
OS-9 Editor/Assembler/
Debugger Manual

OS-9 Editor/Assembler/Debugger Manual
Copyright © 1980, 1984 Microware Systems Corporation.

All rights reserved.

This document and the software it describes are copyrighted products of Microware Systems Corporation. Reproduction by any means is
strictly prohibited except by prior written permission from Microware Systems Corporation.

The information contained herein is believed to be accurate as of the date of publication, however Microware will not be liable for any damages,
including indirect or consequential, resulting from reliance upon the software or this documentation.

iii

1. Text Editor ... 1
1.1. Introduction to the Macro Text Editor ... 1
1.2. Getting Started ... 1
1.3. The Edit Command Line .. 1
1.4. Edit Buffers ... 2
1.5. Edit Pointers .. 2
1.6. Entering Commands .. 2
1.7. Parameters ... 3

1.7.1. Numeric Parameters .. 3
1.7.2. String Parameters .. 3
1.7.3. Multiple Parameters .. 4

1.8. Syntax Notation .. 4
1.9. Basic Commands .. 4

1.9.1. Change String .. 5
1.9.2. Delete Characters .. 5
1.9.3. Delete Lines .. 5
1.9.4. Extend Lines .. 6
1.9.5. Unextend Line ... 6
1.9.6. Insert Line ... 6
1.9.7. Insert String ... 7
1.9.8. List Following Lines ... 7
1.9.9. List Previous Lines ... 7
1.9.10. Memory Size Adjust .. 7
1.9.11. Memory Size Display .. 8
1.9.12. Move Characters Backward .. 8
1.9.13. Move Characters Forward .. 8
1.9.14. Move To End Of Text ... 9
1.9.15. Move To Next Line And Display ... 9
1.9.16. Move To Start Of Text .. 9
1.9.17. Move Lines Backwards .. 9
1.9.18. Move Lines Forward .. 10
1.9.19. Quit Editor ... 10
1.9.20. Search For String .. 10
1.9.21. Set Anchor Column ... 11
1.9.22. Shell Command .. 11
1.9.23. Tab ... 11
1.9.24. Verify On/Off ... 12

1.10. Advanced Commands ... 12
1.11. File Manipulation Commands .. 12

1.11.1. New .. 12
1.11.2. Open Input File ... 13
1.11.3. Create Output File ... 13
1.11.4. Read From Input File ... 14
1.11.5. Write To Output File ... 14

1.12. Buffer Manipulation Commands ... 14
1.12.1. Display Buffer And Macro Directory .. 14
1.12.2. Change and/or Create Primary Edit Buffer ... 14
1.12.3. Move Lines From Primary Buffer .. 15
1.12.4. Move Lines To Primary Buffer .. 15

1.13. Looping And Conditionals ... 15
1.13.1. Looping ... 16
1.13.2. The Fail Flag .. 16
1.13.3. Conditional Statements ... 16

1.14. Testing Commands .. 17
1.14.1. Test For End of File .. 17
1.14.2. Test For Not End of File .. 17
1.14.3. Test For End of Buffer ... 17
1.14.4. Test For Not End of Buffer ... 17

OS-9 Editor/Assembler/
Debugger Manual

iv

1.14.5. Test For End of Line ... 17
1.14.6. Test For Not End of Line ... 17
1.14.7. Test For Zero ... 17
1.14.8. Test For Star .. 18
1.14.9. Test For String Match .. 18
1.14.10. Test For String Mismatch .. 18
1.14.11. Exit And Clear .. 18
1.14.12. Exit And Fail .. 18

1.15. Macros ... 18
1.15.1. Macro Headers .. 18
1.15.2. Parameters and Variables .. 19
1.15.3. Creating and Editing Macros ... 20

1.16. Macro Commands .. 20
1.16.1. Comment ... 20
1.16.2. Load Macros From File .. 20
1.16.3. Save Macros ... 21
1.16.4. Delete Macro .. 21

2. Assembler ... 23
2.1. Introduction .. 23
2.2. Installation ... 23
2.3. Assembly Language Program Development .. 23
2.4. Operational Modes .. 24
2.5. Running the Assembler .. 24
2.6. Source Program Format and Syntax .. 26

2.6.1. Assembler Source Files .. 26
2.6.2. Source Statement Fields ... 26

2.7. Expressions .. 27
2.7.1. Operands ... 27
2.7.2. Arithmetic and Logical Operators .. 28
2.7.3. Symbolic Names ... 29
2.7.4. Instruction Addressing Modes ... 29
2.7.5. Overview of Indexed Addressing Modes ... 32

2.8. Assembler Directive Statements ... 34
2.8.1. END Statement ... 34
2.8.2. EQU and SET Statements .. 34
2.8.3. FCB and FDB Statements .. 35
2.8.4. FCC and FCS Statements ... 35
2.8.5. IF, ELSE, and ENDC Statements ... 36
2.8.6. MOD and EMOD Statements .. 37
2.8.7. NAM and TTL Statements ... 39
2.8.8. OPT Statement ... 39
2.8.9. OS9 Statement .. 40
2.8.10. ORG Statement ... 40
2.8.11. PAG and SPC Statements ... 41
2.8.12. SETDP Statement .. 41
2.8.13. USE Statement .. 41

2.9. Assembly Language Programming Techniques ... 41
2.9.1. Program Sections and Data Sections ... 42
2.9.2. Program Area ... 42
2.9.3. Writing Position Independent Code .. 42
2.9.4. Accessing The Data Area ... 43
2.9.5. Additional Comments .. 44

2.10. Using the DEFS Files ... 44
2.10.1. The OS9Defs File ... 45
2.10.2. The SCFDefs File ... 48
2.10.3. The RBFDefs File ... 48
2.10.4. The SysType File .. 50

3. Interactive Debugger .. 51

OS-9 Editor/Assembler/
Debugger Manual

v

3.1. Introduction .. 51
3.1.1. Installation ... 51
3.1.2. Calling the Interactive Debugger .. 51
3.1.3. Basic Concepts ... 51

3.2. Expressions .. 51
3.2.1. Constants ... 52
3.2.2. Special Names .. 52
3.2.3. Register Names .. 52
3.2.4. Operators ... 53
3.2.5. Indirect Addressing ... 53
3.2.6. Forming Expressions ... 53

3.3. Debug Commands ... 54
3.3.1. Calculator Command ... 54
3.3.2. “Dot” and Memory Examine/Change Commands 54
3.3.3. Register Examine/Change Commands ... 56
3.3.4. Breakpoint Commands ... 57
3.3.5. Program Setup And Run Commands .. 58
3.3.6. Utility Commands ... 59
3.3.7. Using The Debugger ... 60

A. Error Messages ... 65
A.1. Text Editor Error Messages .. 65
A.2. Assembler Error Messages ... 66
A.3. Interactive Debugger Error Codes .. 68

B. Quick Reference .. 69
B.1. Editor Quick Reference Summary .. 69
B.2. Interactive Debugger Quick Reference .. 71

C. Example Assembly Language Programs .. 73
C.1. Assembly Language Programming Examples ... 73

vi

1

Chapter 1. Text Editor
1.1. Introduction to the Macro Text Editor

The Macro Text Editor is a powerful and easy to use text preparation system. It is commonly used
to create source programs or other kinds of text files used within the OS-9 system. The editor has
many features that make editing faster and more convenient. For example, most commands involve
only one or two keystrokes.

The “Macro” part of the editor's name refers to the its macro facility which allows you to create new
personalized commands or complex commands for special purposes from the basic built-in command
set.

Because the editor has its own variables and loops it can be used as a kind of text-oriented programming
language, which is especially useful for large software conversion problems.

The editor can also edit several different files at the same time, and even copy text from one file to
another.

1.2. Getting Started
The editor is kept in a file called “edit”, which should be present in your system's CMDS (execution)
directory. To run the editor type:

OS9: edit RETURN

The editor should load and start. When it prints the “E: ” prompt, it is ready to accept a command.
The first command to learn is how to quit editing (return to OS-9). To quit, type a “Q” followed by
a carriage return as follows:

E: q RETURN

Now that you can get in and out of the editor, it is time to learn a little about some basic edit commands
which are discussed in the sections on Display, Edit Pointer Manipulation, and Insertion/Deletion.
After you have mastered the basic commands, you should move on to the more advanced commands.
Good Luck!

1.3. The Edit Command Line
When you run EDIT, you can optionally specify initial input and output file(s). Although you may
open additional files after the editor has been started, there are several commands which treat the initial
files as special cases because it is assumed that these files (if specified) are the main working files.

You may also want to use the OS-9 shell “#” memory size option to give the editor a bigger memory
space, which will let you edit bigger sections of a file at once. If you don't, the default size is 4K
bytes. For example:

OS9: EDIT myfile #24k RETURN

Some of the different forms of the edit command line are illustrated below. The name “newfile” refers
to the name of a new file you wish to create. The name “oldfile” refers to the name of an existing file
you wish the editor to use.

Edit Buffers

2

EDIT

There will be no initial input or output files. Text file operations may be performed by opening files
after the editor has started running.

EDIT newfile

The editor will create a new file called “newfile” which will be the initial output file.V There will
be no initial input file. However, read operations may be performed by opening files after the editor
has started running.

EDIT oldfile

The initial input file is “oldfile”. The editor will create a new temporary file called “SCRATCH”
that will be the initial output file. when the edit session is done, “oldfile” will be deleted, and then
“SCRATCH” will be renamed to the name “oldfile” to give the appearance of “oldfile” simply being
updated. Note: The two OS-9 utilities “DEL” and “RENAME” must be present on your system if
you wish to use this method to start the editor.

EDIT oldfile newfile

The initial input file is “oldfile”. The editor will create a new file called “newfile”, which will be the
initial output file.

1.4. Edit Buffers
The text being edited is stored in a memory space called an “edit buffer”. Edit buffers may be thought
of as scratch pads used for saving the text to be manipulated by the editor.

There is always at least one edit buffer, but you can create several at the same time if you wish. The
buffer currently being used is called the “primary buffer”, and the last most recently used buffer is
called the “secondary buffer”. Normally, the primary buffer will simply be referred to as the “buffer”
or “edit buffer” for short, except where it is explicitly called the primary buffer. The secondary buffer is
important only when you wish to use a command that involves moving text from one buffer to another.

1.5. Edit Pointers
The macro text editor uses what is called an “edit pointer” as a place holder to remember your current
position in the text buffer. Many commands operate on the text at the current edit pointer position. This
is similar to a person using his finger as a place holder when reading a newspaper. Certain commands
may be used to reposition the edit pointer, or show the text that it points to, etc. Each buffer has its
own edit pointer to allow you to move from buffer to buffer without losing your place in any of them.

1.6. Entering Commands
Whenever the editor prints the “E:” prompt, it is ready for you to enter a command line. You can
type one or more edit commands on a single line followed by RETURN . Some edit commands have
“parameters” which are values used by the command.

Multiple commands on a single line can be optionally separated by spaces, but you should not start a
command line with a space because the space character is itself a command (insert line).

Many of the commands are single characters designed for rapid entry, for example “L” and “D”. Some
other command are function keys such as SPACE and RETURN which only apply if they are the first
character of the line. Yet other commands are “built-in macros”, which are descriptive names starting

Parameters

3

with a “.”, such as “.size” and “.shell”. In general, all three kinds work the same way despite the
differences in form.

If you make a mistake while typing, it may be corrected before the mistake reaches the editor by
using the backspace key, or by deleting the entire line using the CONTROL+X key (of course editor
commands can also be used to fix mistakes!). The usual OS-9 control characters work in the editor,
see the OS-9 Operating System User's Guide. A summary is given below:

CONTROL+A Repeat previous input line.

CONTROL+C Interrupt whatever the editor is doing and return to command entry mode.

CONTROL+D Redisplay present input line.

CONTROL+H Backspace.

CONTROL+Q Same as CONTROL+C .

CONTROL+W This control key will temporarily halt output to your terminal so that you can read
the screen before the data scrolls off. Output is resumed when you type any other
key.

CONTROL+X Line delete.

ESCAPE Quit editor - same as “Q” command.

1.7. Parameters
Many of the editor's commands allow you to specify some value which may represent such things as
the number of times to repeat a command or a phrase you wish to find, etc. There are two types of
edit parameters, “numeric” and “string”.

1.7.1. Numeric Parameters

Numeric parameters are used when you wish to specify an amount, such as the number of times to
repeat a command or the number of text lines that a command is be applied. The four methods in
which a numeric parameter may be specified are:

1. The parameter can be omitted. In this case, a value of 1 is assumed. The example below lists one
line:

L

2. The parameter can be a constant number from 0 to 65535. The example below shows the “L” (list
lines) command with a parameter of “10”.

L10

3. The parameter can be “*” which means repeat the command as many times as possible. The example
below means “list all lines”.

L*

4. The parameter can be a numeric variable, which is a “#” followed by the letters A-Z, to be used in
conjunction with macros and is explained in detail in the “Edit Macro” section.

1.7.2. String Parameters

Strings are used to specify a single character, word, phrase, or any other arbitrary group of characters.
There are two methods which You may use to specify strings.

Multiple Parameters

4

The first method is to enclose the text between a pair of “delimiter” characters. The delimiters are not
part of the text. Any characters can be used for delimiters, but punctuation characters chosen so they
are not included in the actual text are most commonly used. For example, to tell the editor to search
for the phrase “fast code” the following command is used:

S/fast code/

Unlike commands, a distinction is always made between upper case and lower case strings. The
example on the previous page would not find “FAST CODE”.

1.7.3. Multiple Parameters

When a command requires two to more parameters, they are given in the correct order immediately
following the command name. You do not have to type spaces or other characters between the
parameters. For example, the command to search for the next two occurrences of the phrase “compiler”
is:

S2/compiler/

If two string parameters are required by a command, three delimiters are used: one at the beginning,
one between the first string and the second, and one at the end of the second string. For example, the
command to change the phrase “my cat” to “my dog” is:

C,my cat,my dog,

The second method uses “string variables”, which consist of a “$” followed by a variable name of A-
Z. These are most commonly used in macros and are discussed in detail in the “Edit Macro” section.

1.8. Syntax Notation
This manual uses syntax descriptions to help you understand how to enter each command. They
describe what you should enter and the order that you should do it in. The first thing in a syntax
description is the command name. The name should be typed in exactly as given (except lower case
and upper case command names are interchangeable).

The command name is followed by the type of parameters that the command expects. Each of them
should be entered as described in the section on parameters. The syntax descriptions for each command
use the following definitions:

n numeric parameter

str string parameter

SPACE space character

RETURN carriage return or “enter” key

text one or more characters terminated by a RETURN

1.9. Basic Commands
This section describes the basic commands used to manipulate text and control the editor. If you plan to
only occasionally use Edit with simple single-buffer editing, these command are all you need to know.

For basic editing, you need only learn the commands listed below, This editor is actually a proper
superset of the Basic09 built-in editor, so if you know Basic09; you already know how to use Edit
effectively!

Change String

5

+ Move Forward Line(s)

- Move Backward Line(s)

SPACE Insert Line

RETURN Move Forward One Line And Display

C Change String

L List Line(s)

S Search For String

Q Quit Editing

You will notice that some commands work on entire lines (such as “+”), and others work on characters
within lines (such as “>”). We also recommend that beginners master line-oriented commands before
moving on to character-oriented commands.

1.9.1. Change String

SYNTAX: C n str1 str2
.CHANGE n str1 str2

FUNCTION: Change the next n occurrence of str1 to str2
MODE: Line-Oriented

This command is used to change the next n occurrences of “str1” to “str2”. Starting at the current
edit pointer position; wherever “str1” is found, it is changed to “str2”, and then the updated line
is displayed. Changes continue until no more occurrences of “str1” are found or until the count “n”
is reached, whichever occurs first.

The “C” command leaves the edit pointer positioned at pointing to the beginning of the last line
changed. The “.CHANGE” built-in macro will leave the edit pointer positioned just past the modified
string. If “str1” is not found, the edit pointer will not be affected. Some typical examples of its use
are:

C/this/that/ .CHANGE/this/that/
C2/in/out/ .CHANGE 2 /in/out/
C*! seek and find ! seek and found !

The first example changes the next occurrence of “this” to “that”. The second example changes the
next two occurrence of “in” to “out”. The last example changes all occurrences of “ seek and find ” to
“ seek and found ” that are between the edit pointer and end of text.

1.9.2. Delete Characters

SYNTAX: K n
FUNCTION: Delete (Kill) n characters.
MODE: Character-Oriented

This command is used to erase n characters starting at the current edit position; all deleted characters
are displayed. Some examples are:

K K4

The first command deletes the character at the current edit position. The second command deletes the
character at the current edit position and the next three characters.

1.9.3. Delete Lines

SYNTAX: D n
FUNCTION: Delete n lines.

Extend Lines

6

MODE: Line-Oriented

This command is used to delete (erase) n entire lines of text starting with the current line, regardless
of the edit pointer position in the line. The deleted lines are displayed. Some examples are:

D D4 D*

The first example deletes the current line and displays it. The second example deletes the current line
and the next three lines. The last example deletes all the lines from the current line to the end of_the
edit buffer.

1.9.4. Extend Lines

SYNTAX: E n str
FUNCTION: Extend n lines with string.
MODE: Line-Oriented

This command is used to extend (add to the end of) n lines with the string given. After each line is
extended, the line is displayed and the edit pointer is moved past it. Below are some examples of how
it may be used:

E/this is a comment/ E3/XX/

The first example would add the string “this is a comment” to the end of the current line and move the
edit pointer to the next line. The second example would add the string “XX” to the end of the current
line and the next two lines; the edit pointer would be moved past these lines.

1.9.5. Unextend Line

SYNTAX: U
FUNCTION: Unextend (truncate) line
MODE: Character-Oriented

This command is used to unextend (truncate) a line at the current edit position. The characters in
the line from the current edit pointer position to the end of the line are chopped off. The “>” or “<”
commands (see Section 1.9.12, “Move Characters Backward”) are usually used to position the pointer
prior to use of this command. For example:

U

1.9.6. Insert Line

SYNTAX: SPACE text
FUNCTION: Insert the line of text before edit position
MODE: Line-Oriented

This command is used to insert complete text lines. The lines are inserted before the current edit
position, and the edit pointer will be positioned following the newly entered line. Therefore, many
lines can be automatically entered in order. The new lines will be inserted before the line pointed to
by the edit pointer prior to entry of the new lines. For example:

E: SPACEthis is line one. RETURN
E: SPACEthis is line two. RETURN
E: SPACEthis is line three. RETURN
E: ^ RETURN
E: L* RETURN
This is line one.
This is line two.

Insert String

7

This is line three.
E:

1.9.7. Insert String

SYNTAX: I n str
FUNCTION: Insert a line containing n copies of str string
MODE: Line-Oriented

This command is used to insert a line made up of n copies of the string, which is inserted before the
edit pointer. Then the edit pointer is not changed. For example, if you wanted to insert a line containing
eighty asterisks you would enter the following command:

I80/*/

Note that this command always inserts a RETURN after the text. While this command is very similar to
the SPACE (insert line) command, it is provided because the SPACE command cannot be used within
macros.

1.9.8. List Following Lines

SYNTAX: L n
FUNCTION: List the next n lines of text
MODE: Line-Oriented

This command displays n lines of text starting at the current edit position. The edit position is not
changed. For example, the following command will cause the editor to display the current line of text:

L

If you wish to display the three lines, enter the command line given below:

L3

If the edit pointer is not at the beginning of the first line, only that part of the line from the edit pointer
to end of line will be displayed. To see all the text from the current edit position to the end of the
buffer, use an asterisk for the value as in the following command line:

L*

The “L” command is not affected by “verify” mode;

1.9.9. List Previous Lines

SYNTAX: X n
FUNCTION: Display previous lines of text
MODE: Line-Oriented

This command is identical to the L command except it list lines before the current edit pointer position.

1.9.10. Memory Size Adjust

SYNTAX: M n
FUNCTION: Adjust the workspace size to n bytes.
MODE: Directive to Editor

Memory Size Display

8

This command is used to adjust the workspace size (total amount of memory available for buffers and
macros). If the workspace becomes full and the editor prevents you from entering more text, you may
overcome the problem by increasing the workspace size. If you will not be using a large portion of the
available workspace, you may wish to decrease the workspace size so that other OS-9 programs may
use the memory that you free. Below are some examples of how the “M” command is used:

M5000 M10000

The first example sets the workspace size to 5000 bytes. The second example sets the workspace size
to 10000 bytes.

Before using the “Q” command to quit editing, you may want to make the workspace size larger to
decrease the amount of time needed to copy the input file to the output file allowing the editor to read
and write a larger portion of the file at one time. Note that memory is allocated in 256 byte pages. For
the “M” command to have any effect, the desired workspace size must differ from the current size by
at least 256 bytes. The “M” command will not allow you to return any part of the workspace which
is being used for buffers or macros.

1.9.11. Memory Size Display

SYNTAX: .SIZE
FUNCTION: Display workspace size.
MODE: Directive to Editor

This command is used to display the size of the workspace and the amount that has been used, An
example of how this command would be used is:

E: .SIZE RETURN
 521 15328

in the example above, the numbers that are printed below the “.SIZE” command are “521” which is
the amount of the workspace that has been used for buffers and macros, “15328” is the total amount
of memory available in the workspace.

1.9.12. Move Characters Backward

SYNTAX: < n
FUNCTION: Move backwards n characters.
MODE: Character-Oriented

This command is used to move the edit pointer backwards (toward the beginning of the text) n
characters. It is typically used when moving the edit pointer to some position in a line other than the
first character. Here are examples:

< <10
The first command line moves the edit pointer back one character. The second command line moves
the edit pointer back ten characters.

1.9.13. Move Characters Forward

SYNTAX: > n
FUNCTION: Move forward n characters.
MODE: Character-Oriented

This command is used to move the edit pointer forward (toward the end of the text) n characters. It
is typically used to move the edit pointer to some position in the line other than the first character.
Here are examples:

> >25 >*

Move To End Of Text

9

The first command line moves the edit pointer forward (to the right) one character. The second
command line moves the edit pointer forward twenty five characters. The last command line move
the edit pointer to the end of the buffer.

1.9.14. Move To End Of Text

SYNTAX: /
FUNCTION: Move to end of text.
MODE: Line- or Character-Oriented

This command moves the edit pointer past the last character of the last line in the buffer. Note that
-* is identical in function to ^.

1.9.15. Move To Next Line And Display

SYNTAX: RETURN

FUNCTION: Move to next line and show it.
MODE: Line-Oriented

This command moves the edit pointer to the beginning of the next line and displays it. Note that the
only character you should type to enter this command is the RETURN-key. This command is after used
to step through the text one line at a time. For example:

E:L3 RETURN list next three lines
 This is line 1
 This is line 2
 This is line 3
E:RETURN
 This is line 2
E:RETURN
 This is line 3

1.9.16. Move To Start Of Text

SYNTAX: ^
FUNCTION: Move to beginning of text.
MODE: Line and Character-Oriented

This command moves the edit pointer to the beginning (top) character of the first line in the edit buffer.

1.9.17. Move Lines Backwards

SYNTAX: - n
FUNCTION: If n => 1, go backward n lines and display the line.

If n = 0, go to the beginning of the line.
MODE: Line-Oriented

The “-” command has two uses. If a number of one or more is given, the edit pointer is moved backward
that number of lines, and the new line pointed to will be displayed. For example, the following
command will move the edit pointer backward 5 lines:

-5

If the “-” command is given with a number of zero, it moves the edit pointer past to the first character
of the current line. This can be useful when you wish to repeat a command within the current line.
For example:

Move Lines Forward

10

-0

1.9.18. Move Lines Forward

SYNTAX: + n
FUNCTION: If n => 1, go forward n lines and display the line.

If n = 0, go to the end of the line.
MODE: Line-Oriented

The “+” command has two uses. If a number of one or more is given, the edit pointer is moved
forward that number of lines, and the new line pointed to will be displayed. For example, the following
command will move the edit pointer forward 5 lines:

+5

If the “+” command is given with a number of zero, it moves the edit pointer past to the last character
of the current line. This can be useful when you wish to append text to the current line. For example:

+0

Also note that “+*” is identical in function to “/”.

1.9.19. Quit Editor

SYNTAX: Q
FUNCTION: Quit Edit Program
MODE: Directive to Editor

This command is used to quit editing and return to the OS-9 Shell (or the program that called Edit).
For example:

Q

If input and/or output file(s) were specified on the OS-9 command line when you started the editor, the
text in buffer number one would be written to the initial output file, then the remainder of the initial
input file will be copied to the output file. After the text has been copied, the editor will be terminated
and control returned to the Shell.

1.9.20. Search For String

SYNTAX: S n str
MODE: Line-Oriented
SYNTAX: .SEARCH n str
MODE: Character-Oriented
FUNCTION: Search for the next n occurrence of str

This command is used to search for the next n occurrences of the string specified, starting at the current
edit pointer position. When a line containing the string is found, the line is displayed.

If the string is found, the edit pointer will be positioned at the beginning of the last line in which the
string was found. If no occurrence of the string was found, the edit pointer position will be unchanged.

The “.SEARCH” built-in macro is similar to “S” except that it leaves the edit pointer just past the
occurrence of the string. Some typical examples of its use are:

S/my string/ .SEARCH/my string/

Set Anchor Column

11

S3"strung out" .SEARCH 3"strung out"
S*/seek and find/ .SEARCH*/seek and find/

The first example searches for the next occurrence of “my string”. The second example searches for
the next three occurrence of “strung out”. The last example searches for all occurrence of “seek and
find” that are between the edit pointer and the end of text.

1.9.21. Set Anchor Column

SYNTAX: A n
FUNCTION: Set the SEARCH/CHANGE anchor to column number n.
MODE: Character-Oriented

This command is used to set the SEARCH/CHANGE anchor to column number n. After the anchor
has been set, the “S” and “C” commands will find a string only if it begins in column number n. For
example, if you want to find a string that you know begins in column number one (such as an assembly
language label), but don't want to find it if it begins in any other column, you should set the anchor
to column one before using the search command to find it to allow you to skip any occurrence of the
string that do not start in column one. Some typical examples of its use are:

A A50

The first example would cause SEARCH/CHANGE to find a string only if it began in column number
one. The second example would cause SEARCH/CHANGE to find a string only if it began in column
number fifty.

To return to the normal mode of searching so that a string may be found regardless of the column that
it begins in, the anchor should be set to zero. For example:

A0

If you use the “A” command to set the anchor, this remains in effect only for the Current command line.
After the command line is executed the anchor will automatically return to its normal value of zero.

1.9.22. Shell Command

SYNTAX: .SHELL text
FUNCTION: Call the OS-9 SHELL to execute the text line.
MODE: Directive to Editor

This command allows you to use any of the OS-9 commands from within the editor. The remainder of
the command line following the “.SHELL” command is passed to the OS-9 shell for execution. Some
examples of how this command may be used are:

E: .SHELL dir /D1 RETURN

E: .SHELL asm prog.src l o=prog >/p& RETURN

Notice that the second example starts the assembler as a background task.

1.9.23. Tab

SYNTAX: T n
FUNCTION: Tab to character position n.
MODE: Character-Oriented

This command is used to tab (move the edit pointer) to the character position “n” of the current line.
If “n” exceeds the line length, the line will be extended with spaces. Some examples of usage are:

Verify On/Off

12

T T5
The first example would move the edit pointer to the first column of the current line. The second
example would move the edit pointer to the fifth column of the current line.

1.9.24. Verify On/Off

SYNTAX: V n
FUNCTION: Turn verify ON / OFF
MODE: Directive to Editor

This command is used to turn the verify mode on or off. If the verify mode is turned on (the default),
many edit commands will display their results which can be annoying and/or time consuming when
certain commands are used repetitively (such as “c”, and “d”). If you turn verify off, it may be turned
on again by specifying a non-zero value for n. For example:

V V20
Either of the two examples above would turn the verify mode on. To turn the verify mode off use the
following command:

V0

Macros inherit the current verify mode, but if a macro changes the mode the change will only apply
within the macro call.

1.10. Advanced Commands
This section discusses the editor commands that are available for more sophisticated editing tasks. The
advanced commands can be divided into four general categories:

File Manipulation Commands

These commands allow files to be opened, created; closed, read from, and written to. The editor
can work with several files at the same time.

Buffer Manipulation Commands

These commands let you create multiple edit buffers, switch between them, and copy lines or
blocks of text from buffer to buffer.

Loops and Conditional commands

These commands allow sequences of edit commands to be executed repetitively, and to apply
various conditional tests. Using these functions you can create editor “programs”.

Macros

These commands allow sequences of edit commands (including loops and conditionals) to be
stored, edited, saved, loaded and executed.

1.11. File Manipulation Commands

1.11.1. New

SYNTAX: .NEW

This command is used when the file being edited is too large to fit into the editor's workspace at one
time.

Open Input File

13

All lines of text before the current edit pointer position are written to the output file. The editor will
then try to read new text lines from the input file, which are appended to the end of the edit buffer. The
editor attempts to read as many new lines as were written out.; The “NEW” command always uses the
initial input and output files (i.e., the files specified in the command line used to run the editor).

If you have finished editing the text currently in the edit buffer, you may “flush” it out and refill
the buffer with new text by moving the edit pointer to the bottom of the edit buffer and then use the
“.NEW” command as follows:

E:/.NEW RETURN

If you wish to retain part of the text that is already in the edit buffer,- move the edit pointer to the first
line that you wish to retain, before using the “.NEW” command.

1.11.2. Open Input File

SYNTAX: .READ str

This command is used to open an OS-9 text file for reading, or to close the file after it is no longer
needed. The file opened replaces the original input file specified on the command line used to call
the editor.

To open a file, “str” is used to specify the OS-9 file name, for example:

E:.READ "myfile" RETURN

To close an input file, the .READ command is used with an empty string as shown below. Closing a
file previously opened using the .READ command also restores the original input file.

E:.READ "" RETURN

When a file is opened it remains attached to the current primary buffer to allow each buffer to have
its own independent input file. These files may be read by switching to the proper buffer, then using
the “R” command to read from that buffer's input file. When closing a file, you must select the same
primary that the file was opened with.

1.11.3. Create Output File

SYNTAX: .WRITE str

This command is used to create a new output file or to close the file after it is no longer needed. The
file opened replaces the original output file specified on the command line used to call the editor.

To create an output file, “str” gives the OS-9 file name, for example;

E:.WRITE "myfile" RETURN

To close an output file, the .WRITE command is used with an empty string as shown below. Closing
a file previously opened using the .WRITE command also restores the original output file.

E:.READ "" RETURN

When a file is created it remains attached to the current primary buffer so buffer can have its own
independent output file. These files may be written to by switching to the proper buffer, then using
the “W” command to write to the buffer's output file. When closing a file, you must select the same
primary buffer that the file was opened with.

Read From Input File

14

1.11.4. Read From Input File

SYNTAX: R n

This command is used to read “n” lines of text from the buffer's input file. The lines read in are
displayed and inserted before the current edit position. For example:

R10 R*

The first example reads ten lines of text from the input file, and the second example reads all remaining
lines. If there is no more text in a file, the “*END OF FILE*” warning message will be displayed.

1.11.5. Write To Output File

SYNTAX: W n

This command is used to write up to “n” lines of text from the buffer-to its output file. The lines are
written starting at the current edit position. For example:

W10 W*

The first example writes ten lines and the second writes all remaining lines of text.

1.12. Buffer Manipulation Commands

1.12.1. Display Buffer And Macro Directory

SYNTAX: .DIR

This command is used to display the directory of the editors buffers and macros. For example:

E:.DIR RETURN

BUFFERS:
$ 0
* 1
 50

MACROS:
 MYMACRO
 INDENT

Under the heading BUFFERS is a list of all current edit buffers. The current primary buffer is marked
with an asterisk (Buffer #1 in the example above). The current secondary buffer is marked with a
dollar sign (Buffer #0 in the example above). All other buffers are listed but otherwise unmarked (such
as Buffer #50 above).

Under the heading MACROS is a the list all current macros. The example above shows the macros
MYMACRO and INDENT.

1.12.2. Change and/or Create Primary Edit Buffer

SYNTAX: B n

This command is used to make buffer number “n” the primary edit buffer. The previous primary buffer
becomes the new secondary buffer. If you specify the number of a buffer that does not already exist, a
new buffer will be created and assigned the buffer number. For example, assume the current primary
buffer is 1, then the following command is given.

Move Lines From Primary Buffer

15

B5
The example above makes buffer 5 the new primary edit buffer, and buffer 1 would become the new
secondary buffer.

1.12.3. Move Lines From Primary Buffer

SYNTAX: P n

This command is used to move “n” lines of text from the primary buffer to the secondary buffer.
The lines are removed from the primary edit buffer starting at its edit position and inserted into-the
secondary buffer (before its edit position. The text moved is displayed. Some examples of the use of
this command are:

P P5 P*

The first example moves one line of text, the second example moves five lines of text, and the last
example moves all lines that are between the current edit position and end of text.

This command is often used in combination with the “G” command below to perform block transfers
of text within a buffer. The example below illustrates the block move operation.

1. Move edit pointer to first line to be moved.

E:S/First line/ RETURN
 First line to be moved

2. Put lines in secondary buffer (in this case, 2 lines).

E:P2 RETURN

3. Move edit pointer to where text is to be reinserted.

E:+20 RETURN

4. Get lines back from secondary buffer

E:G2 RETURN
 First line to be moved
 Second line to be moved

1.12.4. Move Lines To Primary Buffer

SYNTAX: G n

This command is the reverse of the P command. Text lines are taken from the top (beginning) of the
secondary buffer and inserted into the primary buffer before its current edit position.

1.13. Looping And Conditionals
An important advanced feature of the editor is its ability_for looping and conditional tests allow
sequences of commands to be repeated a number of times until a certain condition is met. For example,
you can repeat a sequence of commands until a certain string is encountered in the text.

The looping and conditional features, especially when combined with the macro functions discussed
in the next section, give the editor many characteristics of a programming language.

Looping

16

1.13.1. Looping

A loop is constructed by enclosing one or more commands in square brackets. A loop count value
(which can be a number or “*”) specifies how many times the command within the loop are to be
repeated. If any of the commands fails (such as an unsuccessful string search), the loop will be exited
prematurely. For example, the commands in the loop shown below will be executed 12 times or until
the string in the search can't be found.

[S/This line should be removed/ -1 D] 12

If a loop is typed in as a command for immediate execution, it must fit in one complete line. If a loop is
contained within a macro, it can extend across multiple lines. Loops can be nested within each other.

1.13.2. The Fail Flag

When an edit command is not able to complete its operation, the editor will set an internal flag called
the fail flag. For instance if you tried to read from a file that had no more text in it, the editor would
set the fail flag. The fail flag is used to control loops and conditional statements.

After the fail flag has been set, the editor skips commands until it reaches: a) the end of a keyboard
command line, or b) the end of the current loop or c) an IF (“:”) command.

The testing commands described in this section set or clear the fail flag. The other commands listed
below can also set the fail flag upon condition noted:

< Attempt to move the edit pointer before the beginning of the buffer.

> Attempt to move the edit pointer past the end of the buffer.

S Not finding the search string.

C Not finding the search string.

G No text left in the secondary buffer.

R No text left in the read file.

P,W No text left in the primary buffer.

1.13.3. Conditional Statements

Conditional statements can be formed inside loops using the “:” operator. When the “:” is encountered,
all statements that follow until the end of the current loop or macro are skipped if the fail flag is not
set (e.g., fail flag is cleared).

Below is an example of a command line which deletes all lines of text that do not begin with “A”:

^ [.NEOB [.STR"A" + : D]]*

The “^” moves the edit pointer to the beginning of the buffer. The outer loop tests for when the end of
the buffer is reached and terminates the loop. The inner loop tests for an “A” at the beginning of the
line. If there is one, the “+” command is executed, otherwise the “D” command is executed.

Below is another example which searches the current line for “find it”. If found, the line will be
displayed, otherwise the command line will fail and “* FAIL *” will be printed:

[.EOL V0 -0 V .F : .STR"find it" -0 .S : [>]]*

In the command line above, the first part is “.EOL V0 -0 V .F”, which tests if the edit pointer is at the
end of the line. If it is, verify mode is turned off to prevent the “-0” from displaying the line, and then

Testing Commands

17

it is turned back on and the “.F” causes the loop to be terminated. If the edit pointer is not at the end
of the line, the “.STR” command will see if “find it” is at the current edit position. If it is, the “-0 .S”
commands will be executed to cause the edit pointer to be moved back to the beginning of the line,
the line displayed, and the loop terminated. Otherwise the “>” command is executed which moves the
edit pointer to the next position in the line. Note that it is enclosed in brackets to prevent it from failing
and terminating the main loop if the end of the buffer is reached.

1.14. Testing Commands
The commands that follow test for certain conditions, and either set or clear the fail flag depending
on the result of the test.

1.14.1. Test For End of File

SYNTAX: .EOF

This command clears the fail flag if the input file is at end-of file, otherwise it will set the fail flag.

1.14.2. Test For Not End of File

SYNTAX: .NEOF

This command clears the fail flag if the input file is not at end-of file, otherwise it will set the fail flag.

1.14.3. Test For End of Buffer

SYNTAX: .EOB

This command will clear the fail flag if the edit pointer is at the end of the buffer, otherwise it will
set the fail flag.

1.14.4. Test For Not End of Buffer

SYNTAX: .NEOB

This command will clear the fail flag if the edit pointer is not at the end of the buffer, otherwise it
will set the fail flag.

1.14.5. Test For End of Line

SYNTAX: .EOL

This command will clear the fail flag if the edit pointer is at the end of a text line, otherwise it will
set the fail flag.

1.14.6. Test For Not End of Line

SYNTAX: .NEOL

This command will clear the fail flag if the edit-pointer is not at the end of the line, otherwise it will
set the fail flag.

1.14.7. Test For Zero

SYNTAX: .ZERO n

This command will clear the fail flag if “n” is equal to zero, otherwise it will set the fail flag.

Test For Star

18

1.14.8. Test For Star

SYNTAX: .STAR n

This command will clear the fail flag if “n” is equal to 65535 (the value of “*”), otherwise it will
set the fail flag.

1.14.9. Test For String Match

SYNTAX: .STR str

This command will clear the fail flag if the characters at the current edit position match “str”,
otherwise it will set the fail flag.

1.14.10. Test For String Mismatch

SYNTAX: .NSTR str

This command will clear the fail flag if the characters at the current edit position do not match “str”,
otherwise the fail flag will be set.

1.14.11. Exit And Clear

SYNTAX: .S

This command is an unconditional exit from the innermost loop or macro; The fail flag is cleared
after the exit.

1.14.12. Exit And Fail

SYNTAX: .F

This command is an unconditional exit from the innermost loop or macro. The fail flag is set after
the exit.

1.15. Macros
Macros are new commands that you may create to perform a specialized or complex task. For example,
there may be a frequently used sequence of commands that you wish to replace with a single macro.
You store the sequence of commands in a macro, after which they may be executed by simply typing
a period followed by the macro name and optional parameters.

Macros can be saved and loaded from disk files so you can create a personalized macro library.

Macros are made up of two main parts, the macro header and the macro body. The macro header is
used to give the macro a name and describe the type and order of its parameters. The macro body is
made up of any number of ordinary command lines (any edit command may be used in a macro except
the “SPACE” and the “RETURN” commands). Also, macros can not create new macros.

To create a macro, you must first open its definition with the “.MAC” command. After doing so, you
may enter the macro's header and body just as you would enter text into an edit buffer (you may use any
of the edit commands to do so). When you are satisfied with the macro, you may close its definition
with the “Q” command to return you to the normal edit mode.

1.15.1. Macro Headers

A macro header must be the first line in each macro. It is made up of a macro name which may be
followed by a “variable list” that describes the macro's parameters if there are any. The macro name

Parameters and Variables

19

consists of any number of consecutive letters and underline characters. Below are some example macro
names:

MACRO
trim_spaces
LIST
EXTRA_LONG_MACRO_NAME

Although a macro name may be of any length, it is advisable to limit them to a reasonable length since
the name must be spelled exactly the same way each time that you use it. Upper case and lower case
letters are taken to be equivalent and may be used interchangeably.

1.15.2. Parameters and Variables

Like other edit commands, macros may also be given parameters so that they are able to work with
different values. Parameters are available to the commands that make up the macro. To pass the macro's
parameters to these commands, we need a way to tell each command which of the macro's parameters
it should use. This is what the variable list in the macro header is for. Each variable in the variable list
is used to represent the value of the macro parameter in its corresponding position. Then wherever the
parameter's value is needed, the corresponding variable should be used.

There are two types of variables: numeric and string. A numeric variable is a variable name is preceded
by a “#” character. A string variable is a variable name preceded by a “$” character. Variable names
are just like macro names which are composed of any number of consecutive letters and underline
characters. Some example numeric variables are:

#N
#ABC
#LONG_NUMBER_VARIABLE

Some example string variables are:

$A
$B
$STR
$STR_A
$lower_case_variable_name

An example of an entire edit macro is given below. It will do the same thing as the “S” command:
search for the next “n” occurrences of a string. The first line of the macro is the macro header; it
declares the macro's name to be “FIND_LN” and also specifies that the macro needs one numeric
parameter “#N” and one string parameter “$STR”. The entire body of the macro is the second line.
Here, both of the macro's parameters are passed to the “S” command to do the actual searching:

FIND_LN #N STR
S #N $STR

Here is how this macro would be called:

E:.FIND_LN 15 "string" RETURN

To illustrate the importance of the parameter position in the macro header, we will reverse their order
in the next example to make it necessary to use the reverse order when executing the macro. Here is
the macro definition:

FIND_LN $STR #N

Creating and Editing Macros

20

S #N $STR

We must still specify the parameters for the “S” command in the proper order since it is only the
“FIND_LN” macro that was changed. Below is an example of how this macro is executed, notice that
the order of the parameters directly correspond to the order of the variables in the variable list:

.FIND_LN "string" 15

1.15.3. Creating and Editing Macros

Macros are created and edited using the normal editor command set. The “.MAC” command is used
to create a new macro or open the definition of an existing one so that it may be edited. To create a
new macro, you use “.MAC” with an empty string, for example:

E:.MAC // RETURN

This creates a new macro and puts you into macro definition mode. The editor responds with the “M:”
prompt instead of the normal “E:” edit prompt when in macro definition mode. If you wish to edit a
macro that already exists, “str” is used to specify the macro's name. For example:

E:.MAC "MYMACRO" RETURN

This opens the existing macro “MYMACRO” for editing. When a macro is open, you may edit it or
enter its definition by using the edit commands as you would with an ordinary text buffer.

The “Q” command is used to close the definition of a macro and return to the normal edit mode. For
example:

M:Q RETURN

This would close the definition of the macro currently open and return the editor to its normal edit
mode. Before the editor will allow you to close the definition of a macro, the first line of the macro
must begin with a legal macro name that has not already been used for another macro.

1.16. Macro Commands

1.16.1. Comment

SYNTAX: ! text

The “!” command may be used to place comments inside of a macro for documentation. The remainder
of the line following the “!” command is retained but never processed as a command.

1.16.2. Load Macros From File

SYNTAX: .LOAD str

This command is used to load macros from an OS-9 file. The file name pathlist is specified by “str”.
As each macro is loaded, EDIT will make sure that no other macro already exists with the same name.
If one does, the macro will not be loaded and EDIT will skip to the next macro on the file. EDIT will
display the names of all the macros that it loads. Some examples of this command are:

E:.LOAD "macrofile"RETURN
E:.LOAD "MYFILE" RETURN

Save Macros

21

1.16.3. Save Macros

SYNTAX: .SAVE str1 str2

This command is used to save macros on an OS-9 file. The first string is used to specify a list of macros
that are to be saved; the macro names are separated by spaces. The second string specifies the pathlist
for the file on which the macros are to be saved. Some typical examples of the use of this command are:

E:.SAVE "MYMACRO"MYFILE" RETURN
E:.SAVE "MACA MACB MACC"MFILE" RETURN

The first example saves the macro “MYMACRO” on the file “MYFILE”, the second saves the macros
“MACA”, “MACB”, and “MACC” on the file “MFILE”. When more than one macro is to be saved
on a single file, their names should be separated by spaces.

1.16.4. Delete Macro

SYNTAX: .DEL str

This command is used to delete (erase) the macro specified by “str”. For example to delete a macro
called “MYMACRO” use:

E:.DEL "MYMACRO" RETURN

22

23

Chapter 2. Assembler
2.1. Introduction

The actual machine instructions executed by a computer are sequences of binary numbers that are
difficult and inconvenient for people to deal with directly. Creating a machine language program of
any length by hand is tedious, error prone, and time consuming, making it an almost impossible task.
Assembly language bridges the gap between computers and people who must write machine-language
programs. In assembly language, descriptive mnemonics (abbreviations) for each machine instruction
are used which are much easier to learn, read, and remember are used instead of numerical codes. The
assembler also lets the programmer assign symbolic names to memory addresses and constant values.
The Assembler also has many other features to make assembly language programming easier.

This assembler was designed expressly for the modular, multi-tasking environment of the OS-9
Operating System, and incorporates built-in functions for calling OS-9, generating memory modules,
encouraging the creation of position-independent-code, and maintaining separate program and data
sections. It has also been optimized for use by OS-9 high-level language compilers such as Pascal and
C, and can be used on either OS-9 Level One or OS-9 Level Two systems.

Another noteworthy characteristic of this assembler is its extremely fast assembly speed which is
attributable to its tree-structured symbol table organization. The tree structure dramatically reduces
symbol table searching, which is the most time-consuming operation performed by an assembler.

This manual describes how to use the OS-9 Assembler and basic programming techniques for the OS-9
environment. It is not intended to be a comprehensive course on assembly language programming or
the 6809 instruction set. If you are not familiar with these topics, you should consult the Motorola
6809 programming manuals and one of the many excellent assembly-language programming books
available at libraries or bookstores.

2.2. Installation
The OS-9 Assembler uses the following files:

asm the assembler program

DEFS a directory containing OS-9 common system-wide definition files. These files are:

OS9Defs
SysType
SCFDefs
RBFDefs

The file “ASM” should be located in the “CMDS” directory of your system disk. “DEFS” should be
present in the root directory.

2.3. Assembly Language Program Development
Writing and testing of assembly language programs involves an edit/assemble/test cycle. In detail, the
individual steps are:

1. Create a source program file using the text editor.

2. Run the assembler to translate the source file to a machine object (machine language) file.

3. If the assembler reported errors, use the text editor to correct the source file, then go to step 2.

4. Run and test the program. The OS-9 Interactive Debugger is frequently used for testing.

Operational Modes

24

5. If the program has bugs, use the text editor to correct the source file, then go to step 2.

6. Document the program and you are done!

2.4. Operational Modes
The OS-9 Assembler has a number of features specifically designed to conveniently develop machine
language programs for the OS-9 environment. These features include: special assembler directive
statements for generating OS-9 memory modules, identification of 6809 addressing modes that are
not usually permitted in OS-9 programs, and separate data and program address counters.

The assembler has two operating modes: “normal”, and “Motorola-compatible”.

In normal mode, the features mentioned above are active. In the Motorola-compatible mode, the
assembler works the same way as a standard 6809 “absolute” assembler (without separate program
and data counters). This mode exists so that the assembler can be used to generate programs for 6809
computers that are not equipped with OS-9.

The assembler. will be in the normal mode unless the “m” option is used in the command line or in
an OPT statement. Similarly, the “-m” option will return the assembler to the normal mode (modes
can be freely switched to achieve special effects).

The assembler performs two “passes” (complete scans) over the source file. During each pass, input
lines are read and processed one at a time. During the first pass, the symbol table is created. Most error
messages, the program listing, and the object code are generated during the second pass.

2.5. Running the Assembler
The assembler is a command program that can be run from the OS-9 Shell, from a Shell procedure
file, or from another program. The disk file and memory module names are “asm”. The basic format
of a command line to run the assembler is:

asm filename [option(s)] [#memsize] [>listing]

Brackets enclose optional things, thus the only items absolutely required are the “asm” command
name, and “filename” which is the source text file name (or more correctly, pathlist). A typical
command line looks like this:

OS9: asm prog5 l s -c #12k >/p RETURN

In. this example, the source program is read from the file “prog5”. The source file name can be followed
by an option list, which allows you to control various factors such as whether or not a listing or
object file is to be generated, control the listing format, etc. The option list consists of one or more
option abbreviations separated by spaces or commas. An option is turned on by its presence in the
list, or a minus followed by an option abbreviation acts to turn the function off. If an option is not
expressly given, the assembler will assume a default condition for. it. Also, command line options can
be overridden by OPT statements within the source program (see the OPT statement description for
more information). In the example above, the options “l” and “s” are turned on, and “c” is turned off.

The optional “#memsize” item is actually processed by the Shell to specify how much data area
memory the assembler is assigned. If memory is not specified, the assembler will be assigned 4K
bytes of memory in its data area. Most of this space is used to store the symbol table. Any additional
memory requested by this option allows the symbol table to be larger. Large programs generally use
more symbols, so their memory requirements are correspondingly larger. If the assembler generates
a “Symbol Table Full” error message, this option should be used to increase the assembler's memory
size. In the previous example, 12K bytes of memory is specified.

Running the Assembler

25

The final item, “>listing”, allows the program listing generated by the assembler (on the standard
output path) to be optionally redirected to another pathlist, which may be an output device such as a
printer, a disk file, or a pipe to another program. Like the memory size option, output redirection is
handled by the Shell and not the assembler itself. If this item is omitted from the command line, the
output will appear on your terminal display. In the above example, the listing output was directed to
a device called “p”, which is the name of the printer on most OS-9 systems.

Below are examples of various forms of command lines and detailed explanations of their output.
There are also other options available so many variations of the command line are possible. The
examples listed here illustrate the most commonly used forms.

asm disk_crash

This command line will assemble the file disk_crash.

There will be: no listing created.
no object file created.
errors reported to standard error path.
4k memory for symbols (default).

asm work.rec o #16k

This command line will assemble the file work.rec.

There will be: no listing created.
an object file created with the name “work.rec” in the current commands dir.
errors reported to standard output path.
16k of memory for symbols.

asm tyco o=/d0/cmds/tyco.obj l #16k

This command line will assemble the file tyco.

There will be: a listing directed at standard output.
an object file created with the name “tyco” in the /d0/cmds directory.
errors reported to the listing path.
16k of memory for symbols.

asm it_works o,l #16k >/p

This command line will assemble the file it_works.

There will be: a listing directed at /p.
an object file created with the name “it_works” in the current commands dir.
errors reported to the listing path.
16k of memory for symbols.

asm rent_a_duck 1,5,w72,d25 #10k

This command line will assemble the file rent_a_duck.

There will be: a listing directed to standard output.
no object file created.
errors reported to the listing path.
10k of memory for symbols.

Source Program Format and Syntax

26

a symbol table created.
listing will have 25 line pages.
listing will have 72 column lines.

asm /term i l o=/d0/progs/woof

This command line will assemble input from the terminal.

There will be: a listing directed at standard output.
an object file created with the name woof in the /d0/progs directory.
errors reported to the listing path.
4k of memory for symbols (asm default).

2.6. Source Program Format and Syntax

2.6.1. Assembler Source Files

The Assembler reads its input from an input file (path) which contains variable-length lines of text.
Input files may be created and edited by the OS-9 Text Editor described in Section 1, or any other
standard text editor.

The maximum length of the input line is 120 characters. Each line contains assembler statements as
explained in this manual. Every line is terminated by a [RETURN] character.

2.6.2. Source Statement Fields

Each input line is a text string terminated by a [RETURN]. The line can have from one to four “fields”:

• an optional label field
• an operation field
• an operand field (for some operations)
• an optional comment field

There are also special cases: if the first character of a line is an asterisk, the entire line is treated as a
comment which is printed in the listing but not otherwise processed. Blank lines are ignored but are
included in the listing.

2.6.2.1. Label Field

The label field begins in the first character position of the line. Labels are usually optional
(instructions), but there are exceptions. They are required by some statements (i.e. EQU and SET), or
not allowed on others (assembler directives such as SPC, TTL, etc.). The first character .of the line
must be a space if the line does not contain a label.

The label must be a legal symbolic name consisting of from one to eight uppercase or lowercase
characters, decimal digits, or the characters “$”, “_”, or “.”, however the first character must be a letter
(see Sect. 3.3). Labels (and names in general) must be unique, i.e., they cannot be defined more than
once in a program (except when used with the “SET” directive).

Label names are stored in the symbol table with an associated 16-bit value, which is normally the
program counter address before code is generated for the line. In other words, instructions and most
constant-definition statements associate the label name with the value of.the program address of the
first object code byte generated for the line.

An exception to this rule is that labels on SET and EQU statements are given the value of the result of
evaluation of the operand field. In other words, these statements allow any value to be associated with

Expressions

27

a symbolic name. Likewise, labels on RMB statements are given the value of the data address counter
when in normal assembler mode, or the value of the program address counter when in Motorola-
compatible mode.

2.6.2.2. Operation Field

This field specifies the machine language instruction or assembler directive statement mnemonic
name. It immediately follows and is separated from the label field by one or more spaces.

Some instructions must include a register name which is part of the operation field (i.e., LDA, LDD,
LDU). In these instructions the register name must be part of the name and cannot be separated by
spaces as in older 6800-type assemblers. The assembler accepts instruction mnemonic names in either
uppercase or lowercase characters.

Instructions cause one to five bytes of object code to be generated depending on the specific instruction
and addressing mode. Some assembler directive statements (such as FCB, FCC) also cause object
code to be generated.

2.6.2.3. Operand Field

The operand field follows, and must be separated by, at least one space from the instruction field.
Some instructions don't use an operand field; other instructions and assembler directives require an
operand field to specify an addressing mode, operand address, parameters, etc. The sections describing
the instructions and assembler directives explain the format for operand(s), if any.

2.6.2.4. Comment Field

The last field of the source statement is the optional comment field which can be used to include a
descriptive comment in the source statement. This field is not processed other than being copied to
the program listing.

2.7. Expressions
Operands of many instructions and assembler directives can include arithmetic expressions in various
places. The assembler can evaluate expressions of almost any complexity using a form similar to the
algebraic notation used in programming languages such as BASIC and FORTRAN.

Expressions consists of operands, which are symbolic names or constants, and operators, which
specify an arithmetic or logical function. All assembler arithmetic uses two-byte (internally, 16 bit
binary) signed or unsigned integers in the range of 0 to 65535 for unsigned numbers, or -32768 to
+32767 for signed numbers.

In some cases, expressions are expected to evaluate to a value which must fit in one byte (such as 8-
bit register instructions), and therefore must be in the range of 0 to 255 for unsigned values and -128
to 127 for signed values. In these cases, if the result of an expression is outside of this range an error
message will be given.

Expressions are evaluated from left-to-right using the algebraic order of operations (i.e. multiplications
and divisions are performed before additions and subtractions). Parentheses can be used to alter the
natural order of evaluation.

2.7.1. Operands

The following items may be used as operands within an expression:

2.7.1.1. Decimal Numbers

Can have an optional minus sign and one to five digits, for example:

Arithmetic and Logical Operators

28

100 -32761 12 5 -1

2.7.1.2. Hexadecimal Numbers

Consist of a dollar sign (“$”) followed by one to four hexadecimal characters (0-9, A-F or a-f), for
example:

$EC00 $100 $3

2.7.1.3. Binary Numbers

Consist of a percent sign (“%”) followed by one to sixteen binary digits (0 or 1), for example:

%0101 %1111000011110000 %10101010

2.7.1.4. Character Constants

Consist of single quote (“'”) followed by any printable ASCII character. For example:

'X 'c '5 'c

2.7.1.5. Symbolic Names

Names are defined by EQU or SET statements, or by use as a label. They consist of one to eight
characters: upper and lower case alpha (A-Z, a-z), digits (0-9), and special characters _, ., or $
(underscore, period or dollar sign), the first character of which cannot be a digit. See Page 2-12 for
more information.

2.7.1.6. Program Instruction Counter

The asterisk (“*”) represents the program instruction counter value as of the beginning of the line.

2.7.1.7. Program Data Counter

The period (“.”) represents the data storage counter value as of the beginning of the line. It is not used
in Motorola-compatible mode.

2.7.2. Arithmetic and Logical Operators

Operators used in expressions operate on one operand (negative and not) or on two operands (all
others). The table below shows the available operators, listed in the order they are evaluated relative.to
each other, e.g, logical OR operations are performed before multiplications. Operators listed on the
same line have identical precedence and are processed from left to right when they occur in the same
expression.

Table 2.1. Operators By Order of Evaluation

- negative ^ logical NOT (highest)

& logical AND ! logical OR

* multiplication / division

+ addition - subtraction (lowest)

Logical operations are performed bitwise, i.e., the logical function is performed bit-by-bit on each bit
of the operands.

Division and multiplication functions assume unsigned operands, but subtraction and addition work
on signed (2's complement) or unsigned numbers. Division by zero or multiplication resulting in a
product larger than 65536 have undefined results and are reported as errors.

Symbolic Names

29

2.7.3. Symbolic Names

A symbolic name consists of from one to eight uppercase or lowercase characters, decimal digits, or
the characters “$”, “_”, or “.”. However, the first character must be a letter. The following are examples
of legal symbol names:

HERE there SPL030 VX_GH
abc.def Q1020.1 L.123.x t$integer

These are examples of illegal symbol names with reasons why they are illegal:

2move - does not start with a letter
main.backup - more than 8 characters
lb1#123 - # is not a legal name character

Names are defined when first used as a label on an instruction or directive statement. They must be
defined exactly one time in the program (except SET labels: see SET statement description). If a name
is redefined (used as a label more than once) an error message is printed on subsequent definition(s).
Multiple forward references (i.e. a definition using currently undefined names) are not allowed.

Symbolic names are stored with their associated type and value in an assembler data structure called
the “symbol table”, which uses most of the assembler's data memory space. Using the default memory
size of 4K there is room in the symbol table for approximately 200 names. The shell optional memory
size modifier can be used to give the assembler a larger memory space. Each entry in the table requires
15 bytes, so each additional 4K of memory adds space for about 273 additional names. For example,
the command line:

asm sourcefile #16K

gives the symbol table enough space for a little over a thousand names. If the “S” option is selected,
the assembler will generate an alphabetical listing of all symbol names, types, and values which is
printed at the end of the assembly.

2.7.4. Instruction Addressing Modes

One of the 6809's features is that its instruction set has a large variety of addressing modes. Each
group of similar instructions can be used with specific addressing modes, which are usually specified
in the assembler source statement operand field. The assembler will generate an error message if an
addressing mode is specified which cannot be legally used with the specific instruction.

2.7.4.1. Inherent Addressing

Certain instructions don't need operands (SYNC, SWI, etc.), or implicitly specify operands (MUL,
ABX, etc.), therefore no operand field is needed.

2.7.4.2. Accumulator Addressing

Some instructions have the A or B accumulators as operands. Examples:

CLRA
ASLB
INCA

2.7.4.3. Immediate Addressing

In immediate addressing, the operand bytes are the actual value used by the instruction. Instructions
that use 8-bit registers must have operand expressions that evaluate to 0 to 255 (unsigned) or -128 to
127 (signed), or an error will be reported. The syntax is:

Instruction Addressing Modes

30

instr #expression

Examples:

LDD #$1F00
ldb #bufsiz+2
ORCC #$FF-CBIT

2.7.4.4. Relative Addressing

This addressing mode is used by branch-type instructions such as BCC, BEQ, LBNE, BSR, LBSR,
etc. The operand field is an expression which is the “destination” of the instruction, which is almost
always a name used as a statement label somewhere in the program. The assembler computes an 8 or
16-bit program counter offset to the destination which is made part of the instruction. The destination
of short branch-type instructions must be in the range of -126 to +129 bytes of the instruction address
or an error message will be generated. Long branch-type instructions can reference any destination.
If a long branch instruction references a destination that would be within the range of a smaller and
faster short branch instruction a “W” warning symbol will be placed in the listing line's information
field. All instructions using relative addressing are inherently position-independent code.

Examples:

BCS LOOP
LBNE LABEL5
LBSR START+3
BLT COUNT

2.7.4.5. Extended and Extended Indirect Addressing

Extended addressing uses the second and third bytes of the instruction as the absolute address of- the
operand. Data section addresses of OS-9 programs are assigned when the program is actually executed,
so absolute memory addresses are not known before the program is run. Therefore this addressing
mode is not normally used in OS-9 programs. The assembler will print an informational warning flag,
“W”, if this addressing mode is specified.

Extended Indirect addressing is similar to extended addressing except that the address part of the
machine instruction is used as the address of a memory location containing the address of the operand.
Because this mode also uses absolute addresses, it is not frequently used in OS-9 for the reasons given
above, and is also flagged with a warning by the assembler. This addressing mode is selected by
enclosing the address expression in brackets.

Examples:

ADDA $1C48 extended addressing
ADDA [$D58A] extended indirect addressing
LDB START extended addressing
stb [end] extended indirect addressing

2.7.4.6. Direct Addressing

Direct addressing uses the second byte of the instruction as the least significant byte of the operand's
address. The most significant byte is obtained from the MPU's direct page register. This addressing
mode is preferred for accessing most variables in OS-9 programs because OS-9 automatically assigns
unique direct pages to each task at run-time, and also because this mode produces short, fast
instructions. The syntax for extended and direct addressing has the same form:

Instruction Addressing Modes

31

instr <addr expr>

The assembler automatically selects direct addressing mode if the high-order byte of the address
matches it's internal “direct page”. This “direct page” is not the same as the run-time direct page
register: it is strictly an assembly-time value. It is ordinarily set to zero and can be changed with the
SETDP directive.

You can force the assembler to use direct addressing by using the “<” symbol just before the address
expression, or extended addressing by using the “>” symbol in the same manner.

Examples:

lda temp (assembler selects mode)
LDD >PIA+1 (forces extended addressing)
ldx <count (forces direct addressing)
STD [pointer] (extended indirect)

2.7.4.7. Register Addressing

Some instructions operate on various MPU registers, which are referred to by a one or two letter
name. In these instructions, the operand field specifies one or more register names. The names can he
uppercase or lowercase. The register names are:

A accumulator A (8 bits)

B accumulator B (8 bits)

D accumulator A:B concatenated (16 bits)

DP direct page register (8 bits)

CC condition codes register (8 bits)

X index register X (16 bits)

Y index register Y (16 bits)

S stack pointer register (16 bits)

U user stack pointer register (16 bits)

PC program counter register (16 bits)

The EXG and TFR instructions have the form:

instr reg,reg

The registers given must be of the same size (either 8 or 16 bits) or the assembler will report an error.

The PSHS, PSHU, PULS, and PULU instructions accept a list of one or more register names. Even
though the assembler will accept register names in any order, the MPU stacks and unstacks them in
a specific order.

The syntax for these instructions is:

instr reg {,reg}

Examples:

TFR X,Y

Overview of Indexed
Addressing Modes

32

EXG A,DP
pshs a,b,x,dp
PULU d,x,pc

2.7.5. Overview of Indexed Addressing Modes

One of the highlights of the 6809's architecture is the wide variety of indexed addressing modes (23
varieties). Indexed addressing is analogous to “register indirect”, meaning that an indexable register
(X, Y, U, S, or PC) is used as the basic address of the instruction's operand. The different varieties of
indexed addressing use the specified register v contents which may be unchanged, temporary modified,
or permanently modified, depending on the exact mode used.

All indexed modes must specify an index register, either X, Y, U, or SP. The PC register is used with
the program-counter relative mode only. Any of the indexed addressing modes can be made “indirect”
by enclosing the operand field in brackets to cause the effective address generated by the addressing
mode to be used as the address of a pointer to the operand, rather than as the address of the operand.

2.7.5.1. Constant Offset Indexed

This mode uses an optional signed (two's complement) offset which is temporarily added to the
register's value to form the operand's effective address. The offset can be any number, or zero in which
case the register's unaltered contents is used as the effective address. The assembler automatically
picks the shortest of four possible varieties that can represent the offset. Therefore it is important to
make sure that any symbolic name used in the offset expression has been previously defined, or the
assembler will generate longer code than necessary or produce phasing errors. The syntax for constant
offset indexed instructions is:

instr ,reg zero offset
instr offset,reg constant offset
instr [,reg] zero offset indirect
instr [offset,reg] constant-offset indirect

Examples:

lda ,x no offset
lda 0,x no offset
ldx 100,x offset of 100
Ldb COUNT,S offset of COUNT
ldd temp+2,y offset of temp+2
leax -2,y offset of -2
clr [PIA,X] indirect mode

2.7.5.2. Program Counter Relative Indexed

This addressing mode is similar to constant-offset indexed except that the program counter register
(PC or PCR) is used as an index register, and the assembler computes the offset differently. Instead of
using the offset expression directly, the expression is assumed to refer to the address of the operand.
The assembler calculates the required offset from the current program counter location to the operand's
address and uses the resulting value as the offset. There are two forms.of this instruction: one -using
an 8-bit offset and the other using a 16-bit offset; The assembler will use the 16-bit form unless you
force the short form by preceding the operand field with a “<” character.

The syntax for program-counter relative indexed is:

instr addr,PC program counter relative
instr addr,PCR program counter relative

Overview of Indexed
Addressing Modes

33

instr [addr,PCR] program counter relative indirect
instr [addr,PC] program counter relative indirect

This addressing mode is important in OS-9 programs because it permits addresses of constants and
constant tables to be accessed using position-independent-code as required by OS-9.

Examples:

ldd temp,pcr
LDD temp,pc same as instruction above
leax table,pcr
jsr addr,pcr same as “lbsr addr”
CLR [control+4,PCR] dangerous; uses absolute address
 at “control+4,PCR” as effective
 address for clear

2.7.5.3. Accumulator Offset Indexed

In this mode the contents of the A, B, or D accumulators is temporarily added to the specified index
register to form the address of the operand. This addition is signed two's complement. If the A or
B accumulators are specified, the sign bit is “extended” to form the 16 bit value which is added
to the index register. Meaning that if the most significant bit of the accumulator is set, the high
order byte of the offset will be $FF. BEWARE: this is a commonly overlooked characteristic that can
produce unexpected results! Using the D register avoids this because it gives all 16 bits. The syntax
for accumulator-offset indexed is:

instr A,reg
instr B,reg
instr D,reg

Examples:

LDX B,Y
LEAY D,X
ROL [B,U]

2.7.5.4. Auto-Increment and Auto-Decrement Indexed

These addressing modes use the specified index register as the effective address of the operand, while
permanently adding or subtracting one or two from the register. In auto-increment mode, the increment
is performed AFTER the register is used. In auto-decrement mode, the decrement is performed
BEFORE the register is used. This is consistent with the way 6809 stack pointers operate in PSH and
PUL instructions. If indirect addressing is used, the decrement and increment are performed before
the effective address is used as a pointer to the operand.

SINGLE AUTO-INCREMENT AND SINGLE AUTO-DECREMENT ARE NOT PERMITTED
WHEN INDIRECT ADDRESSING IS SELECTED.

Syntax for auto-increment and auto-decrement indexed addressing is:

inst: ,-reg single auto-decrement
instr ,--reg double auto-decrement
inst: ,reg+ single auto-increment
instr ,reg++ double auto-increment
instr [,reg--] double auto-decrement indirect

Assembler Directive Statements

34

instr [,reg++] double auto-increment indirect

Examples:

clr ,x++
LDX ,--Y
lda ,s+ is the same as puls a (except CCR is affected)
sta ,-s is the same as pshs a (except CCR is affected)
ldd [,s++]

2.8. Assembler Directive Statements
In addition to the 6809 instruction mnemonic statements, the assembler includes a number of directive
statements which perform a variety of functions which can be loosely categorized as follows:

Assembly Control

Statements such as IF, OPT, END, USE, etc., are used to control the operation of the assembler
itself but do not directly affect object code generation.

Storage Declarations

The ORG and RMB statements are used to assign variable (data area) storage for the assembly
language program,

Symbolic Name Declarations

The EQU and SET statements are used to assign value to assembler symbolic names.

Constant Declarations

The FCB, FDB, FCC, and FCS statements are used to insert constant values in the assembler
program.

Operating System Functions

The MOD/EMOD and OS9 statements are used to create system-required object code for memory
modules and system call, respectively.

Each assembler directive statement is described in detail in the following pages.

2.8.1. END Statement

Indicates the end of a program. Its use is optional since END will be assumed upon an end-of-file
condition on the source file. END statements may not have labels.

2.8.2. EQU and SET Statements

SYNTAX: EQU <expression>
SET <expression>

These statements are used to assign a value to a symbolic name (the label) and thus require labels.
The value assigned to the symbol is the value of the operand, which may be an expression, a name,
or a constant.

The difference between the EQU and SET statements is that:

• Symbols defined by EQU statements can be defined only once in the program.
• Symbols defined by SET statements can be redefined again by subsequent SET statements.

FCB and FDB Statements

35

In EQU statements the label name must not have been used previously, and the operand cannot include
a name that has not yet been defined (i.e., it cannot contain as-yet undefined names whose definitions
also use undefined names). Good programming practice, however, dictates that all equates should be
at the beginning of the program to allow the assembler to generate the most Compact code by selecting
direct addressing wherever possible.

EQU is normally used to define program symbolic constants, especially those used in conjunction
with instructions. SET is usually used for symbols used to control the assembler operations, especially
conditional assembly and listing control. Example:

TRUE equ $FF
FALSE equ 0
SUBSET set TRUE
 ifne SUBSET
 use subset.defs
 else
 use full.defs
 endc
SUBSET set FALSE

2.8.3. FCB and FDB Statements

SYNTAX: FCB <expression> {, <expression>}
FDB <expression> {, <expression>}

The Form Constant Byte and Form Double Byte directives generate sequences of single (FCB) and
double (FDB) constants within the program. The operand is a list of one or more expressions which
are-evaluated and output as constants. If more than one constant is to be generated, the expressions
are separated by commas.

FCB will report an error if an expression has a value of more than 255 or less that -128 (the largest
number representable by a byte). If FDB evaluates an expression with an absolute value of less than
256 the high order-byte will be zero.

Examples:

FCB 1,20,'A
fcb index/2+1,0,0,1
FDB 1,10,100,1000,10000
fdb $F900,$FA00,$FB00,$FC00

2.8.4. FCC and FCS Statements

SYNTAX: FCC <delim> string <delim>
FCS <delim> string <delim>

These directives generate a series of bytes corresponding to a string of one or more characters operand.
The output bytes are the literal numeric value of each ASCII character in the string. FCS is the same
as FCC except the most significant bit (the sign bit) of the last character in the string is set, which is
a common OS-9 programming technique to indicate the end of a text string without using additional
storage.

The character string must be enclosed by delimiters before the first character and after the last
character. The characters that can be used as delimiters are:

! " # $ % & ' () * + , - . /

IF, ELSE, and ENDC Statements

36

Both delimiters must be the same character and cannot be included in the string itself. Examples:

FCC /most programmers are strange people/
FCS ,0123456789,
fcc z

2.8.5. IF, ELSE, and ENDC Statements

SYNTAX: IFxx <expression>
 <statements>
[ELSE]
 <statements>
ENDC

An important feature of the Assembler is its conditional assembly capability to selectively assemble
or not assemble one or more parts of a program depending on a variable or computed value. Thus, a
single source file can be used to selectively generate multiple versions of a program.

Conditional compilation uses statements similar to the branching statements found in high level
languages such as Pascal and Basic. The generic IF statement is the basis of this capability. It has
as an operand a symbolic name or an expression. A comparison is made with the result: if the result
of the comparison is true, statement following the IF statement will be processed. If the result of
the comparison is false, the following statements will not be processed until an ENDC (or ELSE)
statement is encountered. Hence, the ENDC statement is used to mark the end of a conditionally
assembled program section. Here is an example that uses the IFEQ statement which tests for equality
of its operand with zero:

IFEQ SWITCH
ldd #0 assembled only if SWITCH = 0
leax 1,x
ENDC

The ELSE statement allows the IF statement to explicitly select one of two program sections to
assemble depending on the truth of the IF statement. Statements following the ELSE statement are
processed only if the result of the comparison was false. For example:

IFEQ SWITCH
ldd #0 assembled only if SWITCH = 0
leax 1,x
ELSE
ldd #1 assembled only if SWITCH is not = 0
leax -1,x
ENDC

Multiple IF statements may be used, and “nested” within other IF statements if desired. They cannot,
however, have labels.

There are several kinds of IF statements, each performing a different comparison. They are:

IFEQ True if operand equals zero

IFNE True if operand does not equal zero

IFLT True if operand is less than zero

IFLE True if operand is less than or equal to zero

IFGT True if operand is greater than zero

MOD and EMOD Statements

37

IFGE True if operand is greater than or equal to zero

IFP1 True only during first assembler pass (no operand)

The IF statements that test for less than or greater than can be used to test the relative value of two
symbols if they are subtracted in the operand expression, for example,

IFLE MAX-MIN

will be true if MIN is greater than MAX. Note the reversal of logic due to the fact that this statement
literally means

IF MAX-MIN <= 0

The IFP1 statement causes subsequent statements to be processed during pass 1, but skipped during
pass 2. It is useful because it allows program sections which contain only symbolic definitions to be
processed only once during the assembly. The first pass is the only pass during which they are actually
processed because they do not generate actual object code output. The OS9Defs file is an example of
a rather large section of such definitions. For example, the following statement is used at the beginning
of many source files.

IFP1
use /d0/defs/OS9Defs
ENDC

2.8.6. MOD and EMOD Statements

SYNTAX: MOD size,nameoff,typelang,attrrev {,execoff,memsize}
EMOD

These instructions provide a convenient means of creating OS-9 memory modules and their associated
module headers and CRC check values. A detailed discussion of the module and module header format
can be found in the System Programmer's Manual. Programs can be loaded into memory by OS-9
only if they are in module header format.

The MOD statement is used at the beginning of an OS-9 module. Its function is to create a standard
OS-9 module header and to initialize a CRC (cyclical redundancy check) value which will be
automatically computed by the assembler as the program is processed by the assembler.

The MOD statement must have an operand list of exactly four or exactly six expressions separated by
commas. Each operand corresponds, in order, to the elements of a module header. The exact operation
of the MOD statement is as follows:

1. The assembler's program address counter and data address counters are reset to zero (same as ORG
0), and the internal CRC and vertical parity generators are initialized.

2. The sync codes $87 and $CD are generated as object code.

3. The first four expressions in the operand list are evaluated and output as object code. They are:

a. module size (two bytes)

b. module name offset (two bytes)

c. type/language byte (one byte)

d. attribute/revision byte (one byte)

4. The “header parity” byte is automatically computed by the assembler from the previous bytes and
generated as object code.

MOD and EMOD Statements

38

5. If the two optional additional operands are present, they are evaluated and generated as object code.
They are:

e. execution offset

f. permanent storage size

Note that some of the expressions in the operand list are one byte long, and others are two bytes.

Because the origin of the object program is zero, all labels used in the program are inherently relative
to the beginning of the module; this is perfect for the module name and execution address offsets. The
code in the body of the module follows. As subsequent lines are assembled, the internal CRC generator
continuously updates the module's CRC value. The EMOD statement (which has no operand) is used
to terminate the module. It outputs the correct 3-byte CRC generated over the entire module.

IMPORTANT NOTE: The MOD and EMOD statements will not work correctly if the assembler is
in “Motorola-compatible” mode unless you do not use RMB or ORG statements after the MOD and
before the EMOD.

The following example illustrates the basic techniques of creating a module using MOD and EMOD
statements.

Example 2.1. Sample Program Illustrating Use Of MOD and EMOD Directives

* Repeat Utility - Copy one line of standard input to standard output
* Module Header Declaration

type set PRGRM+OBJCT (these are defined in OS9DEFS)
revs set REENT+1 (this is defined in OS9DEFS)
 MOD pgmlen,name,type,revs,start,memsiz
 fcb 1 edition number (optional)
name FCS /repeat/ module name string

* symbolic definitions

STDIN equ 0 standard input path
STDOUT equ 1 standard output path
LINLEN equ 80 maximum line length

* data storage declarations

buffer RMB 80
stack RMB 250
memsiz EQU . data storage size is final “.” value

* Program instructions

start equ *

 lda #STDIN load input path number
 ldy #LINLEN load max input count
 leax buffer,u get buffer address
 os9 i$readln call OS-9 to read line
 bcs exit abort if error

 lda #STDOUT load output path number
 leax buffer,u get buffer address
 os9 i$writln call OS-9 to write line

NAM and TTL Statements

39

 bcs exit abort if error
 clrb return not error code
exit os9 F$EXIT return to OS-9

 emod end module

pgmlen EQU * program size is addr of last byte +1

2.8.7. NAM and TTL Statements

SYNTAX: NAM string
TTL string

These statements allow the user to define or redefine a program name and listing title line which
will be printed on the first line of each listing page's header. These statements cannot have label or
comment fields.

The program name is printed on the left side of the second line-of each listing page, followed by a
dash, then by the title line. The name and title may be changed as often as desired.

Examples:

nam Datac
ttl Data acquisition System

2.8.8. OPT Statement

SYNTAX: OPT <option>

OPT allows any of several assembler control options to be set or reset. The operand of the OPT
statement is one of the characters that represent the various options. If the option name is preceded by
a minus sign, the option is turned off, otherwise it is turned on. Two exceptions are the “D” and “W”
options which must be followed by a number. This statement must not have label or comment fields.

The options and default (initial) states are:

C Conditionals On: print conditional assembly statements in listing. (C)

Dnum Page Depth: set the number of lines per listing page including headings and blank lines.
(D66)

E Error Messages On: print error messages in listing. Errors can be detected when this option
is off by presence of an “E” in a statement's informational field. (E)

F Use Form Feed: Use a form feed for page eject instead of line feeds. (-F)

G Generate All Constant Lines: Prints all lines of code generated by directives. Otherwise
only the first line is printed. (-G)

L Listing On: Causes formatted assembly listing to be generated. If off, only error messages
printed. (-L)

M Turn on Motorola-compatible mode. For further information refer to Section 2.4,
“Operational Modes” and Section 2.8.12, “SETDP Statement”. (-M)

N Narrow listing: generate listing in a non-columnized, compressed format for better
presentation on narrow video display devices. (-N)

O[=filename] Generate object code file: (-O) If no filename is given, an object file having the same name
as the input file will be created in the current execution directory.

If a single name is given, the object file having that name will be created, but still in the
current execution directory.

OS9 Statement

40

If a full pathlist is given, it will be used as the name specification of the device, directory(s),
and file to create.

S Generate Symbol Table: Prints the entire contents of the symbol table at the end of the
assembly listing. Prints each name, its value and a type code character:

D = data variable (RMB definitions)
E = equate label (EQU)
L = program label
S = set label
U = undefined name

The table is printed across the page in alphabetical order. (-S)

Wnum Set Page Width: defines the maximum length of each listing line. Lines are truncated if
they exceed this number. The comment field starts at column 50 so a number less than this
may cause important parts of the listing to be lost. (W80)

Examples:

opt l
opt w72
opt s

2.8.9. OS9 Statement

SYNTAX: OS9 <expression>

This statement is a convenient way to generate OS-9 system calls. It has an operand which is a byte
value to be used as the request code. The output is equivalent to the instruction sequence:

SWI2
FCB operand

A file called “OS9Defs”, which is distributed with each copy of OS-9, contains standard definitions
of the symbolic names of all the OS-9 service requests. These names are commonly used in conjunction
with the OS9 statement to improve the readability, portability, and maintainability of assembly
language software.

Examples:

OS9 I$READ (call OS-9 “READ” service request)
os9 F$EXIT (call OS-9 “EXIT” service request)

2.8.10. ORG Statement

SYNTAX: ORG <expression>

Changes the value of the assembler's data location counter (normal mode) or the instruction location
counter (Motorola- compatible mode). The expression is evaluated and the appropriate counter is set
to the value of the result. ORG statements cannot have labels.

Note: OS-9 does NOT use “load records” that specify absolute addresses of the generated object code:
the object code is assumed to be a contiguous memory module. Therefore, programs assembled using
the Motorola-compatible mode that alter the instruction address counter will not load correctly.

Examples:

PAG and SPC Statements

41

ORG DATAMEM
ORG .+200

2.8.11. PAG and SPC Statements

SYNTAX: PAG[E]
SPC <expression>

These statements are used to improve the readability of program listings. They are not themselves
printed, and cannot have labels.

The PAG statement causes the assembler to begin a new page of the listing. The alternate form of
PAG is PAGE for Motorola compatibility.

The SPC directive puts blank lines in the listing. The number of blank lines to be generated is
determined by the value of the operand, which can be an expression, constant, name. If no operand
is used a single blank line is generated.

2.8.12. SETDP Statement

SYNTAX: SETDP <expression>

Assigns a value to the assembler's internal direct page counter, which is used to automatically select
direct versus extended addressing. The direct page counter does not necessarily correspond to the
program's actual direct page register during execution.

The default value of the counter is zero, and should NOT be changed in OS-9 programs: this statement
is intended for use with the “Motorola-compatible” mode only. SETDP statements cannot have labels.

2.8.13. USE Statement

SYNTAX: USE pathlist

Causes the assembler to temporarily stop reading the current input file. It then requests OS-9 to open
another file/device specified by the pathlist, from which input lines are read until an end-of-file occurs.
At that point, the latest file is closed, and the assembler resumes reading the previous file from the
statement following the USE statement.

USE statements can be nested (e.g., a file being read due to a USE statement can also perform USE
statements) up to the number of simultaneously open files the operating system will allow (usually
13, not including the standard I/O paths). Some useful applications of the USE statement are to accept
read input from the keyboard during assembly of a disk file (as in USE /TERM); and including library
definitions or subroutines into other programs. USE statements cannot have labels.

2.9. Assembly Language Programming Techniques
For programs to run correctly in the OS-9 environment, they must be written following these two key
rules:

1. Programs must be position-independent-code (PIC).

2. All memory locations modified by the program (variables and data structures) must be located in
a data memory area whose location is assigned by OS-9 at run-time.

The reason for these rules is simple: OS-9 dynamically assigns memory space at the time the program
is run. You have no control over which specific addresses are assigned at a load area for the program,
or where the program's variables are assigned. Because of the powerful 6809 instruction set and
addressing modes, these rules do not force you into writing tricky or complex programs; rather, they

Program Sections and Data Sections

42

require that programs be written a specific way. When you do this, you enjoy the advantages of having
reentrant and highly portable programs.

Your programs will usually fall into one of three categories:

1. A subroutine or subroutine package: You must write your subroutines in position-independent code.
Data sections are usually a matter of coordination with the calling program, and OS-9 usually plays
no direct role in this.

2. A program to be executed as an individual process (commands are of this type). You must use
position independent code, and receive data area parameters that delineate the memory space
assigned when run.

3. Programs to be run on another, non-OS-9 computer. Have fun! Anything goes!

2.9.1. Program Sections and Data Sections

If your program is to be run as a process (by means of the OS-9 shell, fork system call, or execute
system call), OS-9 will assign two separate and distinct memory areas. The program object code is
loaded into one memory space in the form of a memory module. The other space is for variables and
data structures. The program's module header specifies the minimum permissible size for each of these
area. The distinction between these two spaces is extremely important. It is also why the assembler has
two memory address counters: the data address counter is for the data area and the instruction address
counter is for the program area. THE VALUES OF THE COUNTERS ARE NEVER ABSOLUTE
ADDRESSES. They are addresses relative to the beginning of an OS-9-assigned address.

2.9.2. Program Area

This area is a single, continuously-allocated memory space, where the program is loaded by OS-9.
In order for OS-9 to be able to load the program, it must be in memory module format. The OS-9
System Programmer's Manual contains a detailed description of what memory modules are and how
they work. This manual assumes you are familiar with them. Programs generated by this assembler
can consist of one or more memory modules. They are all written to the same file and will be
loaded together by OS-9. In assembly language source programs, modules usually begin with a MOD
directive and end with a EMOD directive to take care of the header and module CRC generation for
you.

The program area should never be modified by the program itself; especially if the program is to be
reentrant and/or placed in ROM. It can (and should) contain constants and constant tables, as long as
they are not altered by the program.

2.9.3. Writing Position Independent Code

You do not know the actual absolute address of anything in the program until it is actually run. The
6809 position-independent addressing modes are based on “program counter relative addressing”. This
addressing mode is used by all branch and long branch instructions.

• Use BRA and LBRA instead of JMP; use BSR and LBSR instead of JSR extended or JSR direct
mode instructions (JSR indexed is OK).

• Use program-counter-relative (PCR) indexed addressing mode (usable by all load, store, arithmetic
and logical instructions) to access constants declared in FCB, FDB, FCC, and FCS statements.

• Don't use immediate addressing to load a register with an absolute address (instruction label name):
use PCR indexed addressing instead.

Many well-written programs use constant tables of addresses (often called dispatch tables or pointer
tables). For the program to be PIC, these tables cannot contain absolute addresses. The correct
technique is to create tables of addresses relative to some arbitrary location. The routines that use the

Accessing The Data Area

43

tables read the table entries, then add them to the absolute address of the arbitrary location. The sum
is the run-time absolute address. The absolute address of the “arbitrary location” is determined Using
PCR instructions (typically LEA). The choice of the common address is arbitrary, but two places may
have specific advantages: the beginning address of the table (an index register probably will contain
this address anyway); and the first byte of the module.

Making table entries relative to the start of the module is especially handy because the value of the
assembler's instruction address counter is also relative to the beginning address of the module. Here's
an example of a routine that jumps to one of several subroutines whose relative addresses are contained
in a table. The routine is passed a number in the B accumulator to be used as an index to select the
routine.

begin mod a,b,c,d,e,f start of module

 (various instructions)

dispat leax table,pcr get the absolute address of the table
 aslb multiply index by 2 (two bytes/entry)
 ldd b,x get contents of table entry
 leax begin,pcr get beginning address of module
 jmp d,x add relative address and go...

table fdb routine1
 fdb routine2
 fdb routine3
 fdb routine4

The example below does the exact same thing, but the entries are relative to the beginning of the table
instead of the beginning of the module:

dispat leax table,pcr get the absolute address of the table
 aslb multiply index by two
 ldd b,x get routine offset
 jmp d,x add and go ...

table fdb routinel-table
 fdb routine2-table
 fdb routine3-table
 fdb routine4-table

Note that this technique has fewer instructions (and is faster) because we already had the reference
address in a register, thereby eliminating a LEAX instruction.

The same technique is useful for accessing character strings, constants, complex data types, etc.

2.9.4. Accessing The Data Area

The size of the data area is specified by the “minimum.permanent storage size” entry of the module
header. Of course it is possible for a program to optionally receive more than this minimum. Remember
that OS-9 allocates memory in exact multiples of 256-byte pages, and all processes get at least one
page. The data area must have enough room for all the program's variables and data structures, plus a
stack (at least 250 bytes) and space to receive parameters in, if any are passed.

When the process is invoked by OS-9, the bounds of the data area are passed to the process in the
MPU registers: U will contain the beginning address and Y the ending address. The SP register is set
to the ending address+1, unless parameters were passed. The direct page register will be set to the
page number of the beginning page.

Additional Comments

44

In the assembly language source program, storage in the data area is assigned using the RMB directive
which uses the separate data address counter. It is good practice (but not mandatory) to declare all
variables and structures at the beginning of the program. Smaller, frequently used variables should
be declared first. They will usually all fit in the first page, meaning they can be accessed using short,
fast direct page addressing instructions. Larger items should follow. These can be addressed in one
of two ways:

1. If the U register is maintained throughout the program, constant-offset-indexed addressing can be
used.

2. Part of the program's initialization routine can compute the actual addresses of the data structures
and store these addresses in pointer locations in the direct page. The addresses can be obtained later
using direct-page addressing mode instructions.

Important note: you cannot use program-counter relative addressing to obtain addresses of objects in
the data section due to the fact that the memory addresses assigned to the program section and the
address section are not a fixed distance apart. Of course, immediate and extended addressing are also
not generally usable.

An example that illustrates the U-relative technique is shown on the following page.

Example 2.2. Example of Data Area Access

* declare variables
temp rmb 1
buf1 rmb 400
buf2 rmb 400
buf3 rmb 400

* clear each 400-byte buffer
 leax buf1,u get address of buf1
 bsr clrbuf
 leax buf2,u get address of buf2
 bsr clrbuf
 leax buf3,u get address of buf3
 bsr clrbuf

* clear buffer subroutine
* X = address of buffer
clrbuf ldd #400 D = byte count
cloop clr ,x+ clear byte and advance pointer
 subd #1 decrement count
 bne cloop loop if no done yet
 rts

2.9.5. Additional Comments

This information is given as a minimal reference only. The 6809 has many powerful instructions that
can do the same things other ways while still retaining PIC and reentrant characteristics. The LEA
and TFR instructions can be quite useful, and all the indexed addressing modes are helpful. For more
information refer to the OS-9 System Programmer's Manual.

2.10. Using the DEFS Files
There are many common symbolic names that occur in almost every OS-9 assembly language program.
For example, each system call has a name such as “I$READ”. Although you can include definitions
using EQU statements in each program for only those system names it uses, it is generally more
convenient to utilize the system definitions files supplied with OS-9 which are generally referred to
as the “DEFS files”. They are so named because they are included in a directory called “DEFS”.

The OS9Defs File

45

Using the DEFS files also minimizes chances of error and improves the maintainability of your
programs. In the event a future release of OS-9 redefines a system data structure, for example, you
need only to reassemble your original program with the DEFS files for the new release.

In addition to definitions of names of system calls, error codes, memory module formats, etc., the
DEFS files also have convenience definitions for ASCII characters, condition code register bits,
register names, etc.

The DEFS files are not sacred - you should feel free to add your own definitions when and where. you
want. You should note your additions, however, so they can be carried easily to future release editions.

To include the main DEFS file in your program, include the following assembler statement at the
beginning of your program:

USE /D0/DEFS/OS9DEFS

This tells the assembler to include this file with your source code when assembling the file. It is
recommended to use conditionals (IFP1) with the USE statement to speed up assembly and to prevent
the OS9Defs file from being printed out in your listing every time.

There are individual DEFS files that generally correspond to the part of the system you are dealing
with. For example, definitions used by the SCF file manager-related functions are contained in a file
called “SCFDefs”. You would include this file in your program if you were writing an SCF-type
device driver. In the following pages, each of the major DEFS files is discussed in detail to assist you
in selecting appropriate files to include with each of your programs.

NOTE: The actual names of DEFS files may vary from the generic names. given in this manual
according to the level and release number of your system. For example, your “os9defs” file may
actually be named “os9defs.lii” on a Level II system, etc.

2.10.1. The OS9Defs File

The most commonly used DEFS is the OS9Defs file which contains general system wide definitions.
This file contains:

System Service Request Code Definitions
Signal Codes
Status Codes For Getstat/Setstat
Direct Page Variables
Table Sizes
Module Format & Offsets
Module Field Definitions
Module Type/Language Masks & Definitions
Module Attributes/Revision Masks & Definitions
Process Descriptor Format & Offsets
Process Status Flags
OS-9 System Entry Vectors
Path Descriptor Offsets
File Access Modes
Pathlist Special Symbols
File Manager Entry Offsets
Device Driver Entry Offsets
Device Table Format & Offsets
Device Static Storage Offsets
Interrupt Polling Table Format & Offsets
Register Offsets on Stack
Condition Codes
System Error Codes

The OS9Defs File

46

I/O Error Codes

System Service Request Code Definitions

The main purpose of the DEFS files is to define all the OS-9 system calls with their associated values.
This is the main purpose of the OS9Defs file. It enables you to use the system request name in an
OS9 call. All OS-9 service request codes are listed (i.e., user, system and I/O function requests);

Signal Codes

This group of labels define the four signals defined and used by OS-9 with their associated values.
User defined signals should be added here.

Status Codes For Getstat/Setstat

When using the OS-9 system calls I$SETSTT and I$GETSTT there exist predefined status call
functions. Those supported by OS-9 file managers and device drivers are listed in this area with their
values. These labels are then available to be used for loading the 'B' register before the call is made.

Direct Page Variables

These labels define the offsets into page 0 of OS-9 system variables. Zero page variables are used
by OS-9 for interrupt vectors, table addresses, process queues and internal memory information. It is
strongly recommended that you don't use the page 0 variables in your programs. These variables are
not physically accessible to user programs in Level II. They are given in OS9Defs for those who
might need to write special drivers and interrupt handlers, or need to do system debugging. Improper
use of these variables can cause unexpected and perhaps fatal system operation.

Table Sizes

These equates define the size of the table used under the OS-9 operating system. This information is
used internally to OS-9 and its value is in defining the size of this table.

Module Format & Offsets

These labels define the offsets into a module header of all OS-9 compatible modules. Module offsets
can be used by programmers to find information in a module (i.e. module size, name, type, language
etc.). This area has the Universal Module offsets and the offsets for specific module types. This is due
to the fact that descriptors, drivers, programs and file managers have a different module format.

Module Field Definitions

Module Type/Language Masks & Offsets

Module Attributes/Revision Masks and Offsets

This is the area where the different bits of information that go into a module header are defined to be
of use to those who need to decode. a module header and possibly modify one. Since the Assembler
generates a module header for you using the 'mod' and 'emod' statements, the value of this area will
be when you do need to read a header. Masks are defined in this area for the type, language, attribute,
and revision bytes for accurate and understandable masking. Also, the different values for each field
are listed here for making comparisons.

Process Descriptor Format

Process Status Flags

In this area are the definitions and offsets for the process descriptor and the status flag values. Again,
for most programmers, this information will be of little programming use. This information will be
primarily of educational value for those who are interested in the internal workings of OS-9. The
process descriptor is the table of information describing a process. The status flags are the definitions
for the flags used by OS-9 to mark a process for different states (i.e. dead, sleeping etc.).

The OS9Defs File

47

OS-9 System Entry Vectors

OS-9 system entry points are defined in this area of OS9Defs. These are the vector addresses for the
different types of interrupts. These are pseudo vectors, not the actual hardware vector points. For more
information, see the System Programmer's Manual.

Path Descriptor Offsets

The offsets for OS-9 path descriptors.are defined in this area. Path descriptors are created by OS-9 for
every path opened in the system. This is again information used mainly by the system and will be of
little value to most users except to garner an understanding of OS-9.

File Access Modes

These are the definitions for the file access modes under OS-9. The definitions will mainly be used
for I$CREATE and I$OPEN system calls which require the file attributes to be set at the time of the
call. See the System Programmer's Manual and the User's Guide for more information.

Pathlist Special Symbols

This area lists the definitions of special pathlist characters. These will be used by those programmers
who need to parse.out a pathlist. This would be a good area to add special characters that you frequently
use in your programs.

File Manager Entry Offsets

All file managers on an OS-9 system have the entry offsets defined in this area. Programmers who
plan on writing their own file manager will need to provide these entry offsets. Those who have no
ambition to write a file manager will most likely have no use for these offsets.

Device Driver Entry Offsets

Like file managers, all drivers have their own set of entry offsets. Programmers will need to provide
these offsets at the beginning of their drivers. Once again, refer to the System Programmer's Manual.

Device Table Format

OS-9 keeps an entry in a table for every active device in the system. The form of the table entry is
defined in this area. This information is used internally to the operating system. The format is provided
here for those who are curious as to the operation of OS-9. The System Programmer's Manual contains
a discussion on how OS-9 handles I/O.

Device Static Storage Offsets

Every active device also has associated with it a static storage area that contains information about
the device and is filled in when the device is activated. The actual filling in of the parameters is done
by three sources; IOMAN, the file manager, and the device driver. The offsets listed in this area are
filled in by IOMAN. For more information on the rest of these offsets, look in SCFDefs, RBFDefs,
your driver sources, and the System Programmer's Manual.

Interrupt Polling Table Format

The polling table is formed from entries having the structure defined here. It contains all the
information the interrupt service routine needs to handle interrupts generated by active devices. This
information is used internally by OS-9 and is, in general, of no programming value. The System
Programmer's Manual has more information on interrupt servicing.

Register Offsets on Stack

Any time the 6809 CPU gets an interrupt of the form NMI, IRQ, SWI, SWI2 (an OS-9 system call),
or SWI3, the registers are pushed on the stack. The offset to those registers are defined in this area of

The SCFDefs File

48

OS9Defs. This information will be of particular value to those who write drivers and need to get the
I$GETSTT or I$SETSTT codes. These could also be used to pass parameters on the stack to different
procedures in a program.

Condition Code Bits

Every program written will at some point need to twiddle with the condition code bits. In order to
make the programs more legible there are defined in this area the values for each condition code. By
using these masks one can set or reset the bits as needed. It is good programming practice to use these
labels in your code.

System Error Codes

I/O Error Codes

The final entry in OS9Defs is the error code definitions. These labels define all the errors returned by
OS-9 and the I/O handlers. If your programs have any form of error trapping you will need to compare
the error to a-known error definition in order to determine what should occur. It is in this area where
they are defined. For information on what a specific error code means when it is returned, refer to the
User's Guide and the System Programmer's Manual.

2.10.2. The SCFDefs File

Another DEFS file included is SCFDefs. This file contains the definitions pertaining to the sequential
file manager and sequential file devices. Specifically it contains:

Static Storage Requirements
Character Definitions
File Descriptor Offsets

SCFDefs will be used when writing drivers for sequential devices and managers. It is also the area
to add your own SCF-type definitions.

2.10.2.1. Static Storage Requirements

This area defines the offsets to the static storage required by SCF devices. This area continues from
V.USER defined in OS9Defs. SCF devices must reserve this space for the SCF manager; The storage
reserved after this group is determined by the driver. For information on SCF static storage refer to
the System Programmer's Manual.

2.10.2.2. Character Definitions

Certain SCF devices will at some time need to filter special characters. These could be X-ON or X-
OFF characters for example. This is the area where these symbols are defined. This would be a good
area to add your own SCF special characters.

2.10.2.3. File Descriptor Offsets

The last entry in SCFDefs is the file descriptor offsets for SCF devices. The actual total storage is
declared in OS9Defs under the entry called Path Descriptor Offsets. Both SCF and RBF have their
own definitions of the PD.FST and PD.OPT fields. This area is where SCF's definitions are located.
Refer to the System Programmer's Manual for more information on descriptors.

2.10.3. The RBFDefs File

RBFDefs is the parallel to SCFDefs but for random block file managers and devices. This file
includes:

Random Block Path Descriptor Format

The RBFDefs File

49

State Flags
Device Descriptor Format
File Descriptor Format
Segment List Entry Format
Directory Entry Format
Static Storage

This DEFS file will be used when writing random block device drivers and managers. This is also the
area to add your own RBF type definitions.

2.10.3.1. Random Block Path Descriptor Format

This entry defines the file descriptor offsets for RBF devices. The actual total storage is declared
in OS9Defs under the entry called Path Descriptor Offsets. Both SCF and RBF have their own
definitions of the PD.FST and PD.OPT fields. This is where RBF's definitions are located. Refer to
the System Programmer's Manual for more information on descriptors.

2.10.3.2. State Flags

The flags defined here are used internally by OS-9 to mark the state of the disk buffer. These are of
little programming value but are supplied for those who are interested in the workings of the operating
system. For more information on file handling read the System Programmer's Manual.

2.10.3.3. Device Descriptor Format

This is the format of what goes into sector zero of an RBF device and is what RBF uses to find the
actual physical information on the device. This information is used to fill in the drive table by OS-9.
RBF devices differ from SCF type devices in that the actual device information is kept on the media.
The device descriptor in memory is then mainly used by the format program. Refer to the System
Programmer's Manual for more information on the subject.

2.10.3.4. File Descriptor Format

The format defined here is kept on disk and contains information about the file (i.e. size, segment list,
owner etc.). The information is read in by RBF and is used when accessing a file. Any time the file
is modified this sector is modified. Again this information is provided for those who are curious as to
the structure of RBF device files. For more information read the System Programmer's Manual.

2.10.3.5. Segment List Entry Format

The segment list is the area that tells the sector extensions of a file. The actual list is composed of the
beginning sector and the size (in number of sectors) of each segment of the file. Files that are extended
have another segment added to the segment list in the file descriptor sector above. This information is
of little programming value to most users. Refer to the System Programmer's Manual.

2.10.3.6. Directory Entry Format

Every file in a directory has an entry of the format described here. Only two pieces of information
exist here, the file name and the file descriptor sector address. For information on directories, again
refer to the System Programmer's Manual.

2.10.3.7. Static Storage

The final entry in RBFDefs is the static storage requirement for the drive tables. The drive tables
are allocated by the driver and have a size and format of that shown here. They begin at DRVBEG
and continue to DRVMEM. Also V.NDRV is allocated before the tables and defines the number of
drives and therefore the number of tables used by a driver. The rest of the static storage is defined in
OS9Defs and in the driver. This information will be used by those programmer's who need to write
their own RBF device driver. The System Programmer's Manual has more information on the subject.

The SysType File

50

2.10.4. The SysType File

The SysType file is a file that describes the physical (hardware-dependent) parameters of the various
types of OS-9-based systems. Some of those parameters are:

CPU Type Definitions
Memory Management Unit Definitions
CPU Speed Definitions
Disk Controller Definitions
Clock Module Definitions
PIA Type Definitions
System Type Definitions
Disk Port Address
Disk Definition
Disk Parameters
Clock Port
I/O Port

This DEFS file is relatively straightforward. The main use of this file will be with those who are
writing or modifying their drivers. All the necessary physical information is supplied here, and no
discussion is needed.

51

Chapter 3. Interactive Debugger
3.1. Introduction

The Interactive Debugger is a powerful tool for system diagnostics or testing 6809 machine language
programs. It is also useful when you need to directly access the computer's memory for any of a number
of reasons: testing I/O interfaces, verifying data, etc. The calculator mode can simplify computation of
addresses, radix conversion, and other mathematical problems often encountered by machine language
programmers.

3.1.1. Installation

The Interactive Debugger program is supplied on a file called “DEBUG” which should be located in
the system's execution directory (usually “/D0/CMDS”) .

3.1.2. Calling the Interactive Debugger

After the installation procedure, given above, has been performed, the Interactive Debugger may be
executed from OS-9 by typing:

OS9: debug

3.1.3. Basic Concepts

The debugger operates in response to single line commands typed in from the keyboard. You can tell
when you are communicating with_the debugger because it always displays a “DB:” prompt when it
expects a command line.

Each line is terminated by a RETURN . If you make a mistake while typing, you can use the backspace
key, or you can delete the entire line using the CONTROL+X key.

Each command line starts with a single character command which may be followed by text or one or
two arithmetic expressions depending on the specific command. Uppercase and lowercase characters
can be used interchangeably. Here's an example of the “space” command which displays the result of
an expression in hexadecimal and decimal notation:

DB: A+2 RETURN
 $000C #00012
DB:

Numbers entered into or displayed by the debugger are in hexadecimal notation unless special
commands are used, such as the decimal conversion command shown above.

Important note

The exact format of displays generated by some of the commands may be different than the
examples in this book. This is due to customization for the screen size of specific computers.

3.2. Expressions
A powerful feature of the Interactive Debugger is its integral expression interpreter, which permits
you to type in simple or complex expressions wherever an input value is called for in a command.
Expressions used by the Interactive Debugger are similar to those used with high-level languages such
as BASIC, except there are some extra operators and operands that are unique to the debugger.

Constants

52

Numbers used in expressions are 16 bit unsigned integers, which is the 6809's “native” arithmetic
representation. The allowable range of numbers is therefore zero to 65535. Two's complement addition
and subtraction is performed correctly, but will print out as large positive numbers in decimal form.
Some commands require byte values and an error message will be given if the result of the expression
is too large to be stored in a byte (when the result > 255). Also, some operands are only a byte long
(such as individual memory locations and some registers). These are automatically converted to 16-
bit “words” without sign extension. Spaces may be used between operators and operands as desired
to improve readability but do not affect evaluation.

3.2.1. Constants

Constants can be in base 2 (“binary”), base 10 (“decimal”), or base 16 (hexadecimal or “hex”). Binary
and decimal constants require a prefix character: % (binary) or # (decimal). All other numbers are
assumed to be hex. Hex numbers may also have an optional $ prefix. Here are some examples:

Decimal Hexadecimal Binary

#100 64 %1100110

#255 FF %11111111

#6000 1770 %1011101110000

#65535 FFFF %1111111111111111

Character constants may also be used. A single quote ' for one character constants and a double quote "
for two character constants. These produce the numerical value of the ASCII codes for the character(s)
which follow. For example:

'A = $0041
'0 = $0030
"AB = $4142
"99 = $3939

3.2.2. Special Names

There are other legal operands in expressions; “Dot”, “Dot-Dot”, and register names.

“Dot” is simply the debugger's current working address in memory. It can be examined, changed,
updated, used in expressions, or recalled. It has the main effect of eliminating a tremendous amount
of memory address typing. The following command prints the current working address:

DB: . RETURN
 2204 82

“Dot-Dot” is the value of “Dot” before the last time it was changed. It is convenient to use if you change
dot to an incorrect value, or as a second address “memory”. For example, the following command
prints the value of “Dot-Dot”:

DB: . 400 RETURN (set Dot to 400)
DB: . 800 RETURN (change Dot to 800)
DB: .. RETURN (display Dot-Dot)
 0400 12
DB: . .. RETURN (change Dot to Dot-Dot)

3.2.3. Register Names

MPU Registers may be specified by a colon character “:” followed by the mnemonic name of the
register; for example:

Operators

53

:A Accumulator A

:B Accumulator B

:D Accumulator D

:X X Register

:Y Y Register

:U U Register

:DP Direct Page Register

:SP Stack Pointer

:PC program counter register

:CC Condition Codes Register

The values returned are of the program under test's registers, which are “stacked” when the debugger is
active. Those registers which are a single byte long are promoted to a word when used in expressions.

NOTE: When a program is interrupted by a breakpoint, the SP register will be pointing at the bottom
of the MPU register stack.

3.2.4. Operators

Operators specify arithmetic or logical operations to be performed within an expression. The operators
having a higher precedence (priority) are executed before those having lower precedence. For example,
all multiplications are performed before additions. Operators in a single expression having equal
precedence are evaluated left to right. Parentheses may be used to override precedence as desired.
Here are the operators, in precedence order:

+ addition - subtraction <- Lowest

* multiplication / division

& logical AND ! logical OR

- negative <- Highest

3.2.5. Indirect Addressing

The Indirect Addressing function returns the data at the memory address using a value (expression,
constant, special name, etc.) as the memory address. The Interactive debugger has two indirect
addressing modes:

< expr > returns the value of a memory byte using the value of “expr” as an address
[expr] returns the value of a 16-bit word using the value of “expr” as an address

Here are some examples:

<200> returns the value of the byte at address 200
[:X] returns the value of the word pointed to by the X register
[.+10] returns the value of the word at address dot plus 10.

3.2.6. Forming Expressions

An expression can be composed of any combination of constants, register names, special names, and
operators. Here are some examples:

#1024+#128 :X-:B-2 .+20
:Y*(:X+:A) :U & FFFE #125

Debug Commands

54

3.3. Debug Commands

3.3.1. Calculator Command

To use the calculator command, enter a line starting with one or more spaces followed by any legal
expression, then “return”. The expression will be evaluated and the result displayed on the following.
line in both hexadecimal and decimal representations.

Here are some examples:

DB:SPACE 5000+200 RETURN
 $5200 #20992

DB:SPACE 8800/2 RETURN
 $4400 #17408

DB:SPACE #100+#12 RETURN
 $0070 #00112

These commands are also handy for converting values from one representation to another:

DB:SPACE %11110000 RETURN
 $00F0 #00240

DB:SPACE 'A RETURN
 $0041 #00065

DB:SPACE #100 RETURN
 $00C4 #00100

You can also use indirect addressing to look at memory without changing Dot:

DB:SPACE <.> RETURN
 $004F #00079

Another trick is simulating 6809 indexed or indexed indirect instructions. For example:

DB:SPACE [:D+:Y] RETURN

is the same as the assembly language syntax [D,Y].

3.3.2. “Dot” and Memory Examine/Change Commands

3.3.2.1. Display Dot Command

Typing “.” causes the current value of Dot and the contents of that memory address to be displayed,
for example:

DB:. RETURN display Dot
2201 B0

The first number, 2201, is the present value of Dot, and B0 is the contents of memory location 2201.

“Dot” and Memory Examine/
Change Commands

55

3.3.2.2. Change Dot Command

To change the value of Dot, type a period followed by an expression which is to be the new value,
for example:

DB:. 500 RETURN set Dot to 500
 500 12

One additional feature: whenever Dot is changed; its last value is saved, and can be restored by typing
two periods:

DB:. RETURN display Dot
 1000 23 .
DB:. 2000 RETURN set Dot to 2000
 2000 9C
DB:.. RETURN restore old value of Dot
 1000 23

3.3.2.3. Advance Dot Command

Typing a line with just RETURN , advances Dot to the next memory address and prints its new value
and contents. The example below shows how to “step through” sequential memory locations.

DB:RETURN
 2202 05
DB:RETURN
 2203 C2
DB:RETURN
 2204 82

3.3.2.4. Backstep Dot Command

The “-” command backs up Dot one address and prints its value and contents:

DB:. RETURN display Dot
 2204 82
DB:- RETURN backstep one address
 2203 C2
DB:- RETURN backstep one address
 2202 05

3.3.2.5. Change Memory Command

To change the contents of the memory-location pointed to by Dot, type an equal sign followed by an
expression. The expression is evaluated, and the result stored at the current Dot address. Dot is then
advanced to the location whose address and contents are displayed.

The memory location is checked after the new value is stored to make sure it actually changed to the
correct value. If it didn't, an error message is displayed. Error messages are displayed when an attempt
is made to alter non-RAM memory. In particular, many 6800-family interface devices (such as PIAs,
ACIAs, etc.) have registers that will not read the same as when written to.

DB:. RETURN display Dot
 2203 C2
DB:=FF RETURN change memory to FF
 2204 01

Register Examine/
Change Commands

56

DB:- RETURN backspace and display
 2203 FF

Warning

This command permits any memory location to be changed. You can accidentally crash the
debugger, the program under test, or OS-9 if you incorrectly change their memory areas.

3.3.3. Register Examine/Change Commands

Several forms of the “:” register command can be used to examine one or all registers, or to change
a specific register's contents.

The “registers” affected by these commands, are actually stored copies in memory (“images”) of the
register values of_the.program under test. They are stored on the stack when the program is stopped
by a breakpoint or other interrupt. The value shown for the stack pointer register is the address ,of the
stack where the register values are stored. Before the program under test is first executed, the register
images must be made valid using the “E” command.

When a running program is interrupted by a CONTROL+C key or by a breakpoint, the registers are
once again stacked for inspection and/or change. Note that if you manually alter the value of the SP
register during program testing, the address of the stack and the register values will also change. If you
change the condition codes (CC) register, the E bit must be kept set to ensure all registers are reloaded
properly when program execution is resumed.

3.3.3.1. Display All Registers Command.

To display all registers, type “:” followed by RETURN . For example:

DB:: RETURN
 SP CC A B DP X Y U PC
 C499 C4 20 1C 01 DD3E 239A 0000 240C

3.3.3.2. Display Specific Register Command

To display the contents of a specific register, enter a colon ": followed by the register name. The
Debugger will respond by displaying the current register contents in hex. Examples:

DB::PC RETURN display PC register
 C499
DB::B RETURN display B register
 007E
DB::SP RETURN display SP register
 42FD

3.3.3.3. Change Register Command

To assign a new value to a register, type the register name followed by an expression. The expression
is evaluated and stored in the register specified. When 8-bit registers are named, the expression given
must have a value that fits in a single byte, or an error message is displayed and the register is not
changed.

Here are some examples:

DB::X #4096 RETURN Set x register to 4096

DB::DP 0 Set DP register to 0

Breakpoint Commands

57

DB::D 24CF+:Y Set D register to 24CF plus contents of Y register

3.3.4. Breakpoint Commands

Breakpoints allow you to specify address(es) where execution of the program under test is to be
suspended and the debugger re-entered. When a breakpoint is encountered, the values of the MPU
registers and the “DB:” prompt will be displayed. After a breakpoint is reached,-registers can be
examined or changed, memory can be altered, or any other debugger command can be used. Program
execution can be resumed from the breakpoint location using the “G” command. Breakpoints may be
inserted at up to 12 different addresses.

The debugger uses the 6809 SWI instruction for breakpoints. They are inserted in memory in place of
the machine language instruction opcodes which are saved for restoration later. The SWI instructions
are automatically inserted and removed by the debugger at the right time so you will not see them
in memory.

When a SWI is executed it interrupts.the program and saves the register contents .on the stack so they
can be examined or changed using the “:” command. Because SWIs operate by temporarily replacing
an instruction opcode, there are three restrictions on their use:

1. Breakpoints cannot be used with programs in ROM.

2. Breakpoints must be located in the first (opcode) byte of the instruction.

3. User programs cannot utilize the SWI instruction for other purposes (but SWI2 and SWI3 can be
used).

When the breakpoint is encountered during execution of the program under test, the debugger is
reentered and the program's register contents is displayed using the same format as the “display
register” command.

3.3.4.1. “B” Set or Display Breakpoints Command

The B command-will insert a breakpoint if followed by an expression, or will display all present
breakpoint addresses if used alone.

DB:B 1C00 RETURN set breakpoint at 1C00
DB:B 4FD3 RETURN set breakpoint at 4FD3
DB:. RETURN display Dot
 1277 39
DB:B . RETURN set breakpoint at Dot (1277)
DB:B RETURN display current breakpoints
 1C00 4FD3 1277

3.3.4.2. “K” Remove Breakpoint Command

The K command removes (“kills”) a breakpoint at a specific address if followed by an expression or
ALL (caution!) breakpoints if used alone;

DB:B RETURN display current breakpoints
 1C00 4FD3 1277
DB:K 4FD3 RETURN kill breakpoint at 4Fd3
DB:B RETURN display current breakpoints
 1C00 1277
DB:K RETURN kill all remaining breakpoints
DB:B RETURN display current breakpoints
 none left so display is blank

Program Setup And Run Commands

58

DB:

3.3.5. Program Setup And Run Commands

3.3.5.1. Prepare To Execute Command

The Execute command consists of a “E” by a Shell-style command line. It prepares for testing of a
specific program module and must be used before the program is run.

The “E” command performs the rough equivalent of what the OS-9 Shell does to start a program except
for I/O redirection (<, >, >>), memory size override (“#”), and multitasking (“&”) functions. It sets
up a stack, parameters, registers, and data memory area in preparation for execution of the program to
be tested. The “G” command is actually used to start running the program.

Note that this command will allocate program and data area memory as appropriate. The new program
uses the debugger's current standard I/O paths, but can open other paths as necessary. In effect, the
debugger and the program become coroutines.

This command is acknowledged by a register dump showing the program's initial register values. The
“G” command is used to begin actual program execution. The “E” command will set up the MPU
registers as if you had just performed an F$CHAIN service request as shown below:

high +---------------+ <-- Y
 ! !
 ! parameter !
 ! area !
 ! !
 +---------------+ <-- X, SP
 ! !
 ! !
 ! data area !
 ! !
 ! !
 +---------------+
 ! direct page !
low +---------------+ <-- U, DP

 D = Parameter area size
 PC = Module entry point absolute address
 CC = (F=0), (I=0)

Example:

DB:E myprogram
 SP CC A B DP X Y U PC
 0CF3 C8 00 01 0C 0CFF 0D00 0C00 9214
DB:

3.3.5.2. Go To Program Command

The G (“Go”) command is used to resume execution of a program under test under any of the following
circumstances:

1. After the “E” command has been used to prepare a new program for execution.

2. To resume program execution after a breakpoint.

3. To resume execution after a CONTROL+C interrupt.

Utility Commands

59

If the “G” command is used to continue execution after a breakpoint that has not been removed,
the breakpoint will not be reinserted so the program will not “hang-up”. This features allows you to
execute breakpoints within loops without continually inserting and removing them if two breakpoints
are placed at different addresses within the loop.

You can optionally put an expression after the “G”. The result will be assigned to the PC register just
before execution is resumed in order to change the re-start address. Here is an example:

DB:E myprogram RETURN prepare for execution
 SP CC A B DP X Y U PC
 0CF3 C8 00 01 0C 0CFF 0D00 0C00 9214
DB:B 9466 RETURN put breakpoint at 9466
DB:G RETURN start program
 BKPT:
 SP CC A B DP X Y U PC
 0CEA C0 FF 01 0C 4000 0D00 0C00 9466
DB:G RETURN resume after breakpoint

3.3.5.3. “L” Link To Module Command

This command (L followed by text) attempts to link to the module whose name is given in the text line.
If successful, Dot is set to the address of the first byte of the program and is displayed. This command
is commonly used to find the starting address of an OS-9 memory module.

Example:

DB:L gotoxy RETURN link to module “gotoxy”
 EC00 87
DB:

3.3.6. Utility Commands

3.3.6.1. Clear and Test Memory Command

The “C” command followed by TWO expressions simultaneously performs a “walking bit” memory
test and clears all memory between the two evaluated addresses. The first expression gives the starting
address, and the second the ending address (which must be higher). If any byte(s) fail the test, its
address is displayed. Of course, only RAM memory can be tested and cleared.

Warning

This command can be dangerous for obvious reasons. Be sure of what memory you are
clearing.

Examples:

DB:C 1200 15FF RETURN test from 1200 to 15FF
 12E4 indicates bad memory at 12E4 and
 12E7 12E7
DB:C . .+256 RETURN test from Dot to Dot+256
DB: indicates no bad memory

3.3.6.2. Dump Memory Command

The M command, which is also followed by two addresses, displays a screen-sized display of memory
contents in tabular form in both hexadecimal and ASCII form. The starting address of each line is

Using The Debugger

60

printed on the left, followed by the contents of the subsequent memory locations. On the far right is
the ASCII representation of the same memory locations. Those locations containing nondisplayable
characters have periods in their place. The high order bit is ignored for the display of ASCII characters.
For example:

DB:m f100 f17f RETURN

F100 6225 306C 6120 ED4F 5FED 62ED 6439 E680 b%01a .O_.b.d9..
F110 C130 2504 C139 2303 1A01 39C0 301C F339 .0%..9#...9.0..9
F120 301F 6D61 2706 EC62 1CFE 2004 1A04 1A01 0.ma'..b..
F130 3264 391C FB20 F7A6 8081 2027 FA30 1F39 2d9.. '.0.9
F140 3416 A663 3D34 06A6 62E6 643D 3406 A664 4..c=4..b.d=4..d
F150 E667 8D13 A665 E666 8D0D 1CFE EC62 AEE4 .g...e.f.....b..
F160 2702 1A01 3268 393D E363 ED63 2402 6C62 '...2h9=.c.C$.1b
F170 3934 36EC E426 041A 0120 20CC 0010 E764 946..&... d

3.3.6.3. Search Memory Command

The “S” command is used to search an area of memory for a one or two byte pattern. The search begins
at the present Dot address. The “S” is followed by two expressions: the first expression is the ending
address of the search, and the second expression is the data to be searched for. If this value is less than
256, a byte comparison is used, otherwise two bytes are compared. If a matching pattern is found in
memory, Dot is set to the address where it was located (which is displayed). If no match occurred,
another “DB:” prompt is displayed.

3.3.6.4. Shell Command

This command calls the OS-9 “shell” to execute one or more system command lines. Its format is a
dollar sign optionally followed by a shell command line. If the command line is given, the shell will
execute just that line and return back to the debugger. If the dollar sign is immediately followed by an
end-of-line, the shell will print prompts for one or more command lines in its usual manner. You can
return to the (undisturbed) debugger by typing an end-of-file character (usually ESCAPE).

This command is useful for calling the system utility programs and the Interactive Assembler from
within the debugger. For example:

DB:$dir RETURN

DB:$unlink mypgm; mdir e; load test5 RETURN

DB:$asm myprogram o=myprogram.bin RETURN

3.3.6.5. “Q” Quit Debugger Command

This command (Q) causes the Interactive Debugger to terminate and return to OS-9 or the program
that called the debugger.

Example:

DB: Q RETURN
OS9:

3.3.7. Using The Debugger

The Interactive Debugger is mostly used for one of three purposes:

• To test system memory and I/O devices

Using The Debugger

61

• To “patch” the operating system or other programs
• To test hand-written or compiler-generated programs.

The simple assembly language program shown below is used in some of the examples in this chapter
to illustrate how debug commands are be used with a real program. The program prints “HELLO
WORLD” and then waits for a line of input.

 NAM EXAMPLE
 USE /D0/DEFS/OS9DEFS

 * Data Section
0000 ORG 0
0000 LINLEN RMB 2 LINE LENGTH
0002 INPBUF RMB 80 LINE INPUT BUFFER
0052 RMB 150 HARDWARE STACK
00E7 STACK EQU .-1
00E8 DATMEM EQU . DATA AREA MEMORY SIZE

 * Program Section
0000 87CD0047 MOD ENDPGM,NAME,$11,$81,ENTRY,DATMEM
000D 4558414D NAME PCS /EXAMPLE/ MODULE NAME STRING

0014 ENTRY EQU * MODULE ENTRY POINT
0014 308D0020 LEAX OUTSTR,PCR OUTPUT STRING ADDRESS
0018 108E000C LDY #STRLEN GET STRING LENGTH
001C 8601 LDA #1 STANDARD OUTPUT PATH
001E 103F8C OS9 I$WRLN WRITE THE LINE
0021 2512 BCS ERROR BRA IF ANY ERRORS
0023 3042 LEAX INPBUF,U ADDR OF INPUT BUFFER
0025 108E0050 LDY #80 MAX OF 80 CHARACTERS
0029 8600 LDA #0 STANDARD INPUT PATH
002B 103F88 OS9 I$RDLN READ THE LINE
002E 2505 BCS ERROR BRA IF ANY I/O ERRORS
0030 109F00 STY LINLEN SAVE THE LINE LENGTH
0033 C600 LDB #0 RETURN WITH NO ERRORS
0035 103F06 ERROR OS9 F$EXIT TERMINATE THE PROCESS
0038 48454C4C OUTSTR FCC /HELLO WORLD/ OUTPUT STRING
0043 0D FCB $0D END OF LINE CHARACTER
000C STRLEN EQU *-OUTSTR STRING LENGTH
0044 268A06 EMOD END OF MODULE
0047 ENDPGM EQU * END OF PROGRAM

3.3.7.1. A Session With The Debugger

Below is an example of how DEBUG might be used with the sample program on the previous page.
DEBUG is called from OS-9, the $ command is used to tell SHELL to load “EXAMPLE” into memory,
the “L” command is used to link to it, etc.

OS9:DEBUG RETURN run Debug program

Interactive Debugger
DB:$LOAD /D1/EXAMPLE RETURN load test program
DB:L example RETURN find program start addr.
 9200 87
DB:. RETURN display Dot; L set it to
 9200 87 start address
DB:M . .+44 RETURN dump program code

Using The Debugger

62

9200 87CD 0047 000D 1181 9300 1400 E845 5841 ...D.........EXA
9210 4D50 4CC5 308D 0020 1083 000C 8601 103F MPL.0..,..?
9220 8C25 1230 4210 8800 5086 0010 3F8B 2505 .%.0B...P...?.%.
9230 109? 00C6 0010 3F06 4845 4C4C 4F20 574F?.HELLO WO
9240 524C 440D A484 7F8D D4A6 A02A F639 3432 RLD........*.942

DB:E EXAMPLE RETURN prepare to run program
 SP CC A B DP X Y U PC
 0DF3 C8 00 01 0D 0DFF 0E00 0D00 9214

DB:B .+ZE RETURN set breakpoint at 9223
DB:G RETURN run program
HELLO WORLD
hello computer

 BKPT: breakpoint encountered
 SP CC A B DP X Y U PC
 0DF3 C0 00 01 0D 0D02 000F 0D00 922E

DB:M :U :U+20 RETURN display data area

0D00 FA31 6865 6C6C 6F20 636F 6D70 7574 6572 .1hello computer
0D10 0DDF C005 E9F1 95FA 4C0D 1DFA 0AC4 5900L.....Y.
0D20 0B64 360B CFB1 0091 F820 SAE2 5AF8 5AF8 .d6...... Z.Z.Z.

DB:. :U+2 RETURN display relative data
 0D02 68 area offset 2
DB:RETURN step through data area
 0D03 65
DB:RETURN
 0D04 6C
DB:RETURN
 0D05 6C
DB:Q RETURN quit debugging
OS9:

3.3.7.2. Patching Programs

“Patching” (changing the object code of) a program involves four steps:

1. Loading the program into memory using OS-9's “LOAD” command.

2. Changing the program in memory using the Debugger's “L” and “=” commands.

3. Saving the new, patched version of the program on a disk file using the OS-9 “SAVE” command.

4. Updating the program module's CRC check value using the OS-9 “VERIFY” command.

The fourth step is unique to OS-9 (as compared to other operating systems) and often overlooked.
However, it is essential because OS-9 will refuse to load the patched program into memory until its
CRC check value is updated and correct.

The example that follows shows how the program listed on page 4-1 is “patched” - this case changing
the “LDY #80” instruction to “LDY #32”.

OS9:load example RETURN load program to be patched
OS9:debug RETURN run debug

Using The Debugger

63

Interactive Debugger
DB:L EXAMPLE RETURN set dot to start addr of program
 2000 87 note module starts at 2000
DB:. .+28 RETURN add offset of byte to change
 2028 50 current value is 50
DB:=#32 RETURN change to decimal 32
 2028 10 change confirmed
DB:Q RETURN quit debugger

OS9:SAVE TEMP EXAMPLE RETURN save patched module on file TEMP
OS9:VERIFY <TEMP >EX2 RETURN update CRC and copy to file EX2
OS9:DEL TEMP TEMP no longer needed

After the above procedure has been completed, the file EX2 contains a patched version of the module
with a correct module CRC value. It can be run and/or loaded into memory as desired.

3.3.7.3. Patching OS-9 Component Modules

Patching modules that are part of OS-9 (modules contained in the “OS9Boot” file) is a bit trickier
than patching regular program because the “COBBLER” and “OS9GEN” programs must be used to
create a new “OS9Boot” file. The example below shows how an OS-9 “device descriptor” module
is permanently patched, in this case to change the uppercase lock of the device “/TERM” from “off”
to “on”. This example assumes a copy of the system disk is loaded in drive one (“/D1”).

Caution

Always use a copy of your OS-9 system disk when patching it in case something goes wrong!

NOTE: SOME LEVEL TWO SYSTEMS DO NOT PERMIT SYSTEM MODULES TO BE
PATCHED - IN ORDER TO BE CHANGED, THEY MUST BE REASSEMBLED AND
INCLUDED IN A NEW BOOT DISK.

OS9: debug RETURN run debug

Interactive Debugger
DB: L TERM RETURN set dot to addr of TERM module
 D300 87 (actual address will vary)
DB: . .+13 RETURN add offset of byte to change
 D313 00 current value is 00
DB: =1 RETURN change value to 1 for “ON”
 D313 01 change confirmed
DB: Q RETURN exit debugger

OS9:COBBLER /D1 RETURN write new bootfile on /D1
OS9:VERIFY </D1/OS9BOOT >/D1/TEMP U RETURN update CRC value
OS9:OS9GEN /D1 RETURN write new bootfile again
TEMP RETURN name of file with good CRCs
ESCAPE End-of-file key for OS9GEN

64

65

Appendix A. Error Messages
A.1. Text Editor Error Messages

BAD MACRO NAME

This error is caused by trying to close a macro definition, when the first line in the macro does
not start with a legal macro name. The editor will allow you to close definition of a macro after
you have given it a legal name. See the section on macro names.

BAD NUMBER

An illegal numeric parameter has been entered. This is usually caused by entering a number that
is larger than 65535.

BAD VAR NAME

This error is caused by specifying a variable name that is illegal. Usually the variable name has
been omitted, or you inadvertently included a “$” or “\#” character in the commands parameter
list.

BRACKET MISMATCH

This is caused by either having one too many left or right brackets (they must be used in pairs to
repeat a command sequence). This error may also be caused by nesting the brackets too deeply.

BREAK

This message is printed when you type a (CONTROL+C) or (CONTROL+Q) to interrupt whatever
the editor is doing. After printing the error message, the editor will return to command entry mode.
It is important to remember that the printout of edit command results may not be synchronized
with the actual operation of a command.

DUPL MACRO

This error is caused by trying to close a macro definition when there is another macro with
the same name. The problem may be solved by renaming the macro before trying to close its
definition.

END OF FILE

This means that there is no more text remaining in the input file that is being read.

END OF TEXT

This means that you have reached the end of the edit buffer. This is used only as a reminder.

FILE CLOSED

This means that you tried to write to a file that was never opened. You should either specify
a write file when starting up the editor from OS-9, or open an output file using the “.WRITE”
pseudo macro.

MACRO IS OPEN

You must first close the macro definition before using the command that caused this error.

MISSING DELIM

The editor could not find a matching delimiter to complete the string that you specified. A string
must be completely specified on a single line.

Assembler Error Messages

66

NOT FOUND

The editor can not find the string or macro that was specified in a command parameter.

UNDEFINED VAR

This error occurs when you try to use a variable that was not specified in the macros definition
parameter list. A variable parameter may be used only in the macro in which it is declared. See
the section of this manual on macros.

WHAT ??

The editor did not understand a command that you typed. This is usually caused by entering a
command that does not exist (misspelling its name).

WORKSPACE FULL

This error is caused by entering a command that tried to insert more text into the buffer than
there was room for. The.problem may be solved by increasing the workspace size using the “M”
command, or by removing some text from the edit buffers.

A.2. Assembler Error Messages
BAD LABEL

The statement's label has an illegal character or does not start with A-Z or a-z.

BAD INSTR

The assembler did not recognize the instruction given in the source statement.

ADDRESS MODE

The addressing mode specified is not legal for the instruction.

OUT OF RANGE

The destination (label) of the branch is too far to use a short branch instruction (e.g. the a 16-bit
offset using a LBRA-type instruction must be used).

REG NAM

The register name required is missing or misspelled.

REG SIZES

The registers specified in a TFR or EXG instruction were of different lengths (e.g., 8 bit vs. 16 bit).

INDEX REG

The name of an index register is required by the instruction but none was found.

] MISSING

A closing bracket was omitted (indirect addressing).

CONST DEF

The instruction requires a constant or an expression which is missing or in error.

LABEL NOT ALLOWED

This type of statement cannot have a label.

Assembler Error Messages

67

NEEDS LABEL

The statement is required to have a label.

IN NUMBER

A constant number (decimal, hex or binary) is too large or had an illegal character.

DIV BY 0

A division with a zero divisor was attempted within an expression.

MULT OVERFL

The result of a multiplication is greater than 65535 (two bytes).

EXPR SYNTAX

The arithmetic instruction is illegally constructed or is missing an operand following an operator.

PARENS

There is an unequal number of left and right parentheses in the expression.

RESULT>255

The result of the expression is too large to be represented in the one-byte value used by the
instruction.

REDEFINED NAME

The label was defined previously in the program.

UNDEFINED NAME

The symbolic name was never defined in the program.

PHASING

The statement's label had a different address during the first assembly pass. This usually happens
when an instruction changes addressing modes and thus its length after the first pass because its
operand becomes defined after the source line is processed. Usually the error occurs on all labels
following the offending source line.

MEMORY FULL

The symbol table became full - more memory is required to assemble the program.

OPT LIST

An illegal or missing option in the assembler command line or in an OPT statement.

INPUT PATH

A read error occurred on the input path.

OBJECT PATH

A write error occurred on the object file path.

CAN'T OPEN PATH

The file cannot be opened (source file) or created (object file).

Interactive Debugger Error Codes

68

A.3. Interactive Debugger Error Codes
0 ILLEGAL CONSTANT

The expression included a constant that had an illegal character or was too large (> 65535).

1 DIVIDE BY ZERO

A division was attempted using a divisor of zero.

2 MULTIPLICATION OVERFLOW

The product of the multiplication was greater then 65535.

3 OPERAND MISSING

An operator was not followed by a legal operand.

4 RIGHT PARENTHESIS

Right paren is expression missing: misnested parentheses.

5 RIGHT BRACKET MISSING

Misnested brackets.

6 RIGHT CARAT MISSING

Misnested byte-indirect (< and >).

7 INCORRECT REGISTER

Misspelled, missing or illegal register name followed the colon.

8 BYTE OVERFLOW

Attempted to store a value greater than 255 in a byte-sized destination.

9 COMMAND ERROR

Misspelled, missing or illegal command.

10 NO CHANGE

The memory location did not match the value assigned to it.

11 BREAKPOINT TABLE FULL

The maximum number of twelve breakpoints already exist.

12 BREAKPOINT NOT FOUND

No breakpoint exists at the address specified.

13 ILLEGAL SWI

A SWI instruction was encountered in the user program at an address other than a breakpoint.

69

Appendix B. Quick Reference
B.1. Editor Quick Reference Summary

. macro_name parameters The “.” command is used to execute a macro.

! text Comment.

SPACE text Insert the text line before the current edit pointer position.

RETURN Move edit the pointer to the next line and display it.

+n Move the edit pointer forward n lines and display.

-n Move the edit pointer backward n lines and display.

+0 Move the edit pointer to the last character of the line.

-0 Move the edit pointer to the first character of the line and display
it.

>n Move the edit pointer forward n characters.

<n Move the edit pointer backward n characters.

^ Move the edit pointer to the beginning of the text.

/ Move the edit pointer to the end of the text.

[commands] n Repeat the sequence of commands between the two brackets n
times.

: Skip to the end of the innermost loop or macro if the fail flag is
off, otherwise turn the fail flag off and resume execution.

An Set the SEARCH/CHANGE anchor to column n, restricting
searches and changes to strings starting in the nth column.

A 0 Turn off the SEARCH / CHANGE anchor.

B n Make buffer n the primary buffer.

C n str1 str2 Change the next n occurrences of str1 to str2.

D n Delete n lines.

E n str Extend (add the string to the end of) the next n lines.

G n Get n lines from the secondary edit buffer starting from the top
of the secondary buffer. The lines are inserted before the current
position in the primary edit buffer.

I n str Insert a line containing n copies of the str before the current
edit pointer position.

K n Kill n characters starting at the current edit pointer position.

L n List (display) the next n lines from the current edit pointer
position.

M n Change workspace (memory) size to n bytes.

Editor Quick Reference Summary

70

P n Put (move) n lines from the present edit position in the primary
buffer to the present edit position in the secondary buffer.

Q Quit editing and return to OS-9.

Q Terminate macro definition and return to the “E:” prompt.

R n Read n lines from the buffer's input file.

S n str Search for the next n occurrences of str.

T n Tab to column number n of the present line.

U Unextend (truncate) line at the current edit position.

V n Turn verify mode (display text changes) off if n = 0, or on if n
<> 0.

W n Write n lines to the buffer's output file.

X n Display n lines of text that precede the edit position.

.CHANGE n str1 str2 Similar to “C” command.

.DEL str Delete the macro with the name specified by str.

.DIR Display the editor's directory of buffers and macros.

.EOB Test for end of buffer, if the edit pointer is at the end of the buffer
succeed, otherwise fail.

.EOF Test for end of file.

.EOL Test for end of line. If the edit pointer is at the end of the line,
this command will succeed, otherwise fail.

.F Exit innermost loop or macro and set the fail flag.

.LOAD str Load macros from the path specified by “str”.

.MAC str Open the macro specified by “str” for definition. If an empty
string is given, a new macro will be created.

.NEOB Test for not end of buffer.

.NEOF Test for not end of file.

.NEOL Test for not end of line.

.NEW Write lines to the output file up to the current line, then try to
read an equal amount from the input file.

.NSTR str Test if “str” does not match characters at the current edit
position.

.READ str Open an file for reading, using “str” as the pathlist.

.S Exit the innermost loop or macro and succeed.

.SAVE str1 str2 Save the macro(s) specified in “str1” on the file specified by
the pathlist in str2.

.SEARCH n str Similar to the “S” command.

Interactive Debugger
Quick Reference

71

.SHELL text Call OS-9 shell to execute the command line.

.SIZE Display the size of memory used and the total amount of memory
available in the workspace.

.STAR n Test if n is equal to asterisk (infinity).

.STR str Test if “str” matches the characters at the current edit position.

.WRITE str Open an file for writing using “str” as pathlist.

.ZERO n Test n to see if it is zero.

B.2. Interactive Debugger Quick Reference
SPACE expr Evaluate expression and display result in hex and decimal

. Print Dot address and contents

.. Restore last DOT, print address and contents

. expr Set Dot to result, print address and contents

= expr Set memory at Dot to result

- Backup Dot, print address and contents

RETURN Move Dot forward, print address and contents

: Display all register contents

:reg Display specific register contents

:reg expr Set register to result

E text Prepare for execution

G Go to program

G expr Go to program at result address

L text Link to module named, print address

B Display all breakpoints

B expr Set breakpoint at result address

K Kill all breakpoints

K expr Kill breakpoint at result address

M expr1 expr2 Dump memory

C expr1 expr2 Clear and test memory

S expr1 expr2 Search memory for pattern

$ text Run Shell command line

Q Quit debugging

72

73

Appendix C. Example Assembly
Language Programs
C.1. Assembly Language Programming Examples

The following pages contain three assembly language programming examples. They are:

UpDn -Program to convert input case to upper or lower.

PIA -Parallel interface driver.

P -Parallel interface descriptor.

These programs are given only as examples of assembly language programs and should not be
considered as current system software.

Example C.1. UpDn - Assembly Language Programming Example

 *
 * this is a program to convert characters from
 * lower to upper case (by using the u option)
 * upper to lower case (by using no option)
 * the method of passing the parameters through
 * os9 is used here (system calls)
 * to use type
 * "updn u(opt for lower to upper) <'input' >'output'"
 *
 nam UpDn
 * file include in assembly
 ifp1
 use /D0/defs/OS9defs
 endc
 *
 * OS-9 System Definition File Included
 *
 opt l
 ttl Assembly Language Example
 *
 * module header macro
 *
 0000 87CD005C mod UDSIZ,UDNAM,TYPE,REVS,START,SIZE
 000D 757064EE UDNAM fcs /updn/ module name for memory
 0011 TYPE set PRGRM+OBJCT mod type
 0081 REVS set REENT+1 mod revision
 *
 * storage area for variables
 *
D 0000 TEMP rmb 1 temp storage for read
D 0001 UPRBND rmb 1 storage for upperbound
D 0002 LWRBND rmb 1 storage for lowerbound
D 0003 rmb 250 storage for stack
D OOFD rmb 200 storage for parameters
D 01C5 SIZE equ . end of data area
 *
 * actual code starts here

Assembly Language
Programming Examples

74

 * x register is pointing to Start of parameter area
 * y register is pointing to end of parameter area,
 * this is how to get a parameter that is passed on
 * the command line and where to look for it
 *
 0011 START equ * start of executable
 0011 A680 SRCH lda ,x+ search parameter area
 0013 84DF anda #$df make upper case
 0015 8155 cmpa #U see if a U was input
 0017 2703 beq UPPER branch to set uppercase
 0019 810D cmpa #$0d see if a carriage return
 001B 26F4 bne SRCH go get another char
 *
 * fall through to set upper to lower bounds
 *
 001D 8641 lda #'A get lower bound
 001F 9702 sta LWRBND set it in storage area
 0021 865A lda #'Z get upper bound
 0023 9701 sta UPRBND set it in storage area
 0025 2008 bra START1 go to start of code
 *
 * set lower to upper bounds
 *
 0027 8661 UPPER lda #'a get lower bound
 0029 9702 sta LWRBND set it in storage
 002B 867A lda #'z get upper bound
 002D 9701 sta UPRBND set it in storage
 *
 * converting code
 * this part uses the I$READ and
 * the I$WRIT system calls
 * read the systems programmers manual
 * for information relating to them
 *
 002F 30C4 START1 leax temp,u get storage address
 0031 8600 lda #0 standard input
 0033 108E0001 ldy #$01 number of characters
 0037 103F89 LOOP os9 I$READ do the read
 003A 2515 bcs EXIT exit if error
 003C D600 ldb TEMP get character read
 003E D102 cmpb LWRBND test char bound
 0040 2506 blo WRITE branch if out
 0042 D101 cmpb UPRBND test char bound
 0044 2202 bhi WRITE branch if out
 0046 C820 eorb #$20 flip case bit
 0048 D700 WRITE stb TEMP put it in storage
 004A 4C inca reg 'a' stand output
 004B 103F8A os9 I$WRIT write the character
 004E 4A deca return to stand input
 004F 24E6 bcc LOOP get char if no error
 0051 C1D3 EXIT cmpb #E$EOF is it an EOF error
 0053 2601 bne EXIT1 not eof, leave carry
 0055 5F clrb clear carry, no error
 0056 103F06 EXIT1 os9 F$EXIT error returned, exit
 0059 260409 emod last command
 005C UDSIZ equ * size of program

Assembly Language
Programming Examples

75

Example C.2. PIA - OUTPUT Parallel Interface Driver

 NAM PIA

 ifpl
 use /D0/defs/os9defs
 use /D0/defs/scfdefs
 use /D0/defs/systype
 endc

 ttl OUTPUT Parallel Interface Driver

 * Device Driver for PIA Port

 0000 87CD00CD mod PIASIZ,PIAN,DRIVR+OBJCT,
 REENT+1,PIAENT,PIAMEM
 000D 07 fcb EXEC.+UPDAT.
 000E 5049C1 PIAN fcs "PIA" MODULE NAME

 0011 02 fcb 2 revision number
 use /D0/defs/copyright

 **
 * *
 * (C) 1981 Microware Systems Corporation *
 * *
 **

 0012 28432931 FCC /(C)1981Microware/

D 000F ORG V.SCF STATIC STORAGE
D 000F PIADDR rmb 2 Pia True Port address
D 0011 PIAMEM equ . TOTAL STATIC STORAGE

W 0022 160012 PIAENT LBRA PPINIT
 0025 1600A0 LBRA PPEXIT read
W 0028 160053 LBRA PPWRIT
 002B 16009A LBRA PPEXIT get status
 002E 160097 LBRA PPEXIT set status
W 0031 16007A LBRA PPTERM

 0034 00 PPMASK fcb 0 FLIP (NONE)
 0035 80 fcb $80 IRQ POLLING MASK
 0036 04 fcb 4 (low) PRIORITY

 * PPINIT - Initialize PIA

 * Passed: (U)=Static storage
 * (Y)=Initial Device Descriptor

 0037 A341 PPINIT LDX V.PORT,Y get PIA port addr
 0039 A6A811 LDA M$OPT,Y get option byte count
 003C 8114 CMPA #PD.PAR-PD.OPT pia side given?
 003E 2515 BLO PPIN15 ..No; default B-side
 0040 E6A826 LDB PD.PAR-PD.OPT+M$DTYP,Y

Assembly Language
Programming Examples

76

 0043 E746 STB V.TYPE,U save pia type
 0045 C101 CMPB #a.side A-side PIA?
 0047 2604 BNE PPIN10 ..No
 0049 C63E LDB #$3E A-side non auto-latch
 004B 200C BRA PPIN20
 004D C102 PPIN10 CMPB #MP.L2 Southwest ACIA?
 004F 2604 BNE PPIN15 ..No
 0051 860E LDA #$0E setup SWTPC MP-L2 card
 0053 A70E STA $0E,X note: must be b.side
 0055 3002 PPIN15 LEAX 2,X Adjust address B-side
 0057 C62F LDB #$2F B-side is auto-latch
 0059 6F01 PPIN20 CLR 1,X reset PIA
 005B AF4F STX PIADDR,U save port address
 005D 3414 PSHS B,X save ctl code, addr
 005F 3001 LEAX 1,X
 0061 1F10 TFR X,D
 0063 308DFFCD LEAX PPMASK,PCR
 0067 318C4F LEAY <PPIRQ,PCR addr of SERVICE ROUTINE
 006A 103F2A OS9 F$IRQ ADD to IRQ POLLING TBL
 006D 250D BCS PPIN90 ..Error; return it
 006F 3514 PULS B,X
 0071 86FF LDA #$FF
 0073 1A10 ORCC #IRQM disable interrupts
 0075 ED84 STD 0,X Initialize Pia
 0077 A684 PPCLRQ LDA 0,X Clear IRQs
 0079 1CEE ANDCC #$FF-IRQM-CARRY enable intrpts
 007B 39 RTS return

 007C 3592 PPIN90 PULS A,X,PC Return (B)=error

 * PPWRIT - write one char to PIA

 * Passed: (U)=Static Storage
 * (Y)=Path Descriptor
 * (A)=char to write to PIA
 * Returns: CC,B set if Error

 007E AE4F PPWRIT LDX PIADDR,U port addr
 0080 E646 LDB V.TYPE,U get pia type
 0082 1A10 ORCC #IRQM disable interrupts
 0084 A784 STA 0,X Write char to Pia
 0086 C101 CMPB #a.side A-side port?
 0088 2608 BNE PPWR10 ..No; auto-latching
 008A C637 LDB #$37
 008C E701 STB 1,X
 008E C63F LDB #$3F
 0090 E701 STB 1,X latch A-side output
 0092 8D34 PPWR10 BSR PPEXIT Delay shortly fast PIA
 0094 6D01 TST 1,X character already gone?
 0096 2BDF BMI PPCLRQ ..Yes; remove interrupt
 0098 E644 LDB V.BUSY,U
 009A E745 STB V.WAKE,U
 009C 8E0000 LDX #0
 009F 1CEF ANDCC #$FF-IRQM enable interrupts
 00A1 103F0A OS9 F$SLEEP wait for I/O to occur
 00A4 5F clrb clear carry
 00A5 9E4B ldx D.PROC

Assembly Language
Programming Examples

77

 00A7 E68836 ldb P$SIGN,X Signal waiting?
 00AA 2701 beq PPWR90 ..No; return
 00AC 43 coma
 00AD 39 PPWR90 RTS

 * PPTERM - Remove PIA from system

 00AE AE4F PPTERM LDX PIADDR,U
 00B0 6F01 CLR 1,X reset PIA
 00B2 8E0000 LDX #0 remove PIA
 00B5 103F2A OS9 F$IRQ from polling tbl
 00B8 39 RTS

 * PROCESS PIA INTERRUPT

 * Passed: (A)=PIA Status Reg

 00B9 AE4F PPIRQ LDX PIADDR,U PIA port addr
 00BB 6D84 TST 0,X remove interrupt
 00BD A645 LDA V.WAKE,U User's Process ID
 00BF 2707 BEQ PPEXIT ..No; return
 00C1 C601 LDB #S$WAKE (wake up)
 00C3 103F08 OS9 F$SEND
 00C6 6F45 clr V.WAKE,U
 00C8 5F PPEXIT clrb
 00C9 39 RTS

 00CA FDA2DE emod
 00CD PIASIZ equ *

Example C.3. P - Device Descriptor for “P”

 nam P

 ifp1
 endc

 ttl Device Descriptor for "P"

 * PRINTER device module
 *
 0000 87CD0035 mod PRTEND,PRTNAM,DEVIC+OBJCT,
 REENT+1,PRTMGR,PRTDRV
 000D 02 fcb WRITE. mode
 000E FF fcb $FF
 000F E040 fcb A.P port address
 0011 18 fcb PRTNAM-*-1 option byte count
 0012 00 fcb DT.SCF Device Type: SCF

 * Default path options

 0013 00 fcb 0 case=UPPER and lower
 0014 00 fcb 0 backspace=BS char only
 0015 01 fcb 1 delete=CRLF
 0016 00 fcb 0 no auto echo

Assembly Language
Programming Examples

78

 0017 01 fcb 1 auto line feed on
 0018 00 fcb 0 no nulls after CR
 0019 00 fcb 0 no page pause
 001A 42 fcb 66 lines per page
 001B 08 fcb C$BSP backspace char
 001C 18 fcb C$DEL delete line char
 001D 0D fcb C$CR end of record char
 001E 00 fcb 0 no end of file char
 001F 04 fcb C$RPRT reprint line char
 0020 01 fcb C$RPET dup last line char
 0021 17 fcb C$PAUS pause char
 0022 00 fcb 0 no abort character
 0023 00 fcb 0 no interrupt character
 0024 5F fcb '_ backspace echo char
 0025 07 fcb C$BELL line overflow char
 0026 01 fcb PIASID Printer Type
 0027 00 fcb 0 undefined baud rate
 0028 0000 fdb 0 no echo device
 002A D0 PRTNAM fcs "P" device name
 002B B0 fcs "0" room for name patching
 002C 5343C6 PRTMGR fcs "SCF" file manager
 002F 5049C1 PRTDRV fcs "PIA" driver

 0032 A9B118 emod
 0035 PRTEND EQU *

79

Colophon
This book is scanned from an OS-9 manual found on the Internet in 2017.

80

	OS-9 Editor/Assembler/Debugger Manual
	Table of Contents
	Chapter 1. Text Editor
	1.1. Introduction to the Macro Text Editor
	1.2. Getting Started
	1.3. The Edit Command Line
	1.4. Edit Buffers
	1.5. Edit Pointers
	1.6. Entering Commands
	1.7. Parameters
	1.7.1. Numeric Parameters
	1.7.2. String Parameters
	1.7.3. Multiple Parameters

	1.8. Syntax Notation
	1.9. Basic Commands
	1.9.1. Change String
	1.9.2. Delete Characters
	1.9.3. Delete Lines
	1.9.4. Extend Lines
	1.9.5. Unextend Line
	1.9.6. Insert Line
	1.9.7. Insert String
	1.9.8. List Following Lines
	1.9.9. List Previous Lines
	1.9.10. Memory Size Adjust
	1.9.11. Memory Size Display
	1.9.12. Move Characters Backward
	1.9.13. Move Characters Forward
	1.9.14. Move To End Of Text
	1.9.15. Move To Next Line And Display
	1.9.16. Move To Start Of Text
	1.9.17. Move Lines Backwards
	1.9.18. Move Lines Forward
	1.9.19. Quit Editor
	1.9.20. Search For String
	1.9.21. Set Anchor Column
	1.9.22. Shell Command
	1.9.23. Tab
	1.9.24. Verify On/Off

	1.10. Advanced Commands
	1.11. File Manipulation Commands
	1.11.1. New
	1.11.2. Open Input File
	1.11.3. Create Output File
	1.11.4. Read From Input File
	1.11.5. Write To Output File

	1.12. Buffer Manipulation Commands
	1.12.1. Display Buffer And Macro Directory
	1.12.2. Change and/or Create Primary Edit Buffer
	1.12.3. Move Lines From Primary Buffer
	1.12.4. Move Lines To Primary Buffer

	1.13. Looping And Conditionals
	1.13.1. Looping
	1.13.2. The Fail Flag
	1.13.3. Conditional Statements

	1.14. Testing Commands
	1.14.1. Test For End of File
	1.14.2. Test For Not End of File
	1.14.3. Test For End of Buffer
	1.14.4. Test For Not End of Buffer
	1.14.5. Test For End of Line
	1.14.6. Test For Not End of Line
	1.14.7. Test For Zero
	1.14.8. Test For Star
	1.14.9. Test For String Match
	1.14.10. Test For String Mismatch
	1.14.11. Exit And Clear
	1.14.12. Exit And Fail

	1.15. Macros
	1.15.1. Macro Headers
	1.15.2. Parameters and Variables
	1.15.3. Creating and Editing Macros

	1.16. Macro Commands
	1.16.1. Comment
	1.16.2. Load Macros From File
	1.16.3. Save Macros
	1.16.4. Delete Macro

	Chapter 2. Assembler
	2.1. Introduction
	2.2. Installation
	2.3. Assembly Language Program Development
	2.4. Operational Modes
	2.5. Running the Assembler
	2.6. Source Program Format and Syntax
	2.6.1. Assembler Source Files
	2.6.2. Source Statement Fields
	2.6.2.1. Label Field
	2.6.2.2. Operation Field
	2.6.2.3. Operand Field
	2.6.2.4. Comment Field

	2.7. Expressions
	2.7.1. Operands
	2.7.1.1. Decimal Numbers
	2.7.1.2. Hexadecimal Numbers
	2.7.1.3. Binary Numbers
	2.7.1.4. Character Constants
	2.7.1.5. Symbolic Names
	2.7.1.6. Program Instruction Counter
	2.7.1.7. Program Data Counter

	2.7.2. Arithmetic and Logical Operators
	2.7.3. Symbolic Names
	2.7.4. Instruction Addressing Modes
	2.7.4.1. Inherent Addressing
	2.7.4.2. Accumulator Addressing
	2.7.4.3. Immediate Addressing
	2.7.4.4. Relative Addressing
	2.7.4.5. Extended and Extended Indirect Addressing
	2.7.4.6. Direct Addressing
	2.7.4.7. Register Addressing

	2.7.5. Overview of Indexed Addressing Modes
	2.7.5.1. Constant Offset Indexed
	2.7.5.2. Program Counter Relative Indexed
	2.7.5.3. Accumulator Offset Indexed
	2.7.5.4. Auto-Increment and Auto-Decrement Indexed

	2.8. Assembler Directive Statements
	2.8.1. END Statement
	2.8.2. EQU and SET Statements
	2.8.3. FCB and FDB Statements
	2.8.4. FCC and FCS Statements
	2.8.5. IF, ELSE, and ENDC Statements
	2.8.6. MOD and EMOD Statements
	2.8.7. NAM and TTL Statements
	2.8.8. OPT Statement
	2.8.9. OS9 Statement
	2.8.10. ORG Statement
	2.8.11. PAG and SPC Statements
	2.8.12. SETDP Statement
	2.8.13. USE Statement

	2.9. Assembly Language Programming Techniques
	2.9.1. Program Sections and Data Sections
	2.9.2. Program Area
	2.9.3. Writing Position Independent Code
	2.9.4. Accessing The Data Area
	2.9.5. Additional Comments

	2.10. Using the DEFS Files
	2.10.1. The OS9Defs File
	2.10.2. The SCFDefs File
	2.10.2.1. Static Storage Requirements
	2.10.2.2. Character Definitions
	2.10.2.3. File Descriptor Offsets

	2.10.3. The RBFDefs File
	2.10.3.1. Random Block Path Descriptor Format
	2.10.3.2. State Flags
	2.10.3.3. Device Descriptor Format
	2.10.3.4. File Descriptor Format
	2.10.3.5. Segment List Entry Format
	2.10.3.6. Directory Entry Format
	2.10.3.7. Static Storage

	2.10.4. The SysType File

	Chapter 3. Interactive Debugger
	3.1. Introduction
	3.1.1. Installation
	3.1.2. Calling the Interactive Debugger
	3.1.3. Basic Concepts

	3.2. Expressions
	3.2.1. Constants
	3.2.2. Special Names
	3.2.3. Register Names
	3.2.4. Operators
	3.2.5. Indirect Addressing
	3.2.6. Forming Expressions

	3.3. Debug Commands
	3.3.1. Calculator Command
	3.3.2. “Dot” and Memory Examine/Change Commands
	3.3.2.1. Display Dot Command
	3.3.2.2. Change Dot Command
	3.3.2.3. Advance Dot Command
	3.3.2.4. Backstep Dot Command
	3.3.2.5. Change Memory Command

	3.3.3. Register Examine/Change Commands
	3.3.3.1. Display All Registers Command.
	3.3.3.2. Display Specific Register Command
	3.3.3.3. Change Register Command

	3.3.4. Breakpoint Commands
	3.3.4.1. “B” Set or Display Breakpoints Command
	3.3.4.2. “K” Remove Breakpoint Command

	3.3.5. Program Setup And Run Commands
	3.3.5.1. Prepare To Execute Command
	3.3.5.2. Go To Program Command
	3.3.5.3. “L” Link To Module Command

	3.3.6. Utility Commands
	3.3.6.1. Clear and Test Memory Command
	3.3.6.2. Dump Memory Command
	3.3.6.3. Search Memory Command
	3.3.6.4. Shell Command
	3.3.6.5. “Q” Quit Debugger Command

	3.3.7. Using The Debugger
	3.3.7.1. A Session With The Debugger
	3.3.7.2. Patching Programs
	3.3.7.3. Patching OS-9 Component Modules

	Appendix A. Error Messages
	A.1. Text Editor Error Messages
	A.2. Assembler Error Messages
	A.3. Interactive Debugger Error Codes

	Appendix B. Quick Reference
	B.1. Editor Quick Reference Summary
	B.2. Interactive Debugger Quick Reference

	Appendix C. Example Assembly Language Programs
	C.1. Assembly Language Programming Examples

