write the trailer record.

Appendix F. CP/M DISK FILES

70

ERROR DURING FILE CLOSURE; RUN ABANDONED

indicates that a CP/M file closure procedure has failed and the file is not usable.

OPEN FAILURE; RUN ABANDONED

indicates that a CP/M file opening procedure has failed and the file cannot be opened for processing.

CIS COBOL EOF RECORD ALREADY EXISTS.

indicates that the FILEMARK program has detected a standard CIS COBOL trailer label already
present. The program terminates without writing anything to disk.

Note

The presence of more than one CIS COBOL trailer label at the end of a file can cause problems
during processing. For normal use of the file, only one trailer label record is required.

71

Appendix G. EXAMPLE
CONFIGURATION OF A
HYPOTHETICAL CRT SPECIFYING
TAB STOP MODIFICATION

B>CONFIG RUND.COM
**
CIS COBOL RUN TIME SYSTEM (RTS) CONFIGURATOR V3.00
COPYRIGHT(C) 1978, 1982 MICRO FOCUS LTD
**
VERSION n.n REVISION nnn USER REFERENCE NUMBER XX/nnnn/XX

THE RTS IS SUPPLIED WITH COLUMN TAB STOPS IN COLUMNS:-
08,16,24,32,40,48,56,64,72 DO YOU WISH TO MODIFY THESE? INPUT ONE OF THE
FOLLOWING: 'YES' 'Y' 'NO' 'N' >N

THE RTS PROVIDES THE FACILITY TO INCORPORATE ASSEMBLER CODE THAT MAY
BE ENTERED BY YOU FROM THE COBOL "CALL" VERB.
DO YOU WISH TO INCLUDE SUCH CODE?
INPUT ONE OF THE FOLLOWING:'YES' 'Y' 'NO' 'N'
>N
YOUR RUNTIME SYSTEM HAS BEEN CONFIGURED

72

73

Appendix H. EXAMPLE
CONFIGURATION SPECIFYING USER
SUBROUTINES

B>CONFIG RUNR.COM
**
CIS COBOL RUN TIME SYSTEM (RTS) CONFIGURATOR V3.00
COPYRIGHT(C) 1978, 1982 MICRO FOCUS LTD
**
VERSION n.n REVISION nnn USER REFERENCE NUMBER XX/nnnn/XX

THE RTS IS SUPPLIED WITH COLUMN TAB STOPS IN COLUMNS:-
08,16,24,32,40,48,56,64,72 DO YOU WISH TO MODIFY THESE? INPUT ONE OF THE
FOLLOWING: 'YES' 'Y' 'NO' 'N' >N

THE RTS PROVIDES THE FACILITY TO INCORPORATE ASSEMBLER CODE THAT MAY
BE USED BY YOU IN THE COBOL "CALL" VERB.
DO YOU WISH TO INCLUDE SUCH CODE?
INPUT ONE OF THE FOLLOWING:- 'YES' 'Y' 'NO' 'N'
>Y

IN THAT CASE WE MUST DECIDE WHERE IT IS TO GO.
DO YOU WISH TO USE THE DYNAMIC DEBUG FACILITY WITH THIS RTS,
INPUT ONE OF THE FOLLOWING:- 'YES' 'Y' 'NO' 'N'
>N

DO YOU WISH TO USE ANIMATOR?
INPUT ONE OF THE FOLLOWING:- 'YES' 'Y' 'NO' 'N'
>N

DO YOU WISH TO USE THE INDEXED SEQUENTIAL PACKAGE,
INPUT ONE OF THE FOLLOWING:- 'YES' 'Y' 'NO' 'N'
>N

HOW MANY BYTES DOES YOUR ASSEMBLER CODE USE, (ENTER A DECIMAL NUMERIC
STRING)
>264

PLEASE ARRANGE TO LOCATE YOUR CODE AT 419CH.

YOUR RUNTIME SYSTEM HAS NOW BEEN CONFIGURED

74

75

Appendix I. EXAMPLE
CONFIGURATION IN WHICH NO CRT
TAILORING IS PERFORMED

B CONFIG
**
CIS COBOL RUN TIME SYSTEM (RTS) CONFIGURATOR V3.00
COPYRIGHT(C) 1978, 1982 MICRO FOCUS LTD
**

ENTER THE FILE-NAME CONTAINING THE RTS TO BE CONFIGURED.

>RUNA.COM
VERSION n.n REVISION nnn USER REFERENCE NUMBER XX/nnnn/XX

THE RTS IS SUPPLIED WITH COLUMN TAB STOPS IN COLUMNS:-
08,16,24,32,40,56,64,72
DO YOU WISH TO MODIFYTHESE,
INPUT ONE OF THE FOLLOWING: 'YES' ' Y' 'NO' 'N'
>N
THE RTS PROVIDES IHE FACILITY TO INCORPORATE ASSEMBLER CODE THAT MAY
BE ENTERED BY YOU FROM THE COBOL "CALL" VERB.
DO YOU WISH TO INCLUDE SUCH CODE?
INPUTONE OF THE FOLLOWING:- ' YES' 'Y' 'NO' 'N'
>N

YOUR RUN TIME SYSTEM HAS BEEN CONFIGURED

76

77

Appendix J. EXAMPLE OF USER RUN
TIME SUBROUTINES

;**
;*
;*
;* THIS IS AN EXAMPLE OF USER CALL CODE SUPPLIED PURELY FOR GUIDANCE OF THE
;* USER TO ENABLE THE MECHANICS OF CALL CODE INSERTION TO BE BETTER
;* UNDERSTOOD.
;* THE CODE IS DESIGNED TO BE A USEFUL EXAMPLE OF CALL, AND IF IMPLEMENTED
;* WILL ALLOW THE COBOL PROGRAMMER TO CREATE 16 BIT BINARY QUANTITIES FROM
;* UP TO 5 ASCII DIGITS, AND VICE VERSA. THE USE IS EXPLAINED IN MORE DETAIL
;* AT THE HEAD OF EACH ROUTINE.
;*
;* MICRO FOCUS LTD. HAS TAKEN EVERY PRECAUTION TO ENSURE THE ACCURACY OF
;* THESE ROUTINES, BUT CANNOT BE HELD LIABLE IN ANY WAY FOR ANY ERRORS OR
;* OMISSIONS IN THEM.
;*
;**
;* THE MODULE MUST BE LOCATED AT THE ADDRESS SPECIFIED BY CONFIGURATOR
;* WHEN THE RTS IN WHICH THE CODE IS TO RESIDE WAS CONFIGURED. (SEE
;* OPERATING GUIDE, SECTION 5).
;*
BASE: EQU 04404H ;REPLACE 04404H BY THE ADDRESS
 ;GIVEN BY CONFIGURATOR.
;*
;*
 ORG BASE ;SET THE BASE ADDRESS

;*
;*
;* NOW FOLLOWS THE CALL CODE IDENTIFICATION TABLE. THIS IS A TABLE OF
;* ADDRESSES OF THE ENTRY-POINTS TO THE ROUTINES. PRECEDED BY A BINARY
;* 8 BIT ITEM SPECIFYING THE HIGHEST AVAILABLE ROUTINE NUMBER
;*
;*
CALTOP: DB MAXNO ;HIGHEST AVAILABLE CALL ROUTINE.
 DW 0 ;CALL "00" (DOES NOT EXIST)
 DW DECBIN ;CALL "01" - DECIMAL ASCII TO BINARY
 DW BINDEC ;CALL "02" - BINARY TO DECIMAL ASCII
MAXNO: EQU ($-CALTOP-3)/2 ;LET THE ASSEMBLER DO THE WORK
;*
;*
;* NB. ALTHOUGH THE USE OF CALL "00" IN THE ABOVE EXAMPLE WOULD CAUSE
;* THE RTS TO ISSUE THE FOLLOWING ERROR:-
;* 164 - CALL CODE DOES NOT EXIST
;* THE USER IS AT LIBERTY TO PROVIDE HIS OWN CODE. BY PLUGGING IN
;* THE APPROPRIATE ROUTINE ADDRESS.
;*
;* SIMILARY, OTHER ROUTINES MAY BE ADDED BY INCREASING THE NUMBER
;* OF ADDRESSES SPECIFIED. IF THESE ARE ADDED BEFORE THE MAXNO EQUATE.
;* THEN THE BYTE AT CALTOP WILL ALWAYS BE CORRECT
;*
;*ROUTINE: DECBIN

Appendix J. EXAMPLE OF USER RUN TIME SUBROUTINES

78

;*
;*CALLING SEQUENCE:
;* CALL "01" USING PARA1 PARA2 PARA3.
;*
;*FUNCTION: THIS ROUTINE CONVERTS A STRING OF DECIMAL (ASCII)
;* DIGITS INTO A 16 BIT BINARY QUANTITY. IT IS VERY LOW LEVEL
;* IN THAT IT EXPECTS A POSITIVE DECIMAL VALUE
;*
;*PARAMETERS: PARA1 - ADDRESS OF LENGTH OF DECIMAL STRING
;* HELD AS 1 BYTE ASCII DIGIT (NOT CHECKED)
;* THIS ADDRESS WILL BE NO. 2 ON STACK
;*
;* PARA2 - ADDRESS OF DECIMAL STRING
;* THIS ADDRESS WILL BE IN B,C ON ENTRY
;*
;* PARA3 - ADDRESS OF RESULT AREA.
;* SPECIFIES A 2 BYTE AREA
;* THIS ADDRESS WILL BE IN D,F ON ENTRY
;*
;*VALUES RETURNED: 16 BIT RESULT IN PARA3
;*
;*
;*
DECBIN:
 POP H ;GET RETURN ADDRES OFF STACK
 XHTL ;GET ADDRESS OF PARA1
 ;PUTTING RETURN ADDRESS BACK.
;*
 MOV A,M ;PUT IT IN ACCUMULATOR
 ANI 0FH ;CONVERT TO BINARY

 PUSH D ;SAVE ADDRESS OF RESULT
 PUSH B ;MOVE STRING REF
 POP D ; INTO D,E
 LXI H,0 ;HL 1 BINARY ACCUMULATOR
DEC10:
 PUSH PSW ;SAVE THE COUNT
 DAD H ;BINARY ACCUMULATOR *2
 MOV B,H ; AND MOVE IT INTO B,C
 MOV C,L ;

 DAD H ;BINARY ACCUMULATOR *4
 DAD H ; *4
 DAD B ; *8 + *2 1 *10
 ; (IE. 8X + 2X 1 10X)
 ;------------------------

 LDAX D ;GET THE DECIMAL CHAR
 INX D
 ANI 0FH ;CONVERT TO BINARY CHAR
 MVI B,0H
 MOV C,A
 DAD B ;ACC + CHAR
 POP PSW
 DCR A ;KEEP COUNT
 JNZ DEC10
;*
;* NOW STORE RESULT IN USER'S AREA

Appendix J. EXAMPLE OF USER RUN TIME SUBROUTINES

79

;*
 XCHG ;PUT RESULT IN D,F
 POP H ;GET ADDRESS OF RESULT AREA
 MOV M,D ;STORE MS BYTE
 INX H
 MOV M,E ;STORE LS BYTE
 RET
;*
;*ROUTINE: BINDEC
;*
;*CALLING SEQUENCE:
;* CALL "02" USING PARA1 PARA2.
;*
;*FUNCTION: TAKES THE BINARY QUANTITY ADDRESSED BY PARA1 AND CONVERTS
;* IT INTO A 5 DIGIT DECIMAL (ASCII) NO. THE RESULT IS PLACED
;* IN THE AREA SPECIFIED BY PARA2.
;*
;*PARAMETERS: PARA1 - ADDRESS OF 16 BIT (2 BYTE) QUANTITY.
;* WILL BE IN REG B,C ON ENTRY
;*
;* PARA2 - ADDRESS OF 5 BYTE RESULT AREA.
;* WILL BE IN REG D,E ON ENTRY
;*
;*VALUES RETURNED:
;* 5 DIGIT ASCII VALUE IN PARA2.
;*

BINDEC:
 PUSH B ;GET VALUE ADDR
 POP H ; IN H,L
 MOV B,M ;VALUE
 INX H ; IN
 MOV C,M ; B,C
 LXI H,0 ;PUSH CONSTANTS
 PUSH H ; ON TO
 LXI H,-10 ; STACK
 PUSH H ; FOR USE
 LXI H,-100 ; DURING
;*
 PUSH H ; BINARY TO DECIMAL CONVERSION
 LXI H,-1000
 PUSH H
 LXI H,-10000
 PUSH H
;* ;D,E - ADDRESS OF RESULT FIELD
CN25:
 MVI A,30H ;SET TALLY TO ASCII ZERO
CN30:
 POP H ;GET THE CONSTANT
 PUSH H ;RESTORE IT
 DAD B ;SUBTRACT FROM SOURCE OP
 JNC CN40 ;ITS GONE NEGATIVE
 INR A ;INC TALLY

 PUSH H ;REPLACE B,C WITH
 POP B ; NEW RESULT
 JMP CN30
CN40:

Appendix J. EXAMPLE OF USER RUN TIME SUBROUTINES

80

 POP H ;CLEAR CONSTANT OFF STACK
 STAX D ;STORE TALLY IN RESULT FIELD
 INX D ;INC RESULT ADDR POINTER
 POP H ;ANY MORE CONSTANTS ?
 MOV A,L
 ORA H
 JZ CN50 ;NO - FINISH OFF
 PUSH H ;YES - RESTORE IT
 JMP CN25
CN50:
 MOV A,C ;INSERT UNITS
 ADI B0H ;CONVERT TO ASCII
 STAX D
 RET ;RETURN
;*
;*
;*

81

Appendix K. EXAMPLE USE OF RUN-
TIME SUBROUTINES

**CIS COBOL V3.3 CALLEX.CBL PAGE: 0001
**
000010 IDENTIFICATION DIVISION 000F
000020 PROGRAM-ID CALL-EXAMPLE. 000F
000030* 000F
000040* This dummy program has been produced by Micro Focus 000F
000050* as an example of the way in which the supplied CALL 000F
000060* code routines may be used. 000F
000070* 000F
000080 DATA DIVISION. 000F
000090 WORKING-STORAGE SECTION. 000F
000100 01 ROUTINE-NAMES 000F
000110 02 DECIMAL-BINARY PIC X(2) VALUE "01". 000F
000120 02 BINARY-DECIMAL PIC X(2) VALUE "02". 0011
000130* 0013
000140 01 PARAMETER-FIELDS 0013
000150 02 DECIMAL-NUMBER-LENGTH PIC 9 VALUE 4. 0013
000160 02 DECIMAL-NUMBER PIC 9(4) VALUE 1234. 0014
000170 02 BINARY-RESULT PIC X(2). 0018
000180* 001A
000190 02 BINARY-NUMBER PIC X(2) VALUE X"04D2". 001A
000200 02 DECIMAL-RESULT PIC 9(5). 001C
000210* 0021
000220 PROCEDURE DIVISION. 0000
000230* The following CALL will convert the 4 digit numeric field 0000
000240* DECIMAL-NUMBER to a 16 bit binary quantity in BINARY-RESULT. 0000
000250** 0000
000260 CALL DECIMAL-BINARY USING DECIMAL-NUMBER-LENGTH 0000
000270 DECIMAL-NUMBER BINARY-RESULT. 0000
000280** 000A
000290* BINARY-RESULT now contains the binary number 0402. 000A
000300* 000A
000310* The following CALL will convert the 16 bit binary field 000A
000320* BINARY-NUMBER to a 5 digit DECIMAL-RESULT 000A
000330*** 000A
000340 CALL BINARY-DECIMAL USING BINARY-NUMBER DECIMAL-RESULT. 0012
000350*** 0012
000360* DECIMAL-RESULT now contains the value 01234. 0012
**CIS COBOL V4.2 COMPILER COPYRIGHT (C) 1978 MICRO FOCUS LTD URN AA/3999/AB
**
**ERRORS=00000 DATA=00033 CODE=00043 DICT=00188:29624 END OF LIST

82

83

Appendix L. CONSTRAINTS
1. LINE SEQUENTIAL ORGANIZATION

1.1 Any file that is intended ever to be dumped to a line printer should be given Line Sequential
organisation, or sequential organization with BEFORE/AFTER clauses subsidiary to every WRITE
statement.

1.2 The Carriage Return (CR) and Line Feed (LF) characters that terminate a record (i.e . line) are
exchanged by the Run Time System for padding with spaces on record input. Conversely trailing
spaces are replaced by CR LF on record output.

1.3 Line sequential files were designed to hold ASCII data only. COMP data that contains bytes
with a value of 1AH or byte pairs of value 0D0AH must not be used in Line Sequential files.

2. FILE USAGE

2.1 No more than 13 files may be open at any one time, excluding console input and output and
line printer files. Remember that one Indexed Sequential file counts as two files when opened; also
one of these 13 files is required for overlay loading or the calling of a sub-program. The overlay
or sub-program file is open only during execution of the GO TO, PERFORM or CALL statement
that causes the load. Note that another of the 13 files is required when a program is to be debugged
using the ANIMATOR debugging tool.

2.2 CIS COBOL source files under CP/M must not contain lines greater than 80 characters, nor
must they contain "Tab" or any other control characters (i.e., 00H through 1FH).

3. UNSUCCESSFUL COMPILATION

The generated intermediate code from any unsuccessful compilation should not be used. The
intermediate code file should be deleted and the source code corrected and recompiled.

4. LIMITS NOT SPECIFIED IN THE DOCUMENTATION

4.1 The maximum length of the Data Division in a CIS COBOL program is 32K bytes. The total
length of all Linkage Section items is included in this figure although memory for them is not
required at run time.

4.2 The maximum length of the Procedure Division is 32K bytes although the actual amount of
code is permitted to exceed this value if it is overlaid (segmented),

4.3 The maximum number of records that may be accommodated in a relative or indexed file
(assuming that disk space is available) is 65,535.

5. REDECLARATION OF AN INCORRECT DATA DECLARATION

If there is an error in a data declaration the appropriate compiler error message for the error is
displayed. Subsequent data-declarations may then be ignored by the compiler resulting in spurious
error messages being generated if such data-items are referred to in the program.

6. INSPECT STATEMENT

The following restriction applies to items to be inspected: They must not be in a Linkage Section

7. COMPILER SIZE INFORMATION

The Data Division and code sizings output from the compiler do not take into account an overhead
that is required if the program is segmented. This overhead is variable and an approximate guide is
to allow 60 bytes overhead for the root segment and 30 bytes additional overhead for each overlay.

Appendix L. CONSTRAINTS

84

8. I-O ERROR HANDLING

CIS COBOL offers 3 mechanisms for handling file I-O errors:

a. Use of AT END or INVALID KEY clauses as appropriate.

b. Declaratives to handle AT END or INVALID KEY conditions where the appropriate clause has
not been specified. (Note that no other errors will be passed to the Declarative routines).

c. Use of FILE STATUS key checks. If no status field is defined, status byte one '9' errors cause
a message to be displayed on the console and the Run Time System to terminate. If a status field
is defined, all errors are returned to the user program and it is the programmer's responsibility to
check for any problems, and proceed accordingly. A sample program enabling the return value to be
displayed as a decimal CP/M error number is provided in the CIS COBOL CP/M Operating Guide.

85

Colophon
This book was reconstructed into DocBook format from a scanned PDF found on the Internet. The PDF file already
had OCR performed and the text was embedded in the file.

The original was published by Acorn Computers Limited in cooperation with the British Broadcasting Corporation.

Source version: 1.0.2

86

	CIS COBOL Operating Guide For Use With the CP/M Operating System
	Table of Contents
	PREFACE
	MANUAL ORGANIZATION
	AUDIENCE
	NOTATION IN THIS MANUAL
	RELATED PUBLICATIONS

	Chapter 1. INTRODUCTION
	GENERAL DESCRIPTION
	GETTING STARTED WITH CIS COBOL
	ISSUE DISK
	THE COMPILER
	THE RUNTIME SYSTEM
	CONFIGURATOR
	THE DEMONSTRATION PROGRAMS
	THE RUN-TIME SUBROUTINES
	FIRST STEPS
	Initialization
	Disk Utilization
	Compilation
	Running The Demonstration Programs
	Calculation of π (PI)
	Stock Control Program One (Cursor Control)
	Stock Control Program Two (Data Input)

	PROGRAM DEVELOPMENT CYCLE
	PROGRAM PREPARATION CONSIDERATIONS
	PROGRAM DESIGN CONSIDERATIONS

	Chapter 2. COMPILER CONTROLS
	COMMAND LINE SYNTAX
	COMPILER DIRECTIVES
	FLAG (level)
	NOFLAG
	RESEQ
	NOINT
	NOLIST
	COPYLIST
	NOFORM
	ERRLIST
	INT (external-file-name)
	LIST (external-file-name)
	FORM (integer)
	NOECHO
	NOREF
	DATE (string)
	QUIET
	PAGETHROW (character-code)
	ANIM
	FILESHARE
	RESTRICT (organization)
	COMMIT (organization)
	DERESTRICT (organization)
	EXCLUDED COMBINATIONS

	SUMMARY INFORMATION ON CRT
	LISTING FORMATS

	Chapter 3. RUN-TIME SYSTEM CONTROLS
	RUN-TIME DIRECTIVES
	COMMAND LINE SYNTAX
	-V (Version) Parameter
	Load Parameter
	Switch Parameter
	Standard ANSI COBOL Debug Switch Parameter
	Link Parameter
	Program Parameters

	COMMAND LINE EXAMPLES

	INTERACTION IN APPLICATION PROGRAMS
	CRT SCREEN HANDLING
	Screen Layout and Format Facilities
	Cursor Control Facilities

	INTERACTIVE DEBUGGING
	THE P COMMAND
	THE G COMMAND
	THE X COMMAND
	THE D COMMAND
	THE A COMMAND
	THE S COMMAND
	THE '.' COMMAND
	THE T COMMAND
	DEBUG MACRO COMMANDS
	The M Command
	The L Command
	The $ Command
	The C Command
	The ; Command

	Chapter 4. CIS COBOL APPLICATION DESIGN CONSIDERATIONS
	CIS COBOL APPLICATION DESIGN FACILITIES
	INTER-PROGRAM COMMUNICATION (CALL)
	SEGMENTATION (OVERLAYING)
	CHAINING

	INTER-PROGRAM COMMUNICATION
	FORMAT OF CIS COBOL “CALL”

	SEGMENTATION
	CHAINING
	MEMORY LAYOUT
	OPERATIONAL FEATURES
	RUN TIME COBOL PROGRAM LINKAGE
	EXAMPLE LINKAGE
	RUN-TIME SUBROUTINES (IN ASSEMBLER OR NON-COBOL LANGUAGES)
	RESERVING SPACE FOR RUN-TIME SUBROUTINES
	FORMAT OF RUN-TIME SUBROUTINE AREA
	PARAMETER PASSING TO RUN-TIME SUBROUTINES
	PLACEMENT OF THE SUBROUTINES IN THE SUBROUTINE AREA
	SAMPLE RUN WITH RUN-TIME SUBROUTINES
	ASSEMBLER SUBROUTINES PROVIDED BY MICRO FOCUS
	The CHAIN Subroutine
	The PEEK Subroutine
	The POKE Subroutine
	The GET Subroutine
	The PUT Subroutine
	The ABSCAL Subroutine
	The File Name Manipulation Routines SPLIT and JOIN

	Chapter 5. CONFIGURATION UTILITY
	OBJECTIVES
	USING CONFIG
	RUN TIME SUBROUTINES
	MEMORY MANAGEMENT CONSIDERATIONS

	Chapter 6. INCORPORATING FORMS-2 UTILITY PROGRAM OUTPUT
	INTRODUCTION
	SCREEN LAYOUT FACILITY
	MAJOR FACILITIES
	CIS COBOL PROGRAMMING FOR FORMS-2 SCREEN LAYOUTS

	GENERATED PROGRAMS
	CIS COBOL PROGRAMMING FOR FORMS-2 GENERATED FILES

	Chapter 7. USING THE ANIMATOR UTILITY PROGRAM
	COMPILATION
	THE ANIM COMPILER DIRECTIVE

	RUNNING PROGRAMS WITH ANIMATOR
	THE +A RUN COMMAND PARAMETER
	MEMORY MANAGEMENT CONSIDERATIONS

	Appendix A. SUMMARY OF COMPILER AND RUN-TIME DIRECTIVES
	COMPILER DIRECTIVES
	RUN TIME DIRECTIVES

	Appendix B. COMPILE-TIME ERRORS
	Appendix C. RUN-TIME ERRORS
	Appendix D. OPERATING SYSTEM ERRORS
	Appendix E. INTERACTIVE DEBUG COMMAND SUMMARY
	Appendix F. CP/M DISK FILES
	GENERAL
	SPECIFYING FILES
	FIXED FILE ASSIGNMENT
	Environment Division
	Data Division
	Procedure Division

	RUN-TIME FILE ASSIGNMENT
	Environment Division
	Data Division
	Procedure Division

	BLOCK LENGTHS
	CIS COBOL DISK FILE STRUCTURES UNDER CP/M
	SEQUENTIAL
	LINE SEQUENTIAL
	RELATIVE
	INDEXED SEQUENTIAL
	FILE ERROR STATUS
	FILEMARK UTILITY PROGRAM
	OPERATING INSTRUCTIONS
	Loading
	Running
	Error Conditions

	Appendix G. EXAMPLE CONFIGURATION OF A HYPOTHETICAL CRT SPECIFYING TAB STOP MODIFICATION
	Appendix H. EXAMPLE CONFIGURATION SPECIFYING USER SUBROUTINES
	Appendix I. EXAMPLE CONFIGURATION IN WHICH NO CRT TAILORING IS PERFORMED
	Appendix J. EXAMPLE OF USER RUN TIME SUBROUTINES
	Appendix K. EXAMPLE USE OF RUN-TIME SUBROUTINES
	Appendix L. CONSTRAINTS

