REVIEW OF OS-9 CIS COBOL

Peter Dibble

Copyright © 1985 Peter C. Dibble and The Computer Publishing Center

Revision History
April 1985

OVERVIEW

COBOL is a big language, an old language, and an extremely popular language. Some languages
were designed to be compiled and run on small computers; COBOL was not. COBOL is vehemently
detested by many peopleinvolved with computers, but despite all the nasty publicity it gets, COBOL is
probably the most used computer languagein theworld. If you need to hire an experienced programmer
for a business application, you will find the hunting best if you snoot for a COBOL programmer.
COBOL was one of the first compiled languages devel oped for computers (around 1960), and it has
been being (arguably) improved since then. The fully "improved" version of COBOL is an enormous
language whose compiler is fully capable of needing the best part of a megabyte of memory to run

properly.

There are standards against which any version of COBOL should be measured. ANSI (American
National Standards Institute) has defined a COBOL standard which constitutes the official definition
of the language. CIS COBOL was written to conform to the ANSI standard definition of COBOL.

To quote the manual: "CIS COBOL is ANSI COBOL as given in 'American National Standard
Programming Language COBOL' (ANSI X3.23 1974)." It includes level 1 of the ANSI definition
of COBOL aong with a few parts of level 2. This doesn't mean that CIS COBOL is the version of
the language you may have used on a mainframe computer, but it does mean that if you don't use
the enhancements that CIS COBOL includes, the programs you write using it will run essentially
unmodified on any other computer that runs level 2 or higher of ANSI COBOL. Also, since CIS
COBOL iscompiled to intermediate code, programs written in it can be run on any computer that has
theappropriateinterpreter. If youread theaddsin BY TE, you will seethat CISCOBOL isimplemented
for many computers.

| didn't test CIS COBOL exhaustively for conformance to the standard, but | did write afew programs
init. | am used to IBM's VS-COBOL, and aversion of UNIVAC COBOL; both are highly enhanced
versions of higher levels of ANSI COBOL than CIS COBOL. It took me a while to learn which of
my favorite programming tricks aren't possible under level 1 of ANSI COBOL, but after | learned the
limitations | had to livewith, | found that | could write programs with no more difficulty than | usually
experience when writing in COBOL. | wish | had been able to transfer a program from the IBM to my
micro and compileit, but | don't know of any real programs written to be compiled by ANSI level 1
COBOL. Transferring a program in the other direction is no problem.

Thereis far too much to CIS COBOL for me to say with certainty that it all works, but | understand
that the language has actually been successfully tested against a set of standard test programs.

ENHANCEMENTS

Standard COBOL doesn't support the interactive microcomputer environment very well, but CIS
COBOL includes enhancements to the ACCEPT and DISPLAY statements that make it relatively
easy to display screens of data, and accept data from fields defined on the screen. Information can be
accepted from, or displayed at, a particular cursor location. An input field can be defined as numeric
only, in which case any inappropriate characters (like "A™") won't be accepted. When afield isfilled
with data, the cursor automatically jumps to the beginning of the next field. There are special keys
which jump the cursor forward and backward afield at atime. Specia function keys can be defined.
They act like a carriage return (terminate entry into a screen), but a program can determine whether
a screen was terminated by a carriage return or a function key, and which function key was used.

REVIEW OF OS-9 CIS COBOL

The location of the cursor when carriage return was pressed is also available. Tne net effect of these
enhancements is that it is fairly easy to write CIS COBOL programs that accept and display screens
of data.

In addition to the usual COBOL file organizations (including 1ISAM), CIS COBOL alows an
organization they call "line sequential.” Line sequential files are variable length record files, in which
the records are terminated by carriage returns. This makes it easy to read and write files that Pascal
would call "files of text." The most generally important examples of files of thistype are files created
by text editors, and line by line output to aterminal or printer. The other access modes supported by
CIS COBOL are: sequential, relative, and indexed. The names of files can be specified at run time
using statements like:

SELECT FI LE-15 ASSI GN TO FI LE- 15- NAME.

ACCEPT FI LE- 15- NAME.
OPEN | NPUT FI LE-15.

In addition to the standard ANSI debug features, CIS COBOL has arespectable interactive debugger.
The commands avail able under this debugger are:

- Display the current program counter

- Set a breakpol nt

- Single step

Di splay data at specified offset in data division
- Change nenory (ASCII)

- Set block for display or change

- Display bl ock

- Change bytes in bl ock

- Trace paragraphs

- Wite CR LF

Defi ne a debug nacro

- End a macro definition

- Display a specified character

; - precedes a comment (for describing macros)

TWVW>OXOTDT

oOerr -

Theinteractive debugger can be used on any COBOL program by including +D on the command line
that invokesthe program, e.g., RunC +D t est . i nt. This meansthat you can use the debugger on
aprogram without having to do anything special when you compileit.

Microware has included eight subroutines in the COBOL run time system which can be called from
a COBOL program. MOVE-BLOCK is a procedure that can be used to do a high speed move of a
block of data. ABORT terminates the program with an error code. CHAIN makes the standard OS-9
F$Chain system call available. The FUN-KEY subroutine can be used after a ACCEPT statement to
find out if afunction key was pressed instead of the carriage return key, and which one. DATE returns
the date and, optionally, thetime. SHELL invokesashell, passing it aspecified string. CHX and CHD
change the execution and data directories for the program.

The subroutines in the run time system are called by number. CIS COBOL can also call subroutines
which are either COBOL I-code, or object code. The CALL statement looks like:

CALL "/ DO/ SUBLI B/ TEST. SUB. 1"
USING . ..
ON OVERFLOW. . ..

The called program is loaded into memory if it is not already there, and, depending on whether the
module header indicatesthat it is I-code or object code, interpreted or executed. If thereisno roomin
memory for the new module, the ON OVERFLOW clause in the CALL statement gets control. The
CANCEL verb unlinks a subroutine, freeing the memory it is using.

REVIEW OF OS-9 CIS COBOL

In addition to these methods of calling external subroutines, CIS COBOL supports program
segmentation, which can be used to divide the program into sections that will remain on disk until
they are needed. Segments use memory efficiently at the cost of extradisk /O by sharing a common
pool of overlay memory.

In addition to supporting ANSI COBOL level 1, including:

The Nucl eus

Tabl e Handl i ng

Sequential Input and CQutput

Rel ative I nput and Cutput

I ndexed | nput and Qut put

Segnent ati on

Li brary (Copy)

I nt er - program conmmuni cati on debug

CIS COBOL supports parts of level 2 of ANSI COBOL including:
e Nested IF

* PERFORM UNTIL

* The START statement for Relative and Indexed 1/0

 Full level 2 Inter-program communication

LIMITATIONS

| was disappointed with some of the restrictions of the low level of COBOL implemented for CIS
COBOL, but not very surprised. | am more upset by some problems with terminal support, and the
CONFIG utility that is used to customize the run time package for a particular type of terminal.

The features of advanced levels of COBOL that | missed most were AND and OR in |F statements.
It is possible to do without boolean operationsin IF statements, but | am not used to having to work
around a limitation like that. Another very popular feature which is missing in CIS COBOL is the
SORT statement. A surprising number of production COBOL program sinclude at least one sort, and
it would be hard to eliminate a sort from a program without a major redesign.

Theruntime system which interpretsthe COBOL intermediate code also includesroutinesfor terminal
control. It is customized for a terminal by a utility program called CONFIG. | was not impressed
with CONFIG. My favoriteterminal usesthe ANSI standard terminal control sequences CONFIG was
clearly not written with my terminal inmind. | struggled for two eveningstryng to get RunC configured
for my TeleVideo with no success. Finally, | gave up and turned to my H-19, which was much more
like what CONFIG wanted ... | had COBOL running in ten minutes. There were three fundamental
problems with CONFIG's handling of my TeleVideo's control sequences. CONFIG expected most
terminal control stringsto be no morethan three characterslong; several of the ANSI stringsarelonger
than that. CONFIG simply can't deal withthe ANSI direct cursor positioning sequence; | circumvented
that problem by pretending that my terminal didn't have a direct cursor positioning command, and
specifying relative positioning. CONFIG can only deal with commands that move the cursor one row
or column at atimein relative positioning mode. Sincethe ANSI stringsthat cause the cursor to move
onerow or column are three characterslong, thisisaslow way to adjust the cursor position. The clear-
screen sequence for my terminal isfour characterslong; so | couldn't useit. RunC triesto fake a clear-
screen somehow, but it makes a real mess of it. The clear-screen sequence somehow came out as a
string of thousands of <bell> characters. | understand that a more recent version of CONFIG than the
one | have allows afour character string for the clear-screen sequence. | think that would have made
it possible for meto get my TeleVideo working with COBOL.

CONFIG formsatrap for the unwary user. Onceyou start into it thereisno turning back. If you change
your mind about the response you just keyed in, you have to wait until you reach the end of the entire
(long) string of questions, and ask to be allowed to change alarge subset of your answers. When you

REVIEW OF OS-9 CIS COBOL

are going through CONFIG to fix a mistake or change an existing terminal description to fit a new
terminal, you have to fill in the correct answer to each question. There is no way to select a defaullt,
or keep the old value. It istrue that CONFIG is not likely to be a heavily used utility, but | found it so
hard to use that | would much rather have written afew subroutines to support my terminals.

Once | got the screen support working, | found that | wasn't pleased with the way it worked. | believe
that when the cursor leaves a numeric field, the field should be right justified and zero filled. The
screen handling package in CIS COBOL seems to agree with me to some extent. If you enter a™." in
an integer field it will right justify and zero fill, but if you exit the field with a carriage return (ending
the entire screen) or down arrow (moving to the next field), a test for numeric in the program will
indicate that the field is not numeric. If the field has editing charactersin it thefield isinclined to end
up left justified and zero filled.

| am used to getting useful, english error messages from COBOL ; CIS COBOL gives error messages
with numeric codes in them indicating what the error is. Even after | looked up the error, it wasn't
clear what the problem was. For instance, when | hadn't declared a variable it told me that there was
atype mismatch in the statement using the undeclared variable. When | tried to use AND and OR, it
gave me the same error. | ended up treating the error message as "something's wrong around here."

BENCHMARKS

| ran two benchmarks against this COBOL : one for speed at numeric processing (the sieve), the other
for speed in handling ISAM files. | adjusted the prime number program from the January 1983 BY TE
dightly to fit ANSI level one, and ran it. This version of COBOL would have fallen nearly at the
bottom of the chart given in that BY TE, between Microsoft COBOL and RMCOBOL. It took 541
seconds to find the first 1899 primes. | could have made the program run somewhat faster by using
indexing instead of subscripting, but that would have spoiled the benchmark. | have to admit that | felt
silly writing a Eratosthenes Sieve program in COBOL. Testing COBOL for its ability to find prime
numbers is like testing programmers for their ability to read Latin; they may be able to do it but it
is hardly relevant. | ran that benchmark because it is the most used benchmark for microcomputer
languages, but | also ran another non-standard, but, | think, more relevant, benchmark.

I constructed abenchmark program which gives agood measure of the speed with which the language
handles indexed 1/0. Indexed |/O is very important to the group of users who might use COBOL.
Interpreting the results of a benchmark that involves 1/O is alittle tricky. Certainly the file structure
the language uses is very important, especialy with a large indexed file; but the access time for the
disk is an important factor, and the time the operating system takes for a context switch is somewhat
important.

| built a file 10,000 records long of 55 byte records with five byte keys and then read it randomly
reading two records alternately from each end. It took 2615 secondsto build the file and 3233 seconds
toread thefile (it would, of course, have been possibleto read it faster if | had read sequentially). | ran
these benchmarks on a GIMIX system with a CM 5000 Winchester (afile that size would not have fit
onmy 8" floppies). | used OS-9 Level Two on a2 mhz 6809. The performance would have been much
worseif | had used a floppy instead of a Winchester, and somewhat better if | had used GMX - I11.

| compiled three COBOL programs on the same machine | ran the benchmarks on. A simple merge
program which | haven't included with this review took 45 seconds to compile, the sieve compiled in
35 seconds, and the ISAM test program took 43 seconds.

SUMMARY

It is possible to get past the problems with CONFIG, to learn to live with the primitive error
messages, and to feel comfortable with the screen handling conventions. What is l€eft is a substantial
implementation of an old, but useful language. |1 don't think everyone should run out and buy this
package, but, for a few people, it could be uniquely useful. If you want to use a group of COBOL
programs on microcomputer, it would certainly be easier to convert them from one level of COBOL
to another than to trandate them into an entirely different language. CIS COBOL would be a good
teaching tool for schools unable to afford time on a machine with a full-blown COBOL compiler.

REVIEW OF OS-9 CIS COBOL

It should be relatively easy to find programmers who can work in COBOL. With CIS COBOL, a
microcomputer could be used as a devel opment environment for COBOL programs, though the low
level of CIS COBOL would prevent thisin most cases. Perhaps the most significant advantage of CIS
COBOL over other languages is that programs written in CIS COBOL can be moved in I-Code form
to avariety of other machines and operating systems, and run without source code. UCSD Pascal has
shown that thisis an asset even though it can't generally run under a normal operating system.

CIS COBOL was written by Micro Focus Limited. Microware wrote a run time package for it that
allows any program written in CIS COBOL, including CIS COBOL itself to be run under OS-9. By
writing arun time package for CIS COBOL, and arranging to license it for OS-9. Microware made a
large collection of business software available to OS-9 users. If you are looking for a nice accounting
system, payroll, MRP system, or whatever, check with Microware. They have along list of vendors
offering programs which run under the CIS COBOL run time system.

Some small number of people will find Microware's version of CIS COBOL just what they need. If
you think you are one of those people, | recommend that you get the manual before you commit to
the language. The manuals won't be any help to you if you don't know COBOL, but, if you do, they
will leave you with an accurate impression of the language, and either leave you impatient to get the
software, or disappointed about some important missing feature (most likely sort).

COBOL TEST PROGRAM

** CS COBOL V4.4 Test . CBL PAGE: 0001
* %
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. FI RST- TEST. PROGRAM
AUTHOR. PETER DI BBLE.
ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. G M X.
OBJECT- COMPUTER. G M X.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.
SELECT INPUT-1 ASSIGN ":Cl:"
ORGANI ZATI ON | S LI NE SEQUENTI AL.
SELECT MERGE- FI LE ASSI GN MERGE- NAME.
SELECT TEMP-FI LE ASSI GN " MERGE. TEMP" .
DATA DI VI SI ON.

FI LE SECTI ON.
FD | NPUT-1,

RECORD 40;

BLOCK 5;

LABEL RECORDS ARE STANDARD.
01 I NPUT-1-LINE PI C X(40).
FD MERGE- FI LE;

RECORD 20;

BLOCK 10;

LABEL RECORDS ARE STANDARD.
01 MERGE-LINE PI C X(20).
FD TEMP-FILE

RECORD 20;

BLOCK 10;

LABEL RECORDS ARE S TANDARD.
01 TEMP-LINE PI C X(20).
WORKI NG- STORAGE SECTI ON.
01 INTH S PI C X(40) VALUE SPACES.

01 LI NE-FMI REDEFI NES I N-THI S.

REVIEW OF OS-9 CIS COBOL

02 KEEP-TH S

04 FILLER PI C X(19).
04 CARRI AGE- RETURN PI C X
02 FILLER PI C X(20).
01 MERGE-TH S Pl C X(20) VALUE SPACES.
01 FILE-STAT PI C X VALUE "0".
PROCEDURE DI VI SI ON.

START- UP.
* PARAVETERS ARE G VEN I N THE FI RST RECORD OF STD. | NPUT
OPEN | NPUT | NPUT- 1.
READ | NPUT-1 | NTO MERGE- NAME.
OPEN | NPUT MERGE- FI LE.
OPEN OUTPUT TEMP- FI LE.
DI SPLAY | F MERG NG STANDARD | NPUT WTH ", MERGE- NAME.

** CS COBOL V4.4 Test . CBL PAGE: 0002
READ | NPUT-1 I NTO IN-TH S;
AT END MOVE HI GH VALUES TO I N-THI S.
PERFORM FI X- I N.
READ MERGE- FI LE | NTO MERGE-TH | S
AT END MOVE HI GH VALUES TO MERGE- THI S.
MAI N- SECTI ON.
PERFORM MERGE- LOOP UNTI L FI LE- STAT EQUAL TO "1".
MOVE " 0" TO FI LE- STAT.
CLOSE MERGE- FI LE.
OPEN OUTPUT MERGE- FI LE.
CLOSE TEMP- FI LE.
OPEN | NPUT TEMP- FI LE.
PERFORM READ- TEMP.
PERFORM COPY- TEMP- TO- MERGE UNTI L FI LE- STAT EQUAL TO "1".
STOP RUN.
MERGE- LOOP.
PERFORM PI CK- NEXT.
WRI TE TEMP- LI NE.
END- MERGE- LOCP.
EXIT.
Pl CK- NEXT.
| F KEEP-THI S < MERGE-THI S
THEN
PERFORM FI X-1 N
MOVE KEEP- THI'S TO TEMP- LI NE
READ I NPUT-1 I NTO IN-TH' S;
AT END PERFORM END- I N
ELSE
MOVE MERGE-THI S TO TEMP- LI NE
READ MERGE- FI LE | NTO MERGE- TH S
AT END PERFORM END- MERGE.
Pl CK- NEXT- END.
EXIT.
END- | N.
MOVE Hl GH VALUES TO IN-THI S.
| F MERGE-THI S = H G+ VALUES
THEN
MOVE "1" TO FI LE- STAT.
END- MERCE.
MOVE H GH VALUES TO MERGE- THI S.
I[F INTH S = H G+ VALUES
THEN

REVIEW OF OS-9 CIS COBOL

MOVE "1" TO FI LE- STAT.
FI X-T'N.
MOVE X' OD' TO CARRI AGE- RETURN.
COPY- TEMP- TO- MERGE.
VRI TE MERGE- LI NE.
PERFORM READ- TEMP.
END- COPY- TEMP- TO- HERGE.
EXIT.
READ- TEMP.
READ TEMP- FI LE; AT END PERFCORM END- TEMP.
MOVE TEMP- LI NE TO MERGE- LI NE.
END- READ- TEMP.
EXIT.
END- TEMP.
MOVE "1" TO FI LE- STAT.
END- | NPUT.
MOVE Hl GH VALUES TO IN-THI S.
END- MERGE- | N.
MOVE HI G+ VALUES TO MERGE- THI S.
END- PROGRAM
EXIT.
** CIS COBOL V4.4 REVISION O URN r p/
** COWPI LER COPYRI GHT (C) 1978 , 1981 M CRO FOCUS LTD
** ERRORS=00000 DATA=00791 CCDE=00489 DI CT=00654: 01229/ 01883 GSA FLAG

COBOL SIEVE

** CS COBOL V4.4 si ev. chbl PAGE: 0001
* %

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. SI EVE.

AUTHOR. PETER DI BBLE.

ENVI RONVENT DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

77 PRI ME PI C 9(5) COWP.
77 PRI ME- COUNT Pl C 9(5) COWP.
77 1 PI C 9(4) COWP.
77 K Pl C 9(5) COWP.
01 Bl T- ARRAY.

03 BI T OCCURS 8191 TI MES PIC 9 COW.
PROCEDURE DI VI SI ON.
START- UP.

DI SPLAY " TEN | TERATI ONS".
PERFORM S| EVE THROUGH SI EVE- END.

DI SPLAY " PRI MES FOUND: ", PRI M- COUNT.
STOP RUN.
SI EVE.
MOVE ZERO TO PRI ME- COUNT.
MOVE 1 TO I.
PERFORM I NI T-BI TS 8191 TI MES.
MOVE 1 TO I.
PERFORM SCAN- FCR- PRI MES THRCOUGH END- SCAN- FOR- PRI MES
8191 TI MES.
SI EVE- END.
EXIT
INIT-BITS.

MVE 1 TOBIT (1).

REVIEW OF OS-9 CIS COBOL

ADD 1 TO I.
END- I NI T- BI TS.
EXIT.
SCAN- FOR- PRI MES.
IEBIT (1) =0
THEN
GO TO NOT- PRI ME.
ADD | | 1 G VING PRI ME.
* DI SPLAY PRI ME.
ADD | PRIME G VING K.
PERFORM STRI KOUT UNTIL K > 8191.
ADD 1 TO PRI ME- COUNT.
NOT- PRI ME.
ADD 1 TO I.
END- SCAN- FOR- PRI MES.
EXIT
STRI KOUT.
MOVE 0 TO BI T (K).
ADD PRI ME TO K.
END- PROGRAM
EXIT.
** CI'S COBOL V4.4 REVISION 0 URN r p/

COBOL BENCHMARK PROGRAM

** CS COBOL V4.4 Bnch. CBL PAGE: 0001
* %
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. | SAM BENCHVARK
AUTHOR. PETER DI BBLE.
ENVI RONVENT DI VI SI ON,
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. G M X.
OBJECT- COMPUTER. G M X.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.
SELECT | SAM FI LE-1 ASSI GN "I SAM FI LE";
ORGANI ZATI ON | S | NDEXED ;
ACCESS MODE | S SEQUENTI AL ;
RECORD KEY | S | SAM KEY- 1.
SELECT | SAM FI LE-2 ASSI GN "| SAM FI LE";
ORGANI ZATI ON | S | NDEXED ;
ACCESS MODE | S RANDOM ;
RECORD KEY | S | SAM KEY- 2.
DATA DI VI SI ON.
FI LE SECTI ON.
FD | SAM FI LE-1;
DATA RECORD | SAM RECORD- 1.
01 | SAM RECORD- 1.
03 | SAM KEY-1 PIC 9(9) COwP-3.
03 FILLER PI C X(50).
FD | SAM FI LE-2;
DATA RECORD | SAM RECORD- 2.
01 | SAM RECORD- 2.
03 | SAM: KEY- 2 PIC 9(9) COwP-3.
03 FILLER PI C X(50).
WORKI NG- STORAGE SECTI ON.

REVIEW OF OS-9 CIS COBOL

77 KEY-NO PI C 9(9) COW-3 VALUE 0.
77 H - NUMBER PI C 9(9) COWP-3.
77 LO NUMBER PI C 9(9) COWP-3.
77 DATE PI C XXX VALUE " 004"
01 WORK- DATA.
03 WORK- KEY PI C 9(9) COWP-3.
03 | - DATA Pl C X(50).
01 SYSTEM DATE.
03 YEAR Pl C 99.
03 MONTH Pl C 99.
03 DAY Pl C 99.
01 SYSTEM TI ME.
03 HOUR Pl C 99.
03 M NUTE Pl C 99.
03 SECOND Pl C 99.
PROCEDURE DI VI SI ON.
START- UP.

OPEN OUTPUT | SAM FI LE-1.

MOVE " ASSORTED DATA: NAME, ADDRESS, ETC, OR WHATEVER' TO

| - DATA.

ADD 1 KEY-NO G VI NG LO- NUMBER

MOVE KEY- NO TO WORK- KEY.

DI SPLAY " START BUI LD".

CALL DATE USI NG SYSTEM DATE, SYSTEM TI ME.

DI SPLAY "TIME " HOUR, ":", MNUTE, ":", SECOND
** CS COBOL V4.4 Bnch. CBL PAGE: 0002
* %

PERFORM ADD- RECORD 10000 TI MES.

CLOSE | SAM FI LE-1

DI SPLAY " BUI LD DONE".

CALL DATE USI NG SYSTEM DATE, SYSTEM TI ME.

DI SPLAY "TIME " HOUR, ":", MNUTE, ":", SECOND

MOVE WORK- KEY TO HI - NUMBER.

DI SPLAY " READ STARTI NG'.

OPEN | NPUT | SAM FI LE- 2.

PERFORM TEST- READS 2500 TI MES.

CLOSE | SAM FI LE- 2.

CALL DATE USI NG SYSTEM DATE, SYSTEM TI ME.

DI SPLAY "TIME " HOUR, ":", MNUTE, ":", SECOND
DI SPLAY " READ DONE".
STOP RUN.

ADD- RECORD.

ADD 1 TO WORK- KEY.
VRI TE | SAM RECORD- 1 FROM WORK- DATA;
I NVALI D KEY PERFORM ERROR- 1.
ERROR- 1.
DI SPLAY "1 NVALI D KEY: ", | SAM KEY- 1.
TEST- READS.
PERFORM READ- HI GH.
PERFORM READ- HI GH.
PERFORM READ- LOWN
PERFORM READ- LOWN
READ- HI GH.
MOVE HI - NUMBER TO | SAM KEY- 2, WORK- KEY.
READ | SAM FI LE-2; |1 NVALI D KEY PERFORM ERROR- 2.
SUBTRACT 1 FROM WORK- KEY G VI NG HI - NUMBER.
ERROR- 2.
DI SPLAY "1 NVALI D KEY: ", WORK- KEY.

REVIEW OF OS-9 CIS COBOL

READ- LON
MOVE LO- NUMBER TO WORK- KEY, | SAM KEY- 2.

READ | SAM FI LE-2, | NVALI D KEY PERFORM ERROR- 2.

ADD 1 WORK-KEY G VI NG LO- NUMBER.
END- PROGRAM
EXIT.
** CIS COBOL V4.4 REVISION O
** COWPI LER COPYRI GHT (C) 1978, 1981 M CRO FOCUS LTD

URN r p/

** ERRORS- 00000 DATA- 00705 CCDE=00703 DI CT=00612: 01271/ 01883 GSA FLAG

10

	REVIEW OF OS-9 CIS COBOL
	OVERVIEW
	ENHANCEMENTS
	LIMITATIONS
	BENCHMARKS
	SUMMARY
	COBOL TEST PROGRAM
	COBOL SIEVE
	COBOL BENCHMARK PROGRAM

