
DOCUMENTATION FOR EXTENSIONS TO

OS-9 ON THE DRAGON 128

BY VIVAWAY LIMITED

Copyright (c) 1984 Vivaway Limited and Dragon Data Limited

written by Paul Dayan

1

OS-9 Level · 2 normally allocates memory blocks from physical
block 0 upwards. On the Dragon 128 the first 128k bytes (32
blocks) can be allocated to the screen. In certain screen
modes the same blocks in the two 64k byte pages must be
allocated together, (eg blocks 10 to 14 with blocks 26 to 30).
Therefore 0S-9 has been expanded with the addition of two
sys t em calls to manage screen memory. F$GMap reserves screen
memory, in the lower or both pages. F$GClr returns the memory.
In order to maximise the availability of memory for the screen
display, the normal OS-9 memory allocation routines have been
modified . First, any memory above the first 32 bloc k s is used.
Then blocks a re allocated from the first 32 in an order
designed to maximise the availability of screen memory, (which
is allocated by F$ GMap . from the top down). This order is
de termi ned by a table in the source file BlkTrans, used in the
assembly of OS9P1 and IOMAN.

2

Dragon 128 OS-9 screen drive r

Th e device driver for the built-in screen and keyboard is
called screen. It also handles the mouse, lightpen, and
be eper. The device descriptor that uses screen is term.

1. The keyboard
The keyboard has auto-repeat (except on CAPS LOCK), and as
g ood an approximation to N-key rollover as is possible with a
matrix keyboard. Because the serial nature of the hardware
makes keyboard readout a lengthy business, typing may
interfere with serial port reception at the high baud rates,
giving a READ ERROR.

The CAPS LOCK key toggles, (alternates the mode), between
alpha upper case only, (light on), and upper and lower case.

The CAPS LOCK key in conjunction with the CODE, (FUNCTION),
key toggles between the text and graphics, (if there is one),
displays.

The numeric keypad has two modes:
i) numeric. The keys return the normal ASCII codes.

ii) function. The keys, (except ENTER), return the code
that would be returned in numeric mode if pressed in
conjunction with the FUNCTION key.

There are three modifier keys: SHIFT, CONTROL, and FUNCTION,
(in order of precedence). These return no code when pressed,
but modify the codes returned by other keys.

The keyboard is scanned on Vertical Sync (VSYNC), ie every
20 ms, (16. 7ms in the USA). The key codes are put in a 100
character buffer, giving the same type-ahead as the standard
serial terminal driver. The mouse buttons and the lightpen
also appear as keys on the keyboard, returning their own
codes. The mouse buttons do not auto-repeat.

3

Ke y code table (main keypad) :

Code in hexadecimal

KEY UNMODIFIED SHIFT CONTROL FUNC TION

SPACE 20 20 20 AO
2C 3C (<) 2C AC
20 3D (=) 20 AD

. 2E 3E (>) 2E AE

/ 2F 3F (?) 2F AF

0 30 5F () 30 BO
1 31 21 (T) 31 B1

2 32 22 (") 32 B2
3 33 23 (#) 33 B3
4 34 24 ($) 34 B4

5 35 25 (%) 35 B5

6 36 26 (&) 36 B6

7 37 27 (,) 37 B7

8 38 28 «) 38 B8

9 39 29 ()) 39 B9
3A 2A (*) 3A BA
3B 2B (+) 3B BB

@ 40 60 00 80

A to Z 41 to 5A 61 to 7A (a-z) 01 to lA Cl to DA

[5B 7B ({) 5B DB

\ 5C 7C C:) 5C DC
] 50 70 (}) 5D DD

5E 7E (-) 5E DE

CLEAR OC lC lE 8C

ESC IB (ESC) 05 (~-E) 03 (A_C) 8B

ENTER/RETURN OD OD OD OD

DELETE/RUBOUT 08 1B (A_X) 7F (DEL) 88

TAB 09 (TAB) ID IF 89

numeric pad, numeric mode:

23 23 03 A3

0 to 9 30 to 39 30 to 39 10 to 19 BO to B9

* 2A 2A OA AA

2E 2E OE AE

numeric pad, function mode:

0 to 9 BO to B9 FO to F9 90 to 99 BO to B9

A3 E3 83 A3

* AA EA 8A AA

AE EE 3E AE

the mouse buttons return the following two-code sequences:

left button IF 42
right button IF 43

4

t he l ight pen ret urns the following .sequence:

1F 41 column+20 line+20

where column is 0 to 79, line is 0 to 24 (decimal), eg column
23, line 13 (decimal), returns

1F 41 37 2D

The term device descriptor has been set up for line e di ti ng as
follows, (all keys except RUBOUT are on the numeric pad,
either in Function mode or in Numeric mode with the FUNCTION
key) :

KEY
RUBOUT

4
6
7
9
*
£

ACTIO N
delete char to left of cursor
move cursor left (wraps to end of line)
move cursor right (wraps to start of line)
re-display line up to Carriage Return
delete all chars to left of cursor
delete char under CUrSor
delete all chars under and to the right of cursor

2. The sc r een display

Cha r a cters
categories:

written to the screen fall into one o f three

i) Printable characters (hex 20 to 7E, and 80 to AO)
ii) Control characters (hex 00 to 1F, and 7F)

iii) Characters within escape sequences (hex 00 to FF)

i) Printable characters
Hex 20 to 7E display characters hex 20 to 7E of the character
set ROM. Hex 80 to 9F display characters hex 00 to 1F. Hex AO
displays character hex 7F. The four different character sets
in the ROM are selected by escape sequences.

ii) Control characters
The following control characters have effect; the rest are
ignored:

CODE hex

07
0 8
OA
OB
OC
OD
1B

ACTION

bell (beep)
backspace, non-destructive
line feed
home , to 0,0
clear screen and home
carriage return to column 0 (no auto LF)
escape sequence introducer

iii) Escape sequences
These are multi-character
(ESC). The next character

sequences introduced by hex 1B
determines the action type, and is

5

referred to as the escape code. Depending on the action type,
further characters may be required as parameters.

The action routines for the graphics facili ties are in
separate subroutine module gfxdrvr. This module must have been
previously loaded into memory for these facili ties to be
available. Therefore the two sets of escape sequences are
listed separately.

a) available in screen, for the text display, single digi t
ASCII numeric parameters (hex 30 to 39) shown as n:

ESCAPE SEQUENCE
hex

1B 41 x+20 y+20
lB 42
1B 43
1B 44
1B 45
1B 46
1B 47
1B 48
1B 49
1B 4A
1B 4B
1B 4C y+20 x+20
lE 4D n
1B 4E n
1B 4F
1B 50 n

1B 51 n

1B 52 n

1B 53
1B 54
1B 55
1B 56
1B 57
1B 58
1B 59
1B 5A

ACTION

cursor addressing, column then line
clear to end of line (cursor unchanged)
cursor right one (with wrap and scroll)
cursor up one (with scroll)
cursor down one (with scroll)
set reverse field mode for new chars
clear reverse field mode
set underline mode for new chars
clear underline mode
clear to end of screen (cursor unchanged)
cursor left one (with wrap and scroll)
cursor addressing, line then column
select brightness, 0 to 3
select character set, 0 to 3
set screen to text display
set cursor type:

o = block
1 = underline
2 = no cursor

select foreground colour for new chars,
o to 7
select background colour for new chars,
o to 7
set flash mode for new chars
clear flash mode
go to 40 column display, clear screen
go to 80 column display, clear screen
set numeric mode for numeric keypad
set function mode for numeric keypad
select ASCII numeric parameter mode
select binary numeric parameter mode

The settings on power-on or reset are screen clear, 40 column
mode; reverse field, underline, and flash all off, brightness
0, foreground colour 2, background colour 0, in text display.

The text screen display is 40 or 80 columns, 25 lines, wi th
each character cell 8 dots wide, 10 rows high.

b) available in gfxdrvr, for the graphics display. Graphics

6

escape sequences take nume ric and string parameters. Strings

are terminated by hex OD (carriage return). Numeric parameters

are ei ther two-byte binary (BASIC09 integer), or variable-

length ASCII decimal if the ASCII numeric parameter mode is

s e t, (default = clear). ASCII numeric parameters are separ ated

by hex 2C (comma), wi th the last one terminated by hex OD

(carriage return). The escape sequences are all of the form:

ESC code number-of-parameters parameters

where ESC is hex 1B
c od e is a single character, giving the action type
number-of-parameters is a numeric parameter giving

the number of parameters to follow (may be 0)
parameters are numeric or string, as required.

For example, in binary numeric parameter mode
GMODE(1,3) would be (in hex):

1B 61 00 02 00 01 00 03

in ASCII decimal numeric parameter mode it would be (in hex):

1B 61 32 2C 31 2C 33 OD

equivalent in BASIC09 to
PRINT CHR$($lB);" a 2,1,3"

Note t ha t in GGET and GPUT the array parameter is the address

of the array, not the contents of the array.

The graphics subroutine package graphics translates BASIC09

procedure calls such as GMODE (1,3) into escape sequences for

the screen driver. It also provides some addi tional commands.

See the section on the graphics subroutine package.

The following table relates the appropriate escape code to the

graphics subroutine package keyword, as used in BASIC09. The

details of the action taken are given in the section on the

graphics subroutine package.

7

ESCAPE CODE
h e x

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
73
74
75
76

KEYWORD

GMODE
GPAGE
GMAP
CSET
GCLEAR
COLOUR
GRAPHICS
TRANSLATE
SCALE
ROTATE
MOVE
PLOT
DRAW
GGET
GPUT
PMODE
PAINT
CIRCLE
BORDER
GPRINT

NOTE: while the graphics is active at least 20k of memory is
being used, and gfxdrvr is linked into the system address
space. The latter consideration means that there is
insufficient room in the system address space for format. To
return the graphics memory and unlink gfxdrvr from the system
address space, use either

GMODE(O, 0)

inside a BASIC09 program, or

OS9: display lB 61 00 02 00 00 00 00

from OS-9 shell. (This latter could conveniently be assigned
to a macro key).

3. GetStt and SetStt
The I$GetStt and I$SetStt codes recognized by screen are:

i) GetStt

mnemonic

SS.Ready

SS.EOF
SS.Mouse

hex

01

06
20

ACTION

returns carry set and B=E$NotRdy if no
keyboard chars are waiting, else carry
clear l
always returns carry clear
returns the current mouse x coordinate
in X, the current y coordinate in Y
(range -$8000 to +$7FFF).

8

SS . Size 02

ii) SetStt

mnemonic hex

SS.SSig lA

SS.Relea IB
SS.Mouse 20

returns the current graphics mo de :
Y = MSB = 0 lower 64k page only

= 1 both pages
LSB = 0 graphics not active

= 1 320x256 mode
= 2 640x512 mode

X = number of first block in lower page

ACTION

input is signal code in X. Sends the
signal code to the task (F$Send) when
data is available
clears the SS.SSig request
resets the mouse x and y coordinates
to 0

9

Additional OS-9 service requests on the Drag on 128

F$GMa p

hex 54

Input B = number of 4k blocks required in each 64k page
A = 0 required in lower page only

1 required in both pages

Output X = first block number in lower page
or carry set, B has error code, if memory not
available

Gr aphics memory comes from the first 128k bytes. Some modes
require memory from the first 64k page only, others require
memory from both pages, in which case the memory must be in
the same posi tion in the two pages. OS-9 allocates graphics
memory from the top down (ie blocks 15 and 31 first).

F$GMap only reserves the memory - it does ' NOT map the memory
into the user's address space. This must be done using
F$MapBlk and F$ClrBlk. Similarly, the memory is NOT
automatically deallocated when the process ends. F$GClr must
be used. Therefore F$GMap must be used with caution.

F$GClr

hex 55

Input

Output

B = number of blocks to deal locate in each 64k page
A = 0 deallocate in lower page only

1 deallocate in both pages
X = first block number in lower page

none

This call deallocates screen memory reserved by F$GMap. Note
that NO CHECK is made on the validity of the call. Therefore
F$GClr must be used with extreme caution.

F$Timer

hex 53

Input X = address of timer service routine
U = address of service routine's static storage

Output carry set with error code in B is table is full

As there are no hardware timers in the Dragon 128, this
facili ty has been added to give device drivers a form of
interrupt-driven time keeping. The facility is part of the
clock module clock. The service request causes the address of
the service routine and the address of its static storage to

10

be stored in a table, (max 64 entries). From then on, that

rou tine is called, (wi th its U regi s ter set to the address of

its static storage), every 20ms (16.7ms in the USA). The

routine may be removed from the table by a further F$Timer

call, with U as before, but X set to O.

F$ InsErr

hex 21

Input

Output

THIS IS A PRIVILEGED SYSTEM MODE REQUEST

X = address of error messages file pathlist, or name
of error messages module

carry set with error code in B if path not found.

Error reporting under OS-9 has been extended on the Dragon

128. (Standard OS-9 Level 2 just prints the error number). The

process descriptor for each process has a 32 byte area for a

module name or fi le pathlist. This string is inheri ted from

the parent process, (the initial string is errmsg), but may be

changed by the F$Instrr service request.

When F$PrtErr is called to report an error, OS-9 first tries

to link to a module of the given name. If this is unsuccessful

OS-9 attempts to open a file wi th the given name. If one of

th.ese succeeds, the module or file is scanned for a message

for that error number. If it is found, it is printed. If

neither module not file is found, or the message is not found,

the process is repeated using the string in the system process

descriptor. (This is the ini tial string mentioned above,

usually errmsg, and is taken from the Init data module). The

module and file have the same structure - the module is simply

the file loaded into memory. Thus the module may be loaded

into memory for speed, or left on disk to save memory.

The secondary attempt wi th the system string means that a

process can indicate a file or module containing a subset of

error messages, such as compiler errors, leaving the ' remainder

to the default, (system), path. Because of the structure of

the error messages module, the messages can actually be within

the program. The module structure extends the standard OS-9

module header wi th a two byte offset from the start of the

module to the error messages table. Each error message has the

error number in ASCII decimal, followed by a space, followed

by the message terminated by carriage return. For example:

11

Ty pe
Revs

P r o gNam
Edition

Er r Tab

The t ab le

set Prgrm+Objct
set Reent+1

mod ProgEnd,ProgNam,Type,Revs,ProgEnt,Progmem

fdb ErrTab

fcs 'program'
fcb 1

fcc '12 syntax error'
f c b $ 08
fc c '13 mismatched parenthe s e s'
fcb $OD
fcb 0

is terminated by a byte of O.

NOTE if F$InsErr is used to indicate a file rather than a
mo dule, the full pathlist must be given, eg

/dO/sys/errmsg

12

Extension to Shell on the Dragon 128

OS-9 Shell on the Dragon 128 has been extended to allow the
changing of the error messages file or module name, via the
seterr command built into Shell.

OS9: seterr /dO/sys/errmsg

indicates a file, and

OS9: seterr errmsg

indicates a module. Where a file is intended, the full
pathlist must be given.

13

The floppy disk device driver for OS-9 on the Dragon 128

The floppy disk driver module is wd2797. It can read/wr ite the

following disk formats, (standard OS-9):

i) single and double sided disks
ii) single density disks

iii) double density disks with track 0, side 0 in single
density

iv) 48 tpi and 96 tpi disks
v) 48 tpi disks in 96 tpi drives

The following formats have been added:

i) double density on all tracks, the first sector on each
track is sector 1, (Dragon 64 compatible).

ii) 128 bytes per sector, first sector on each track is
sector 1.

The additional formats are indicated in the device descriptor.

Double densi ty on all tracks is indicated if bit 2 of PD. DNS

is set. In this case 'sectors per track' and 'sectors per

track on track 0' must be the same value, usually 18. 128

bytes per sector is indicated if bits 5 and 6 of PD. TYP are

set. In this case each track is regarded as being composed of

one 256 byte sector for each two 128 byte sectors, wi th a

phantom sector zero, (which the calling software must skip).

Thus I sectors per track I and 'sectors per track on track 0'

must be half the actual number of sectors, plus one. This

format is really only useful for single sided, single density

disks.

An addi tional
standard branch
program.

'boot'
table.

entry point has been added to the
This entry point is used by the boot

14

The format pro gram fo r OS- 9 on the Dr a gon 1 28

The standard format program has been extended to format disks
that are double density on all tracks, with the first sector
on each track being sector 1. This selection is made from the
device descriptor - it is not an option when format is run.

The following formats are therefore available:

i) single density on all tracks, 10 sectors per track
ii) single density on track 0, side 0, 10 sectors; double

density on all other tracks, 16 sectors per track.
i i i) doubl e density on all tracks, 18 s e ctors per tra ck .
iv) sing le and double sided disks.
v) 48 tpi and 96 tpi disks

vi) 48 tpi disks on 96 tpi drives.

15

SC Fman for OS-9 on the Dragon 128

The se quential character file manager (SCF) has been greatly

extended to provide additional line editing facilities and a

macro facili ty. The keys and codes for the addi tional line

editing facilities are taken from an extended version of the

device descriptor. Because of the limi ted size of the path

descriptor, they are not transferred to the path descriptor,

and so cannot be changed by tmode, or be accessed by the

SS.Opt option in I$GetStt and I$SetStt.

The input (key) codes and output codes may be one or two

bytes. The device descriptor contains a lead-in code for

input, and a lead-in code for output. If an input character

received is found to match the input lead-in character, the

next character is taken in and its bi t 7 is set. I t is then

treated in the same way as characters that do not match the

input lead-in character - it is checked for a match wi th the

special input codes; if found it is acted on, otherwise it is

put in the input line at the current cursor posi tion. (Any

characters under or to the right of the cursor are first moved

right one space).

In implementing the extended features, certain special output

commands are required, which may be one or two bytes. If the

code given for the function in the device descriptor has bit 7

set, and the output lead-in character is non-zero, the lead-in

character is sent, followed by the code with bit 7 cleared.

Otherwise the code alone is sent, (unmodified). The additional

bytes follow the XON and XOFF bytes in the standard device

descriptor, as follows:

Number of bytes
1
1
1
1
1
1
1
1
1
1

Function
Number of columns per line
O=has extended editing facilities
lead-in character for input
lead-in character for output
'move left' output code
'move right' output code
'move left' key code
'move right' key code
'delete char under cursor' key code
'delete to end of line' key code

The extended line edi ting features are available on the

standard I$ReadLn service request. In addition, an 'edit line'

facility is available using I$GetStt:

Mnemonic:
hex:

Input

SS.Edit
le
x = address of line to edit
U = initial position of cursor in line (base 0)

16

Output x = unchanged
carry set if error, with error code in B

Macros
An input macros facility has been added to SCF. Any key code,
(or two byte sequence. as previously described), not already
allocated to a special function may be defined as a macro key.
The macro may be any string of characters, but it must be
borne in mind that characters within a macro are not checked
for special functions. For example, a Carriage Return, (hex
OD), in a macro will not be seen . by SCF as an End-of-Line.
This allows macros to contain unrestricted sequences of
characters. A Read (I$Read) and a Read Line (I$ReadLn) request
process macros slightly differently. Successive Read requests
for amounts of data less than the mac ro si ze, (eg one byte at
a time), will return successive chunks of the macro until it
is used up. On a Read Line request, if the macro will not fit
into the caller's line buffer, none of the macro characters
are put in the buffer. This prevents Read Line requests
unintentionally receiving parts of macros.

SCF keeps a macro buffer for each path. 253 bytes are
available for macros in the buffer. Each macro takes two bytes
plus the length of the string.

Macros are inserted and deleted using I$SetStt.

Mnemonic:
hex:

Input

Output

SS.SMac
lD

define a macro

x = address of macro string
Y = MSB = macro key code

LSB = macro length

carry set if macro buffer full

If the macro key code is already defined it is overwritten.

Mnemonic:
hex:

Input

Output

SS.CMac clear a macro
lE

Y = MSB = macro key code

none

If the macro key code is 0, all macros are cleared. Otherwise
just the specified macro is cleared.

17

Exten s ions to Basic09 on the Dragon 128

1. Extensions to the Edit mode
Three features have been added to the Edit mode:

i) Targeting on line numbers. If a number in an edi t command
is preceded by a #, it is taken to be a line number.
Examples:

E:#100
E:#100L5
E:#100L#200
E:#100D5

Move to line 100
List 5 lines from line 100
List from line 100 to line 200
Delete 5 lines starting with line 100

ii) Line editing. The E command displays the current line and
allows it to be edited using the SCF line editing
facilities. For example:

E:#100
E:E

Move to line 100
Edit it

iii) Automatic line numbering. The A command followed
optionally by a start line number and increment012enters
the automatic line numbering mode. ENTER in response to a
line number exits the mode. The default start line number
is 100; the default increment is 10. A space is required
between the A and the start line number. For example:

E:A 200,15
200

E:A 300

Start line 200, increment 15

Start line 300, increment 10

2. Graphics extension
BASIC09 has been extended to link into the graphics subroutine
package. If the compiler does not recognize a keyword, it
tries to link to the subroutine package graphics. If
successful, it scans the graphics keyword table for the
keyword. If found, the compiler compiles a RUN call to the
subroutine package, inserting the routine number as the first
parameter. The decompilation routine does the reverse,
restoring the original keyword when a RUN GRAPHICS command is
seen.

See the section on the graphics subroutine package for the
structure of the keyword table.

18

Graphics subroutine package for the Dra gon 128

The g raphics subroutine package graphics comprises a s e t of
subroutines a n d a keyword table. The keyword table is use d by
BASIC09 keywords to include the set of subroutines. Most of
the subroutines are used to perform calls to the graphics
facilities of the screen driver subroutine package gfxdrvr.
For this reason, and to conserve memory, the two modules are
merged i nto t he file graphics in the CMDS directory of the
syst em d i sk , and may be loaded i nt o memory by

OS9: load graphics

Both graphics and gfxdrvr must be unlinked to free the memory
they occupy. THIS MUST NOT BE DONE WITH THE GRAPHIC S ACTIVE.

The foll owing table details the subroutines available. Th e
number given for each routine is the routine number, which is
given as the first parameter, (two byte), in a call to
graphics. BASIC09 a utomatically inserts this parameter. Thu s

GCLEAR (1)

is equivalent to

RUN graphics(5,1)

With a knowledge of these numbers, and provided the BASIC09
parameter passing convention is adhered to, the subroutine
package may be called by other languages. A * beside the
routine name indicates that the routine makes a call to
gfxdrvr.

The DRAW routine expects to be passed a string termina ted by
hex FF, (standard BASIC09), or the whole string, (whose length
is given in the calling structure), is used. When the string
is sent to gfxdrvr, graphics terminates it with a hex OD.

19

The Graphics routines

l.*GMODE (p1,p2)
Select resolution, number of colours, number of pages, (p2).
p2 defaults to 1.

p1 p2 effect
0 0 exit graphics, return graphics memory
1 1-3 320x256, Ll colours
2 1-2 320x256, 16 colours
3 1 640x512, 2 colours
Ll 1 640x512, 4 colours

An error is generated if the memory is not available.

2.*GPAGE (p1)
Select current graphics page for drawing in, (p1). If p1 is
not given, it defaults to 1.

3.*GMAP (p1,p2)
Request that some or all of the graphics memory be mapped into
this task's address space. p1 gives the number of bytes to be
mapped in, starting with the 4k block that contains the
cursor. p2 is used to return the address at which the memory
has been mapped in. This facility is primarily for games
writers, who will want to manipulate the graphics memory
directly.

An error is generated if there is insufficient room in the
user's memory map.

4.*CSET (p1, p2, p3, p4)
For modes with less than 16 colours, this command selects the
colours used to make up the colour sets.

The 4 colour modes require all 4 parameters. The 2 colour mode
requires only p1 and p2.

If all parameters are omitted the default colours used are
colour 0 and colour 1 if in the 2 colour mode, or colours 0,
1, 2 and 3 if in a 4 colour mode.

5. *GCLEAR (p1)
Clear the current graphics page to colour p1, and set the
background to p1. If p1 is not given, it defaults to colour o.
6.*COLOUR (p1)
Select the drawing colour,
defaults to colour 1.

7.*GRAPHICS (p1)

(p1). If p1 is not given it

Switches the display to graphics page pi, defaults to 1.

8. TEXT
Switches the display to text.

20

NOTE: The next three functions affect all plotting. A
transformation matrix is produced that is applied to each
point before it is plotted. This includes the GGET and GPUT
commands, so that objects can easily be moved, scaled, and
rotated. The order of transformation is scale-rotate-
translate. Subsequent transformations of the same type add
rather than replace - ie transformations are always relative
to the transformed axes.

9.*TRANSLATE (p1,p2)
All subsequent points have p1 added to their x coordinate, and
p2 added to their y coordinate. If there are no parameters,
the translation is reset to the physical origin.

10.*SCALE (p1,p2)
All subsequent points are scaled by p1 in the x direction, and
p2 in the y direction. The two parameters are in units of
1/256. Thus a parameter of 256 results in a scale factor of 1.
A negative scale factor results in a reflection of the object
about the orthogonal axis. Subsequent calls to SCALE multiply.
For example
SCALE(512,512)
SCALE(512,512)
SCALE(64,64)
causes a scale factor of 2, then 4, then 1. If there are no
parameters, the scale factors are reset to 1.

l1.*ROTATE (p1)
All subsequent points are rotated through an angle of p1
degrees, about the translated coordinate origin, effectively a
rotation of the axes. Rotation is anticlockwise. If there is
no parameter, the x axis is returned to the horizontal.

12.*MOVE (x1,yl)
Sets the drawing cursor position to xl, y1. If there are no
parameters, the cursor is returned to the coordinate origin.

13.*PLOT (x1,y1,x2,y2,x3,y3,)
Point and line drawing with x-y
parameters, a point is plotted at
Otherwise, a line is drawn to the
to the next point, and so on,
exhausted. The cursor is moved
plotted, whether or not the end of

14.*DRAW (p1)

addresses. If there are no
the current cursor position.
first point, then from there
until all parameters are

to the end of each line
line appears on the screen.

Provides for relative movement and line drawing. Drawing
starts from the current cursor position with the current
heading. The parameter p1 is a string, with numbers separated
by command letters. Spaces are optional around the numbers,
which can have a leading minus sign. The commands are

21

Command
D n

M n

T n

Action
draw n points in the current direction,
updating the cursor position
move n points in the current direction
without drawing
turn anticlockwise by n degrees, (n can
be negative). The heading at the start of
each DRAW command is along the positive x
axis. A value of 0 resets the heading to
along the positive x axis.

An example, drawing one box within another

DRAW("D10T90D1OT90D10T90D10M5T-90M5T180
D20T90D20T90D20T90D20")

15.*GGET (Pl,P2,P3)
Saves a rectangle of the screen into an array. The bottom
left-hand corner of the rectangle is the current cursor
position. p1 is the width of the rectangle, p2 is the height,
and p3 is the array in which to store the rectangle. Two
points are stored in one byte of the array, bi ts 7-4 as the

. colour number of the first point and bits 3-0 as the colour
number of the second point. The bottom row is stored first,
from left to right, then the next row up, and so on. An error
is returned if all of the area to save does not lie on the
screen.

An example, saving a rectangle of 16 by 20, at (100,73)

DIM ARRAY(l79):BYTE
DIM X,Y,WIDTH,HEIGHT:INTEGER

X=100
Y=73
WIDTH=17
HEIGHT=21
MOVE(X,Y)
GGET(WIDTH,HEIGHT,ARRAY)
Note: array size must always be rounded up to the nearest
whole number.

l6.*GPUT (Pl,P2,P3,P4)
The converse of GGET. p1, p2, p3 as for GGET. The array p3
could have been set up with a GGET, or by the user program
writing the individual points into the array. Parameter P4 is
the background colour used when GGET was done. Any points of
this colour are not plotted when GPUT is done, leaving them as
the current background colour. If p4 is omitted it defaults to
the current background colour.

ROTATE, TRANSLATE, and SCALE operate on GGET and GPUT,
allowing very easy animation effects, with objects moving
around, rotating, and changing size.

22

i7. * PMODE (p1)
Selects plotting mode. Two modes are available. The default pi
is 1.

p1 Plot action
1 Points plotted replace the existing display
2 Points plotted are exclusive-ORed with data already

in the display.

Plot mode 2 allows objects to be drawn over other objects non-
destructively. Simply drawing the object again removes it from
the display, leaving the original picture. In fact, any number
of objects may be written over each other, and then
'unwritten ' in any order. The disadvantage is that the colours
of the objects will change, depending on the colour they are
covering.

18. GSAVE (p1)
Saves the current graphics display page to path number pl. A
byte by byte copy of the screen memory is done.

19. GLOAD (p1)
Loads the
the saved
as when
generated

current graphics page from path number pl, honouring
graphics settings. The current mode must be the same
the picture was GSAVEd, otherwise an error is
or the display is garbage.

20.*PAINT (p1)
Fills in the area around the cursor with the current drawing
colour. If p1 is omitted, the boundary is taken to be any
colour other than the one found at the cursor, otherwise the
boundary is taken to be colour p1.

21.*CIRCLE (r,p1,p2)
Draws a circle or an arc of a circle. The centre is the cursor
position. The radius is r. pi is the angle at which drawing
starts, p2 is the angle at which drawing finishes, allowing
any arc to be drawn. p1 and p2 default to 0 and 360, ie a
complete circle. Using SCALE before CIRCLE allows ellipses to
be drawn.

22.*BORDER (Pl)
Selects the colour
omitted, the default
colour.

23.*GPRINT (sl)

used for the screen border. If pi is
value used is the current background

Prints a string s1 starting at the current graphics cursor,
writing in the positive X direction. Characters are 8 pixels
wide and 10 high, and the current scale, rotate and translate
settings are honoured. The characters come from a module
chrset, which must be already loaded into memory. The entry
point offset in the module header points to the character set
table. There are 96 characters in the set, (hex codes 20 to

23

7F), each has 10 bytes, one per character row, from the bottom
of the character cell upwards. A set bit causes a point to be
plotted in the current foreground colour. A clear bi t causes
no plotting. The cursor position is updated in the x direction
by 8 x number of characters.

GENERAL NOTES:
i) Unless specified, all parameters are 16-bit, ie they must
be defined as type INTEGER, or be entered as constants with no
decimal point.

ii) x-y coordinate parameters may take any value from -32767
to +32767. Line portions outside the physical display area are
clipped. In this way pictures can be defined that are 100
times larger than the screen. TRANSLATE can then be used to
display portions of the picture, or SCALE can be used to
display the picture in miniature.

iii) The physical screen is considered to be 640 points wide
by 512 high in the high resolution mode, and 320 by 256 in the
lower resolution mode.

i v) The physical coordinate origin is the bottom left hand
corner of the screen.

v) The GMODE setting applies to all pages. There cannot be
pages of different resolutions/numbers of colours in memory at
the same time.

24. INKEY (sl,p1)
s1 is a string, p1 is an optional path number, (defaults to
standard input). If data is available from the path, one
character is read into the string. Otherwise an empty string
is returned.

25. CHKRDY (p1,p2)
p1 is a Boolean, p2 is an optional path number, (defaults to
standard input). If data is available from the path, p1 is set
TRUE, else p1 is set FALSE. Note that no characters are read
from the path.

26. MOUSE (p1,p2)
Returns the current mouse X and Y coordinates in p1 and p2
respectively, (range is -32768 to 32767). If p1 and p2 are
omitted, the mouse coordinates are reset to zero.

24

The ACIA device driver for OS-9 on the Dragon 12 8

The ACIA device driver for the on-board 6850 has been expanded

to include software selectable baud rate. This is done by

setting a code in PD. BAU in the device descriptor, following

the standard OS-9 codes, except that 19.2k baud is not

available.

CODE
o
1
2
3
4
5
6

BAUD RATE
150
300
600

1200
2400
4800
9600

25

R.HARDING 2017
ORIGINAL DOC: DUNCAN SMEED

DragonData.co.uk

http://www.DragonData.co.uk

	File0001
	File0002
	File0003
	File0004
	File0005
	File0005b
	File0006
	File0007
	File0008
	File0009
	File0010
	File0011
	File0012
	File0013
	File0014
	File0015
	File0016
	File0017
	File0018
	File0019
	File0020
	File0021
	File0022
	File0023
	File0024
	File0025-DD

