0OS-9 Operating System

System Programmer's Manual

0OS-9 Operating System: System Programmer's Manual
RevisionH

Publication date January 1984

Copyright © 1980, 1984 Microware Systems Corporation

This manual edited by Wes Camden; Contributions by William Phelps.

All Rights Reserved. This document and the software it describes are copyrighted products of Microware systems Corporation. Reproduction
by any meansis strictly prohibited except by prior written permission from Microware Systems Corporation.

Theinformation contained hereinisbelieved to be accurate as of the date of publication, however Microwarewill not beliablefor any damages,
including indirect or consequential, resulting from reliance upon the software or this documentation.

I 1 1o o [o oo T 1

1.1. History And Design PhilOSOPNYccuiviiiiiiiiiici e 1
1.2. System Hardware REQUITEMENEScouuiiiiiiiii e ee e e e e e e e e e e e e e ees 2
2. BasiC System OrganiZationoceuuieiiiieeiii e e e e e e e e e e e e e et e e e e e e e e e a e e aee 3
3. Basic FUNCLioNs Of the KErMEliiii e 5
3.1, System INitialiZationccuuiiiici e 5
3.2. Kernel Service REQUESE PrOCESSING ..u.cvvueiiii e et e e e e e 7
3.3. Kernel Memory Management FUNCLIONSooouieiiiiiiiiecie e 8
3.4. MemMOry ULHIZEHONoiiiiiiie e e e e e e e e e 8
3.4.1. Level Two Memory Management Hardwareccooceeveiiieeiiiiecineecieeenn, 9
3.4.2. DAT Images and Level Il System Calls......c.ccuoveviiieiiiiiiiiieiieecce e, 11

3.5. Overview of MUltiprogrammingoceeueiiiieiiie e e e eee e e e et e e e eaaaees 12
T o (000 Y O = o o [PP 12
3.7, PrOCESS SEBLESueeieieie e ettt 13
B.7.1 ThE ACHVE SEALE ...vvnieieiii e e s 13
3.7.2. TheE WAt SEAE ...ceevviieeieei e e 13
3.7.3. The SIEEPING SEAE ...uucvvi i e 13

3.8. EXecution SChedUliNgciiiiiii e 13
GRS IS T 7= 14
3.10. INEENTUPE PrOCESSING ...uiivieiiie e et e et e e e e s e e e e e e e et e e et eeaaeeaaaees 15
3.10.1. Physical INnterrupt ProCESSINGccvuviiiiieiiieiie e e e e e e 15
3.10.2. Logical Interrupt Polling SyStemMccoviiiiiiiiiie e 16

Y = 0T A Y oo L1 = 19
4.1. Memory MOdUIE SITUCLUEcovneii e e e e e e e 19
4.2. Module Header DEfINItIONSiiiiiiiiieceiee e 19
4.2.1. Type/lLanguage BYLEciiuniiii i 20
4.2.2. AttribUte/REVISION BYLEuiiiii e 21
4.2.3. Other Level 1| Memory Management CharacteristiCsccovevvveiiineeennnnnn. 21

4.3. Typed MOAUIE HEAEN'Suiiiiicii e e e e e 21
4.4, Executable Memory Module FOrmatccoceuiiiiiiiiicie e 22
4.5. ROMed Memory MOUIESccouuiiii i e e e 23
4.6. Memory Module EXamMPIEScouuiiiiii e 23
5. The OS-9 Unified INPUL/OULPUL SYSEEMiieiiiii e e e e e e e e 25
5.1. The Input/Output Manager (IOMAN)oviiii e e 25
5.2, FlE MaANaQErS ...u e e e 25
5.2.1. Anatomy Of @ FIl@ Managerccccuuieiiiieiii e e e e 25
5.2.2. Interfacing to the DeviCe DIIVErc..veiiiiiiiiieci e 27

5.3. DeViCe DIVEr MOUUIESouuuiiiiiii it 28
5.3.1. OS-9 Interacting with Real World DeviCeScoevvvviiiiiiiiieciieeceeeeis 29
5.3.2. SUSPEND STATE - A New Feature for LIl V1.2ccooviiiiiiiiiiiiiieecenn, 31

5.4. Device DesCriptor MOAUIESciiuniiiii i e e e e e e e e e e e 32
5.5, Path DESCIIPIOIS .. cevieii e e e e e e e e e et e e e aaaas 33
6. Random BIOCK Fil@ MaANAQETccvuuieiiiciie e e e e e e e et e e e e aaeees 35
6.1. Logical And Physical Disk Organizzationccoccuuieiiiieeiiiieiiieeeiieeeaneeeaeeeines 35
6.1.1. 1dentifiCation SECIONccuvuuieiieii e eaees 35
6.1.2. Disk AllOCALION M8ovviieiie e e e e e e 36
6.1.3. File DESCIIPIOr SECLOIS .. cvvueiii i eiiii et e e e eaa s 36
6.1.4. DITECLONY FilES coovuiii i e 37

6.2. RBF Definitions of the Path DESCIIPLOrcevvviiiiiiieii e 37
6.3. RBF Device Descriptor MOQUIESccouuiiiiiiiiiie e e 38
6.4. RBF-tYPE DEVICE DIIVEIS ..couiiiii ittt e e e e e e aaaas 39
B.5. RBF DEVICE DIIVEIS .ceiviieeiii et e et e e et e e e e et e e e eaan e eeees 42
B.5.1. NAME: INIT oottt e e et e e eaaes 42
6.5.2. NAME: READ ..ottt e s 43
B.5.3. NAME: WRITEiiiiiiiiiii e 43
6.5.4. NAME: GETSTA PUTSTA L.ttt et e e n e e eaees 44
6.5.5. NAME: TERMoiiiiiiiiiiiii et 44
6.5.6. NAME: |RQ SEIVICE FOULINEuuevvieiiii i e e e e e e e e e e e e 45

0S-9 System Programmer's Manual

6.5.7. NAME: BOOT (Bootstrap Modul€)coeeviiiiiiiiiiiiiiccieccie e, 45
6.6. RBF RECOrA LOCKINGiivieiiiieiii e e e e e et s e e e e e e e et e e e e eaa s 46
6.6.1. Record Locking and UnlOCKIiNGcc.eeiiiiiiiiiiiiiicciceee e e 46
6.6.2. NON-Sharabl@ FIlESoiiiiiieeee e 47
6.6.3. EN OF FIl@ LOCK ...evvuiiiiiiiieiiii e 47
6.6.4. DeadL OCK DELECHIONccevuiiiiiiiiie e 47
6.6.5. Specific Details for Particular I/O FUNCLIONScccvvviiiiieiiiieiieecieeeis 47
7. Sequential Character File Manageroiiiuiiiiiecii e e e e e e e 51
7.1. SCF Line Editing FUNCLIONSc.uiiiiicii e e 51
7.2. SCF Definitions of The Path DESCIIPLOruevvviiiiiiciie e e e 52
7.3. SCF Device Descriptor MOAUIESoivuiieiii e 53
7.4. SCF Device Driver Storage DefinitionScccovvieiiiiiiiiiici e 54
7.5. SCF Device Driver SUDFOULINESuuiiiiiiiiieiiiiie et e et e e 56
75,1 NAME: INIT o e eas 56
7.5.2. NAME: READ o.iiiiiii et et 56
7.5.3. NAME: WRITE ..o e 57
7.5.4. NAME: GETSTA/SETSTA ..ot e e 57
755 NAME: TERM .oeiiiiiii e 58
7.5.6. NAME: IRQ SERVICE ROUTINE ..ottt 58
8. The PIPE FIlE MBNAGES iiiiiiiii et e e e e e e e e e et e e e e eeanees 61
8.1. Outlines of Establishing a Pipe Between Two Processes in a Machine Language
Pl O g AN L.t 61
9. Assembly Language Programming TEChNIQUESccuuueiiiieiiiieiii e eee e e e e e e e 63
9.1. How to Write Position-Independent Codecc.oviviiiiiiiniiiiiece e 63
9.2. Addressing Variables and Data SLrUCIUIESccvuevviiiiiiciiieeci e e e e e 63
0.3, StACK REQUITEMENTSiiii e e e e e e e e e e et e e e e e eeen 64
0.4, INLEITUPL IMBSKS ...evueiiiieeii e et e e e e e e e e e e e e e et e e et e e et e e et e e et eeanes 64
9.5. Using Standard 1/O PathSoiiiiiii e 64
9.6. Writing Interrupt-driven DeVIiCe DIIVEIScccuviiiiiiiii e 64
O.7. A SAMPIE PrOQramouuciii e e 65
10. Adapting OS-9 10 @ NEW SYSIEIM ..cevuiiiiici e e e e e e e e e eaaaees 69
10.1. Adapting OS-9 Level | toaNew SyStemccoviiiiiiiiiiiecn e 69
10.2. Adapting OS-9 t0 Disk-based SYyStEMScovviiiiiiiiiiieii e 69
10.3. Using OS-9 in ROM-based SYyStEMSccvuiiiiieiii e e e e e 69
10.4. Adapting the Initialization MOAUIEccviiiiiiiiii e 70
10.5. Adapting the SYSGO MOTUIEcouiiiiiiiii e 71
11. Service Request Descriptions - Level | and Level 1lcocoiiiiiiiiie e, 73
11.1. Service Request Descriptions - USer MOdEcceuviiiiiieiiiiiiii e 74
11.1.1. F$AIIBIt - Set bitsin an allocation bit Mapccevvveeeiiviiiiieiee e, 74
11.1.2. F$Chain - Load and execute a new primary module.ccovveviiiinnennns 74
11.1.3. F$CmpNam - ComMpPare tWo NAMESeeevrevrrriiiieeeeereeerninnseeeeeeeaneennnn 76
11.1.4. FECRC - CompPULE CRCouiiiieiii e e e e e e e eaae e 76
11.1.5. F$DelBit - Deallocate in abit Mapvvoveiieiiiiiiiiin e 77
11.1.6. F$EXit - Terminate the calling ProCeSS.uiiieeviiiiiiiiiie e 78
11.1.7. FSFOrk - Create aNEW PrOCESSccvvvvrrrinnieeeeerreeiniinseeeeeseresnnnnaaeeaeeens 78
11.1.8. FSICPT - Set up asignal intercept trapvveveeeeereeeiiiiinseeeeeeeeniiennnns 80
11.1.9. F$ID - Get process ID / USEr ID .ovvvvieiiiiiieeeiee e 81
11.1.10. F$Link - Link to memory moduleccovvuuiueiiiseeereeeiiiie e e e e eeeeeiinees 81
11.1.11. F$Load - Load module(s) from afileccccoeeevivieiiiiiiiiiieeiie e, 82
11.1.12. F$Mem - Resize data MemMOry @r€auvveriiieeeeereeiiiiieseeeeereesseennnnns 83
11.2.13. FSPEIT - Print €TOr MESSAgE ...uuueeeeeieiiiiiiieieeeeeeeeiiiase e e e eeeeanianan e eees 83
11.1.14. F$PrsNam - Parse apath NAMEccvvviiiieeiiiiiiiii e 84
11.1.15. F$SchBit - Search bit map for afreearea........ccccoevvveeiiiviiiiciiiiie e, 85
11.1.16. F$Send - Send a signal to another ProCESSooveeevvvevviiiiiiieeeeeeeeiiiiinnnn 85
11.1.17. F$Sleep - Put calling process to SI@EDuvuvvviiiiiieiiiiiii e 86
11.1.18. F$SPrior - Set ProCess PriOfityccvvvvvvreniieeeereeeiiiinseeeeeeeeeieinneeeeeeees 87
11.1.19. F$SSVC - Install funCtion reqUESEcevvvviiiieeeeeiieiiie e 87
11.1.20. FESSWI - Set SWI VECIOK ...ovuiiiiiciie e e e a e 89

0S-9 System Programmer's Manual

11.1.21. F$STime - Set system date and timecvvvviiiiieeerereiiiiiie e eeeeeeianens 89
11.1.22. F$Time - Get system date and timecceevveeeieiiiiiiiiie e, 90
11.1.23. F$UNLink - Unlink amodulecuuviiiiiieeiiiiiiie e 91
11.1.24. F$Wait - Wait for child processto diecccoevveeeiiviiiiiiiiien e, 91
11.2. System Mode SErviCe REQUESESuuiviiieiiii e e e e e e e e e aen 92
11.2.1. F$AII64 - Allocate a 64 byte memory blockccooveevvvvviiiiiiiieeeceeeiiien, 92
11.2.2. FSAProc - Insert process in active process QUEUEoeevevereeeerenneererennnns 93
11.2.3. F$Find64 - Find a 64 byte memory blockccoovvvviiiiiieiiiiieeeee, 93
11.2.4. F$IODel - Delete I/0 device from SyStemMovveeeiivveeiiiiiiieeeeeeeeeiiinn 94
11.2.5. FSIOQU - ENter 1/O QUEUEeevvviieieeeeeeeeeiee e e e e e e e s 95
11.2.6. F$IRQ - Add or remove device from IRQ tablecccoovvviiiiiiiiiiiiiienens 95
11.2.7. FSNProC - Start NEXL PrOCESSvvvvrrnieeeeieeeiiiiiineseeeeeeesrninnasaeeseeesnnennnns 96
11.2.8. F$Ret64 - Deallocate a 64 byte memory blockccooveeeiviiiiiiiiiiiiieenninnn, 96
11.2.9. F$SRgMem - System MEMOrY FEQUESEvuurieeeeeeeriiiiieeeeeeeeareinnnaeeeeees 97
11.2.10. F$SRTMem - Return System MemOrycocvvveviiiiiieeiiiiieeeeiieeeeeaien 97
11.2.11. FSVModul - Verify moduleeiieeiiieiiiiie e 98
11.3. Service Request Descriptions - /O OPErationsccceueviiieeiieeeiineeeiieeeieeennnns 98
11.3.1. I$Attach - Attach anew device to the system.cccevvvveevviviiiiiinineeeen, 98
11.3.2. I$ChgDir - Change working dir€CtOryccocevvvvvvviiiiiieeeeeeeiiiie e 99
11.3.3. 1$Close - Close a path to afile/deviceccoeeviiiiiiiiiiiiii e, 100
11.3.4. 15Create - Create apath to anew filecoovvvviiiiiiiiiee e, 101
11.35. I$Delete - Delete afile ...oovvvviiiiiieeeiicii e 102
11.3.6. ISDEetX - Delete afile ...ccueeiiiiiicee 102
11.3.7. I$Detach - Remove a device from the systemccoovevvviiiiviiieniecenennn. 103
11.3.8. I$DuUp - Duplicate @ Pathcccvvvieiiiieeeiiceeee e e 103
11.3.9. 15GetStt - Get file/device STAUSvvvvniieeeeeieieiiiie e e e e e eeeaaens 104
11.3.10. ISMakDir - Make anew dir€CtOryuuvuviieeerereeiiiiiinieeeeeeeesviinnnns 106
11.3.11. 1$Open - Open a path to afile or devicecoovvvvviiiiiiiiiiieceeceen, 107
11.3.12. I$Read - Read data from afile or devicecccovvvvivciiiiieeiiii. 108
11.3.13. I$ReadLn - Read atext line with editingcccevvvviiiiii e, 109
11.3.14. 1$Seek - Reposition the logical file pointerccoeevveeiivveviiiiinnieeee, 109
11.3.15. 1$SetStt - Set file/device StAUSooovvveeeiiiee e 110
11.3.16. 1$Write - Write datato afile or devicecoovevvviiiiiiiiiniciiineecie, 114
11.3.17. I$WritLn - Write aline of text with editingcccccviiei i, 114
12. Level TWO System Service REQUESEScvvuieiiii et e e 115
12.1. Level TWOo System Service REQUESESivviieiiiieeie e e e e 115
12.1.1. F$AIllImg - Allocate Image RAM blockScvveiiiiiiiiiiiiiiiiii e, 115
12.1.2. F$AIIPrc - Allocate Process desCriptorcuvvvuiiieeeeeeeriiiinsieeeeeeeannens 115
12.1.3. F$AIIRAM - Allocate RAM BIOCKScoeeviviiiiiiie e 116
12.1.4. F$AIITsk - Allocate process Task NUMBEYvueviveeeiieeiiiiiinieeeeeeeiiiees 116
12.1.5. F$BOOt - BOOISIraD SYSIEM ovvvvieii i eeeeceeeiii e e e e e e e e s 117
12.1.6. F$BtMem - Bootstrap Memory reqUESLuuurieeeeereeeiiiiiieeeeeneeeviinnnnns 117
12.1.7. F$CIrBIk - Clear SpeCific BIOCKuuvviiiieiiiiiiiiiiii e 117
12.1.8. F$CpyMem - Copy external MemONYcccvvuvrreinieieeeieriiiiinsneeeeennnns 118
12.1.9. F$DATLog - Convert DAT block/offset to Logical Addrccoeeeveeen. 118
12.1.10. F$Dellmg - Dedllocate Image RAM blocksScccvvvviviiiiiiiiiiiiieccenn, 119
12.1.11. F$DelPrc - Deallocate Process desCriptorovveeeeevevvveeiieieeeeeeeeiiiennnn 120
12.1.12. F$DelRam - Deallocate RAM BIOCKSccocvviiiiiiiiiii e, 120
12.1.13. F$DelTsk - Deallocate process Task NUMDESccvvvvvvviiiniiieeeeeeannnns 120
12.1.14. F$ELink - Link using module directory Entryccccoevvevviinneeiinnnnnn. 121
12.1.15. F$FModul - Find Module directory entryc.uueeeiieeeeeeeveviinnneeens 121
12.1.16. F$FreeHB - Get Free High blockooviviiiiiiiii e, 122
12.1.17. F$Freel B - Get Free Low blOCKovviiiiiiiiiiiiiiieeceeece e 122
12.1.18. F$GBIKMp - Get system BIOCK Map COPY «.evvueeverineeiiiiieeeiiiiinee e 123
12.1.19. F$GModDr - Get Module Directory COPYoveveevenieveeeinieeeiiinneneneenns 123
12.1.20. F$GPrDsc - Get Process DESCIiPLOr COPY ..vvvvvreeerrrneereiiineereiiineeeeennnnns 124
12.1.21. F$GProcP - Get Process POINTErvevviviiieiiiiiieeiciii e 124
12.1.22. FSLDABX - Load A from 0,X intask Bcocevvieiiiiiiiiiiiiiinciieeeis 125

0S-9 System Programmer's Manual

12.1.23. FSLDAXY - Load A [X, [Y]] cooeeeereeeeeieeiiiie e 125

12.1.24. FSLDDDXY - Load D [DHAX]IY]] - oeeeeerereeeiinieie e e e e 125

12.1.25. F$MapBIlk - Map specific Blockccovviiiiiieiiiiiic e, 126

12.1.26. F$Move - Move Data (low bound first)ceuviiiiineiiieiiiiiiniieeeeeenans 126

12.1.27. F$RelTsk - Release Task NUMDENccocoviviiiiiiiiieeeccceicees e 127

12.1.28. F$ResTsk - Reserve Task NUMDESooeeeviiiiiiiiiiiiseeeeeceeiiie e e eeaeans 127

12.1.29. F$Setimg - Set Process DAT IMagevevvivieeeiiiiieeeee e 128

12.1.30. F$SetTsk - Set process Task DAT registersooevvveeveviineeiiiineeeeiiinnnns 128

12.1.31. FSSIink - SystemM LinKoiieeeiieeiiiiiiss e eeeee e e e e e e e e e e e eannens 128

12.1.32. F$STABX - Store A at 0,X intask B ...ccovvvvviiieeiiiiiiiiiii e, 129

12.1.33. F$SUser - Set User ID UMDoeeeiiiiiee e 129

12.1.34. F$UnLoad - Unlink module by Nameuuveeiieeeiiieiiiiiiiieeeeeeeninns 130

A. Standard Floppy Disk FOIMELSuuiiiiiieiiieei e e e e e e e aan s 131
2 o g O L= PP 133
1230 I @ S e I o (o g @ L= PR 133

B.2. Device Driver/HardWare EITOrSc.uuuiiiiiiiiieieiie e e e e e e 134

C. SErvice REQUESE SUMIMAIYivviiiiiieiii et e e e e e e e e e e e et e e e e et e et e e et e e eanaeeees 137
D. Operating SystemM INEEMNEIS ... covuniiii e e e e aaa s 141
[@ 1t T 1= - P 141

D2 @ 1 e I 1= = | S 143

Vi

Chapter 1. Introduction

0S-9 Level One is a versatile multiprogramming/multitasking operating system for computers
utilizing the Motorola 6809 microprocessor. OS-9 is well-suited for a wide range of applications on
6809 computers of almost any size or complexity. Its main features are:

» Comprehensive management of al system resources. memory, input/output and CPU time.
» A powerful user interface that is easy to learn and use.

 True multiprogramming operation.

« Efficient operation in typical microcomputer configuratjons.

» Expandable, device-independent unified 1/0 system.

 Full support for modular ROMed software.

* Level Oneversion for small and medium sized systems.

» Level Two version for large systems with memory management.

This manua is intended to provide the information necessary to install, maintain, expand, or write
assembly-language software for OS-9 systems. It assumes that the reader is familiar with the 6809
architecture, instruction set, and assembly language.

1.1. History And Design Philosophy

0OS-9 Level One is one of the products of the BASIC09 Advanced 6809 Programming Language
development effort undertaken by Microware and Motorola from 1978 to 1980. During the course of
the project it became evident that afairly sophisticated operating system would be required to support
BASICO09 and similar high-performance 6809 software.

0S-9's design was modeled after Bell Telephone Laboratories UNIX® operating system, which is
becoming widely recognized as a standard for mini and micro multiprogramming operating systems
because of itsversatility and relatively simple, yet elegant structure. By no means, however, isOS-9 a
direct duplication of UNIX. Eventhough the system functionsand interfaces are generally compatible,
0S-9 has been designed for better efficiency, greater reliability, and compact size. OS-9 al so pioneers
several new concepts such as support of reentrant, position-independent software that can be shared
by several users simultaneously to reduce overall memory requirements.

Perhapsthe most innovative part of OS-9isits" memory modul€’” management system, which provides
extensive support for modular software, particularly ROMed software. Thiswill play an increasingly
important role in the future as a method of reducing software costs. The “memory module” and
LINK capabilities of OS-9 permit modules to be automatically identified, linked together, shared,
updated or repaired. Individua modules in ROM which are defective may be repaired (without
reprogramming the ROM) by placing a “fixed” module, with the same name, but a higher revision
number into memory. Memory modules have many other advantages, for example, OS-9 can alow
several programs to share acommon math subroutine module. The same module could automatically
be replaced with amodule containing drivers for a hardware arithmetic processor without any change
to the programs which call the module.

Users experienced with UNIX should have little difficulty adapting to OS-9. Here are some of the
main differences between the two systems:

1. OS9 is written in 6809 assembly language, not C. This improves program size and speed
characteristics.

System Hardware Requirements

5.

6.

. 0S9 was designed for a mixed RAM/ROM microcomputer memory environment and more

effectively supports reentrant, position-independent code.

. OS-9 introduces the “memory modul€e” concept for organizing object code with built-in dynamic

inter-module linkage.

. OS-9 supports multiple file managers, which are modules that interface a class of devices to the

file system.
“Fork” and “Execute” calls are faster and more memory efficient than the UNIX equivalents.

0S-9 can be dynamically reconfigured by the user, even while the system is running.

1.2. System Hardware Requirements

Because OS-9 is so flexible, the “minimum” hardware requirements are difficult to define. A bare-
bones LEVEL | system reguires 4K of ROM and 2K of RAM, which may be expanded to 56K RAM.

Shown below are the requirements for atypical OS-9 software development system. Actual hardware
requirements may vary depending upon the particular application.

OS-9 LEVEL ONE

24K Bytes RAM Memory for Assembly Language Development. 40K Bytes RAM Memory for
High Level Languages such asBASIC09 (RAM Must Be Contiguous From Address Zero Upward)

4K Bytes of ROM: 2K must be addressed at $F800 - $FFFF, the other 2K is position-independent
and self-locating. Some disk systems may require three 2K ROMs.

Console terminal and interface using serial, parallel, or memory mapped video.
Optional printer using serial or parallel interface.

Optional real-time clock hardware.

OS9LEVEL TWO

Memory Management Unit with Dynamic Address Trandlation with selectable memory maps.
64K bytes RAM Memory plus approximately 32K per user.

Console Terminal plus additional user terminal ports.

Floppy and/or Hard Disk system(s).

Real Time Clock hardware.

Optional printer(s) using serial or paralld interfaces.

Chapter 2. Basic System Organization

0S-9 is a modular operating system that has been designed so that each module provides specific
functions. The modularity of OS-9 allows modulesto beincluded in the system or deleted when OS-9
isconfigured on aspecific computer depending on the functionsthat the operating systemisto perform.
For example, asmall, ROM based control computer does not need the disk related OS-9 modules.

Figure2.1. 0OS-9 Component Module Organization

oo +
R + I I R +
| | | | | |
! INNT 1 - - 0S-9 KERNEL l - -1 dock !
! ! ! (OS9P1, 0s9P2) ! ! !
R + I I R +

oo +
!
]
oo +
! !
I I nput/Qutput Manager !
! (1 OVAN) !
! !
oo +
----------			---------										
Disk File		Pipe File		Char. File									
Manager		Manager		Manager									
(RBF)		(Pipenan)		(SBF)									
Disk		Disk		Pipe		ACA		PIA					
Driver		Driver		Driver		Driver		Driver					
			(Piper)]										
DO		D1		D2		D3		Pipe		T1		T2] [PL]	[P2
RBF Devi ce Descriptors Pi pe Descr. SCF Device Descriptors

Notice that the diagram on the previous page clearly shows OS-9's multilevel organization.
Level 1 - Kernal and Clock Module

Thefirst level containsthe KERNEL, CLOCK MODULE, and INIT. The kernel provide basic system
services such as multitasking, memory management, and links all other system modules. The CLOCK
module is a software handler for the specific real-time-clock hardware. INIT is an initialization table
used by thekernel during system startup. It specifiesinitial tablesizes, initial system device names, etc.

Level 2 - Input/Output Manager (IOMAN)

The second level is the Input/Output Manager (IOMAN). It provides common processing to al 1/0
operations. The 1/O Manager isrequired if any OS-supported 1/0 isto be performed.

Level 3 - File Manager Level (RBF, SCF, and Pipeman)

The third level is the File Manager level. File managers perform 1/O request processing for similar
classes of /O devices. The Random Block File Manager (RBF) processes all disk-type device
functions, and the Sequential Character File Manager (SCF) handles all non-mass storage devicesthat
basically operate a character at a time, such as terminals and printers. The user can add additional
File Managers to handle classes of devices not covered by SCF or RBF. Another file manager called
PIPEMAN supportsthe“pipe” interprocess communication method that uses memory buffersfor data
transfer instead of mass storage files.

Level 4 - Device Drivers

The fourth level is the Device Driver Level. Device drivers handle basic physical 1/0O functions for
specific I/O controller hardware. Standard OS-9 systems are typically supplied with a disk driver, an
ACIA driver for terminals and seria printers, and a PIA driver for parallel printers. Many users add.
customized drivers of their own design or purchase drivers from a hardware vendor.

Level 5 - Device Descriptors

Thefifth level is the Device Descriptor Level. These modules are small tables that associate specific
1/O ports with their logical names, and the port's device driver and file manager. They also contain
the physical address of the port and initialization data. By use of device descriptors, only one copy
of each driver isrequired for each specific type of 1/O controller regardless of how many controllers
the system uses.

One important component not shown isthe Shell, which isthe command interpreter. It istechnically a
program and not part of the operating system itself and is described fully in the OS9 User's Manual.

Even though all modules can be resident in ROM, generally only the KERNEL and INIT modules are
ROMed in disk-based systems. All other modules are loaded into RAM during system startup by a
disk bootstrap module called BOOT (not shown on diagram) which is also resident in ROM.

Chapter 3. Basic Functions of the
Kernel

Thenucleusof OS-9isthe“kernel”, which servesasthe system administrator, supervisor, and resource
manager.

The Level One kernel is about 3K bytes long and normally residesin two 2K byte ROMs: “OS9P1”
residing at addresses $F800 - $FFFF, and "OS9P2", which is position-independent. OS9P2 only
occupies about half (1K) of the ROM, the other space in the ROM is reserved for the disk bootstrap
module.

The Level Two kernel is somewhat larger than the Level One version. Its exact size depends on the
size of the software routines required for the style of memory management unit used in the particular
system. Half of the kernel (called “OS9P1") resides in ROM with the BOOT module; the other half
("OS9P2") isloaded into RAM with the other OS-9 modules.

The kernel's main functions are:

1. Systeminitialization after reset.

2. Service request processing.

3. Memory management.

4. MPU management (multiprogramming).
5. Interrupt processing.

Notice that input/output functions were not included in the list above because the kernel does not
directly process them. The kernel passes |/O service requests directly to the Input/Output Manager
(IOMAN) module for processing.

3.1. System Initialization

After ahardwarereset, thekernel will initialize the system whichinvolves: locating ROMsin memory,
determining the amount of RAM available, loading any required modules not already in ROM from
the bootstrap device, and running the system startup task (SY SGO). The INIT module is atable used
during startup to specify initial table sizes and system device names. See pages 10.4 and 10.5 for more
information on INIT and SY SGO.

0S9p3 is a system module added to version 1.2 of Level 2 that is called during cold start to allow
users to define their own system calls. The cold start routine in OS9p2 does a link to OS9p3. If the
module exists (in the boot file or in ROM), then OS9p2 will do a BSR to the entry point of the “p3”
module. If “p3” does not exist, OS9p2 will centinue with anormal cold start.

Level 2 cannot handle the installation of new OS-9 system calls (via F$SSVC) by user programs
because of the separation of system and user address space. F$SSV C requires the service call object
codeto bein the system address space and expectsto receiveits address from the service table. OS9p3
is a system module which can be tailored to fit specific needs. The following code is an example of
how the OS9p3 module can be used.

Mcroware OS-9 Assenbler 2.1 11/ 18/ 83 16: 06: 01 Page 001
0CS-9 Level Il V1.2, part 3 - OS-9 System Synbol Definitions

00001 nam OS-9 Level Il V1.2, part 3
00002

00003

System Initialization

00011 khhkkkhhhkkhhhkkkhhhkkhhhhdhhhdhhdhhhdhkdxddhddhdxddhxddhdxddhxddhkx*dx*k,%x*%x
00012 *

00013 * Modul e Header

00014 *

00015 oocC1 Type set Syst mtChj ct

00016 0081 Revs set ReEnt +1

00017 0000 87CDOO5SE nod OS9ENd, CS9Nane, Type, Revs, Col d, 256
00018 000D 4F533970 OS9Narme fcs / OS9p3/

00019

00029 0012 01 fcb 1 edi ti on nunber
00030 use defsfile

00031 0002 | evel equ 2

00032 opt -C

00033 opt f

00041

00042 khhkkkhhhkkhhhkkkhhhkkhhhhdhhhdhhdhhhdhkdxddhddhdxddhxddhdxddhxddhx*dx*k,*x*%x
00043 *

00044 * Routine Cold

00045 *

00046 *

00047

00048 0013 318D0004 Col d | eay SvcTbl, pcr get service routine
00049 0017 103F32 os9 F$SSvc install new service
00050 001A 39 rts

00051

00052

00053 khhkkkhhhkkhhhkhkkhhhkkhhhhdhhhdhddhhhdhkdxddhddhdxddhxddhdxddhxddhx*dx*k,%x*%x
00054 *

00055 * Service Routines Initialization Table

00056 *

00057

00058 0025 F$SayH equ $25 set up new cal
00059 * This should be added to user o0s9defs file.

00060

00061 001B SvcThl equ *

00062 001B 25 fcb F$SayH

00063 001C 0001 f db SayHi -*-2

00064 O001E 80 fcb $80

M croware OS-9 Assenbler 2.1 11/ 18/ 83 16: 06: 04 Page 002
0S-9 Level 11 V1.2, part 3 - OS-9 System Synbol Definitions

00068 *

00069 * Service Call Say Hello to user

00070 *

00071 * |nput: U = Registers ptr

00072 * R$X,u = Message ptr (if O send default)
00073 * Max message | ength = 40 bytes.

00074 *

00075 * Qutput: Message sent to standard error path of user
00076 *

00077 * Data: D.Proc

00078 *

00079

00080 O001F AE44 SayHi [dx R$X, u get ness. address
00081 0021 2619 bne SayH 6 bra if not default
00082 0023 109E50 | dy D. Proc get proc descr ptr
00083 0026 EE24 [du P$SP, y get caller's stack

Kernel Service Request Processing

00084 0028 33C8D3 leau -40,u room for nmessage
00085 002B 96D0 | da D. SysTsk system s task num
00086 002D E626 I db P$Task, y cal ler's task num
00087 002F 108E0028 Idy #40 set byte count
00088 0033 308D0012 | eax Hello,pcr destination ptr
00089 0037 103F38 os9 F$Move mess into user mem
00090 003A 304 leax O,u

00091 003C 108E0028 SayHi 6 Idy #40 get max byte count
00092 0040 DE5O0 | du D. Proc get proc desc ptr
00093 0042 A6C832 | da P$Pat h+2, u path num of stderr
00094 0045 103F8C os9 | $WitlLn wite mess |line
00095 0048 39 rts

00096

00097 0049 48656C6C Hello fcc "Hell o there user."

00098 005A 0D fcb $D

00099

00100 005B 5104B6 enod nodul e CRC

00101

00102 005E OS9ENd equ *

00103

00104 end

00000 error(s)

00000 war ni ng(s)

$005E 00094 program byt es gener at ed
$0000 00000 data bytes allocated
$2884 10372 bytes used for synbols

3.2. Kernel Service Request Processing

All OS-9 service requests (system calls) are processed via the kernel. Service requests are used to
communicate between OS-9 and assembly language programs for such things as alocating memory,
creating new processes, etc. System calls use the SWI2 instruction followed by a constant byte
representing the code. Parametersfor system callsare usually passedin MPU registers. In additionto I/
O and memory management functions, there are other service request functionsincluding interprocess
control and timekeeping.

Service requests are divided into two categories:

I/O REQUESTS perform various input/output functions and are passed by the kernel to IOMAN for
processing. IOMAN will in turn call the appropriate file manager and device driver modules. The
symbolic names for this category have a“|$” prefix, for example, the “read” service request is called
“I$READ".

FUNCTION REQUESTS perform memory management, multiprogramming, and miscellaneous
functions. Most are processed by the kernel. The symbolic names for this category beginswith “F$".

A system wide assembly language equatefilecalled “ OSODefs’ defines symbolic namesfor all service
requests. The OS9Defs file is included when assembling hand-written or compiler-generated code.
The OS-9 Assembler has a built-in macro to generate system calls, for example:

0S9 | $READ

is recognized and assembled as the equivalent to:

SW 2

Kernel Memory
Management Functions

FCB | $READ

3.3. Kernel Memory Management Functions

Memory management is an important operating system function. OS-9 manages both the physical
assignment of memory to programs and the logical contents of memory by using entities called
“memory modules’ (see chapter 4 for a detailed description of memory modules). All programs are
loaded in memory module format allowing OS-9 to maintain a directory which contains the name,
address, and other related information about each module in memory. Memory modules are the
foundation of OS-9's modular software environment. Some of the advantages are;

» Automatic run-time “linking” of programsto libraries of utility modules.

» Automatic “sharing” of reentrant programs, replacement of small sections of large programs for
update or correction (even when in ROM), etc.

0S-9 Level One uses a software memory management system where all memory is contained within
asingle 64K memory map. Therefore, OS-9 and all user tasks share a common memory space.

0S-9 Level Two uses memory management hardware that gives OS-9 and each user task a private
memory map which can contain up to 64K bytes of memory (depending on the type of MMU
hardware). RAM used for data is dynamically assigned to each map on a demand basis. Memory
modules are switched into each map when required. One physical memory module can appear
simultaneously in several maps if multiple tasks request the same module(s) at the same time.

3.4. Memory Utilization

In Level One, all usable RAM memory must be contiguous from address O upward. During the
0OS-9 start-up sequence, the upper bound of RAM is determined by an automatic search or from the
configuration module. Some RAM s reserved by OS-9 for its own data structures at the top and
bottom of memory. The exact amount depends on the sizes of system tables that are specified in the
configuration module. Level Two workssimilarly except RAM need not be contiguous asthe Memory
Management Unit (MMU) hardware can dynamically rearrange memory addresses.

All other RAM memory is pooled into a“free memory” space. Memory space is dynamically taken
from and returned to the pool asit is allocated or deallocated for various purposes. The basic unit of
memory allocation is the 256 byte “page’. Memory is always allocated in whole numbers of pages.
Level Two systems must physically allocate memory according to the size of the smallest memory
block the MMU hardware can handle, usually 2048 or 4096 byte blocks. The 256 byte page is still
used as a basic allocation size, but OS-9 Level Two must assign awhole number of 2K or 4K blocks.
Therefore, Level Two systems use memory most efficiently when program or data memory sizes are
close to (but not over) the 2K or 4K block size.

0S-9 automatically assigns memory from the free memory pool whenever any of the following occur:
1. When modules are loaded into RAM.

2. When new processes are created.

3. When processes execute system calls to request additional RAM.

4. When OS-9 needs more I/O buffers or itsinternal data structures must be expanded.

All of the above usually have inverse functions that cause previoudly alocated memory to be

deall ocated and returned to thefreememory pool. In general, memory isallocated for program modules
and buffers from high addresses downward, and for process data areas from lower addresses upward.

Level Two Memory
Management Hardware

3.4.1.

Figure 3.1. Typical Level One Memory Map

e . < S$FFFF
| 0S-9 ROMB (4K)
e <- $F000
| 1/0 DEVI CE ADDRESSES
----------------------- <- $E000

| SPACE FOR MORE |

| OPTI ONAL ROVB |
e . <- END OF RAM MEMORY
| FI LE MANAGERS, |

| DEVICE DRI VERS, ETC.

| (APPROXI MATELY 6K)

| SHELL (1K) |

| OS-9 DATA STRUCTURES
| (APPROXI MATELY 1K)

| FREE MEMORY FOR |

| GENERAL USE |
e . <- $0400
| OS-9 DATA STRUCTURES

| AND DI RECT PAGE |
il ' <= $0000

Figure 3.2. Typical Level Two Physical Memory Map

e . < $FFFFF
| KERNEL AND |
| BOOTSTRAP ROM |
e . <~ $FF000
| |/ O DEVI CES |
e . <~ $FE000
| OPTI ONAL ADD L |
| ROVS |
| |
| EXPANSI ON RAM |
| |
| |
| RAM (64K M N.) |
| |
| |
o ' <- $00000

The diagrams above illustrate “typical” systems. Actual memory sizes and addresses may vary
depending on the exact system configuration.

Level Two Memory Management Hardware

The 6809 CPU produces 16 address lines and in Level Oneis limited to 64k of address space. 0OS-9
Level Two uses memory management hardware based on a DAT (Dynamic Address Trandation) to
allow the CPU to access up to 2 megabytes of memory. The DAT allows the creation of multiple 64k
address spaces which can be switched in and out of under the control of OS-9. The maximum amount

Level Two Memory
Management Hardware

of overall system memory and the maximum memory per task depends on the specific design of
the memory management unit. Consult the hardware manufacturer's manual s regarding your system's
exact specifications.

A physical address space of up to 2 megabytesis addressed by the system bus using 20 or 21 address
bits. All RAM, ROM, and I/O devicesrespond to these extended addresses. The physical address space
isfurther subdivided into “blocks’ of either exactly 2K or 4K (depending on the hardware) bytes. The
high order 8 or 9 (depending on the hardware) bits of the starting address of the block is called ablock
number. For example, the block having physical address $3C000 to $3CFFF is called "block 3C".

A logical address space of up to 64K bytes of memory is created for each task (as part of the FORK
system call). The address space is assigned blocks of memory as required. Even though memory
within thelogical address space appears to be contiguous to user programs, it can be constructed from
noncontiguous physical blocks because of the addresstrangl ation function of the DAT. Address spaces
can also contain blocks of memory that are common to more than one map.

The diagram below illustrates the design of a typical memory management system. For ease of
explanation, a system with 16 memory maps with a 4k block size will be described.

o e e +

| 4-BIT TASK |

| REG STER |

o e e +

I
R + vV V V V |
| 6809 CPU | e + | System
| | | A4 A5 A6 A7 | | Bus
| Al5|-------- >| A3 D7|------cmemmao-- \
| Al4|-------- >| A2 DAT | | 8 address lines> Al2-Al9
| Al3|-------- > A1 RAM DO|--------------- /]
| Al2|-------- >| A0 | |
| | R REEEE + |
| L I R \
| |] 12 address lines >| AO0- All
| O R L /]
|

Typical Memory Management Unit Hardware

Not shown in this simplified schematic is the necessary additional circuits which allow the CPU to
write data (reading is not necessary) in any word of the mapping RAM.

The DAT isbuilt around asmall high speed RAM. In the example above, the size of the DAT RAM is
256 8-bit words. Each word of the mapping RAM is addressed by a combination of the high-order 4
address lines of the CPU and the 4-bit output of the task register. In effect, the task register dividesthe
RAM into 16 sections of 16 words each. Each section defines a 64K logical memory map, and each of
the 16 8-bit words it contains corresponds to a 4K memory block. The actual 20-bit physical address
sent to the busis the 8-bit contents of the selected word in the RAM combined with the unaltered low-
order 12 hits from the CPU.

Below is an example of how one 16-word section of the DAT is used to define a logical memory
map. Assume that the Task Register is set to 3, so we are looking at map 3. (All values below are
hexadecimal).

CPU ADDRESS DAT ADDRESS DAT DATA BUS ADDRESS

OXXX 30 15 15xxx
IXXX 31 16 16xxx
2XXX 32 17 17xXX

10

DAT Images and
Level Il System Calls

3.4.2.

CPU ADDRESS DAT ADDRESS DAT DATA BUS ADDRESS

3XXX 33 2A 2AXXX
4XXX 34 2D 2Dxxx
Bxxx 35 Bl B1xxx
BXXX 36 B2 B2xxx
TXXX 37 FC FCxxx
8xxx 38 FC FCxxx
O9XXX 39 FC FCxxx
AXXX 3A FC FCxxx
Bxxx 3B FC FCxxx
Cxxx 3C 8l 81xxx
Dxxx 3D 82 82xxx
Exxx 3E 83 83xxx
Fxxx 3F FC FCxxx

Suppose a user program reads a byte from address $40FF. The high order 4 bits are combined with the
task register value (currently 3) to produce the DAT RAM address $34. The data contents of thisDAT
RAM addressis$2D. Thisiscombined withthelow order 12 bitsfrom the CPU to producethe physical
bus address $2DOFF. Likewise, CPU address $D315 would generate physical address $82315.

Notice that several DAT memory locations contain the value $FC. $FC isa special block address that
0S-9 commonly uses to represent a place in an address map that currently has no physical memory
assigned to it. In fact, some systems have error-detection circuits that detect such illegal memory
references by looking for this reserved memory block address. Given that $FC means no memory has
been assigned here, by physical memory at logical addresses $0000-$6FFF and $C000-$EFFF. This
would be typical of atask with a program module size of about 12K (at $C000-$EFFF) and a data
area of 28K (at $0000-$6FFF).

If this task requests OS-9 to allocate an additional 8K of memory to its data area and OS-9 found
unassigned free memory blocks at physical addresses $61000-$61FFF and $64000-$64FFF, OS-9's
memory alocation function would assign this memory by writing the DAT with values of $61 and
$64 in DAT locations $37 and $38, respectively.

Memory map (DAT section) number zero is reserved for OS-9 and the operating system code, data
structures, 1/0 buffers, path descriptors, process descriptors, etc., are al allocated within this map.
If this map becomes full, it may not be possible to create new tasks or open new files until other
processes terminate or files are closed, even though there may still be considerable free memory |eft
in the system.

DAT Images and Level Il System Calls

Typical DAT hardware does not have enough sections to maintain a memory map for each possible
process. Therefore, when a process is created a DAT Image is defined in the corresponding process
descriptor. The DAT Imageis asmall array (in this example, 16 bytes) that is an exact copy of what
must be written in the DAT RAM to represent the process memory map. In fact, changesin memory
allocation are actually made by changing the DAT Image.

When aprocessbeginsitstimeslice, amap number (1 .. 15in thisexampl€) corresponding to amemory
map, is allocated to it, then the DAT Image in the process descriptor is copied into the DAT map that
has been chosen for the process. When a process gives up atime dice the map it was using may be
overwritten by another process if necessary.

User programs should never directly alter the DAT RAM or the DAT Image contents directly or
disaster may strike. In fact, in many Level 1l systems the DAT and DAT images are physically

11

Overview of Multiprogramming

unaccessable to user programs. Several OS-9 system calls are available to alocate and deallocate
memory, or to access data in specific physical memory blocks.

A common case is direct access to 1/0 devices. Normally, the block(s) that contain 1/0O devices are
kept in OS-9's map and not in user maps, which is proper for true timesharing system security but not
for process control applications, for example. In order for a user task to get access to the 1/0 device
block, the “F$MapBIk” system call can be used. It takes a starting block number and block count and
maps them into unallocated spaces of the process address space. Y ou do not have a choice wherein
your block it is mapped, but the system call returnsthe logical address where the blocks were inserted.
Note that there must be sufficient unused space in the process map. For example, suppose the I/0O
block in your system is located at extended addresses $FD000-$FEFFF (blocks $FD and $FE). The
following system call would map them to your address space:

[db #2 nunmber of bl ocks

| dx #$FD starting bl ock nunber

0s9 F$MapBl k call MapBl k

stu I CPorts save address where napped

Upon return, the U register will have the starting address where the blocks were switched in. For
example, suppose the system call above returned $4000. To access an 1/0 port at extended address
$FD020 you would write to logical address $4020.

Other system calls that copy data to or from one task's map to another are available (FSSTABX, F
$MOVE, etc.). Some of these are made system mode privileged in some systems, usually depending
on the type of applications the system is designed for. They can be unprotected if desired by changing
the appropriate bit in the corresponding entry of the system service request table and making a new
system boot with the patched table.

3.5. Overview of Multiprogramming

0S-9 is a multiprogramming operating system, which allows several independent programs (called
“processes’ or “tasks’) to be executed simultaneously. Each process can have access to any system
resource by issuing appropriate service requeststo OS-9. Multiprogramming functions use ahardware
real-time clock that generates interrupts at a regular rate of about 10 times per second. MPU time is
therefore divided into periods called “ticks’ that are typically 100 millisecondsin duration. Processes
that are “active” (meaning not waiting for some event) are run for a specific system-assigned period
called a“time slice”. How often a process receives a time slice depends on a process priority value
relativeto the priority of all other active processes. Many OS-9 servicerequests are availableto create,
terminate, and control processes.

3.6. Process Creation

New processes are created when an existing process executes a F$Fork service request. Its main
argument is the name of the program module (called the “ primary modul€e”) that the new processisto
initially execute. The creation processis outlined as follows:

1. OS-9 first attempts to find the module in the “module directory” which includes the names of all
program modules already present in memory. If the module cannot be found there, OS-9 usually
attemptsto load into memory a mass-storage file using the requested module name as a file name.

2. Once the module has been located, a data structure called a "process descriptor” is assigned to the
new process. The process descriptor is a 64 byte packagein Level |, and 512 bytesin Level 11, that
contains information about the process, its state, memory allocations, priority, queue pointers, etc.
The process descriptor is automatically initialized and maintained by OS-9. The process itself is
not permitted to access the descriptor. See 0s9sysdefs (P$'s) for information on what isin aprocess
descriptor.

12

Process States

3. The next step in the creation of anew processis allocation of data storage (RAM) memory for the
process. The primary modul€'s header contains a storage size value that is used unless the “fork”
system call requested an optionally larger size. OS-9 then attempts to allocate a memory area of
this size from the free memory space.

4. If any of the previous steps cannot be performed, creation of the new process is aborted, and the
process that originated the “fork” isinformed of the error. Otherwise, the new process is added to
the active process queue for execution scheduling.

Thenew processisalso assigned aunique number called a("process D" whichisused asitsidentifier.
Other processes can communicate with it by referring to its ID in various system calls. The process
also has associated with it a“user ID” which is used to identify all processes and files belonging to a
particular user. The user ID isinherited from the parent process.

Processes terminate when they execute an “EXIT” system service reguest or when they receive fatal
signals. The processtermination closes any open paths, deallocatesits memory, and unlinksits primary
module.

3.7. Process States

3.7.1.

3.7.2.

3.7.3.

At any instant, a process can bein one of four states:

ACTIVE - The processis active and ready for execution.

WAITING - The processis suspended until a child process terminates or asignal is received.
SLEEPING - The processis suspended for a specific period of time or until asignal isreceived.

SUSPENDED - Theprocessisin the active queue but isawaiting 1/0O compl etion. Theimplementation
of suspend state isin the device drivers and its useis optional.

There is a queue for each process state (except suspend). The queue is alinked list of the “process
descriptors’ of processesin the corresponding state. State changes are performed by moving a process
descriptor to another queue.

The Active State

Theactive stateincludes all “runnable” processes, which are given time dlicesfor execution according
to their relative priority with respect to al other active processes. The scheduler uses a pseudo round-
robin scheme (described in section 3-8) that gives all active processes some CPU time, even if they
have avery low relative priority.

The Wait State

Wait state is entered when a process executes a F$Wait system service request. The process remains
suspended until the death of any of its descendant processes, or, until it receives asignal.

The Sleeping State

Sleep state is entered when a process executes a F$Sleep service request, which specifies a time
interval. (aspecific number of ticks) for which the processisto remain suspended. The processremains
asleep until the specified time has elapsed, or until asignal isreceived.

3.8. Execution Scheduling

The kernel contains a scheduler that is responsible for allocation of CPU time to active processes.
0S-9 uses a scheduling algorithm that ensures all processes get some execution time.

13

Signals

All active processes are members of the “ active process queue’, which iskept sorted by process“age”.
Ageisacount of how many process switches have occurred since the process' last time slice. When
aprocess is moved to the active process queue from another queue, its “age” isinitialized by setting
it to the process assigned priority, i.e., processes having relatively higher priority are placed in the
gueue with an artificially higher age. Also, whenever a new process is activated, the ages of al other
processes are incremented.

Upon conclusion of the currently executing process time slice, the schedul er selectsthe processhaving
the highest age to be executed next. Because the queue is kept sorted by age, this process will be at
the bead of the queue. At this time the ages of all other active processes are incremented (ages are
never incremented beyond 255).

An exception is newly-active processes that were previously deactivated while they were in the
system state. These processes are noted and given higher priority than others because they are usually
executing critical routines that affect shared system resources and therefore could be blocking other
unrelated processes.

When there are no active processes, the kernel will set itself up to handle the next interrupt and then
execute a CWALI instruction, which decreases interrupt latency time.

3.9. Signals

“Signals’ are an asynchronous control mechanism used for inter-process communication and control.
A signal behaveslike asoftwareinterrupt in that it can cause a processto suspend aprogram, execute a
specific routine, and afterward return to the interrupted program. Signals can be sent from one process
to another process (by means of the SEND service request), or they can be sent from OS-9 system
routines to a process.

Status information can be conveyed by the signal in the form of a one-byte numeric value. Some of
the signal “codes’ (values) have predefined meanings, but al the rest are user-defined. The defined
signal codes are;

0 =KILL (non-interceptable process abort)
1=WAKEUP - wake up sleeping process
2=KEYBOARD ABORT
3=KEYBOARD INTERRUPT

4 - 255 USER DEFINED

When asignal issent to a process, the signal isnoted and saved in the process descriptor. If the process
isinthedleeping or waiting state, it is changed to the active state. It then becomes eligiblefor execution
according to the usual MPU scheduler criteria. When it getsits next time dlice, the signal is processed.

What happens next depends on whether or not the process had previously set up a“signal trap” (signal
service routine) by executing an F$ICPT service request. If it had not, the process is immediately
aborted. It is also aborted if the signal code is zero. The abort will be deferred if the processisin
system mode: the process dies upon its return to user state.

If asignal intercept trap has been set up, the process resumes execution at the address given in the F
$ICPT service request. The signa code is passed to this routine, which should terminate with an RTI
instruction to resume normal execution of the process. I nterrupts are masked when inside the intercept
routine, so the intercept routine should be as short as possible.

NOTE: “Wakeup” signals activate asleeping process: they do not vector through the intercept routine.

If aprocess hasasignal pending (usually because it has not been assigned atime dice sincethe signal
was received), and some other process attempts to send it another signal, the new signal is aborted

14

Interrupt Processing

3.10

and the “send” service request will return an error status. The sender should then execute a sleep
service request for a few ticks before attempting to resend the signal, so the destination process has
an opportunity to process the previously pending signal.

Interrupt Processing

Interrupt processing isanother important function of thekernel. All hardwareinterruptsare vectored to
specific processing routines. IRQ interrupts are handled by a prioritized polling system (actually part
of IOMAN) which automatically identifies the source of the interrupt and dispatches to the associated
user or system defined service routine. The real-time clock will generate IRQ interrupts. SWI, SWI2,
and SWI3 interrupts are vectored to user-definable addresses which are “local” to each procedure,
except that SWI12 is normally used for OS-9 service requests calls. The NMI and FIRQ interrupts are
not normally used and are vectored through a RAM addressto an RTI instruction.

3.10.1. Physical Interrupt Processing

The OS-9 kernedl ROMSs contain the hardware vectors required by the 6809 MPU at addresses $FFFO
through $FFFF. These vectors each point to jump-extended-indirect instruction which vector the M PU
to the actual interrupt serviceroutine. A RAM vector table in page zero of memory contains the target
addresses of the jump instructions as follows:

INTERRUPT LEVEL ONE ADDRESS LEVEL TWO ADDRESS

Swi3 $002C $00F2
Swi2 $002E $00F4
FIRQ $0030 $00F6
IRQ $0032 $00F8
Swi $0034 $OOFA
NMI $0036 $00FC

OS-9 initializes each of these locations after reset to point to a specific service routine in the kernel.
The SWI, SWI2, and SWI3 vectors point to specific routines which in turn read the corresponding
pseudo vector from the process' process descriptor and dispatch to it. Thisiswhy the F$SSWI service
request must be local to a process since it only changes a pseudo vector in the process descriptor.
The IRQ routine points directly to the IRQ polling system, or to it indirectly via the real-time clock
device service routine. The FIRQ and NMI vectors are not normally used by OS-9 and point to RTI
instructions.

A secondary vector table located at $FFEO contains the addresses of the routinesthat the RAM vectors
areinitialized to. They may be used when it is necessary to restore the original service routines after
altering the RAM vectors. Thefollowing tables are the definitions of both the actual hardware interrupt
vector table, and the secondary vector table:

VECTOR ADDRESS

Secondary Vector Table

TICK $FFEO Clock Tick Service Routine
SWI3 $FFE2

SwWi2 $FFE4

FIRQ $FFE6

IRQ $FFE8

SWI $FFEA

NMI $FFEC

WARM $FFEE Reserved for warm-start

15

Logical Interrupt Polling System

VECTOR ADDRESS
Hardware Vector Table

SWI3 $FFF2
SWI2 $FFF4
FIRQ $FFF6

IRQ $FFF8

SWi $FFFA
NMI $FFFC
RESTART $FFFE

If it isnecessary to alter the RAM vectors use the secondary vector table to exit the substitute routine.
Thetechnique of altering the |IRQ pointer isusually used by the clock serviceroutinesto reducelatency
time of this frequent interrupt source.

3.10.2. Logical Interrupt Polling System

In OS-9 systems, most 1/0 devices use IRQ-type interrupts, so OS-9 includes a sophisticated polling
system that automatically identifies the source of the interrupt and dispatches to its associated user-
defined service routine. The information required for IRQ polling is maintained in a data structure
called the“IRQ polling table”. The table has a 9-byte entry for each possible IRQ-generating device.
The table sizeis static and defined by an initialization constant in the System Configuration Module.

The polling system is prioritized so devices having a relatively greater importance (i.e., interrupt
frequency) are polled before those of lesser priority. Thisisaccomplished by keeping the entries sorted
by priority, which is a number between O (lowest) and 255 (highest). Each entry in the table has 6
variables:

1. POLLING ADDRESS: The address of the device's status register, which must have a bit or bits
that indicate it is the source of an interrupt.

2. MASK BYTE: This byte selects one or more bits within the device status register that are interrupt
request flag(s). A set hit identifies the active bit(s).

3. FLIPBYTE: Thisbyte selectswhether the bitsin the device status register are true when set or true
when cleared. Cleared bitsindicate active when set.

4. SERVICE ROUTINE ADDRESS: The user-supplied address of the device's interrupt service
routine.

5. STATIC STORAGE ADDRESS: a user-supplied pointer to the permanent storage required by the
device serviceroutine.

6. PRIORITY: The device priority number: O to 255. This value determines the order in which the
devicesin the polling table will be polled. Note: this is not the same as a process priority whichis
used by the execution schedul er to decide which process getsthe next time dicefor MPU execution.

When an IRQ interrupt occurs, the polling system is entered via the corresponding RAM interrupt
vector. It starts polling the devices, using the entries in the polling table in priority order. For each
entry, the status register addressisloaded into accumulator A using the device address from the table.
Anexclusive“ OR” operation using the“ flip-byte” isexecuted, followed by alogical “AND” operation
using the mask byte. If the result is non-zero, the device is assumed to be the cause of the interrupt.
The device's static storage address and service routine address is read from the table and executed.

Note

Theinterrupt service routine should terminate with an an RTS, not an RTI instruction.

16

Logical Interrupt Polling System

Entries can be made to the IRQ polling table by use of a special OS-9 service request called F$IRQ.
Thisis aprivileged service request that can be executed only when OS-9 isin System Mode (which
is the case when device drivers are executed).

Note

The actual codefor theinterrupt polling system islocated in the IOMAN module. The kernel
P1 and P2 modules contain the physical interrupt processing routines.

17

18

Chapter 4. Memory Modules

Any object to be loaded into the memory of an OS-9 system must use the memory module format and
conventions. The memory module concept allows OS-9 to manage the logical contents aswell asthe
physical contents of memory. The basic ideais that al programs are individual, named objects.

The operating system keepstrack of moduleswhich arein memory at al times by the use of a“module
directory”. The module directory contains the address of each module and a count of how many
processes are using each particular module. When modules are loaded into memory, they are added
to the module directory. When a process links to a module in memory, its link count is incremented
by one. When modules are no longer needed (a link count of 0), their memory is deallocated and the
modul e name removed from thedirectory (except ROM S, which arediscussed later). In many respects,
modules and memory in general, are managed like a disk. In fact, the disk and memory management
sections of OS-9 share many subroutines.

Each module has three parts; a module header, module body and a cyclic-redundancy-check (CRC)
value. The header contains information that describes the module and its use. This information
includes: the modules size, its type (machine language. BASIC09 compiled code, etc); attributes
(executable, reentrant, etc), data storage memory requirements, execution starting address, etc. The
CRC vaueis used to verify the integrity of amodule.

Thereare severa different kinds of modules, each type having adifferent usage and function. Modules
do not haveto be compl ete programs, or even 6809 machine language. They may contain BASIC09 “1-
code”, constants, single subroutines, subroutine packages, etc. Themain requirementsare that modules
do not modify themselves and that they be position-independent so OS-9 can load or relocate them
wherever memory spaceisavailable. In thisrespect, the moduleformat isthe OS-9 equivalent of “load
records’ used in older operating systems.

4.1. Memory Module Structure

At the beginning (lowest address) of the module is the module header, which can have several forms
depending on the module's usage. OS-9 family software such as BASIC09, Pascal, C, the assembler,
and many utility programs automatically generate modules and headers. Following the header is the
program/constant section which isusually pure code. The module name string isincluded somewhere
inthisarea. Thelast three bytes of the modul e are athree-byte Cyclic Redundancy Check (CRC) value
used to verify the integrity of the module.

Table4.1. Module For mat

MODULE HEADER

PROGRAM OR
CONSTANTS

CRC

The 24-hit CRC is performed over the entire module from the first byte of the module header to the
byte just before the CRC itself. The CRC polynomial used is $800FE3.

Because most OS-9 family software (such asthe assembler) automatically generate the module header
and CRC values, the programmer usually does not have to be concerned with writing routines to
generate them.

4.2. Module Header Definitions

Thefirst nine bytes of all module headers are identical:

19

Type/Language Byte

MODULE DESCRIPTION
OFFSET

$0,$1 = Sync Bytes ($87,$CD). These two constant bytes are used to locate
modules.

$2,$3 = Module Size. The overall size of the module in bytes (includes CRC).

$4,$5 = Offset to Module Name. The address of the module name string relative
to the start (first sync byte) of the module. The name string can be
located anywhere in the module and consists of a string of ASCII
characters having the sign bit set on the last character.

$6 = Module Type/Language Type. See text.
$7 = Attributes/Revision Level. Seetext.

$8 = Header Check. The one's compliment of (the vertical parity (exclusive
OR) of) the previous eight bytes

4.2.1. Type/Language Byte

Themoduletypeiscoded into the four most significant bits of byte 6 of the modul e header. Eight types
are pre-defined by convention, some of which are for OS-9'sinternal use only. The type codes are:

Code Name M eaning

$10 Prgrm Program module

$20 Sbrtn Subroutine module

$30 Multi Multi-module (for future use)

$40 Data Datamodule

$50-$B0 User-definable

$COo Systm 0S-9 System module

$D0 FIMgr 0S-9 File Manager module

$EO Drivr 0S-9 Device Driver module

$FO Devic 0S-9 Device Descriptor module
Note

Oisnot alegal type code.

The four least significant bits of byte 6 describe the language type as listed below:

0 Data Data (non-executable)

1 Objct 6809 object code

2 ICode BASICO09 I-code

3 PCode PASCAL P-code
The following are currently not implemented:
CCode C I-code

5 ChlCode COBOL I-code

6 FrtnCode FORTRAN I-code

The purpose of the language typeis so high-level language run-time systems can verify that amodule
is of the correct type before execution is attempted. BASICQ9, for example, may run either |-code or
6809 machine language procedures arbitrarily by checking the language type code.

20

Attribute/Revision Byte

4.2.2. Attribute/Revision Byte

The upper four bits of this byte are reserved for module attributes. Currently, only bit 7 is defined, and
when set indicates the moduleis reentrant and therefore “ sharable”.

The lower four bits are a revision level from zero (lowest) to fifteen. If more than one module has
the same name, type, language, etc., OS-9 only keeps in the module directory the module having
the highest revision level. Thisis how ROMed modules can be replaced or patched: you load a new
equivalent module having a higher revision level. Because all modules locate each other by using the
LINK system call which searches the module directory by name, it always returns the latest revision
of the module, wherever it may be.

NOTE: A previously linked module can not be replaced until all processes which linked to it have
unlinked it (after itslink count goes to zero). When anew moduleisloaded, it will go into the module
directory. Both copies will be in memory, but previous users will use the old copy until they unlink
from the old and link to the new module.

4.2.3. Other Level Il Memory Management
Characteristics

The following features apply only to Level Il systems.
Preloading Modules

Memory modules loaded by the LOAD command or FSLOAD system call are loaded into memory
and added to the module directory but are not mapped into any process address space until executed
or LINKed. Thus, a large number of modules can be preloaded into memory for fast access when
needed. By judicious use of LOAD, LINK and UNLINK more than 64K of modularized code can be
accessed by one task.

Shared Data Modules

Because one or more memory modules (hence, memory blocks) can be mapped simultaneoudly into
several logical maps (and frequently are for programs such as Basic09), RAM data modules can be
used to allow two or moretasksto shareacommon dataarea. The assembl er isused to create amemory
modul e with the proper header, CRC, etc., and PCB, FDB, FCC, FCS, directives only to initialize al
required data space.

Write Protect

If the system MMU hasthisfeature and the OS-9 option is enabled, OS-9 will write-protect any blocks
containing sharable memory modules. Sharable modules have the “reentrant” bit set in the module
header. This increases system security by protecting al tasks sharing a copy of a memory module
from another process accidentally (or deliberately) altering the shared module. Note that in order to
“patch” modules in systems with write protect the “reentrant” atribute bit must be cleared (on disk)
prior to loading into memory.

4.3. Typed Module Headers

As mentioned before, the first nine bytes of the module header are defined identically for all module
types. Thereisusually more header information immediately following, thelayout and meaning varies
depending on the specific module type. Module types $C - $F are used exclusively by OS-9. Their
format is given elsewhere in this manual.

The module type illustrated below is the general purpose “user” format that is commonly user for
0S-9 programs that are called using the FORK or CHAIN system calls. These modules are the “ user-

21

Executable Memory Module Format

defined” types having type codes of 5 through E. They have four more bytesin their headers defined
asfollows:

MODULE DESCRIPTION
OFFSET

$9,$A = Execution Offset. The program or subroutine's starting address, relative
to the first byte of the sync code. Modules having multiple entry points
(cold start, warm start, etc.) may have a branch table starting at this
address.

$B,$C = Permanent Storage Requirement. Thisis the minimum number of bytes
of data storage required to run. Thisis the number used by F$Fork and
F$Chain to allocate a process' data area.

If the module will not be directly executed by a F$Chain or F$Fork
service request (for instance a subroutine package), this entry is not
used by OS-9. It is commonly used to specify the maximum stack
size required by reentrant subroutine modules. The calling program can
check this value to determine if the subroutine has enough stack space.

4.4. Executable Memory Module Format

| |
| (Add'| optional header |
| extensions | ocated here |
| |
| |

Rel ati ve Usage Check Range
Addr ess
o e m e e e e e e e e e + e e m oo +- - -
$00 | | |
+- - Sync Bytes ($87CD) --+ | |
$01 | | |
o e m e e e e e e e e e + | |
$02 | | |
+- - Modul e Si ze (bytes) --+ | |
$03 | | |
o e m e e e e e e e e e + | |
$04 | | |
+- - Modul e Name O f set .-+ header |
$05 | | parity |
o e m e e e e e e e e e + | |
$06 | Type | Language | | |
o e m e e e e e e e e e + | |
$07 | Attributes | Revi si on | | |
Fo e + -t nodul e
$08 | Header Parity Check | CRC
o e m e e e e e e e e e + |
$09 | | |
+- - Execution O f set .-+ |
$0A | | |
o e m e e e e e e e e e + |
$0B | | |
+-- Permanent Storage Size --+ |
$0C | | |
o e m e e e e e e e e e + |
$0D |
|
|
|
- |

22

ROMed Memory Modules

|
|
| Modul e Body

| object code, constants, etc.
|

|

o e e e e e e e oo +
| |
+- - --+
| CRC Check Val ue |
+- - --+
| |
o e e e e e e e oo [S +- - -

4.5. ROMed Memory Modules

When OS-9 starts after a system reset, it searches the entire memory space for ROMed modules. It
detects them by looking for the module header sync code ($87,$CD) which are unused 6809 opcodes.
When this byte pattern is detected, the header check is performed to verify a correct header. If this
test succeeds, the module size is obtained from the header and a 24-bit CRC is performed over the
entire module. If the CRC matches correctly, the module is considered valid, and it is entered into the
module directory. The chances of detecting a“false module” are virtualy nil.

In this manner all ROMed modules present in the system at startup are automatically included in the
system moduledirectory. Some of the modulesfound initially are various parts of OS-9: file managers,
device driver, the configuration module, etc.

After the module search OS-9 links to whichever of its component modules that it found. Thisis the
secret of OS-9's extraordinary adaptability to almost any 6809 computer; it automatically locates its
required and optional component modules, wherever they are, and rebuilds the system each time that
itisstarted.

ROM s containing non-system modules are also searched so any user-supplied software is located
during the start-up process and entered into the module directory.

4.6. Memory Module Examples

The following examples show the structure of two OS-9 memory modules. The first is a typical
terminal descriptor, and the second is a data modul e that is used to share data between processes.

Example 4.1. Terminal Device Descriptor

nam TERM
ttl Device Descriptor for termnal

use defsfile

LR R R I S R I O

* TERM NAL devi ce nodul e

nod Tr nEnd, Tr nfNam DEVI C+OBJCT, REENT+1, Tr mMgr, Tr nDr v
fcb UPDAT. node

fcb $F port bank

fdb A TERM port address

fcb TrmNam *-1 option byte count

fcb DT. SCF Device Type: SCF

23

Memory Module Examples

* DEF

fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fdb
fcb
fcb
Tr mNa
Tr m\vy
Tr mDr

enmod

Tr nEn

Exam

LEVEL

TYPE
REVS

AULT PARAMETERS

0 case=UPPER and | ower

1 backspace=BS, SP, BS

O del et e=backspace over line
1 auto echo on

1 auto line feed on

0 null count

1 end of page pause on

24 lines per page

C$BSP backspace char

C$DEL del ete line char

C$CR end of record char
C3ECF end of file char
C3RPRT reprint |ine char
CSRPET dup last line char
C$PAUS pause char

C$I NTR Keyboard Interrupt char
$11 Keyboard Quit char

C$BSP backspace echo char
C$BELL |ine overflow char

A T.init ACTAinitialization
0 reserved

TrmNam of f set of echo device (conti nued)
0 Transnmit Enabl e char

O Transnmit Disable char

m fcs "TERM devi ce name

r fcs "SCF" file manager

v fcs "ACI A" device driver

Modul e CRC
d EQU *
ple4.2. Data Module

nam Dat aMbd
use defsfile

equ 1 select level 1

ifpl

endc

set DATA | oad val ue of $40

set REENT+1 | oad val ue of $81

nod Dat aMEnd, Dat aMNam TYPE, REVS, Dat aMent , 0

Dat aMNam fcs " Dat aMbd"

fcb O

DataMEnt fcs [/12345678901234567890/

fcs /23456789012345678901/
fcs /34567890123456789012/
fcs /45678901234567890123/
enod

Dat aMEnd equ *

24

Chapter 5. The OS-9 Unified Input/
Output System

OS-9Level | and Level Il provides a unified system-wide hardware independent 1/0 system for user
programs and OS-9 itself. All I/O service requests (system calls) arereceived by the kernel and passed
to the Input/Output Manager (IOMAN) module for processing. IOMAN performs some processing
(such as allocating data structures for the I/O path) and then calls the file managers which in turn call
the device drivers to do much of the actual work. File manager, device driver, and device descriptor
modules are standard memory modules that can be loaded into memory and used while the system
is running.

The structural organization of 1/O related modules in an OS-9 system is hierarchical, as shown on
page 2-1.

5.1. The Input/Output Manager (IOMAN)

The Input/Output Manager (IOMAN) module providesthefirst level of servicefor 1/0 system callsby
routing dataon 1/0O paths from/to processesto/from the appropriate file managers and devicedrivers. It
maintains two important internal OS-9 data structures: the devicetable and the path table. Thismodule
isused in al OS-9 systems and should never be modified.

When a path is opened, IOMAN attempts to link to a memory module having the device name given
(or implied) in the pathlist. The module to be linked to is the device's descriptor, which contains the
names of the device driver and file manager for the device. The information in the device descriptor
issaved by IOMAN so subsequent system calls can be routed to these modules.

5.2. File Managers

0S-9 systems can have any number of File Manager modules. The function of a file manager isto
process the raw data stream to or from device drivers for a similar class of devices to conform to
the OS-9 standard 1/0 and file structure, removing as many unique device operational characteristics
as possible from /O operations. File managers are also responsible for mass storage allocation and
directory processing if applicable to the class of devicesthey service.

File managers usually buffer the data stream and issue requests to the kernel for dynamic allocation
of buffer memory. They may also monitor and process the data stream, for example, adding line feed
characters after carriage return characters.

Thefile managers are reentrant, and one file manager may be used for an entire class of deviceshaving
similar operational characteristics.

The three standard OS-9 file managers are:

RBF: The Random Block File Manager which operates random-access, block-structured devices such
as disk systems, bubble memories, etc.

SCF: Seguential Character File Manager which is used with single-character-oriented devices such as
CRT or hardcopy terminals, printers, modems etc.

PIPEMAN: Pipe File Manager which supports interprocess communication via“pipes’.
5.2.1. Anatomy Of a File Manager
Every file manager must have a branch table in exactly the following format. Routines that are not

used by the file manager should branch to an error routine which sets the carry and loads B with an
appropriate error code before returning. Routinesreturning' without error must insurethecarry isclear.

25

Anatomy Of aFile Manager

* All routines are entered with:
* (Y) Path Descriptor ptr
* (U Caller's register stack pointer

EntryPt equ *

| bra Create
| bra Open

| bra MakDir

| bra ChgDir

| bra Del ete
| bra Seek

| bra Read

Il bra Wite

| bra ReadlLn
| bra WitelLn
| bra Get Stat
| bra Put St at
| bra d ose

Open, Create

Makdir

ChgDir

Delete

Seek

Open and Create are responsible for opening or creating a file on a particular device which typically
involves allocating any- buffers required, initializing path descriptor variables, and parsing the path
name. If the file manager controls multi-file devices (RBF), directory searching is performed to find
or create the specified file.

Makdir creates a directory file on multi-file devices. Makdir is neither preceded by a Create nor
followed by a Close. File managers that are incapable of supporting directories need to return carry
set with an appropriate error codein (B).

On multi-file devices, ChgDir searches for a file which must be a directory file. If the directory is
found, the address of the directory (up to four bytes) are saved in the caller's process descriptor at P
$DI10+2 (data directory) or P$DI1O+8 (execution directory).

Inthe case of RBF, the address of the directory'sfile descriptor is saved. Open/Create begins searching
in this directory when the caller's pathlist does not begin with a“/” character. File managers that do
not support directories should return the carry set and an appropriate error codein (B).

Multi-file device managers usually do a directory search that is similar to Open and, once found,
remove the file name from the directory. Any media that was in use by the fileis returned to unused
status. In the case of RBF, space isreturned and marked as available in the free cluster bit map on the
disk. File managers that do not support multi- file devices simply return an error.

File managersthat support random access devices use Seek to position file pointers of the already open
path to the byte specified. Typicaly, thisis alogica movement. No error is produced at the time of
the seek if the position is beyond the current “end of file”. File managers that do not support random
access should do nothing. It is conceivable that an SCF-type manager could use seek to perform cursor
positioning.

26

Interfacing to the Device Driver

Read

Write

ReadLn

Writeln

GetStat,

Close

5.2.2.

Read is responsible for returning the number of bytes requested to the user's data buffer, and should
return an EOF error if thereis no data available. Read must be capable -of copying pure binary data,
and generally performs no editing on the data. 'Generally, the file manager will call the device driver
to actualy read the data into a buffer, and then copy data from the buffer into the user's data area to
keep file managers device independent.

TheWriterequest, like Read, must be capabl e of recording pure binary datawithout alteration. Usually,
theroutinesfor read and write are almost identical with the exception that Write usesthe devicedriver's
output routine instead of the input routine. RBF and similar random access devices that use fixed-
length records (sectors) must often pre- read a sector before writing it unless the entire sector is being
written. Writing past the end of file on a device should expand the file with new data.

ReadL n differs from Read in two respects. First, ReadL n is expected to terminate when the first end-
of-line characater (carriage return) is encountered. ReadlL n should also perform any input editing that
is appropriate for the device. In the case of SCF, editing involves handling backspace, line deletion,
removing the high-order bit from characters, etc.

Writelnisthe counterpart of ReadLn. It should call thedevicedriver to transfer dataup to and including
thefirst (if any) carriage return encountered. Appropriate output editing may also be performed. For
example, SCF outputs aline feed and carriage return character and nulls if appropriate for the device,
aswell as pausing at the end of a screen page.

PutStat

The GetStat (Get Status) and PutStat (Put Status) system calls are wild card calls designed to provide
amethod of accessing features of adevice (or file manager) that are not generally deviceindependent.
Thefile manager may perform some specific function such as setting the size of afileto agiven value.
Status callsthat are “unknown” should be passed on to the driver to provide a further means of device
dependence. For example, a PutStat call to format a disk track may behave differently on different
types of disk controllers.

Close is responsible for insuring that any output to a device is completed (writing out the last buffer
if necessary), and releasing any buffer space allocated in an open or create. It should not execute the
devicedriver'sterminate routine, but may do specific end-of-file processing if desired, such aswriting
end-of-file records on tapes or form feeds to printers.

Interfacing to the Device Driver

Strictly speaking, device drivers must conform to the general format presented in this manual.
However, IOMAN uses only the “Init” and “ Terminate” entry points. Other entry points need only be
compatible with the file manager for which the driver iswritten. For example, the Read entry point of
an SCF driver is expected to return one byte from the device. On the other hand, RBF expects Read
to return an entire sector.

Thefollowing code is extracted from the SCF file manager to illustrate how afile manager might call

one of it'sdrivers.

ER kS R

* | OEXEC

27

Device Driver Modules

* Execute Device's Read/ Wite routine

Passed: (A)=output char (wite)

(X)=Device Table entry ptr

(Y)=Path Descriptor ptr

(U =of fset of routine (DSRead, D$Wite)
Returns: (A)=lnput char (read)

(B)=error code, CC set if error
Destroys B, CC

E I I I

| OEXEC pshs a, x,y,u save registers
| du V$STAT, x get static storage for driver
I dx V$DRIV, x get driver nodul e address
| dd MBEXEC, X and of fset of execution entries
addd 5,s offset by read/wite
| eax d, x absolute entry address
Ida ,s+ restore char (for wite)
jsr 0,x execute driver read/wite
pul s x,y,u,pc return (A)=char, (B)=error

enod Modul e CRC
Size equ * size of Sequential File Manager

5.3. Device Driver Modules

The device driver modules are subroutine packages that perform basic, low-level 1/0 transfers to or
from a specific type of 1/0 device hardware controller. These modules are reentrant so one copy of
the module can simultaneoudly run severa different devices which use identical 1/0 controllers. For
example, the device driver for 6850 serial interfacesis-called “ACIA” and can communicate to any
number of serial terminals.

Device driver modules use a standard module header and are given a modul e type of “device driver”
(code $E0). The execution offset address in the module header points to a branch table that has a
minimum of six (three byte) entries. Each entry istypically a LBRA to the corresponding subroutine.
The File Managers call specific routines in the device driver through this table, passing a pointer to
a“path descriptor” and the hardware control register address in the MPU registers. The branch table
looks like:

+0 = Device Initidization Routine
+3 = Read From Device

+6 = Write to Device

+9 = Get Device Status

+$C = Set Device Status

+$F = Device Termination Routine

For a complete description of the parameters passed to these subroutines see the file manager
descriptions.

See the following page for adiagram of device driver format.

DEVI CE DRI VER MODULE FORMAT

Rel ati ve Usage Check Range
Addr ess

28

0OS-9 Interacting with
Real World Devices

5.3.1.

o e e e e e e e oo E S Y +- - -
$00 | | | |
+- - Sync Bytes ($87CD) --+ | |
$01 | | | |
o e e e e e e e oo + | |
$02 | | | |
+- - Modul e Si ze (bytes) --+ | |
$03 | | | |
o e e e e e e e oo + | |
$04 | | | |
+- - Modul e Name O f set --+ header |
$05 | | parity |
o e e e e e e e oo + | |
$06 | Type | Language | | |
o e e e e e e e oo + | |
$07 | Attributes | Revi si on | | |
R + -t nodul e
$08 | Header Parity Check | CRC
o e e e e e e e oo + |
$09 | | |
+- - Execution O f set --+ |
$0A | | |
o e e e e e e e oo + |
$0B | | |
+-- Permanent Storage Size --+ |
$0C | | |
o e e e e e e e oo + |
$0D | Mbde Byte | |
o e e e e e e e oo + |
Mbdul e Body	
o e e e e e e e oo +	

$D Mode Byte - (D SPE PW PRE W R)

OS-9 Interacting with Real World Devices

Device drivers are often in the position of waiting for hardware to accomplish atask or waiting for a
user to enter or receive data. These Situations can occur when an SCF device driver receives a read
and no datais available, or when awriteis received and there is no buffer space available.

Any driver operating under OS-9 should release the current process from running (via F$Sleep) to
allow other processes to continue using the CPU time when it encounters a conflict of the type
described above. The most efficient way for the driver to come out of the sleep and resume processing
datais by interrupts (IRQs). It is possible for the driver to sleep for a number of system clock ticks
and then check the device or buffer for ready. The drawbacks to this technique are:

1. - It requires the system clock to always be active.

2. - It may take 2 clock ticks, or maybe even 20 ticks for the device to become ready, which leaves
the programmer with a dilemma. If the programmer chooses to sleep for 2 ticks, he or she wastes
CPU time awakening and checking for device ready. If the driver sleeps 20 ticks, it does not have
good response time.

29

0OS-9 Interacting with
Real World Devices

An interrupt system allows the hardware to report to the CPU and the device drivers when the device
has finished some operation. Using interrupts to advantage, a device driver may set up interrupt
handling to occur when a character is sent/read, a disk operation is complete, or whatever. The OS-9
environment is set up for ease of interrupt processing. Thereisaflexiblebuilt-in polling system facility
for pausing a process, and awakening the process. Microware has developed a technique for device
driversto follow in order to process interrupts.

Step 1: Init routine placesthe driver local IRQSV C routine in the IRQ polling sequence viaan F$IRQ
system call.

ldd V.Port,u get address to poll

| eax | RQPCLL, pcr point to | RQ packet

| eay | RQGSERVC, pcr point to | RQ service routine
0S9 F$1 RQ add dev to poll sequence

bcs Error abnormal exit if error

Step 2: Whenever adriver program must wait for the hardware, it should call asleep routine. The sleep
routine will copy V.Busy to V.Wake, then it will go to sleep for some period of time.

Step 3: When thedriver program “awakens’, it will check whether it awakened because of an interrupt
or asignal sent from some other process. The usual way to accomplish the check iswith the V.Wake
storage byte. The V.Busy byte is maintained by the file manager to be the process ID of the process
using the driver. When V.Busy is copied into V.Wake, then V.Wake becomes a flag byte and an
information byte. A non-zero Wake byte indicates there is a process awaiting an interrupt. The value
in the Wake byte indicates what process should be awakened by the sending of awakeup signal. The
following code will indicate a technique to accomplish this:

| da V.Busy,u get proc ID
sta V. Wake, u arrange for wakeup
andcc #"l ntMasks clear the way for interrupts
Sl eep50 ldx #0 or any tick time desired.
059 F$Sleep await an | RQ
| dx D.Proc get process desc ptr (if signal test)
I db PSSignal,x is signal present? (if signal test)
bne SigTest bra if so (if signal test)
tst V.Wake,u | RQ occur?
bne Sl eepSO bra if not

Note that the code labelled “if signal test” is only necessary if the driver wishesto return to the caller
if asignal is sent without waiting for the device to finish. Also note that IRQs (and FIRQs) must be
masked between the time a command is given to the device and the moving of V.Busy to V.Wake. If
they are not masked, it is possible for the device IRQ to occur and the IRQSERV C routine to become
confused as to sending a wakeup signal or not.

Step 4: When the device issues an interrupt, the routine address given in the F$IRQ will be called.
Thisroutine is called asif it were a portion of the interrupt handler in the system. The interrupts are
masked, the routine should be as short as possible, and the routine should return to the caller viaRTS,
since the system poller has called it via JSR and will do the RTI when done. The IRQSERV C routine
may want to verify that an interrupt has occurred for the device. It will need to clear the interrupt
and retrieve any data in the device. Then the V.Wake byte is used to communicate back to the main
driver routine. If V.Wake is non-zero, it should be cleared (indicating a true device interrupt), and its
contents used as the process ID for and F$Send system call sending a wakeup signal to the process.
Some sample code follows:

I dx V.Port,u get device address
tst ???? is it real interrupt fromthis device?
bne | RQSVCOO bra to error if not

30

SUSPEND STATE - A
New Featurefor L1 V1.2

5.3.2.

| da Data,x get data from device
sta 0,y store data in buffer (sinplified exanple)
| da V. Wake, u get process ID
beg I RQSVCBO bra if none
clr V.Wake,u clear it as flag to main routine
| db #S$Wake get wakeup signal
0S9 F$Send send signal to driver
| RQSVCBO clrb clear the carry bit (this indicates all is well)
rts
| RQSVCO0 conb set the carry bit (this indicates bad I RQ call)
rts

SUSPEND STATE - A New Feature for LIl V1.2

Withtheadvent of OS-9 Level || Version 1.2 thereisanew possibility for devicedriverswhen working
with IRQs which involves the use of the suspend hit in the process state byte. The scheduler has
been changed to ignore any process in the active queue which has the suspend state bit set. The main
advantage of this method over the previous method isthe elimination of the F$Send system call during
the interrupt handling. Since the processis aready in the active queue, it need not be moved from one
gueue to another. The device driver IRQSERV C routine can now clear the suspend bit in the process
statein order to “wakeup” the suspended main driver. Sample routines for the sleep and IRQSERVC
calsfollow:

Ida D.Proc get process ptr
sta V. \Wake,u prep for re-awakening

enabl e device to IRQ give comand, etc.
bra Crd50 enter suspend | oop

Cnmd30 Idx D.Proc get ptr to process desc
| da P$State,x get state flag
ora #Suspend put proc in suspend state
sta P$State, x save it in proc desc
andcc #"l nt Masks unmask interrupts
[dx #1 give up time slice
0S9 F$SI eep suspend (in active queue)

Cmd50 orcc #l nt Masks mask interrupts while changing state
| dx D.Proc get proc desc addr (if signal test)
| da P$Signal,x get signal (if signal test)
beq SigProc bra if.signal to be handl ed
[da V.Wake,u true interrupt?
bne Crd30 bra if not
andcc #"l nt Masks assure interrupts unmasked

Note D.Proc is a pointer to the process descriptor of the current process. These descriptors are always
allocated on 256 byte page boundaries. Thus, having the high order byte of the addressis adequate to
locate the descriptor. D.Procisputin V.Wake asadual value, in oneinstanceit isaflag byteindicating
aprocessisindeed suspended, and in the other instance it is a pointer to the process descriptor so the
IRQSERV C routine can clear the suspend bit. It is hecessary to have the interrupts masked from the
time the deviceis enabled until the suspend bit has been set to insure that the IRQSERV C routine will
not think it has cleared the suspend bit beforeit is even set. Then when the bit is set, the process could
go into permanent suspension. The IRQSERV C routine sample follows:

Idy V.Port,u get dev addr
tst V.Wake,u is process awaiting | RQ?

31

Device Descriptor Modules

beq | RQSVCER no exit

cl ear device interrupt
exit if TRQnot fromthis device

| da V. Wake, u get process ptr

clrb

stb V. Wake,u clear proc waiting flag
tfr d,x get process descriptor ptr

| da F$State,x get state flag

anda #"Suspend cl ear suspend state
sta P$State, x save it

clrb clear carry bit

rts

| RQSVCER conb set carry bit
rts

5.4. Device Descriptor Modules

Device descriptor modul es are small, non-executable modulesthat provide information that associates
a specific 1/0 device with itslogical name, hardware controller address(es), device driver name, file
manager name, and initialization parameters.

Recall that device drivers and file managers both operate on general classes of devices, not specific
I/O ports. The device descriptor modules tailor their functions to a specific I/0 device. One device
descriptor module must exist for each 1/0 device in the system.

The name of the module is the name the device is known by to the system and user (i.e. it is the
devicenamegivenin pathlists). Itsformat consists of a standard module header that has atype“ device
descriptor” (code $F). Therest of the device descriptor header consists of:

$9,$A = File manager name string relative address.
$B,$C = Device driver name string relative address
$D = Mode/Capabilities. (D SPE PW PR E W R)
$E,$F,$10 = Device controller absolute physical (24-bit) address
$11 = Number of bytes (“n” bytesin initialization table)
$12,$12+n = Initiaization table

The initialization table is copied into the “option section” of the path descriptor when a path to the
device is opened. The values in this table may be used to define the operating parameters that are
changeable by the OS9 |$GetStt and |$SetStt service requests. For example, atermina’sinitialization
parameters define which control characters are used for backspace, delete, etc. The maximum size of
initialization table which may be used is 32 bytes. If the table isless than 32 byteslong, the remaining
valuesin the path descriptor will be set to zero.

MODULE DEVI CE DESCRI PTOR MODULE FORNAT
OFFSET
o e m e e e e e e e e + e e m oo +- - -
$0 | | | |
+- - Sync Bytes ($87CD) .-+ | |
$1 | | | |
R + | |
$2 | | | |
+- - Modul e Size -- | |

32

Path Descriptors

$3 | | | |
oo e e e e e e e e oo - + | |
$4 | | | |
+-- Offset to Modul e Nane --+ header |
$5 | | parity |
oo e e e e e e e e oo - + | |
$6 | $F (TYPE) | $1 (LANG | | |
oo e e e e e e e e oo - + | |
$7 | Attributes | Revi si on | | |

o + -t nodul e

$8 | Header Parity Check | CRC

oo e e e e e e e e oo - + |
$9 | | |
+-- Ofset to File Manager --+ |
$A | Name String | |
oo e e e e e e e e oo - + |
$B | | |
+-- Ofset to Device Driver --+ |
$C | Name String | |
oo e e e e e e e e oo - + |
$D | Mode Byte | |
oo e e e e e e e e oo - + |
$E | | |
+- - Devi ce Controller --+ |
$F | Absol ute Physical Address | |
+- - (24 bit) -+ |
$10 | | |
oo e e e e e e e e oo - + |
$11 | Initialization Table Size | |
oo e e e e e e e e oo - + |
$12, $12+N | | |
|
|
oo e e e e e e e e oo - + |
| (Name Strings etc) | |
oo e e e e e e e e oo - + |
| CRC Check Val ue | |

oo e e e e e e e e oo - [S +- - -

5.5. Path Descriptors

Every open path is represented by a data structure called a path descriptor (“PD”). It contains the
information required by thefile managersand devicedriversto perform 1/O functions. Path descriptors
are exactly 64 bytes long and are dynamically allocated and deallocated by IOMAN as paths are
opened and closed.

PDs are internal data structures that are not normally referenced from user or applications programs.
In fact, it is amost impossible to locate a path's PD when OS-9 is in user mode. The description of
PDsismostly of interest to, and presented here for those programmers who need to write custom file
managers, device drivers, or other extensionsto OS-9.

PDshavethree sections: thefirst 10-byte section is defined universally for all file managersand device
drivers, as shown below.

Table5.1. Universal Path Descriptor Definitions

Name Addr Size Description

PD.PD $00 1 Path number

33

Path Descriptors

Name Addr Size Description

PD.MOD $01 1 Access mode: 1=read 2=write 3=update
PD.CNT $02 1 Number of paths using this PD

PD.DEV $03 2 Address of associated device table entry
PD.CPR $05 1 Requester's process ID

PD.RGS $06 2 Caller's MPU register stack address
PD.BUF $08 2 Address of 236-byte data buffer (if used)
PD.FST $0A 22 Defined by file manager

PD.OPT $20 32 Reserved for GETSTAT/SETSTAT options

The 22-byte section called “PD.FST” is reserved for and defined by each type of file manager for file
pointers, permanent variables, etc.

The 32-byte section called “PD.OPT” isused as an “option” areafor dynamically-alterable operating
parameters for the file or device. These variables are initialized at the time the path is opened by
copying the initialization table contained in the device descriptor module, and can be altered later by
user programs by means of the |$GetStt and 1$SetStt system calls.

“PD.OPT” and “PD.FST” sections are defined for each file manager in the assembly language equate
file (OS9 SCFDef s for SCF and OS9 RBFDef s for RBF).

Chapter 6. Random Block File
Manager

The Random Block File Manager (RBF) isafile manager modul e that supports random-access, bl ock-
oriented mass storage devices such as disk systems, bubble memory systems, and high-performance
tape systems. RBF can handle any number or type of such systems simultaneously. RBF is a
reentrant subroutine package called by IOMAN for 1/O service requests to random-access devices. It
isresponsible for maintaining the logical and physical file structures.

In the course of normal operation, RBF requests allocation and deall ocation of 256 byte data buffers;
usually oneis required for each open file. When physical 1/0 functions are necessary, RBF directly
calls the subroutines in the associated device drivers. All data transfers are performed using 256 byte
data blocks. RBF does not directly deal with physical addresses such astracks, cylinders, etc. Instead,
it passesto device driver modul es address parameters using a standard address called a“logical sector
number”, or “LSN”. LSNs are integers in the range of 0 to n-1, where n is the maximum number
of sectors on the media. The driver is responsible for translating the logical sector number to actual
cylinder/track/sector values.

Because RBF isdesigned to support awide range of devices having different performance and storage
capacity, it is highly parameter driven. The physical parameters it uses are stored on the media
itself. On disk systems, this information is written on the first few sectors of track number zero. The
devicedriversalso use thisinformation, particularly the physical parameters stored on sector 0. These
parameters are written by the for mat program that initializes and tests the media.

6.1. Logical And Physical Disk Organization

6.1.1.

All mass storage volumes (disk media) used by OS-9 utilize thefirst few sectors of the volumeto store
basic identification, file structure, and storage allocation information.

Logical sector zero (LSN 0) iscalled the I dentification Sector and contains adescription of the physical
and logical format of the volume.

Logical sector one (LSN 1) is the beginning of an allocation map which indicates which disk sectors
arefreeand available for usein new or expanded files. The allocation bit map may be up to 256 sectors
for high volume media.

The volume's root directory usually starts at logical sector two or it will start at the logical sector
following the alocation map. Itslogical sector number is given in the information LSN O (DD.Dir).

Identification Sector

Logica sector number zero contains a description of the physical and logical characteristics of the
volume which are established by the "format” command program when the mediaisinitialized. The
table below gives the OS-9 mnemonic name, byte address, size, and description of each value stored
in this sector.

Name Addr Size Description

DD.TOT $00 3 Total number of sectors on media
DD.TKS $03 1 Number of sectors per track
DD.MAP $04 2 Number of bytesin allocation map
DD.BIT $06 2 Number of sectors per cluster
DD.DIR $08 3 FD sector of root directory
DD.OWN $0B 2 Owner's user number

35

Disk Allocation Map

6.1.2.

6.1.3.

Name Addr Size Description

DD.ATT $0D 1 Disk attributes

DD.DSK $O0E 2 Disk identification (for internal use)
DD.FMT $10 1 Disk format: density, number of sides
DD.SPT $11 2 Number of sectors per track
DD.RES $13 2 Reserved for future use

DD.BT $15 3 Starting sector of bootstrap file
DD.BSZ $18 2 Size of bootstrap file (in bytes)
DD.DAT $1A 5 Time of creation: Y:M:D:H:M
DD.NAM $1F 32 Volume name

DD.OPT $3F 32 Path descriptor options

Disk Allocation Map

Logica sector one of the disk, and possibly more sectors, is used for the “disk alocation map” that
specifies which clusters on the disk are available for allocation of file storage space. The size of the
allocation map can be up to a maximum of 256 sectors decided by the Format utility. Format sets the
size of the bitmap depending on disk size and sectors per cluster. DD.MAP specifies the number of
bytes that are actually used in the map.

Each bit in the map corresponds to a cluster of sectors on the disk. The number of sectors per cluster
is Specified by the “DD.BIT” variable in the identification sector, and is always an integral power of
two, i.e, 1, 2, 4, 8, 16, etc. Multiple sector bitmaps alow the number of sectors per cluster to be as
small as possible for high volume media. Each hit is cleared if the corresponding cluster is available
for alocation, or set if the sector isalready allocated, non-existent, or physically defective. The bitmap
isinitialy created by the “format” utility program.

File Descriptor Sectors

The first sector of every file is caled a “file descriptor”, which contains the logical and physical
description of the file. The table below describes the contents of the descriptor.

Name Addr Size Description

FD.ATT $0 1 File Attributes:. D SPEPW PREW R
FD.OWN $1 2 Owner'sUser ID

FD.DAT $3 5 Date Last Modified: Y MDHM
FD.LNK $3 1 Link Count

FD.SIZ $9 4 File Size (number of bytes)

FD.Creat $D 3 Date Created: Y M D

FD.SEG $10 240 Segment List: see below

Theattribute byte containsthefile permission bits. Bit 7 isset to indicate adirectory file, bit 6 indicates
a“nonsharable” file, bit 5 is public execute, bit 4 is public write, etc.

The segment list consists of up to 48 five byte entries that have the size and address of each block
of storage that comprise the file in logical order. Each entry has a three byte logical sector number
that specifies the beginning of the block, and a two byte block size (in sectors). The entry following
the last segment must be zero.

When afileiscreated, it initially has no data segments allocated to it. Write operations past the current
end-of-file (the first write is always past the end-of-fil€) cause additional sectorsto be allocated to the
file. If thefile has no segments, it isgiven aninitial segment having the number of sectors specified by

36

Directory Files

6.1.4.

the minimum allocation entry in the device descriptor (IT.SAS), or the number of sectors requested,
whichever is greater than the minimum. Subsequent expansions of the file are also generally made
in minimum allocation increments. An attempt is made to expand the last segment used wherever
possible rather than adding a new segment. When thefileis closed, unused sectorsin the last segment
are truncated and returned to the free pool.

A note about disk allocation: OS-9 attempts to minimize the number of storage segments used in a
file. In fact, many fileswill only have one segment in which case no extraread operations are needed
to randomly access any byte on the file. Files can have multiple segmentsif the free space of the disk
becomes very fragmented, or if afile is repeatedly closed, then opened and expanded at some later
time. Multiple segments can be avoided by writing a byte at the highest address to be used on afile
before writing any other data.

Directory Files

Disk directories are files that have the“D” attribute set. Directory files contain an integral number of
directory entries, each of which can hold the name and LSN of aregular file or directory file.

Each directory entry is 32 byteslong, consisting of 29 bytesfor the file name followed by athree byte
logical sector number of the file's descriptor sector. The file name isleft-justified in the field with the
signbit of thelast character set. Unused entrieshave azero bytein thefirst file name character position.

Every mass-storage media must have a master directory called the “root directory”. The beginning
logical sector number of this directory is stored in the identification sector, as previously described.

6.2. RBF Definitions of the Path Descriptor

The table below describes the usage of the file-manager-reserved section of path descriptors used by
RBF.

Name Addr Size Description
Universal Section (same for al file managers)
PD.PD $00 1 Path number
PD.MOD $01 1 Mode (read/write/update)
PD.CNT $02 1 Number of open images
PD.DEV $03 2 Address of device table entry
PD.CPR $05 1 Current process ID
PD.RGS $06 2 Address of callersregister stack
PD.BUF $08 2 Buffer address
RBF Path Descriptor Definitions
PD.SMF $0A 1 State flags (see next page)
PD.CP $0B 4 Current logica file position (byte addr)
PD.SIZ $OF 4 Filesize
PD.SBL $13 3 Segment beginning logical sector number
PD.SBP $16 3 Segment beginning physical sector number
PD.SSz $19 3 Segment size
PD.DSK $1C 2 Disk ID (for internal use only)
PD.DTB $1E 2 Address of drivetable
RBF Option Section Definitions (Copied from device descriptor)
$20 1 Device class 0=SCF 1=NSF 2=PIPE 3=SBF
PD.DRV $21 1 Drive number (0..N)

37

RBF Device Descriptor Modules

Name Addr Size Description

PD.STP $22 1 Steprate

PD.TYP $23 1 Devicetype

PD.DNS $24 1 Density capability

PD.CYL $25 2 Number of cylinders (tracks)

PD.SID $27 1 Number of sides (surfaces)

PD.VFY $28 1 0= verify disk writes

PD.SCT $29 2 Default number of sectors/track
PD.TOS $2B 2 Default number of sectorg/track (track 0)
PD.ILV $2D 1 Sector interleave factor

PD.SAS $2E 1 Segment allocation size

(the following values are not copied from the device descriptor)

PD.ATT $33 1 Fileattributes (D SPE PW PREW R)
PD.FD $34 3 File descriptor PSN (physical sector #)
PD.DFD $37 3 Directory file descriptor PSN

PD.DCP $3A 4 File's directory entry pointer

PD.DVT $3E 2 Address of device table entry

State Flag (PD.SMF): the bits of this byte are defined as:

bit 0 = set if current buffer has been altered
bit 1 = set if current sector isin buffer
bit 2 = set if descriptor sector in buffer

Thefirst section of the path descriptor is universal for all file managers, the second and third sections
are defined by RBF and RBF-type device drivers. The option section of the path descriptor contains
many device operating parameters which may be read and/or written by the OS9 1$GetStt and |
$SetStt servicerequestsand isinitialized by IOMAN which copiestheinitialization table of the device
descriptor into the option section of the path descriptor when a path to adevice is opened. Any values
not determined by this table will default to zero.

6.3. RBF Device Descriptor Modules

This section describes the definitions and use of the initialization table contained in device descriptor
modules for RBF-type devices.

This section describes the definitions and use of the initialization table contained in device descriptor
modules for RBF-type devices.

M odule Offset

0-$11 Standard Device Descriptor Module Header
$12 ITDTP RMB1 devicetype (0=SCF 1=RBF 2=PIPE 3=SBF)
$13 ITDRV RMB1 drive number

$14 IT.STP RMB 1 step rate

$15 ITTYP RMB 1 device type (See RBF path descriptor)

$16 ITDNS RMB1 mediadensity (O- SINGLE, 1-DOUBLE)
$17 IT.CYL RMB 2 number of cylinders (TRACKS)

$19 IT.SID RMB 1 number of surfaces (SIDES)

$1A ITVFY RMB1 0 = verify disk writes 1 = no verify

38

RBF-type Device Drivers

M odule Offset

$1B IT.SCT RMB 2 Default Sectors/Track

$1D IT.TOS RMB 2 Default Sectors/Track (Track 0)
$1F IT.ILV RMB 1 sector interleave factor

$20 IT.SAS RMB 1 segment allocation size

IT.DRV - Thislocation is used to associate a one byte integer with each drive that a controller will
handle. The drives for each controller should be numbered 0 to n-1, where n is the maximum number
of drivesthe controller can handle.

IT.STP - (Floppy disks) This location sets the head stepping rate that will be used with adrive. The
step rate should be set to the fastest value that the drive is capable of to reduce accesstime. The actual
values stored depended on the specific disk controller and disk driver module used. Below are the
values which are used by the popular Western Digital floppy disk controller IC:

Step Code FD1771 FD179X Family
5" 8" 5" 8"
0 40ms 20ms 30ms 15ms
1 20ms 10ms 20ms 10ms
2 12ms 6ms 12ms 6ms
3 12ms 6ms 6ms 3ms

IT.TYP - Device type (All types)
bit 0-- 0=5" floppy disk
1=8"floppy disk
bit 6 -- 0 = Standard OS-9 format
1 = Non-standard format
bit 7 -- 0 = Floppy disk
1 =Hard disk

IT.DNS - Density capabilities (Floppy disk only)
bit 0 -- 0 = Single bit density (FM)
1 = Double hit density (MFM)

bit 1 -- 0 = Single track density (5", 48 TPI)
1 = Double track density (5", 96 TPI)

IT.SAS - This value specifies the minimum number of sectors to be allocated at any one time.

6.4. RBF-type Device Drivers

An RBF type device driver module contains a package of subroutinesthat perform sector oriented I/0
to or from a specific hardware controller. These modules are usually reentrant so that one copy of the
module can simultaneously run several different devices that use identical 1/0 controllers. IOMAN
will allocate a static storage area for each device (which may control several drives). The size of the
storage area is given in the device driver module header. Some of this storage area will be used by
IOMAN and RBF. The device driver isfreeto use the remainder in any manner. Static storageis used
asfollows:

Table6.1. Static Storage Definitions

OFFSET ORG 0
0 V.PAGE RMB1 port extended address (A20 - A16)

39

RBF-type Device Drivers

OFFSET ORG O

1 V.PORT RMB2 device base address

3 V.LPRC RMB1 last active processid

4 V.BUSY RMB1 active processid (0 = NOT BUSY)

5 V.WAKE RMB1 processid to reawaken
V.USER EQU. end of OS9 definitions

6 V.NDRV RMB1 number of drives

7 RMB 8 reserved
DRVBEG EQU. beginning of drive tables

F TABLES RMB DRVMEM*N reserve n drivetables
FREE EQU . freefor driver to use

Note

V.PAGE through V.USER are predefined in the OSO9DEFS file. V.NDRV, DRVBEG,
DRVMEM are predefined in the RBFDEFS file.

V.PAGE, V.PORT These three bytes are defined by IOMAN as the 24-bit device address.

V.LPRC contains the process ID of the last process to use the device. Not used by RBF-type device
drivers.

V.BUSY contains the process ID of the process currently using the device. Defined by RBF.

V.WAKE contains the process-ID of any process that is waiting for the device to complete I/O (0 =
NO PROCESS WAITING). Defined by device driver.

V.NDRYV contains the number of drivesthat the controller can use that is defined by the device driver
as the maximum number of drives that the controller can work with. RBF will assume that thereis a
drive table for each drive. Also seethe driver INIT routinein this section.

TABLES This area contains one table for each drive that the controller will handle (RBF will assume
that there are as many tables as indicated by V.NDRV). Some time after the driver INIT routine has
been called, RBF will issue arequest for the driver to read the identification sector (logical sector zero)
from a drive. At this time the driver will initialize the corresponding drive table by copying the first
part of the identification sector (up to DD.SIZ) into it, Also see the “ Identification Sector” section of
this manual. The format of each drive table is as given below:

Offset ORGO
$00 DD.TOT RMB3 total number of sectors on media
$03 DD.TKS RMB1 track size in sectors
$04 DD.MAP RMB?2 # bytesin allocation map
$06 DD.BIT RMB2 number of sectors per bit (CLUSTER SIZE)
$08 DD.DIR RMB3 address of root directory
$0B DD.OWN RMB?2 owner user number
$0D DD.ATT RMB1 disk attributes
$O0E DD.DSK RMB 2 diskid
$10 DD.FMT RMB1 media format
$11 DD.SPT RMB2 sectors/track
$13 DD.RES RMB?2 reserved for future use
DD.SIZ EQU .

40

RBF-type Device Drivers

Offset ORGO

$15 V.TRAK RMB?2 current Track Number

$17 V.BMB RMB1 bit-map use flag

$18 V.FileHd RMB 2 openfilelist for thisdrive

$1A V.DiskID RMB 2 diskid

$1C V.BMapSz RMB 1 bitmap size

$1D V.MapSct RMB 1 lowest reasonable bit map sector
$1E RMB 8 reserved

$26 DRVMEM EQU . size of each drive table

DD.TOT location contains the total number of sectors contained on the disk.

DD.TKS location contains the track size (in sectors).

DD.MAP location contains the number of bytesin the disk allocation bit map.

DD.BIT location contains the number of sectors that each bit representsin the disk allocation bit map.
DD.DIR location contains the logical sector number of the disk root directory.

DD.OWN contains the disk owner's user number.

DD.ATT contains the disk access permission attributes as defined below:

BIT 7- D (DIRECTORY IF SET)

BIT 6 - S(SHARABLE IF SET)

BIT 5- PX (PUBLIC EXECUTE IF SET)
BIT 4 - PW (PUBLIC WRITE IF SET)
BIT 3- PR (PUBLIC READ IF SET)
BIT 2- X (EXECUTE IF SET)
BIT1-W (WRITE IF SET).

BIT 0- R(READ IF SET)

DD.DSK contains a pseudo random number which is used to identify adisk so that OS-9 may detect
when adisk isremoved from the drive and another inserted in its place.

DD.FMT DISK FORMAT:

BIT BO- SIDE
0=SINGLE SIDED
1=DOUBLE SIDED

BIT B1- DENSITY
0=SINGLE DENSITY
1=DOUBLEDENSITY

BIT B2- TRACK DENSITY
0= SINGLE (48 TPI)
1= DOUBLE (96 TPI)

DD.SPT Number of sectors per track (track zero may use a different value, specified by IT.TOS in
the device descriptor).

DD.RES RESERVED FOR FUTURE USE

41

RBF Device Drivers

V.TRAK contains the current track which the head is on and is updated by the driver.

V.BMB is used by RBF to indicate whether or not the disk alocation bit map is currently in use (0 =
not in use). The disk driver routines must not alter this location.

6.5. RBF Device Drivers

Aswith all device drivers, RBF-type device drivers use a standard executable memory module format
with a module type of “device driver” (CODE $E). The execution offset address in the module
header points to a branch table that has six three byte entries. Each entry istypically a LBRA to the
corresponding subroutine. The branch table is defined as follows:

ENTRY LBRA INIT initialize drive
LBRA READ read sector
LBRA WRITE write sector
LBRA GETSTA get status
LBRA SETSTA set status
LBRA TERM terminate device

Each subroutine should exit with the condition code register C bit cleared if no error occurred.
Otherwise the C bit should be set and an appropriate error code returned in the B register. Below isa
description of each subroutine, itsinput parameters, and its output parameters.

6.5.1. NAME: INIT

NAME: INIT

INPUT:
(Y) = address of the device descriptor module
(U) = address of device static storage

OUTPUT: NONE

ERROR OUTPUT: (CC)=CBIT SET
(B) = ERROR CODE

FUNCTION: INITIALIZE DEVICE AND ITS STATIC
STORAGE AREA

1. If disk writes are verified, use the F$SRqMem service request to allocate a 256 byte buffer area
where asector may be read back and verified after awrite. In Level Two the buffer can be declared
in static storage.

2. Initialize the device permanent storage. For floppy disk controller typicaly this consists of
initializing V.NDRV to the number of drivesthat the controller will work with, initializing DD.TOT
in the drive table to a non-zero value so that sector zero may be read or written to, and initializing
V.TRAK to $FF so that the first seek will find track zero.

3. Place the IRQ service routine on the IRQ polling list by using the OS9 F$IRQ service request.

4. Initialize the device control registers (enable interrupts if necessary).

Note

Prior to being called, the device permanent storage will be cleared (set to zero) except
for V.PAGE and V.PORT which will contain the 24 bit device address. The driver should
initialize each drive table appropriately for the type of disk the driver expects to be used on
the corresponding drive.

42

NAME: READ

6.5.2.

6.5.3.

NAME: READ
NAME: READ
INPUT:

(B) = msb of disk logical sector number
(X) = Isb's of disk logical sector number
(Y) = address of the path descriptor

(V) = address of the device static storage

OUTPUT: sector isreturned in the sector buffer

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

FUNCTION: Read a 256 byte sector

Read a sector from the disk and place it in the sector buffer (256 byte). Below are the things that the
disk driver must do:

1. Get the sector buffer address from PD.BUF in the path descriptor.

2. Get the drive number from PD.DRYV in the path descriptor.

3. Compute the physical disk address from the logical sector number.

4. Initiate the read operation.

5. Copy V.BUSY to V.WAKE, then go to sleep and wait for the 1/0 to complete (the IRQ service
routine is responsible for sending a wake up signal). After awakening, test V.WAKE to see if it is
clear, if not, go back to sleep.

If the disk controller can not be interrupt driven it will be necessary to perform programmed 1/0.
NOTE 1. Whenever logical sector zero is read, the first part of this sector must be copied into the

proper drive table (get the drive number from PD.DRV in the path descriptor). The number of bytes
to copy isDD.SIZ.

NAME: WRITE
NAME: WRITE
INPUT:

(B) = msb of disk logical sector number
(X) = Isb's of disk logical sector number
(Y) = address of the path descriptor

(V) = address of the device static storage

OUTPUT: The sector buffer iswritten out to disk

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: Write a sector

Write the sector buffer (256 bytes) to the disk. Below are the things that a disk driver must do:
1. Get the sector buffer address from PD.BUF in the path descriptor.

2. Get the drive number from PD.DRYV in the path descriptor.

3. Compute the physical disk address from the logical sector number.

NAME: GETSTA PUTSTA

4, Initiate the write operation.

5. Copy V.BUSY to V.WAKE, then go to sleep and wait for the I/O to complete (the IRQ service
routine is responsible for sending the wakeup signal). After awakening, test V.WAKE to seeif it is
clear, if it is not, then go back to sleep. If the disk controller can not be interrupt-driven, it will be
necessary to perform a programmed 1/O transfer.

6. If PD.VFY in the path descriptor is equal to zero, read the sector back in and verify that it was
written correctly. It isrecommended that the compareloop be as short as possibl e to keep the necessary
sector interleave value to a minimum.

NOTE 1: If disk writes are to be verified, the INIT routine must request the buffer where the sector
may be placed when it is read back in. Do not copy sector zero into the drive table when it is read
back to be verified.

6.5.4. NAME: GETSTA PUTSTA

NAME: GETSTA/PUTSTA

INPUT: (U) = address of the device static storage area
(Y) = address of the path descriptor
FUNCTION CODE SHOULD BE RETRIEVED FROM R$B ON THE USER STACK.

OUTPUT: (DEPENDS UPON THE FUNCTION CODE)

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: GET/SET DEVICE STATUS

These routines are wild card calls used to get (set) the device's operating parameters as specified for
the OS9 1$GetStt and 1$SetStt service requests.

It may be necessary to examine or changetheregister stack which containsthe values of MPU registers
at the time of the |$GetStt or 1$SetStt service request. The address of the register stack may be found
in PD.RGS, which islocated in the path descriptor. The following offsets may be used to access any
particular value in the register stack:

OFFSET MNEMONIC MPU REGISTER

$0 R$CC RMB 1 CONDITION CODE REGISTER

$1 R$D EQU . D REGISTER

$1 R$A RMB 1 AREGISTER

$2 R$B RMB 1 BREGISTER

$3 R$DP RMB 1 DPREGISTER

$4 R$X RMB 2 X REGISTER

$6 RSY RMB 2 Y REGISTER

$8 R$U RMB 2 UREGISTER

$A R$PC RMB 2 PROGRAM COUNTER
6.5.5. NAME: TERM

NAME: TERM

INPUT: (U) = address of device static storage area

OUTPUT: NONE

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

NAME: IRQ service routine

6.5.6.

6.5.7.

FUNCTION: TERMINATE DEVICE

Thisroutineis called when adeviceis no longer in usein the system, which is defined to be when the
link count of its device descriptor module becomes zero). The TERM routine must:

1. Wait until any pending 1/0 has compl eted.
2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.

4. If the INIT routine reserved a 256 byte buffer for verifying disk writes, return the memory with
the F$Mem service request.

NAME: IRQ service routine

NAME: IRQ serviceroutine
FUNCTION: Service device interrupts

Although thisroutineis not included in the device driver module branch table and isnot called directly
by RBF, it isakey routine in interrupt-driven device drivers. Its function isto:

1. Service device interrupts.

2. When the 1/0O is complete, the IRQ service routine should send a wake up signal to the process
whose process ID isin V.WAKE

Also clear V.WAKE as aflag to the mainline program that the IRQ has indeed occurred.

NOTE: When the IRQ service routine finishes servicing an interrupt it must clear the array and exit
with an RTS instruction.

NAME: BOOT (Bootstrap Module)

NAME: BOOT (Bootstrap Module)
INPUT: None.
OUTPUT: (D) = Size of the boot file (in bytes)

(X) = Address of where the boot file was loaded in memory

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: LOAD THE BOOT FILE INTO MEMORY FROM
MASS-STORAGE

NOTE: The BOOT moduleisnot part of the disk driver. It isaseparate module which isnormally co-
resident with the “OS9P2” module in the system firmware.

The bootstrap module contains one subroutine that loads the bootstrap file and some related
information into memory, it uses the standard executable module format with a module type of
“system” (code $C). The execution offset in the module header contains the offset to the entry point
of this subroutine.

It obtains the starting sector number and size of the OS9Boot filefrom the identification sector (LSN

0). OS-9is called to alocate a memory area large enough for the boot file, and then it 1oads the boot
file into this memory area.

1. Read the identification sector (sector zero) from the disk. BOOT must pick its own buffer area. The
identification sector contains the values for DD.BT (the 24 hit logical sector number of the bootstrap

45

RBF Record Locking

file), and DD.BSZ (the size of the bootstrap file in bytes). For afull description of the identification
sector. See Section 6.1.2, “Disk Allocation Map”.

2. After reading the identification sector into the buffer, get the 24 bit logical sector number of the
bootstrap file from DD.BT.

3. Get the size (in bytes) of the bootstrap file from DD.BSZ. The boot is contained in one
logically contiguous block beginning at the logical sector specified in DD.BT and extending for
(DD.BSZ/256+1) sectors.

4. Use the OS9 F$SRgMem service request to request the memory area where the boot file will be
loaded into.

5. Read the boot file into this memory area.

6. Return the size of the boot file and its location.

6.6. RBF Record Locking

6.6.1.

Record locking is ageneral term that refers to mechanisms that are designed to preserve the integrity
of files that can be accesses by more than one user or process. The OS-9 implementation of record
locking is designed to be asinvisible as possible to application programs so existing programs do not
have to be rewritten to take advantage of record facilities, and most new programs may be written
without specia concern for multi-user activity.

Simply stated, record locking involves recognizing when a process is trying to read a record that is
currently being modified by another process, and if the record is “locked out”, deferring the read
until the record is“safe”. This schemeis referred to as conflict detection and prevention. RBF record
locking also takes care of non-sharable file locking and deadlock detection.

Record Locking and Unlocking

Conflict detection must determine when arecord is in the process of being updated. RBF edition 16
and above provides true record locking on a byte basis. Earlier versions of RBF locked out all sectors
in the particular record's area. A typical record update sequence is:

0s9 | $Read program reads record RECORD | S LOCKED
program updat es record

09 | $Seek reposition to record
0S9 I$Wite record is rewitten RECORD | S RELEASED

When afileis opened in update mode, ANY read will cause the record read to be locked out because
RBF can not determine in advance if the record will be updated. The record will stay locked out until
the next Read, Write, or Close occurs. Reading files that are opened in read or execute modes does
not cause record locking to occur because records can not be updated in these two modes.

A subtle but nasty problem exists for programs that interrogate a data base and occasionally update
its data. When a user looks up a particular record, the record could be locked out indefinately if the
user neglectsto releaseit. The problem is characteristic of record locking systems and can be avoided
by careful programming.

It should be noted that only one portion of afile may belocked out onetime. If an application requires
more than one record to be locked out, multiple paths to the same file may be opened each having its
own record locked out. RBF will notice that the same process owns both paths and will keep them
from locking each other out.

46

Non-sharable Files

6.6.2.

6.6.3.

6.6.4.

6.6.5.

Non-sharable Files

File Locking may be considered a special case of record locking, in which the entire fileis considered
unsafe to be used by more than one user. Sometimes (although rarely), it is necessary to create afile
that can never be accessed by more than one user at a time by setting the non-sharable (S) bit in the
file's attribute byte. The bit can be set by using an option when the file is created, or later using the
Attr utility. Once the non-sharable bit has been set, only one user may open thefile at atime. If other
users attempt to open the file, an error (#253) will be returned.

More commonly, afile will need to be declared non-sharable only during the execution of a specific
program by opening the file with the non-sharable bit set in the mode. An example would be when
the fileis being sorted. With the non-sharable bit set, the file will be treated exactly as though it had
a non-sharable attribute. If the file has already been opened by another process, an error (#253) will
be returned.

A feature of non-sharablefilesisthat they may be duplicated using the I$Dup system call so that they
may be inherited, and therefore accessible to more than one process at a time. Non-sharable means
only that the file may be opened once at atime. It is usually a very bad idea to have two processes
actively use any disk file through the same (inherited) path.

End of File Lock

A special case of record locking occurs when a user reads or writes data at the end of file. The user
issaid to have “EOF Lock” and will keep the end of file locked out until aread or write is performed
that is not at the end of the file. EOF Lock is the only case that a write call automatically causes any
of thefile to belocked out. It was done to avoid problems that could otherwise occur when two users
want to ssimultaneously extend afile.

An interesting and extremely useful side effect occurs when a program creates a file for sequential
output. As soon asthefileis created, EOF Lock is gained, and no other process will be able to “pass’
the writer in processing the file. For example, if an assembly listing is redirected to a disk file, a
spooler utility might open and begin listing the file before the assembler has written even thefirst line
of output. Record locking will always keep the spooler 'one step behind' the assembler, making the
listing come out as desired.

DeadLock Detection

A deadly embrace, or deadlock, occurs (typically) when two processes attempt to gain control of two
or more disk areas at the sametime. If each process gets one area (locking out the other process), both
processes will be stuck permanently, waiting for a segment that can never become free. This situation
isageneral problem that is not restricted to any particular record locking scheme or operating system.

When a deadly embrace is found by RBF, a deadlock error (#254) is returned to the process that
caused the deadlock to be detected. It is easy to create programs that, when ran together, generate
lots of deadlock errors. The easiest way to avoid them is to access records of shared filesin the same
seguences in processes that may be run simultaneously.

When adeadlock error does occur, it is not sufficient for a program to re-try the operation “in error”.
If all processes used this strategy, none would ever succeed. It is necessary for at least one process to
release it's control over arequested segment for any to proceed by aborting.

Specific Details for Particular 1/0 Functions

Open/Create

The most important rule to follow when opening filesis do not open afilefor updateif you only intend
toread fromit. Files open for read only will not cause records to be locked out, and they will generally

47

Specific Details for
Particular 1/0 Functions

help the system to run faster. If filesare routinely opened for update on a multi-user system, users may
sometimes become record locked for extended periods of time. When this occurs, users sometimes
think the system has died, and exhibit panic behavior.

File permission checking occursfor all filesencountered in the specified pathlist. Permission checking
means that if you do not have permission to read a directory, you may not access any files in that
directory.

The specia “@” file should be used in update mode with extreme care. To keep system overhead
low, record locking routines only check for conflicts on paths opened for the samefile. The* @ file
is considered different from any other file, and therefore will only conform to record lockouts with
other users of the“ @” file. Writing viathe “ @” file (to patch crashed disks, for example€) should only
be done in single-user mode. The '@' file has been included as a convenience only; it is likely that
problems will eventually occur if it is used in update mode regularly.

Read/ReadLine

Read and ReadL ine cause records to be locked out only if thefileis open in update mode. The locked
out areaincludes all bytes starting with the current file pointer and extending for the number of bytes
requested. Thus, if a ReadLine call is made for 256 bytes, exactly 256 bytes will be locked out,
regardless of how many bytes are actually read before a carriage return is encountered. EOF Lock will
be gained if the bytecount requested also includes the current end of file.

A segment will remain locked out until any of the following occur: another read is performed, awrite
isperformed, thefileisclosed, or arecord lock SetStat isissued. Releasing arecord does not normally
release EOF Lock. Any Read or Write of zero bytes will release any record lock, EOF lock, or File
Lock.

Write/WriteLine

Close

Seek

Makdir

Write calls always release any record that has been locked out. In addition, a write of zero bytes
releases EOF Lock and File Lock if they have been gained. Writing usually does not lock out any
portion of the file unlessit occurs at end of file when it will gain EOF Lock.

When RBF expands afile it expandsit in increments of at least the 'segment allocation size' (IT.SAS
in device descriptor) sectors long so that usually more space than is required is allocated. At the time
thefileis closed, the excess spaceis trimmed and returned to free space. This strategy does not work
very well for random-access data bases that expand frequently by only afew records. The segment list
rapidly fills up with small segments. A provision has been added to prevent thisfrom being aproblem.

If the file (open in write or update mode) is closed when it is not at end of file, the file will not be
trimmed. In order to be effective, al programs that deal with the file in write or update mode must
insure that they do not close the file while at end of file, or the file will lose any excess space it may
have. The easiest way to insure this, isto do a seek(0) before closing the file. This method was chosen
since random access files will frequently be at some other place than end of file, and sequential files
are amost always at end of file when closed.

The seek call has no effect on record locking with the minor exception noted above in close. In
particular, seek does not remove any record locks.

Makdir createsitsfilesin non-sharable mode. Since file attributes are checked at each pathlist element
(see open/create), makdir will return an error if it cannot gain non-sharable access to any directory
specified. It can be a bit annoying sometimes, but it helps prevent certain recursive programs from
getting out of control.

48

Specific Details for
Particular 1/0 Functions

Del
The delete begins by opening thefile for writein non-sharable mode. If thefileis open, an error (#253)
isreturned, and the fileis NOT deleted. All sorts of problems occur when thisis not enforced.
SetStatus

Two new setstat codes have been added for the convenience of record locking. They are SS.Lock, for
locking or releasing part of afile; and SS.Ticks, for setting the length of time a program iswilling to
wait for alocked record. See the ISSETSTT documentation for a description of the codes.

49

Chapter 7. Sequential Character File
Manager

The Sequential Character File Manager (SCF) isthe OS-9 file manager module that supports devices
that operate on acharacter-by-character basis, such asterminals, printers, modems, etc. SCF canhandle
any number or type of such devices. It is a reentrant subroutine package called by IOMAN for 1/0O
service requests to sequential character-oriented devices. It includes the extensive input and output
editing functions typical of line-oriented operation such as: backspace, line delete, repeat line, auto
line feed. Screen pause, return delay padding, etc.

Standard OS-9 systems are supplied with SCF and two SCF-type device driver modules: ACIA, which
run 6850 serial interfaces, and PIA, which drives a 6821-type paralldl interface for printers.

7.1. SCF Line Editing Functions

I$Read and | $Write service requests to SCF-type devices (which correspond to Basic09 GET and PUT
statements) pass data to/from the device without any modification. In particular, carriage returns are
not automatically followed by line feeds or nulls, and the high order bits are passed as sent/received.
If X-on and X-off are enabled, these characters are intercepted by the device driver.

I$ReadL n and I$WritL n service requests (which correspond to Basic09 INPUT, PRINT, READ and
WRITE statements) to SCF-type devices perform full line editing of all functions enabled for the
particular device. These functions are initialized when the device is first used by copying the option
table from the device descriptor table associated with the specific device. They may be altered anytime
afterwards from assembly language programs using the | $SetStt and 1 $Get Stt service requests, or from
the keyboard using the tmode command. Also, al bytes transferred in this mode will have the high
order bit cleared.

The following path descriptor values control the line editing functions:
If PD.UPC <> 0 bytesinput or output in the range “a..z” are made“A..Z”

If PD.EKO <> 0, input bytes are echoed, except that undefined control characters in the range $0..
$1F print as*“.”

If PD.ALF <> 0, carriage returns are automatically followed by line feeds.
If PD.NUL <> 0, After each CR/LF aPD.NUL “nulls’ (always $00) are sent.
If PD.PAU <> 0, Auto page pause will occur after every PD.PAU lines since the last input.

If PD.BSP <> 0, SCFwill recognize PD.BSPasthe“input” backspace character, and will echo PD.BSE
(the backspace echo character) if PD.BSO = 0, or PD.BSE, space, PD.BSE if PD.BSO <> 0.

If PD.DEL <> 0, SCF will recognize PD.DEL the delete line character (on input), and echo the
backspace sequence over the entire lineif PD.DLO =0, or echo CR/LF if PD.DLO <> 0.

PD.EOR definesthe end of record character. Thisisthelast character an each line entered (I$ReadLn),
and terminates the output (I$WritLn) when this character is sent. Normally PD.EOR will be set to
$OD. If it is set to zero, SCF's I$ReadL.n will never terminate, unless an EOF occurs.

If PD.EOF <> 0, it defines the end of file character. SCF will return an end-of-file error on I$Read or
I$ReadLn if thisisthefirst (and only) character input. It can be disabled by setting its value to zero.

If PD.RPR <> 0, SCF (I$ReadL n) will, upon receipt of this character, echo acarriage return (and insert
it in the buffer for “DUP” described below), and then reprint the current line.

51

SCF Definitions of
The Path Descriptor

If PD.DUP <> 0, SCF (I$ReadLn) will duplicate whatever is in the input buffer through the first
“PD.EOR” character.

If PD.PSC <> 0, output is suspended before the next “PD.EOR” character when this character isinput.
Thiswill aso delete any “type ahead” input for |$ReadLn.

If PD.INT <> 0, and isreceived on input, akeyboard interrupt signal is sent to the last user of this path.
Also, it will terminate the current 1/O request (if any) with an error identical to the keyboard interrupt
signal code. PD.INT normally is set to a control-C character.

If PD.QUT <> 0, and isreceived on input, a keyboard abort signal is sent to the last user of this path.
Also it will terminate the current 1/O request (if any) with an error code identical to the keyboard
interrupt signal code. Thislocation is normally set to a control-Q character.

If PD.OVF <> 0, it is echoed when I$ReadLn has satisfied its input byte count without finding a
“PD.EOR” character.

NOTE: It is possible to disable most of these special editing functions by setting the corresponding
control character in the path descriptor to zero by using the 1$SetStt service request, or by running the
tmode utility. A more permanent solution may be had by setting the corresponding control character
value in the device descriptor module to zero.

Device descriptors may be inspected to determine the default settings for these values for specific
devices.

7.2. SCF Definitions of The Path Descriptor

The table below describes the path descriptors used by SCF and SCF-type device drivers.

Name Offset Size Description
Universal Section (same for all file managers)
PD.PD $00 1 Path number
PD.MOD $01 1 Mode (read/write/update)
PD.CNT $02 1 Number of open images
PD.DEV $03 2 Address of device table entry
PD.CPR $05 1 Current process ID
PD.RGS $06 2 Address of callersregister stack
PD.BUF $08 2 Buffer address
PD.FST $0A 32 File Manager Storage
PD.OPT $20 (size of option section) Option section
SCF Path Descriptor Definitions
PD.DV2 $0A 2 Device table addr of 2nd (echo) device
PD.RAW $0C 1 Edit flag: O=raw mode, 1=edit mode
PD.MAX $0D 2 Readline maximum character count
PD.MIN $OF 1 Devices are “mine” if cleared
PD.STS $10 2 Status routine module address
PD.STM $12 2 Reserved for status routine
SCF Option Section Definition

$20 1 Device class 0=SCF 1=RBF 2=PIPE 3=SBF
PD.UPC $21 1 Case (0=BOTH, 1=UPPER ONLY)
PD.BSO $22 1 Backsp (0=BSE, 1=BSE SP BSE)

52

SCF Device Descriptor Modules

Name Offset Size Description

PD.DLO $23 1 Delete (0 = BSE over line, 1=CR LF)
PD.EKO $24 1 Echo (0=no echo)

PD.ALF $25 1 Auto LF (O=no auto LF)

PD.NUL $26 1 End of line null count

PD.PAU $27 1 Pause (0= no end of page pause)
PD.PAG $28 1 Lines per page

PD.BSP $29 1 Backspace character

PD.DEL $2A 1 Delete line character

PD.EOR $2B 1 End of record character (read only)
PD.EOF $2C 1 End of file character (read only)
PD.RPR $2D 1 Reprint line character

PD.DUP $2E 1 Duplicate last line character
PD.PSC $2F 1 Pause character

PD.INT $30 1 Keyboard interrupt character (CTL C)
PD.QUT $31 1 Keyboard abort character (CTL Q)
PD.BSE $32 1 Backspace echo character (BSE)
PD.OVF $33 1 Line overflow character (bell)
PD.PAR $34 1 Device initialization value (parity)
PD.BAU $35 1 Software settable baud rate
PD.D2P $36 2 Offset to 2nd device name string
PD.XON $38 1 ACIA X-ON char

PD.XOFF $39 1 ACIA X-OFF char

The first section is universal for al file managers, the second and third section are specific for
SCF and SCF-type device drivers. The option section of the path descriptor contains many device
operating parameters which may be read or written by the OS9 1$GetStt or |$SetStt service requests.
IOMAN initializes this section when a path is opened by copying the corresponding device descriptor
initialization table. Any values not determined by this table will default to zero.

Specia editing functions may be disabled by setting the corresponding control character valueto zero.

7.3. SCF Device Descriptor Modules

Device descriptor modules for SCF-type devices contain the device address and an initialization table
which definesinitial values for the 1/O editing features, as listed below.

MODULE

OFFSET

$12
$13
$14
$15
$16
$17
$18

TABLE
IT.DVC
IT.UPC
IT.BSO
IT.DLO
IT.EKO
IT.ALF
IT.NUL

ORG $12

EQU.
RMB 1
RMB 1
RMB 1
RMB 1
RMB 1
RMB 1
RMB 1

beginning of option table

device class (0=scf 1=rbf 2=pipe 3=sbf)
case (O=both, 1=upper only)

back space (O=bse, 1=bse,sp,bse)
delete (O=bse over line, 1=cr)

echo (0=no echo)

auto line feed (0= no auto If)

end of line null count

53

SCF Device Driver
Storage Definitions

MODULE ORG $12

OFFSET

$19 IT.PAU RMB 1 pause (0= no end of page pause)
$1A IT.PAG RMB 1 lines per page

$1B IT.BSP RMB 1 backspace character

$1C IT.DEL RMB 1 delete line character

$1D IT.EOR RMB 1 end of record character

$1E IT.EOF RMB 1 end of file character

$1F IT.RPR RMB 1 reprint line character

$20 IT.DUP RMB 1 dup last line character

$21 IT.PSC RMB 1 pause character

$22 IT.INT RMB 1 interrupt character

$23 IT.QUT RMB 1 quit character

$24 IT.BSE RMB 1 backspace echo character
$25 IT.OVF RMB 1 line overflow character (bell)
$26 IT.PAR RMB 1 initialization value (parity)
$27 IT.BAU RMB 1 baud rate

$28 IT.D2P RMB 2 attached device namestring offset
$2A IT.XON RMB 1 xon character

$2B IT.XOFF RMB 1 xoff character

$2C IT.STN RMB 2 offset to status routine

$2E IT.ERR RMB 1 initial error status

NOTES:

SCF editing functionswill be“turned of f” if the corresponding special character isazero. For example,
if the end of file character (offset $13) was a zero, there would be no end of file character.

The initialization value (offset $26) is typically used to initialize the device's control register when
apathisopenedtoit.

7.4. SCF Device Driver Storage Definitions

An SCF-type device driver module contains a package of subroutines that perform raw 1/O transfers
to or from a specific hardware controller. These modules are usually reentrant so one copy of the
module can simultaneously run several different devices that use identical 1/0 controllers. For each
“incarnation” of the driver, IOMAN will alocate a static storage area for that device driver. IOMAN
determines that a new incarnation of the device driver is needed when an attach occurs for a device
with a'different port address. The size of the storage areais given in the device driver module header.
Some of thisstorage areaisrequired by IOMAN and SCF, thedevicedriver isfreeto usetheremainder
for variables and buffers. This static storage is defined in OS9 | ODEFS and OS9 SCFDEFS as:

OFFSET ORG O
$0 V.PAGE RMB 1 port extended address
$1 V.PORT RMB 2 device base address
$3 V.LPRC RMB 1 last active processid
$4 V.BUSY RMB 1 active processid (0 = not busy)

$5 V.WAKE RMB 1 processid to reawaken

SCF Device Driver
Storage Definitions

OFFSET ORG O
V.USER EQU . end of OS9 definitions

$6 V.TYPE RMB 1 device type or parity
$7 V.LINE RMB 1 lines Ieft till end of page
$8 V.PAUS RMB 1 pause request (0 = no pause)
$9 V.DEV2 RMB 2 attached device static storage
$B V.INTR RMB 1 interrupt character
$C V.QUIT RMB 1 quit character
$D V.PCHR RMB 1 pause character
$E V.ERR RMB 1 error accumulator
$F V.XON RMB 1 X-on character

$10 V. XOFF RMB 1 X-off character

$11 V.RSV RMB 12 reserved

$1D V.SCF EQU . end of scf definitions

V.PAGE, V.PORT These three bytes are defined by IOMAN to be the 24 hit device address.

V.LPRC Thislocation contains the process-ID of the last process to use the device. The IRQ service
routine is responsible for sending this process the proper signal in case a “QUIT” character or an
“INTERRUPT” character is received. Maintained by SCF.

V. BUSY Thislocation contains the process ID of the process currently using the device (zero if it is
not being used). Thisis used by SCF to prevent more than one process from using the device at the
same moment. Defined by SCF.

V.WAKE Thislocation containsthe process|D of any processthat iswaiting for thedeviceto complete
1/O (or zero if there is none waiting). The interrupt service routine should check thislocation to seeif
aprocessiswaiting and if so, send it awake up signal. Maintained by the device driver.

V.TYPE This location contains any special characteristics of adevice. It istypically used asavalue
to initialize the device control register, for parity etc. It is maintained by SCF which copiesits value
from PD.PAR in the path descriptor.

V.LINE Thislocation contains the number of linesleft till end of page. Paging is handled by SCF.

V.PAUS This location is a flag used by SCF to indicate that a pause character has been received.
Setting its value to anything other than zero will cause SCF to stop transmitting characters at the end
of the next line. Device driver input routines must set V.PAUS in the ECHO device's static storage
area. SCF will check thisvalue in the ECHO device's static storage when output is sent.

V.DEV2 This location contains the address of the ECHO (attached) device's static storage area.
Typically adeviceis its own echo device. However, it may not be, as in the case of a keyboard and
amemory mapped video display. Maintained by SCF.

V.INTR Keyboardinterrupt character. Thisis maintained by SCF, which copiesitsvaluefrom PD.INT
in the path descriptor.

V.QUIT Keyboard abort character. Thisis maintained by SCF which copies its value from PD.QUT
in the path descriptor.

V.PCHR Pause character. Thisis maintained by SCF which copies its value from PD.PSC in the path
descriptor.

V.ERR Thislocation is used to accumulate |/O errors. Typically it is used by the IRQ service routine
to record errors so that they may be reported later when SCF calls one of the device driver routines.

55

SCF Device Driver Subroutines

7.5. SCF Device Driver Subroutines

7.5.1.

7.5.2.

Aswith al devicedrivers, SCF device drivers use a standard executable memory moduleformat with a
moduletypeof “devicedriver” (CODE $EO). The execution offset addressin the modul e header points
to abranch table that has six three byte entries. Each entry istypically a LBRA to the corresponding
subroutine. The branch table is asfollows:

ENTRY Ibra INIT initialize device
Ibra READ read character
Ibra WRITE write character
Ibra GETSTA get device status
Ibra SETSTA Set device status
Ibra TERM terminate device

Each subroutine should exit with the condition code register C hit cleared it no error occurred.
Otherwise the C it should be set and an appropriate error code returned in the B register. Below isa
description of each subroutine, itsinput parameters and its output parameters.

NAME: INIT
INPUT: (U) = address of device static storage

(Y) = address of device descriptor module
OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

FUNCTION: INITIALIZE DEVICE AND ITS STATIC
STORAGE

Usually this routine has three basic operations to do:

1. Initialize the device static storage.

2. Place the IRQ service routine on the IRQ polling list by using the OS9 F$IRQ service request.
3. Initialize the device control registers (enable interrupts if necessary).

NOTE: Prior to being called, the device static storage will be cleared (set to zero) except for V.PAGE
and V.PORT which will contain the 24 bit device address. There is no need to initialize the portion
of static storage used by IOMAN and SCF.

NAME: READ

NAME: READ

INPUT: (U) = address of device static storage
(Y) = address of path descriptor

OUTPUT: (A) = character read

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

FUNCTION: GET NEXT CHARACTER

This routine should get the next character from the input buffer. If thereis no data ready, this routine
should copy its process ID from V.BUSY into V.WAKE and then use the F$Sleep service request to
put itself to sleep indefinately.

56

NAME: WRITE

7.5.3.

7.5.4.

Later when data is received, the IRQ service routine will leave the data in a buffer, then check
V.WAKE to seeif any processiswaiting for the device to complete I/O. If so, the IRQ serviceroutine
should send awakeup signal to it.

NOTE: Data buffers for queueing data between the main driver and the IRQ service routine are not
automatically allocated. It any are used, they should be defined in the device's static storage area.

NAME: WRITE
NAME: WRITE
INPUT: (A) = char to write

(Y) = address of the path descriptor
(U) = address of device static storage

OUTPUT: NONE
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.
FUNCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables the device output interrupts. It the

data buffer is already full, this routine should copy its process ID from V.BUSY into V.WAKE and
then put itself to sleep.

Later when the IRQ service routine transmits a character and makes room for more datain the buffer,
it will check V.WAKE to seeif there is a process waiting for the device to complete I/O. It there s,
it sends awake up signal to that process.

NOTE: Thisroutine must ensure that the IRQ service routine will start up when datais placed into the
buffer. After an interrupt is generated the IRQ service routine will continue to transmit data until the
data butter is empty, and then it will disable the device's “ready to transmit” interrupts.

NOTE: Data buffers for queueing data between the main driver and the IRQ service routine are not
automatically allocated. It any are used, they should be defined in the device's static storage area.

NAME: GETSTA/SETSTA
NAME: GETSTA

SETSTA
INPUT: (A) = function code

(Y) = address of path descriptor
(U) = address of device static storage

OUTPUT: Depends upon function code
FUNCTION: GET/SET DEVICE STATUS

Thisroutine is awild card call used to get (set) the device parameters specified in the 1$GetStt and
I$SetStt service requests. Most SCF-type requests are handled by IOMAN or SCF. Any codes not
defined by them will be passed to the device driver.

In writing getstat/setstat codes, it may be necessary to examine or change the register stack which
contains the values of the 6809 registers at the time the OS9 service request was issued. The address
of the register packet may be found in PD.RGS, which islocated in the path descriptor. Notethat Y is
apointer to the path descriptor and PD.RGS isthe offset in the path descriptor. The following offsets
may be used to access any particular value in the register stack:

OFFSET MNEMONIC MPU REGISTER
$0 RSCC RMB 1 condition code register

57

NAME: TERM

7.5.5.

7.5.6.

OFFSET MNEMONIC MPU REGISTER
$1 R$D EQU . Dregister

$1 R$A RMB 1 A register

$2 R$B RMB 1 Bregister

$3 R$DP RMB 1 DPregister

$4 R$X RMB 2 X register

$6 R$Y RMB 2 Y register

$8 R$U RMB 2 U register

$A R$PC RMB 2 program counter

| dx PD. RGS,y
| dd RS$Y, x

getsthe Y register parameter from the caller

NAME: TERM

NAME: TERM

INPUT: (U) = ptr to device static storage
OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

FUNCTION: TERMINATE DEVICE

Thisroutine is called when a device is no longer in use, defined as when its use count in the device
table becomes zero. In Level One systems, the termination routine is not called until the link count of
the driver, descriptor, or file manager also reaches zero, and the module is being removed from the
system memory directory. It must perform the following:

1. Wait until the output buffer has been emptied (by the IRQ service routine).
2. Disable deviceinterrupts.
3. Remove device from the IRQ polling list.

NOTE: LI - Modules contained in the BOOT filewill NOT be terminated. L1l - Any 1/O devices that
are not being used will be terminated.

NAME: IRQ SERVICE ROUTINE

NAME: IRQ SERVICE ROUTINE
FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device drivers branch table and not called directly from
SCF, it is an important routine in device drivers. The main things that it does are:

1. Service the device interrupts (receive data from device or send data to it). This routine should put
its data into and get its data from buffers which are defined in the device static storage.

2. Wake up any process waiting for 1/0O to complete by checking to see if there is a process ID in
V.WAKE (non-zero) and it so send awakeup signal to that process.

58

NAME: IRQ SERVICE ROUTINE

3. If the deviceisready to send more data and the output buffer is empty, disable the device's “ready
to transmit” interrupts.

4. If a pause character is received, set V.PAUS in the attached device static storage to a non-zero
value. The address of the attached device static storageisin V.DEV2.

5. If akeyboard abort or interrupt character is received, signal the processin V.LPRC (last known
process) if any.

When the IRQ service routine finishes servicing an interrupt, it must clear the carry and exit with an
RTSinstruction.

59

60

Chapter 8. The Pipe File Manager

The Pipe File Manager (Pipeman) handles control of processes that use paths to pipes. Pipes alow
concurrently executing processes to communicate data by allowing the output of one process (the
writer) to be read as input to a second process (the reader). The writer sends it's output to standard
output which is usually the terminal screen. The reader read input from standard input. When the “!”
operator is used, Pipeman handles reading and writing to the pipe. Pipeman all ocates a path descriptor
and a 256 byte data buffer that the processes will read/write to/from. Pipeman also controls which
process has centrol of the pipe (either areader or a writer). See the OS9 Operating System User's
Manual for more information on pipes.

Pipeman has the standard file manager branch table at its entry point:

PipeEnt Ibra Create
| bra Open
| bra MakDir
[bra ChgDir
| bra Del ete
| bra Seek
| bra PRead
|l bra PWite
| bra PRdLN
| bra PWLn
| bra Getstat
| bra Put st at
| bra O ose

For pipes, the MakDir, ChgDir, Delete, and Seek areillegal service routines and will return ESUnkSvc
(unknown service request). Getstat and Putstat are “no action service routines’ and will return with
no error.

Create and Open are the same routine. They set up the 256 byte data buffer and save several addresses
in the path descriptor.

Close checksto seeif any processisreading or writing through the pipe. If not, the buffer is returned.
PRead, PRdLn, PWrite, PWrLn read/write data to/from the buffer.

The “!” operator tells shell that processes wish to communicate via a pipe. Example: OS9: procl !
proc2. In thisexample, shell will fork procl with the stdout path to a pipe and will fork proc2 with the
stdin path from a pipe. Shell can also handle a series of processes using pipes, such asprocl ! proc2 !
proc3 ! proc4. The outline on the next page shows how to set up pipes between two process.

8.1. Outlines of Establishing a Pipe Between
Two Processes in a Machine Language
Program

Example 8.1. Example: Establishing a Pipe Between Two Processes

Open /pipe save path in variable x

Dup path #1 save stdout in variable y

C ose #1 make path avail abl e

Dup x puts pipe in stdout (Dup uses |owest avail.)

61

Outlines of Establishing a Pipe
Between Two Processesin a
Machine Language Program

Fork procl fork process 1

G ose #1 make path avail abl e
Dup y restores stdout
Close y make path avail abl e
Dup path #0 save stdin in vy

Cl ose #0 make path avail abl e
Dup x puts pipe in stdin
Fork 2 fork process 2

Cl ose #0 make path avail abl e
Dup y restore stdin

Gl ose x no | onger needed
Close y no | onger needed

Thefollowing example shows how an application program could spawn another processwith the stdin
and stdout of the process routed to a pipe.

Example 8.2. Example 2: Forking a process with standard pathsto the pipe.

Open /pipel save path in variable a
Open /pipe2 save path in variable b

Dup O save stdin in variable x
Dup 1 save stdout in variable y
Close 0 make path avail abl e
Close 1 nmake path avail abl e

Dup a make pipel stdin

Dup b make pi pe2 stdout

Fork new process

Close 0 make path avail abl e
Close 1 nmake path avail abl e

Dup x restore stdin

Dup y restore stdout

Return a&b return pipe path nunbers to caller

62

Chapter 9. Assembly Language
Programming Techniques

There are four key rules for programmers writing OS-9 assembly language programs:

1. All programs must use position-independent-code (PIC). OS-9 selects load addresses based on
available memory at run-time. Thereisno way to force aprogram to be loaded at a specific address.

2. All programs must use the standard OS-9 memory module formats or they cannot be loaded and
run. Programs must not use self-modifying code. Programs must not change anything in amemory
module or use any part of it for variables.

3. Storage for all variables and data structures must be within a data area which is assigned by OS-9
at run-time, and is separate from the program memory module.

4. All input and output operations should be made using OS-9 service request calls.

Fortunately, the 6809's versatile addressing modes make the rules above easy to follow,. The OS-9
Assembler also helps because it has special capabilitiesto assist the programmer in creating programs
and memory modules for the OS-9 execution environment.

9.1. How to Write Position-Independent Code

The 6809 instruction set was optimized to allow efficient use of Position Independent Code (PIC). The
basic technique is to always use PC-relative addressing; for example BRA, LBRA, BSR and LBSR.
Get addresses of constants and tables using LEA instructions instead of load immediate instructions.
If you use dispatch tables, use tables of RELATIVE, not absolute, addresses.

INCORRECT CORRECT

LDX #CONSTANT LEAX CONSTANT,PCR

JSR SUBR BSR SUBR or LBSR SUBR
JMP LABEL BRA LABEL or LBRA LABEL

9.2. Addressing Variables and Data
Structures

Programs executed as processes (by F$Fork and F$Chain system calls or by the Shell) are assigned a
RAM memory areafor variables, stacks, and data structures at execution-time. The addresses cannot
be determined or specified ahead of time. However, a minimum size for this area is specified in
the program's module header. Again, thanks to the 6809's full compliment of addressing modes this
presents no problem to the OS-9 programmer.

When the program isfirst entered, the Y register will have the address of the top of the process data
memory area. If the creating process passed a parameter area, it will be located from the value of the
SP to the top of memory (Y), and the D register will contain the parameter area size in bytes. If the
new process was called by the shell, the parameter area will contain the part of the shell command
line that includes the argument (parameter) text. The U register will have the lower bound of the data
memory area, and the DP register will contain its page number.

The most important rule isto not use extended addressing! Indexed and direct page addressing should
be used exclusively to access data area values and structures. Do not use program-counter relative
addressing to find addressesin the dataarea, but do useit to refer to addresses within the program area.

63

Stack Requirements

The most efficient way to handle tables, buffers, stacks, etc., is to have the program's initialization
routine compute their absolute addresses using the data area bounds passed by OS-9 in the registers.
These addresses can then be saved in the direct page where they can be loaded into registers quickly,
using short instructions. This technique has advantages: it is faster than extended addressing, and the
program is inherently reentrant.

9.3. Stack Requirements

Because OS-9 uses interrupts extensively, and also because many reentrant 6809 programs use
the MPU stack for local variable storage, a generous stack should be maintained at all times. The
recommended minimum is approximately 200 bytes.

9.4. Interrupt Masks

User programs should keep the condition codes register F (FIRQ mask) and | (IRQ mask) bits off.
They can be set during critical program sequences to avoid task-switching or interrupts, but thistime
should be kept to aminimum. If they are set for longer than atick period, system timekeeping accuracy
may be affected. Also, some Level Two systemswill abort programs having a set IRQ mask.

9.5. Using Standard I/O Paths

Programs should be written to use standard 1/0O paths wherever practical. Usualy, this involves I/
O calls that are intended to communicate to the user's terminal, or any other case where the OS-9
redirected 1/O capability isdesirable.

All three standard /O pathswill already be open when the program is entered (they are inherited from
the parent process). Programs should not close these paths except under very specia circumstances.

Standard 1/O paths are always assigned path numbers zero, one, and two, as shown below:
Path 0 - Standard Input. Analogous to the keyboard or other main data input source.
Path 1 - Standard Output. Analogous to the terminal display or other main data output destination.

Path 2 - Standard Error/Status. Thispath isprovided so output messages which arenot part of the actual
program output can be kept separate. Many times paths 1 and 2 will be directed to the same device.

9.6. Writing Interrupt-driven Device Drivers

0S-9 programs do not use interrupts directly. Any interrupt-driven function should be implemented
as a device driver module which should handle al interrupt-related functions. When it is necessary
for a program to be synchronized to an interrupt-causing event, a driver can send a semaphore to a
program (or the reverse) using OS-9's signal facilities.

It isimportant to understand that interrupt service routines are asynchronous and somewhat nebulous
in that they are not distinct processes. They are in effect subroutines called by OS-9 when an interrupt
occurs.

Therefore, al interrupt-driven device drivers have two basic parts: the “mainling’ subroutines that
execute as part of the calling process, and a separate interrupt service routine.

The two routines are asynchronous and therefore must use signals for communications and
coordination.

The INIT initialization subroutine within the driver package should allocate static storage for the
service routine, get the service routine address, and execute the F$IRQ system call to add it to the
IRQ polling table.

64

A Sample Program

When a device driver routine does something that will result in an interrupt, it should immediately
execute a F$Sleep service request. This results in the process deactivation. When the interrupt in
guestion occurs, its service routine is executed after some random interval. It should then do the
minimal amount of processing required, and send a “wakeup” signal to its associated process using
the F$Send service request. It may also put some datain its static storage (1/0 data and status) which
is shared with its associated “ sleeping” process.

Some time later, the device driver “mainling” routine is awakened by the signal, and can process the
data or status returned by the interrupt service routine.

9.7. A Sample Program

The OS-9 list utility and “Inkey” program is shown on this and the following pages as an example
of assembly language programming.

Example9.1. List Utility

Mcroware OS-9 Assenbler 2.1 01/ 04/ 82 23: 39: 37 Page 001

LI ST

0000

000D

00Cs
0000
0000
0001
0003
oocB
0193
025B

0011
0013
0015
0018
001A
001cC

001E
0020
0022
0026
0029
002B
002D
0030
0032

- File List Wility

* Kk k k%

* LIST UTILITY COVWAND
* Syntax: |ist <pathnane>
* COPI ES | NPUT FROM SPECI FI ED FI LE TO STANDARD QUTPUT

87CDO04E nod LSTEND, LSTNAM PRGRM+OBJCT,
REENT+1, LSTENT, LSTMEM
4C6973F4 LSTNAM fcs “List"

* STATI C STORAGE OFFSETS

*

BUFSI Z equ 200 size of input buffer
ORG O
| PATH rnmb 1 i nput pat h nunber
PRVPTR rnb 2 par amet er poi nter
BUFFER rmb BUFSI Z all ocate line buffer
r mb 200 al | ocate stack
rmb 200 room for paranmeter |ist
LSTMEM EQJ
9F01 LSTENT st x PRVPTR save paraneter ptr
8601 da #READ. sel ect read access node
103F84 0s9 | $Open open input file
252E bcs LI ST50 exit if error
9700 sta | PATH save input path nunber
9F01 st x PRVPTR save updated param ptr
9600 LI ST20 | da | PATH | oad i nput path nunber
3043 | eax BUFFER, U | oad buffer pointer
10BEOC88 | dy #BUFSI Z maxi mum bytes to read
103F8B 0s9 | $ReadLn read |ine of input
2509 bcs LI ST30 exit if error
8601 lda #1 | oad std. out. path #
103F8C 0s9 I$WitLn output line
24EC bcc LI ST20 Repeat if no error
2014 bra LI ST50 exit if error

65

A Sample Program

0034 C1D3 LI ST30 cmpb #E$SEOF at end of file?

0036 2610 bne LI ST50 branch if not

0038 9600 | da | PATH | oad i nput path nunber
003A 103F8F 0s9 | $C ose cl ose input path

003D 2509 bcs LI ST50 ..exit if error

003F 9EO01 [dx PRVPTR restore paraneter ptr
0041 A684 lda 0,X

0043 810D cnpa #$0D End of paraneter |ine?
0045 26CA bne LSTENT ..no; list next file
0047 5F clrb

0048 103F06 LI ST50 0s9 F$EXI t ... termnate

004B 95BB58 enod Mbdul e CRC

004E LSTEND EQU *

Example 9.2. Basic09 InKey Subroutine

khkkkkhhkkkkhkkkkkxk

*

*

*

* % %k X % X X

(vAvAvEvEvAwRW)

I NKEY - a subroutine for BASI C09
Aut hor: Robert Doggett

Cal ling syntax:
RUN | nKey(Str Var)
RUN | nKey(Pat h, St rVar)

I nkey deternines if a key has been typed on the given path
(Standard Input if not specified), and if so, returns the next
character in the string variable. |[If no key has been
typed a null string is returned. |If a path is specified, it nay
be either type BYTE or INTEGER StrVar nmay be declared as a
BYTE variable, if preferred. If this is done, a value of 255
i ndicates that no data is ready.

0038 E$Param equ 56 Basi c09's "Paraneter Error"

0021 TYPE set SBRTN+OBJCT

0081 REVS set REENT+1

0000 87CDOO5F nod | nKeyEnd, | nKeyNam TYPE
REVS, | nKeyEnt , O

000D 496E6B65 | nKeyNam f cs "I nkey"

0012 02 fcb 2 edition two

0000 org 0 Paraneters

0000 Return r mb 2 Return addr of caller

0002 PCount rmb 2 Nunber of parans

0004 Par aml rmb 2 after 1st param addr

0006 Lengthl rnb 2 si ze

0008 Par anf rmb 2 2nd par am addr

000A Length2 rnb 2 si ze

0013 3064 | nKeyEnt | eax Parani, S

0015 EC62 | dd PCount,S Get paraneter count

0017 10830001 cnpd #1 j ust one paraneter?

001B 2717 beq | nKey20 ..Yes; path (A)=0

001F 10830002 cnpd #2 Two paraneters?

0021 2635 bne Par antr r No, abort

66

A Sample Program

0023 ECF804
0026 AE66
0028 301F
002A 2706
002C 301F
002E 2628
0030 1F98
0032 3068
0034 EEO2
0036 AE84
0038 CoFF
003A E784
003C 11830002
0040 2502
0042 E701
0044 Co01
0046 103F8D
0049 2508
004B 108E0001
004F 103F89
0052 39

0053 C1F6
0055 2603
0057 39

0058 Co638
005A 43
005B 39

005C 70F3D5
005F

00000 error(s)
00000 war ni ng(s)

I nKey10
I nKey20

I nKey30

I nKey90

Par amEr r
| nKeyErr

| dd
| dx
| eax
beq
| eax
bne
tfr
| eax
| du
| dx
| db
stb
crpu
bl o
stb
| db
0s9
bcs
| dy
0s9
rts

cnpb
bne
rts

I db
coma
res

enmod

| nKeyEnd equ

[Paranl, S] Get path number

Lengt hl, S
-1, X

I nKey10
-1, X

Par antrr
B, A
Paran®, S
2, X

0, X

#$FF

0, X

#2

I nKey30
1, X

#SS. Ready
| $Get St t

I nKey90
#1

| $Read

#E$Not Rdy
| nKeyErr

#E$Par am

*

$005F 00095 program byt es gener at ed

$000C 00012 data bytes allocated

$2410 09232 bytes used for synbols

put term nator

byt e avail abl e?

. Yes; (A)=Path number

I nt eger ?
. No; abort

l ength of string
addr of string
Init to null str

Two- byte string?
. No

I s any data ready?
.No; exit

Read one byte
return error status

(carry clear)

Paranmeter Error

in 2nd b

67

68

Chapter 10. Adapting OS-9 to a New
System

10.1.

10.2.

10.3.

Adapting OS-9 Level | to a New System

Thanks to OS-9's modular structure, OS-9 is easily portable to amost any 6809-based computer, and
infact, it hasbeeninstalled on anincredible variety of hardware. Usually only device driver and device
descriptor modules need to be rewritten or modified for the target system's specific hardware devices.
The larger and more complex kernel and file manager modules almost never need adaptation.

One essentia point is that you will need a functional OS-9 development system to use during
installation of OS-9 on anew target system. Althoughiit is possibleto use anon-OS-9 system, or if you
are truly masochistic, the target system itself, lack of facilities to generate and test memory modules
and create system disks can make an otherwise straightforward job a time consuming headache that
is seldom less costly than a commercial OS-9 equipped computer. Over a dozen manufacturers offer
0S-9 based devel opment systemsin all price ranges with an excellent sel ection of time saving options
such as hard disks, line printers, PROM programmers, etc.

Microware sells source code for standard /O drivers, and a “User Source Code Package” (on OS-9
format disk only) which contains source codeto the Shell, INIT, SY SGO, device driver and descriptor
modules, and a selection of utility commands which can be useful when moving OS-9 to a new target
system.

Warning

Standard OS-9 software packages are licensed for use on a single system. OS-9 cannot be
resold or otherwise distributed (even if modified) without a license. Contact Microware for
information regarding software licenses.

Adapting OS-9 to Disk-based Systems

Usually, most of the work in moving OS-9 to a disk-based target system is writing a device driver
modulefor thetarget system'sdisk controller. Part of thistask involves producing asubset of thedriver
(mostly disk read functions) for use as a bootstrap module.

If terminal and/or parallel 1/O for terminals, printers, etc., will use ACIA and/or PIA-type devices, the
standard ACIA and PIA device driver modules may be used, or device drivers of your own design
may be used in place of or in addition to these standard modules. Device descriptor modules may also
require adaptation to match device addresses and initialization required by the target system.

A CLOCK module may be adapted from a standard version, or a new one may be created. All other
component modules, such asIOMAN, RBF, SCF, SHELL, and utilities, seldom require modification.

Using OS-9 in ROM-based Systems

One of OS-9's mgjor features is its ability to reside in ROM and work effectively with ROMed
applications programs written in assembler or high-level languages such as Basic09, Pascal, and C.

All the component modules of OS-9 (including all commands and utilities) are directly ROMable
without modification. In some cases, particularly when the target system is to automatically execute
an application program upon system start-up, it may be necessary to reassembl e the two modul es used
during system startup (INIT, and SY SGO).

Thefirst step in designing a ROM-based system is to select which OS-9 modules to include in ROM.
The following checklist is designed to help you do so:

69

Adapting the Initialization Module

10.4.

a. Include OS9P1, OS9P2, SY SGO, and INIT. These modules are required in any OS-9 system.
b. If thetarget system isto perform any 1/0 or interrupt functionsinclude IOMAN.

c. If the target system is to perform |/O to character-oriented 1/0O devices using ACIAs, PlAs, etc.,
include SCF, required device drivers (such as ACIA and PIA, and/or your own), and device
descriptors as needed (such as TERM, T1, P, and/or your own). If device addresses and/or
initialization functions need to be changed, the device descriptor modules must be modified before
being ROMed.

d. If the target system is to perform disk 1/0O, include RBF, and appropriate disk driver and device
descriptor modules. Asin (c) above, change device addresses and initialization if needed. If RBF
will not be included, the INIT and SY SGO modules must be altered to remove references to disk
files.

e. If the target system requires multiprogramming, time-of-day, or other time-related functions,
include a CLOCK module for the target system's real-time clock. Also consider how the clock is
to be started,. Y ou may want to ROM the Setime command, or have SY SGO start the clock.

f. It the target system will receive commands manually, or if any application program uses Shell
functions, includethe SHELL and SY SGO modules, otherwiseinclude amodified SY SGO module
which calls your application program instead of Shell.

Adapting the Initialization Module

INIT is a module that contains system startup parameters. It must be in ROM in any OS-9 system
(it usually resides in the same ROM as the kernel). It is a non-executable module named “INIT” and
has type “ system” (code $C). It is scanned once during the system startup. It begins with the standard
header followed by:

MODULE

OFFSET

$9,$A,$B This location contains an upper limit RAM memory address used to
override OS-9's automatic end-of-RAM search so that memory may
be reserved for |/O device addresses or other special purposes.

$C Number of entries to create in the IRQ polling table. One entry is
required for each interrupt- generating device control register.

$D Number of entries to create in the system device table. One entry is
reguired for each device in the system.

$E,$F Offset to astring which isthe name of the first module to be executed
after startup, usualy “SYSGO”. There must aways be a startup
module.

$10,$11 Offset to the default directory name string (normally /DO0). Thisdevice
is assumed when device names are omitted from pathlists. If the
system will not use disks (e.g., RBF will not be used) this offset must
be zero.

$12,$13 Offset to theinitial standard path string (typically /TERM). This path

is opened as the standard paths for the initial startup module. This
offset must contain zero if thereis none.

$14,$15 Offset to bootstrap module name string. If OS-9 does not find
IOMAN in ROM during the start-up module search, it will executethe
bootstrap module named to load additional modules from afile on a
mass-storage device.

$16to N All name strings referred to above go here. Each must have the sign
bit (bit 7) of the last character set.

70

Adapting the SY SGO Module

10.5. Adapting the SYSGO Module

SY SGO isaprogram which isthe first process started after the system start-up sequence. Its function
isthreefold:

* It does additional high-level system initialization, for example, disk system SY SGO call the shell
to processthe St ar t up shell procedurefile.

* It startsthe first “user” process.

* Itthereafter remainsina“wait” state asinsuranceagainst all user processesterminating, thusleaving
the system halted. If this happens. SY SGO can restart the first user program.

The standard SY SGO module for disk systems cannot be used on non-disk based systems unless it
ismodified to:

1. Removeinitiaization of the working execution directory.
2. Remove processing of the St ar t up procedurefile.

3. Possibly changethe name of thefirst user program from Shell to the name of aapplicationsprogram.
Here are some example name strings:

fcs /userpgm/ (object code module “ userpgm™)
fes/RunB / (Module nameto fork to)

fecc luserprg/ (Parameter to pass)

fcb $0D (expects carriage return terminator)
fcs/Basic09 / (Start in Basic09)

71

72

Chapter 11. OS-9 Service Request
Descriptions

System calls are used to communicate between the OS-9 operating system and assembly-language-
level programs. There are three general categories:

1. User mode function requests
2. System mode function requests
3. 1/0O requests

System mode function requests are privileged and may be executed only while OS-9 isin the system
state (when it is processing another service request, executing a file manager, device drivers, etc.).
They are included in this manual primarily for the benefit of those programmers who will be writing
device drivers and other system-level applications.

The system calls are performed by |oading the MPU registerswith the appropriate parameters (if any),
and executing a SWI2 instruction immediately followed by a constant byte which is the request code.
Parameters (if any) will be returned in the MPU registers after OS-9 has processed the service request.
A standard convention for reporting errorsisused in all system calls; if an error occurred, the“ C bit” of
the condition code register will be set and accumulator B will contain the appropriate error code. This
permits a BCS or BCC instruction immediately following the system call to branch on error/no error.

Hereis an example system call for the 1$Close service request:

LDA PATHNUM
SW 2

FCB $8B

BCS ERROR

Using the assembler's“OS9” directive smplifies the call:

LDA PATHNUM
09 | $C ose
BCS ERROR

The 1/O service requests are simpler to use than in many other operating systems because the calling
program does not have to allocate and set up “file control blocks”, “ sector buffers’, etc. Instead OS-9
will return a one byte path number when a path to a file/device is opened or created; then this path
number may be used in subsequent 1/0 requeststo identify thefile/device until the path is closed. OS-9
internaly alocates and maintains its own data structures and users never have to deal with them: in
fact attempts to do so are memory violations.

All system calls have a mnemonic name that starts with “F$” for system functions, or “I1$" for 1/0
related requests. These are defined in the assembler-input equate file called OS9Def s.

In the service request descriptions which follow, registers not explicitly specified as input or output
parameters are not altered. Strings passed as parameters are normally terminated by having bit seven
of the last character set, a space character, or an end of line character.

NOTE: The system call descriptionsthat follow are explained using a particular notation. When F.xxx
appears in the SYSTEM CALLS section, it means that a BSR or LBSR is made instead of a system
call. The SYSTEM CALLS section shows the other routines the service request calls. Any notation
followed by “*” means that no error checking is done on return from the system call. The DATA
section shows what direct page information is accessed by the service request.

73

Service Request
Descriptions - User Mode

Thus, if asystem call returns an error code, the user can trace its origin. Some system calls generate
errors themselves; these are listed as POSSIBLE ERRORS. If the returned error code does not match
any of the given possible errors, then it was probably returned by another system call made by the
main call.

E$UnkSvc (Unknown Service Request) can be returned from any OS-9 system call to signal that the
service request has not been installed.

11.1. User Mode Service Requests

11.1.1. F$AIIBit - Set bits in an allocation bit map

ASSEMBLER CALL: OS9 F$AIIBIt

MACHINE CODE: 103F 13
ROUTINE LOCATION: LI -0S9pl
LIl - OS9p2
INPUT: (D) = Base address of allocation bit map.

(X) = Bit number of first bit to set.
(Y) = Bit count (number of bits to set)

OUTPUT: Bits set in given allocation map.
ERROR OUTPUT: None.

FUNCTION: ALLBIT is used by OS-9 to maintain internal allocation maps. System memory is
allocated using the following technique:

1. F$SchBit iscalled to locate free area.

2. F$AIIBit is called to reserve or alocate the bits.

3. F$DelBit is called to release the bits when they are no longer needed.

The ALLBIT service request sets bits in the allocation bit map with the number of the bit to be set
Specified by the X register. Each bit isequivalent to acertain amount of system resource beit memory,
disk space, etc.

Bit numbers range from 0..N-1, where N isthe number of bitsin the allocation bit map.

DATA: Ll and LII - D.Proc

SYSTEM CALLS: LI - None.
LIl - FSLDABX*, F$STABX*

CAVEATS: LI - Beware calling AlIBit with Y = 0 (Bit count of zerol)

11.1.2. F$Chain - Load and execute a new primary
module.

ASSEMBLER CALL: OS9 F$Chain
MACHINE CODE: 103F 05

INPUT: (A) = Language/ type code.

74

F$Chain - Load and execute
anew primary module.

(B) = Optional data area size (256 byte pages).
(X) = Address of module name or file name.
(Y) = Parameter area size (256 byte pages).
(U) = Beginning address of parameter area.

ERROR OUTPUT: (CC) = Chit =et.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - ESNEMod - module not executable.
E$De SP - memory size of zero.
ES$IForkP - not enough memory for stack and parameters.
LIl - ESNEMod

FUNCTION: CHAIN is used when it is necessary to execute an entirely new program, but without
the overhead of creating a new process. It is functionally similar to a FORK followed by an EXIT,
but with less processing overhead.

The CHAIN system call issimilar to F$Fork, but it does not create anew process. It effectively “resets”
the calling process program and data memory areas and begins execution of a new primary module.
Open paths are not closed or otherwise affected.

The sequence of operations taken by F$Chain is asfollows:
1. The process old primary module is unlinked.

2. The system parses the name string of the new process “primary module’ - the program that will
initially be executed. Then the system module directory is searched to see if a module with the same
name and type / language is already in memory. If so it islinked to. If not, the name string is used as
the pathlist of afile which isto be loaded into memory. Then the first modulein thisfileis linked to
(several modules may have been loaded from asinglefile).

3. The data memory areais reconfigured to the size specified in the new primary modul€'s header.
4. Intercepts and any pending signals are erased.

Thediagram bel ow showshow F$Chain sets up the datamemory areaand registersfor the new module.

L + <-- Y (hi ghest address)
| |

! Par anet er !

! Area !

! !

oo + <-- X, SP

| |

! !

! Dat a Area !

| |

| |

oo +

! Direct Page !

R R + <-- U DP (1 onest address)
D = paraneter area size

PC = nodul e entry point abs. address

CC = F=0, =0, others undefined

Y (top of memory pointer) and U (bottom of memory pointer) will always have a values at 256-byte
page boundaries. If the parent does not specify a parameter area, Y, X, and SP will be the same, and
D will equal zero. The minimum overall data area size is one page (256 bytes).

75

F$CmpNam - Compare two names

Warning

The hardware stack pointer (SP) should be located somewhere in the direct page before the
F$Chain service request is executed to prevent a“ suicide attempt” error or an actual suicide
(system crash). This will prevent a suicide from occurring in case the new module requires
a smaller data area than what is currently being used. You should allow approximately
200 bytes of stack space for execution of the F$Chain service request and other system
“overhead”.

DATA: LI - D.Proc, D.Usrsvc
LIl - D.Proc, D.Systsk, D.Sysprc, D.PrcDBT

SYSTEM CALLS: LI -F$UnLink*, F$Link, F$Load, F$Mem
LIl - FAllproc, F$UnLink*, F$SLink*, F$Load, FSLDDDXY*, F$Mem, F
$AITsk*, FSLDABX*, F$STABX*, F$Move*, F$DelTsk*, F$SrtMem*, F
$Aproc*, F$NProc*, F$EXit*

CAVEATS: LI and LII - Beware of chaining to system object module.
LIl - Beware of memory size of zero in module header.

For more information, please see the F$Fork service request description.

11.1.3. F$CmpNam - Compare two names

ASSEMBLER CALL: 0OS9 F$CmpNam

MACHINE CODE: 103F 11
ROUTINE LOCATION: LI - OS9p1
LIl - OS9p2
INPUT: (B) = Length of first name.

(X) = Address of first name.
(Y) = Address of second name.

OUTPUT: (CC) = C hit clear if the strings match.

ERROR OUTPUT: None. CC indicates only the match/nomatch condition. B doesn't contain
an error code.

FUNCTION: To be used in combination with parsename.

Given the address and length of astring, and the address of asecond string, CMPNAM comparesthem
and indicates whether they match.

The second name must have the sign bit (bit 7) of the last character set.

DATA: LIl - None.
LIl - D.Proc, D.SysDAT

SYSTEM CALLS: LI -None.
LIl - None.

CAVEATS: The second string must be terminated with the high order bit set.

11.1.4. F$CRC - Compute CRC

ASSEMBLER CALL: OS9 F$CRC

MACHINE CODE: 103F 17

76

F$DelBit - Deallocate in abit map

ROUTINE LOCATION: Ll and LIl - OS9p1

INPUT: (X) = Starting byte address.
(Y) = Byte count.
(V) = Address of 3 byte CRC accumulator.

OUTPUT: CRC accumulator is updated.
ERROR OUTPUT: None.
FUNCTION: To alow the system to easily generate/check CRC values of modules.

F$CRC calculates the CRC (cyclic redundancy count) for use by compilers, assemblers, or other
module generators. The CRC is calculated starting at the source address over “byte count” bytes. It
is not necessary to cover an entire module in one call, since the CRC may be "accumulated" over
severa cals. The CRC accumulator can be any three byte memory location and must be initialized to
$FFFFFF before the first FSCRC call for any particular module.

When checking an existing module CRC, the calculation should be performed on the entire module
(including the module CRC). The CRC accumulator will contain the CRC constant bytesif .themodule
CRC is correct. Checking an existing CRC can also be done similar to below for checking a CRC
match.

If the CRC of anew module isto be generated, the CRC is accumulated over the module (excluding
CRC). The accumulated CRC is complemented then stored in the correct position in the module.

DATA: LI - None.
LIl - D.Proc, D.SysTsk

SYSTEM CALLS:. LI -None.
LIl - None.

CAVEATS: CAVEATS: Be sure to initialize CRC accumulator only once for each module
checked.

11.1.5. F$DelBit - Deallocate in a bit map

ASSEMBLER CALL: OS9 F$DELBIT

MACHINE CODE: 103F 14
ROUTINE LOCATION: LI -0S9pl
LIl - OS9p2
INPUT: (D) = Bit number of first bit to clear.

(X) = Base address of an allocation bit map.
(Y) = Bit count (number of bitsto clear).

OUTPUT: Bits cleared in allocation map.

FUNCTION: DELBIT isused by the system to maintain internal allocation maps. See also F$AIIBt.
DELBIT isused to clear hitsin the allocation bit map pointed to by X.

Bit numbers range from 0..N-1, where N is the number of bitsin the allocation bit map.

DATA: Ll - D.Proc
LIl - None.

SYSTEM CALLS: LI - None.
LIl - FSLDABX*, F$STABX*

77

F$EXxit - Terminate
the calling process.

CAVEATS: Beware of calling with Y = 0 (Bit count of zero).

11.1.6. F$EXit - Terminate the calling process.

ASSEMBLER CALL: OS9 F$EXIT

MACHINE CODE: 103F 06
ROUTINE LOCATION: LI - OS9p2
LIl - OS9p2
INPUT: (B) = Status code to be returned to the parent process.
OUTPUT: Processis terminated.
ERROR OUTPUT: None.

FUNCTION: The F$EXIT cadll killsthe calling process and is the only means by which a process can
terminate itself. Its data memory areais deallocated, and its primary moduleis UNLINKed. All open
paths are automatically closed.

The death of the process can be detected by the parent executing a WAIT call, which returns to the
parent the status byte passed by the child inits EXIT call. The status byte can be an OS-9 error code
that the terminating process wishes to pass back to its parent process (the shell assumesthis), or it can
be used to pass a user-defined status value. Processes to be called directly by the shell should only
return an OS-9 error code or zero if no error occurred.

The following information describes the order of operation of an FSEXIT call.
1. Closeall paths.

2. Return memory to system.

3. Unlink primary module.

4. LIl - Freetask number. LI - Clear al sibling links and their parent ID. Free process descriptor of
any dead child.

5. LIl - Clear al sibling links and their parent ID. L1 - If parent is dead, free the process descriptor.
6. If parentisalive: A. Search wait queue of parent.

1. If parent cannot be found, note the process death in process state and leave the processin limbo
until parent notices the death.

2. If parent found then move parent to active queue, inform parent of death/status, remove child
from sibling list, and free process descriptor for the system.

DATA: LI - D.Proc, D.PrcDBT, D.WProcQ
LIl - D.Proc, D.SysStk, D.PrcDBT

SYSTEM CALLS: LI - 1$Close*, F$SrtMem*, FSUnLink*, F$Find64* , F$Ret64* , F$AProc*
LIl - 1$Close*, F$Dellmg*, F$UnLink*, F$Del Tsk*, F.GetProc*, F.RetProc*

CAVEATS: Only the primary module isunlinked. Any module that isloaded or linked to by
the process should be unlinked before calling FSEXIT.

11.1.7. F$Fork - Create a new process

ASSEMBLER CALL: OS9 F$Fork

78

F$Fork - Create a new process

MACHINE CODE: 103F 03
ROUTINE LOCATION: LI - OS9p1
LIl - OS9p2
INPUT: (A) = Language/ Type code.

(B) = Optional data area size (pages).

(X) = Address of module name or file name.
(Y) = Parameter area size. (Number of bytes)
(U) = Beginning address of the parameter area.

OUTPUT: (X) = Updated past the name string.
(A) = New process |D number.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$PrcFul, ESNEMod, E$Del SP, E$IForkP
LIl - ESNEMod, E$PrcFul

FUNCTION: FORK creates anew process which becomesa*child” of the caller, and sets up the new
process memory, MPU registers, and standard 1/0 paths.

The system parses the name string of the new process “primary module” — the program that will
initially be executed. Then the system module directory is searched to seeif the programisalready in
memory. If so, the module is linked to and executed. If not, the name string is used as the pathlist of
the filewhich isto be loaded into memory. Then the first modulein thisfile islinked to and executed
(several modules may have been loaded from asinglefile).

The primary module's module header is used to determine the process' initial data area size. OS-9
then attempts to allocate RAM area equal to the required data storage size or the passed parameter
optional data area size whichever islarger, (includes the parameter passing area, which is copied from
the parent process dataared). In LI the RAM areamust be contiguous, and in LIl the RAM areas are
pieced together. The new process registers are set up as shown in the diagram on the next page. The
execution offset given in the module header is used to set the PC to the modul€'s entry point.

When the shell processes a command line it passes a string in the parameter area which is a copy of
the parameter part (if any) of the command line. It also inserts an end-of-line character at the end of
the parameter string to simplify string-oriented processing. The X register will point to the beginning
of the parameter string. If the command line included the optional memory size specification (#n or
#nK), the shell will pass that size as the requested memory size when executing the F$Fork.

If any of the above operations are unsuccessful, the F$Fork isaborted and the caller isreturned an error.

The diagram below shows how F$Fork sets up the data memory area and registersfor anewly-created
process.

R + <-- Y (hi ghest addr ess)
| |

! Par amet er !

! Area !

! !
LT + <-- X, SP
| |

! !

! Data Area !

| |

| |

E T T +

79

FSICPT - Setup a
signal intercept trap

! Di rect Page !

LR T + <-- U DP (1 owest address)
D = paraneter area size

PC = nodul e entry point abs. address

CC = F=0, =0, others undefined

Y (top of memory pointer) and U (bottom of memory pointer) will always have a values at 256-byte
page boundaries. If the parent does not specify a parameter area, Y, X, and SP will be the same, and
D will equal zero. The minimum overall data area size is one page (256 bytes). Shell will aways pass
at least an end of line character in the parameter area. Thus, anything started from shell will always
have a parameter area ending with a carriage return.

DATA: LI - D.PrcDBT, D.Proc, D.UsrVC
LIl - D.Proc, D.SysTsk, D.PrcDBT

SYSTEM CALLS: LI - F$ALL64, I$Dup*, F$Aproc*, FSEXIT, F$Link, F$Load, F$Mem.
LIl - FAIlIPrc, 13Dup*, F$SLink, F$Load, F$Mem, FSAIITsk*, F$Move*,
F$DelTsk, F$AProc*, F$Dellmg*, 1$Close*, F$UnLink*, F$SRTMem, F
$SRgMem.

CAVEATS: Both the child and parent process will execute concurrently. If the parent
executes a F$Wait call immediately after the fork, it will wait until the child
dies before it resumes execution. Caution should be exercised when recursively
calling a program that uses the F$Fork service request since another child may
be created with each “incarnation” until the process table becomes full. Also,
beware of forking a process with amem size of zero.

11.1.8. F$ICPT - Set up a signal intercept trap

ASSEMBLER CALL: OS9 F$ICPT

MACHINE CODE: 103F 09
ROUTINE LOCATION: LI - OS9p2
LIl - OS9p2
INPUT: (X) = Address of the intercept routine.

(U) = Address of the intercept routine local storage.

OUTPUT: Signals sent to the process will cause the intercept routine to be called
instead of the process being killed.

ERROR OUTPUT: None.

FUNCTION: ICPT tellsOS-9 to set asignal intercept trap, where X contains the address of the signal
handler routine, and U contains the base address of the routine's storage area.

After asignal trap has been set, whenever the process receives a signal, its intercept routine will be
executed. A signal will abort any process which has not used the F$I CPT service request to set asignal
trap, and its termination status (B register) will be the signal code. Many interactive programswill set
up an intercept routine to handle keyboard abort and keyboard interrupt.

The intercept routine is entered asynchronously because a signal may be sent at any time (similar to
an interrupt) and is passed the following:

U = Address of intercept routine local storage. B = Signal code.

NOTE: The value of DP may not be the same as it was when the F$ICPT call was made. Therefore,
all ICPT routines should index off the U register.

80

F$ID - Get process ID / user ID

Whenever asignal is received, OS-9 will pass the signal code and the base address of its data area
(which was defined by a F$ICPT service reguest) to the signal intercept routine. The base address of
the dataareais selected by the user and istypically apointer to the process dataarea. The ICPT routine
is entered when a process is beginning a new time slice and it has a signal pending or is returning
from asystem call or an IRQ.

When the intercept conditions occur, a second stack frame is built below the normal program stack
area. The second stack frame has a PC for the ICPT routine. Then an RTI will execute the ICPT
routine. The interrupt masks are set during the ICPT routine so it should be short and fast.

After the ICPT routine has been completed, it should execute an RTI which will begin normal process
execution.

The intercept routine is activated when a signal is received, then it takes some action based upon
the value of the signal code such as setting a flag in the process' data area. After the signal has been
processed, the handler routine should terminate with an RTI instruction.

DATA: Ll and LII - D.Proc

SYSTEM CALLS:. None.

11.1.9. F$ID - Get process ID / user ID

ASSEMBLER CALL: OS9 F$ID

MACHINE CODE: 103F 0C
ROUTINE LOCATION: LI - OS9p2
LIl - OS9p2
INPUT: None
OUTPUT: (A) = Process ID.
(Y) = User ID.
ERROR OUTPUT: None.

FUNCTION: Returns the caller's process ID number, which is a byte value in the range of 1 to 255,
and the user ID which is ainteger in the range O to 65535. The process ID is assigned by OS-9 and
is unique to the process. The user ID is defined in the system password file, and is used by the file
security system and afew other functions. Several processes can have the same user 1D.

DATA: LI - D.Proc
LIl - D.Proc

SYSTEM CALLS:. None.

11.1.10. F$Link - Link to memory module

ASSEMBLER CALL: OS9 F$LINK

MACHINE CODE: 103F 00
ROUTINE LOCATION: LI -0S9pl
LIl - OS9p1
INPUT: (A) = Moduletype/ language byte.

(X) = Address of the module name string.

OUTPUT: (A) = Module type/ language.
(B) = Module attributes/ revision level.

81

F$Load - Load module(s) from afile

(X) = Advanced past the module name.
(Y) = Module entry point absolute address.
(U) = Module header absolute address.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - ESMNF, ESModBsy
LIl - E3SMNF, E$ModBsy, ESMemFul

FUNCTION: LINK causes OS-9to search the modul e directory for amodul e having aname, language,
and type as given in the parameters. If found, the address of the modul€'s header is returned in U,
and the absolute address of the modul€'s execution entry point is returned in Y (as a convenience:
this and other information can.be obtained from the module header). The modul€'s “link count” is
incremented whenever a LINK references its name, thus keeping track of how many processes are
using the module. If the module requested has an attribute byte indicating it is not sharable (meaning
it is not reentrant), only one process may link to it at atime.

InLevel Il if amoduleis part of agroup of modules and alink has caused the entire group to be linked
into local memory, the new link will not cause the group to be linked in again. OS9 will discover that
the moduleis already available and the single modul€'s link count will be incremented.

DATA: LI - D.ModDir, D.ModDir+2
LIl - D.Proc, D.ModDir, D.ModEnd

SYSTEM CALLS: LI - F.PrsNam*, F.CNAM*
LIl - F.PrsNam, F.CNAM*, F.LDDDXY*, F.FreeHb*, F.Setimg*,
F.DattoL og<<*

11.1.11. F$Load - Load module(s) from a file

ASSEMBLER CALL: OS9 F$SLOAD
MACHINE CODE: 103F 01
ROUTINE LOCATION: Ll andLIl - IOMAN

INPUT: (A) = Language/ type (0 = any language / type)
(X) = Address of pathlist (file name)

OUTPUT: (A) Language/ type
(B) = Attributes/ revision level
(X) = Advanced past pathlist
(Y) = Primary module entry point address
(U) = Address of module header

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$BMID
LIl - E$MemFul, E$BMID, ESMNF

FUNCTION: LOAD opens afile specified by the pathlist, reads one or more memory modules from
the fileinto memory, then closesthe file. All modules that are loaded are added to the system module
directory, and the first module read is LINKed. The parameters returned are the same as the LINK
call and apply only to the first module loaded.

In order to beloaded, the file must have the “ execute” permission and contain amodule or modul esthat
have a proper module header and CRC. The file will be loaded from the working execution directory
unless a complete pathlist is specified.

82

F$Mem - Resize data memory area

DATA: LI - None.
LIl - D.Proc, D.SysTsk, D.BlkMap, D.ModDir, D.ModEnd

SYSTEM CALLS: LI - 1$Open, I$Read, F$SrgMem, F$VModul, F$SrtMem*, 1$Close*

LIl - F$Allprc, 1$0pen, FAlItsk, F$Settsk, 1$Read, F$Mover, F$VModul, |
$Close*, F$DelPrc*, FSLDDDXY*, F$ELink

11.1.12. F$Mem - Resize data memory area

ASSEMBLER CALL: 0OS9 F$MEM

MACHINE CODE: 103F 07

ROUTINE LOCATION: Ll andLIl - OS9p2

INPUT: (D) = Desired new memory sizein bytes.

OUTPUT: (Y) = Address of upper bound of new memory area.
(D) = Actua size of new memory areain bytes.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LII - E$DelSP, E$MemFFul

FUNCTION: MEM is used to contract or expand the process data memory area. The new size
requested is rounded up to the next 256 byte page boundary. Additional memory is allocated
contiguously upward (towards higher addresses), or deallocated downward from old highest address.
If D = O, the call istaken to be an information request and the current upper bound and size will be
returned.

This request can never return all of a process memory, or the page in which its SP register points to.
D must equal at least one to change memory size.

InLevel Onesystems, therequest may return an error upon an expansion request even though adequate
free memory exits because the data area must always be contiguous, and memory requests by other
processes may fragment memory into smaller, scattered blocks that are not adjacent to the caller's
present data area. Level Two systems do not have this restriction because of the availability of
hardware for memory relocation, and because each process has its own address space.

DATA: LI - D.Proc, D.PMBM
LIl - D.Proc

SYSTEM CALLS: LI - F$SchBit, F$AIIBit*, F$De Bit*
LIl - FSAllImg, F$Dellmg

11.1.13. F$PErr - Print error message
ASSEMBLER CALL.: OS9 F$PErT
MACHINE CODE: 103F OF

ROUTINE LOCATION: Ll and LIl - IOMAN

INPUT: (B) = Error code.
OUTPUT: Error Message.
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.

83

F$PrsNam - Parse a path name

FUNCTION: PERR is the system's error reporting utility. It writes an error message to the standard
error path. Most OS-9 systems will display:

ERRCR #<deci mal nunber >

by default. The error reporting routine is vectored and can be replaced by a more elaborate reporting
module. In Level 1 systemsthe reporting module can bereplaced. In Level 2 systems, asystem routine
may replace the module, but the replacement will affect al users. Microware has not implemented
any PERR modification on Level 2 systems.

DATA: LI - D.Proc
LIl - D.Proc, D.Systsk

SYSTEM CALLS: LI - I$WritIn*
LIl - F$Move*, I$WritIn*

11.1.14. F$PrsNam - Parse a path name

ASSEMBLER CALL: OS9 F$PrsNam

MACHINE CODE: 103F 10

ROUTINE LOCATION: Ll andLIl - OS9p1

INPUT: (X) = Address of the pathlist.

OUTPUT: (X) = Updated past the optional “/”
(Y) = Address of the last character of the name +1
(A) = Trailing byte (Ddlimiter character)
(B) = Count of characters found.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.
(Y) = Address of first nondelimeter char in string

POSSIBLE ERRORS: Ll and LIl - E3BNam

FUNCTION: PrsNam parsestheinput text string for alegal OS-9 name. The nameisterminated by any
character that is not alegal component character. PrsNam is useful for processing pathlist arguments
passed to new processes. Also, if X was at the end of a pathlist, a bad name error will be returned and
Y will be moved past any space or comma characters so the next pathlist in acommand can be parsed.

NOTE: PrsNam processes only one name, so severa calls may be needed to process a pathlist that
has more than one name. PrsNam will terminate a name on recognizing a delimiter character or high
order bit set. It will skip one trailing comma or any number of trailing spaces.

Before F$PrsNam CALL:

U AR S Sup i g R S S

I A R R S O T O A R e e e T e

U AR S Sup i g R S S
N

X

After the F$PrsNam CALL:

e S g

F$SchBit - Search bit
map for afree area

I A R B R S O T O A B e I O o e e
R e I e S e e i I EIETEIE SIS R
N N
X Y (B) =2
DATA: LI - None

SYSTEM CALLS: LI -None
LIl - F.DATLog*, F.LDAXY*

11.1.15. F$SchBit - Search bit map for a free area

ASSEMBLER CALL: 0OS9 F$SchBit

MACHINE CODE: 103F 12
ROUTINE LOCATION: LI - OS9p1
LIl - OS9p2
INPUT: (D) = Beginning bit number

(X) = Beginning address of bit map.
(Y) = Bit count (free bit block size)
(U) = End of bit map address.

OUTPUT: (D) = Beginning bit number.
(Y) = Bit count.

ERROR OUTPUT: (CC) = C bit set.
D and Y arereturned, but Y will be less than specified.

FUNCTION: SCHBIT searches the specified allocation bit map starting at the beginning bit number
(D) for afree block (cleared hits) of the required length.

If no block of the specified size exists, it returns with the carry set, beginning bit number and size
of the largest block.

DATA: LI - None
LIT - D.Proc, D.Systsk

SYSTEM CALLS: LI -None
LIl - FBLDABX*

11.1.16. F$Send - Send a signal to another process

ASSEMBLER CALL: OS9 F$SEND
MACHINE CODE: 103F 08
ROUTINE LOCATION: Ll andLlIl - OS9p2

INPUT: (A) = Receiver's process ID number.
(B) = Signal code.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LII - E$IPrcID, ESUSIgP

FUNCTION: SEND sends a signal to the process specified. The signal code is a single byte value
0- 255.

85

F$Sleep - Put calling process to sleep

If the destination processfor the signal issleeping or waiting, it will be activated so that it may process
the signal. The signal processing routine (intercept) will be executed if a signal trap was set up (see
F$ICPT), otherwise, the signal will abort the destination process, and the signal code code becomes
the exit status (see WAIT). An exception is the WAKEUP signal, which activates a sleeping process
but does not cause the signal intercept routine to be examined and will not abort a process that has
not run an F$ICPT.

Some of the signal codes have meanings defined by convention:

0 = System abort (unconditional)
1 =Wake up process

2 = Keyboard abort

3 = Keyboard interrupt

128 - 255 = User defined

If an, attempt is made to send a signal to a process that has an unprocessed, previous signal pending,
the current send request will be cancelled and an error will be returned. An attempt can be made to
try resending the signal later. It is good practice to issue a sleep call for afew ticks before aretry to
avoid wasting CPU time.

NOTE: A process may send the same signal to multiple processes of the same ID by passing 0 asthe
receiver's process |D number. The superuser (ID number 0) may send the same signal to all processes
by the same technique.

DATA: LI - D.Proc, D.PrcDBT, D.SProcQ, D.WProcQ
LIl - D.Proc, D.SProcQ, D.WProcQ

SYSTEM CALLS: LI - F$Find64, F$AProc*
LIl - F.GProcP, F$AProc*

CAVEATS: Notice that the super user is capable of mass murder, by sending signal 0 to
process 0.

11.1.17. F$Sleep - Put calling process to sleep

ASSEMBLER CALL: OS9 F$Sleep
MACHINE CODE: 103F OA

ROUTINE LOCATION: LI and LIl - OS9p2

INPUT: (X) = Sleep time in ticks (0 = indefinitely)
OUTPUT: (X) = Decremented by the number of ticks that the process was asleep.
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.

FUNCTION: SLEEP deactivates the calling process for a specified time, or indefinately if X = O.
The process will be activated before the full time interval if asignal is received, therefore. sleeping
indefinately is a good way to wait for asignal or interrupt without wasting CPU time.

The duration of a“tick” is system dependent but is usually 100 milliseconds on Level | (50 ms with
6840) and 10 milliseconds on Level I1.

Due to the fact that it is not known when the F$Sleep request was made during the current tick, F
$Sleep can not be used to time more accurately than + or -1 tick. A sleep of one tick is effectively
a“give up remaining time dlice” request; the process is immediately inserted into the active process
gueue and will resume execution when it reaches the front of the queue. A sleep of two or more ticks
causes the process to be inserted into the active process queue after X - 1 ticks occur and will resume
execution when it reaches the front of the queue.

86

F$SPrior - Set process priority

DATA: LI - D.Proc, D.SProcQ
LI1 - D.Proc, D.SProcQ, D.Systsk

SYSTEM CALLS: LI - F$AProc*, FSNProc*
LIl - F$AProc*, F$Del Tsk* , FSNProc*

11.1.18. F$SPrior - Set process priority

ASSEMBLER CALL: OS9 F$SPrior

MACHINE CODE: 103F 0D
INPUT: (A) = Process ID number.
(B) = Priority:
0 = lowest
255 = highest
OUTPUT: None.
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: LI and LIl - E$IPrcID

FUNCTION: SPrior changes the process priority to the new value given. $FF is the highest possible
priority, and $00 is the lowest. A process can change another process' priority only if it has the same
user ID.

DATA: LI - D.ProcDBT, D.Proc
LIl - D.Proc

SYSTEM CALLS: LI - F$Find64
LIl - F.GProcP

11.1.19. F$SSVC - Install function request

ASSEMBLER CALL: OS9 F$ssvC
MACHINE CODE: 103F 32

ROUTINE LOCATION: LIl and LIl - OS9p1

INPUT: (Y) = Address of service request initialization table.
OUTPUT: None.
ERROR OUTPUT: (CC) = C bit set.

(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$ISWI
LIl - None.

FUNCTION: SSV Cisused to add anew function request to OS-9's user and privileged system service
request tables, or to replace an old one. The Y register passes the address of a table which contains
the function codes and offsets to the corresponding service request handler routines. This table has
the following format:

OFFSET

87

F$SSVC - Install function request

e e e e e e e aaaa oo +
$00 ! Function Code | <--- First entry
e e e e e e e aaaa oo +
$01 I Ofset FromByte 3 !
+- - .-+
$02 I To Function Handler !
e e e e e e e aaaa oo +
$03 ! Function Code I <--- Second entry
e e e e e e e aaaa oo +
$04 I Ofset FromByte 6 !
+- - .-+
$05 I To Function Handler !
e e e e e e e aaaa oo +
! ! <--- Third entry etc.
! MORE ENTRI ES !
| |
! !
e e e e e e e aaaa oo +
! $80 ! <--- End of table nmark
e e e e e e e aaaa oo +

NOTE: If the sign bit of the function code is set, only the system table will be updated. Otherwise
both the system and user tableswill be updated. Privileged system service requests may be called only
while executing a system routine.

The service request routine should process the service request and return from subroutinewith an RTS

instruction. They may alter any CPU registers (except for SP). The U register will pass the address of
the register stack to the service request handler as shown in the following diagram:

OFFSET OS9DEFS

MNEMONI C
[+

Uu---> 1 cC ! $0 R$CC
o + $1 RSD
YN $1 R$A
[+
I B ! $2 R$B
[+
! DP ! $3 R$DP
R R +
! X ! $4 R$X
S +
! Y ! $6 R$Y
S +
! U ! $8 R$U
S +
! PC ! $A R$PC
S +

NOTE: The user service routine should set the CPU registers CC and B to the appropriate values and
return with RTS.- The service dispatcher will then set R$CC and R$B in the user's register stack.

LI - Function request codes are in the range 0 - $37
LIl - Function request codes arein the range 0 - $7E

LI and LII function codes in the range $20 - $27 will not be used by Microware and are free for user
definition.

88

F$SSWI - Set SWI vector

DATA: Ll and LIl - D.SysDis
LIl ONLY - D.UsrDis

CAVEATS: LIl F$SSVCisonly availableto be called from system state by system addressed object
code.

11.1.20. F$SSWI - Set SWI vector

ASSEMBLER CALL: OS9 F$SSWI
MACHINE CODE: 103F OE

ROUTINE LOCATION: Ll andLIl - OS9p2

INPUT: (A) = SWI type code.

(X) = Address of user SWI service routine.
OUTPUT: None.
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: Ll and LIl - E$ISWI

FUNCTION: SSWI sets up the interrupt vectors for SWI, SWI2 and SWI3 instructions. Each process
hasits own local vectors. Each SETSWI call sets up one type of vector according to the code number

passed in A.

1=SwWIi

2=SWI2

3=SwWI3

When a process is created, all three vectors are initialized with the address of the OS-9 service call

processor.

CAVEATS: Microware-supplied software uses SWI2 to call OS-9. If you reset this vector
these programs will not work. If you change all three vectors, you will not be
ableto call OS-9 at all.

DATA: Ll and LIl - D.Proc

SYSTEM CALLS:. None

11.1.21. F$STime - Set system date and time
ASSEMBLER CALL: OS9 F$STIME
MACHINE CODE: 103F 16

ROUTINE LOCATION: Ll andLIl - OS9p2

INPUT: (X) = Address of time packet (see below)
OUTPUT: Time/dateis set.
ERROR OUTPUT: (CC) = C bit set.

(B) = Appropriate error code.

FUNCTION: STIME is used to set the current system date/time and start the system real-time clock.
STIME is accomplished by putting the date/time packet in the system direct storage area, and then a

89

F$Time - Get system date and time

link system call is made to find the clock module. The clock initialization routine is called if the link
is successful, and it is the duty of the clock initialization to:

1. Set up any hardware dependent functions (including moving new date/time into hardware if
needed).

2. Set up the F$Time system call via F$SSVC.

The date and time are passed in atime packet as follows:

OFFSET VALUE

0 year

1 month

2 day

3 hours

4 minutes

5 seconds

DATA: LI - D.Day, D.Year, D.Min

LIl - D.Time, D.Proc, D.SysPrc

SYSTEM CALLS: LI -F$Link
LIl - F$Move*, F$Link

11.1.22. F$Time - Get system date and time

ASSEMBLER CALL:
MACHINE CODE:
ROUTINE LOCATION:
INPUT:

OUTPUT:

ERROR OUTPUT:

OS9 F$TIME

103F 15

LI and LII - Clock Module

(X) = Address of place to store the time packet.
Time packet (see below).

(CC) = C bit set.

(B) = Appropriate error code.

FUNCTION: TIME returns the current system date and time in the form of a six byte packet (in
binary). The packet is copied to the address passed in X. The packet looks like:

OFFSET VALUE

0 year

1 month

2 day

3 hours

4 minutes

5 seconds

DATA: Hardware dependent

CAVEATS. FS$TIME is part of the clock module and will not exist if no previous call to F$STime
has been made.

90

F$UnLink - Unlink amodule

11.1.23. F$UnLink - Unlink a module

ASSEMBLER CALL: OS9 FSUNLINK

MACHINE CODE: 103F 02
ROUTINE LOCATION: LI -0S9p1
LIl - OS9p2
INPUT: (V) = Address of the module header.
OUTPUT: None
ERROR OUTPUT: (CC) = C bit set.

(B) = Appropriate error code.

FUNCTION: UNLINK tells OS-9 that the module is no longer needed by the calling process. The
modul€'slink count is decremented, and the modul e is destroyed and its memory deallocated when the
link count equals zero. The module will not be destroyed if in use by any other process(es) because its
link count will be non-zero. In Level Two systems, the module is usually switched out of the process
address space. Also, any module in the OS9 Boot file cannot be deleted.

Device driver modulesin use or certain system modules cannot be unlinked. ROMed modules can be
unlinked but cannot be deleted from the module directory.

DATA: LI - D.ModDir, D.BtLo, D.PmBm
LIl - None.

SYSTEM CALLS: LI - F$IODd, F$DelBit*
LIl - F$LDDDXY*, F$IODel

CAVEATS: If a bad address is passed, UnLink will NOT find a module in the module
directory and will not return an error.

11.1.24. F$Wait - Wait for child process to die

ASSEMBLER CALL: OS9 F$Wait
MACHINE CODE: 103F 04
ROUTINE LOCATION: Ll and LIl - OS9p2
INPUT: None

OUTPUT: (A) = Deceased child process process ID.
(B) = Child process' exit status code.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E$NoChld

FUNCTION: The calling processis deactivated until achild process terminates by executing an EXIT
system call, or by receiving asignal. The child's ID number and exit status is returned to the parent.
If the child died due to asignal, the exit status byte (B register) isthe signal code.

If the caller has several children, the caller is activated when the first one dies, so one WAIT system
call isrequired to detect termination of each child.

If achild died before the F$Wait call, the caller is reactivated almost immediately. F$Wait will return
an error if the caller has no children.

91

System Mode Service Requests

See the F$EXit description for more related information.

DATA: LI - D.Proc, D.PrcDBT, D.WProcQ
LIl - D.Proc, D.WProcQ, D.PrcDBT, D.SysTsk

SYSTEM CALLS: LI - F$Find64*
LIl - F.GProcP*, F$Del TSk, F$SrtMem*, FSNProc

CAVEATS: If the wait call returns with the carry bit set, then the wait was not performed. If
the wait returns with the carry clear, then the wait functioned normally and any
error that occurred in the child process will be returned in (B).

11.2. System Mode Service Requests
11.2.1. F$AII64 - Allocate a 64 byte memory block

ASSEMBLER CALL: OS9 FSALL64
MACHINE CODE: 103F 30

ROUTINE LOCATION: Ll andLIl - OS9p2

INPUT: (X) = Base address of page table (zero if the page table has not yet been
alocated).
OUTPUT: (A) = Block number.

(X) = Base address of page table.
(Y) = Address of block.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$PthFul

FUNCTION: ALL64 is used to dynamically allocate 64 byte blocks of memory by splitting whole
pages (256 byte) into four sections. Thefirst 64 bytes of the base page are used asa* pagetable’, which
contains the MSB of all pagesin the memory structure. Passing avalue of zero in the X register will
cause the FSALL 64 service request to allocate a new base page and the first 64 byte memory block.
Whenever anew page is needed, an F$SRgqMem service request will automatically be executed. The
first byte of each block contains the block number; routines using this service request should not alter
it. Below is adiagram to show how 7 blocks might be allocated:

ANY 256 BYTE ANY 256 BYTE

MEMORY PAGE MEMORY PAGE
BASE PAGE ---> 4------------- + AR +
! ! I'X !
I PAGE TABLE ! ! BLOCK 4 !
I (64 bytes) ! I (64 bytes) !
S + S +
I'X ! I'X !
! BLOCK 1 ! ! BLOCK 5 !
I (64 bytes) ! I (64 bytes) !
S + S +
I'X ! I'X !
! BLOCK 2 ! ! BLOCK 6 !
I (64 bytes) ! I (64 bytes) !
S + S +
1 X] 1 X]

92

F$AProc - Insert process
in active process queue

! BLOCK 3 ! ! BLOCK 7 !
I (64 bytes) ! I (64 bytes) !

InLI, ALL64 isused by OS-9 to alocate path descriptors and process descriptors. In LII, ALL64 is
only used to allocate path descriptors because process descriptors for L11 are 512 bytes.
DATA: LI and LII - None.

SYSTEM CALLS: Ll andLlIl - F$SrgMem
Note
Thisisaprivileged system mode service request.
11.2.2. F$AProc - Insert process in active process
queue

ASSEMBLER CALL: 0OS9 F$APROC
MACHINE CODE: 103F 2C

ROUTINE LOCATION: LIl and LIl - OS9p1

INPUT: (X) = Address of process descriptor.
OUTPUT: None.
ERROR OUTPUT: (CC) = Chit st

(B) = Appropriate error code.

FUNCTION: APROC inserts a process into the active process queue so that it may be scheduled for
execution.

All processes already in the active process queue are aged, and the age of the specified processis set
to its priority. The processisthen inserted according to its relative age.

DATA: Ll and LIl - D.AProc

SYSTEM CALLS: None.

Note

Thisisaprivileged system mode service request.

11.2.3. F$Find64 - Find a 64 byte memory block

ASSEMBLER CALL: OS9 F$FIND64
MACHINE CODE: 103F 2F

ROUTINE LOCATION: LI and LIl - OS9p2

INPUT: (A) = Block number.

(X) = Address of base page.
OUTPUT: (Y) Address of block.
ERROR OUTPUT: (CC) = Chit st

93

F$IODél - Deletel/
O device from system

Indicates block not allocated or not in use.

FUNCTION: FIND64 will return the address of a64 byte memory block asdescribed inthe FSALL 64
service request. OS-9 uses this service request to find prodess descriptors and path descriptors when-
given their nUmber.

Block numbers range from 1..N

In LI, FIND64 is used to find process descriptors and path descriptors. In L1, it is used only to find
path descriptors because process descriptors are 512 bytesin L11 (see F$GProcP).

DATA: None.
SYSTEM CALLS:. None.

Note

Thisis a privileged system mode service request.

11.2.4. F$IODel - Delete I/0O device from system

ASSEMBLER CALL: OS9 F$IODEL
MACHINE CODE: 103F 33

ROUTINE LOCATION: LlandLlIl-1/O

INPUT: (X) = Address of an 1/0 module. (see description)
OUTPUT: None.
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: Ll and LIl - E3ModBsy

FUNCTION: The X register passes the address of an 1/0O module. The address is used to search the
devicetable, and if found the use count ischecked to seeif it iszero. If itisnot zero, an error condition-
is returned. IODEL is called by UNLINK when an I/O module is unlinked. 1/0 modules are device
drivers, device descriptors, and file Managers.

LI - If adevice is being unlinked for the final time (there are no other processes using the device),
then IODEL performs the device termination routine. For LIl this has been moved to the DETACH
system call.

LIl - IODEL returns information to the UNLINK system call after determining if a device is busy
or not.

This service request is used primarily by IOMAN and may be of limited or no use for other
applications.

DATA: LI and LIl - D.Init, D.DevThl
LIl - D.Proc, D.PrcDbt

SYSTEM CALLS: LI - F$SrtMem, F$Send, F$Find64, Makes call to driver terminate routine.
LIl - None.

Note

Thisisaprivileged system mode service request.

94

F$IOQu - Enter 1/0 queue

11.2.5. F$IOQu - Enter I/O queue

ASSEMBLER CALL: OS9 F$I0QU
MACHINE CODE: 103F 2B

ROUTINE LOCATION: Ll andLlIl-1/O

INPUT: (A) = Process Number.
OUTPUT: None.
ERROR OUTPUT: (CC) = C bit set.

(B) = Appropriate error code.

FUNCTION: 10QU links the calling process into the I/O queue of the specified process and performs
an untimed sleep. It is assumed that routines associated with the specified process will send awakeup
signal to the calling process. I0QU is used primarily and extensively by IOMAN and file managers.

DATA: LI - D.Proc, D.PrcDBT
LIl - D.Proc

SYSTEM CALLS: LI - F$Find64, F$Send*, F$Sleep*
LIl - F$GProcP, F$Sleep*, F$Send*

Note

Thisisaprivileged system mode service request.

11.2.6. F$IRQ - Add or remove device from IRQ table

ASSEMBLER CALL: 0OS9 F$IRQ
MACHINE CODE: 103F 2A
ROUTINE LOCATION: Ll and LIl - IOMAN

INPUT: (D) = Address of the device status register.
(X) = Zero to remove device from table, or the address of a packet as
defined below to add a device to the IRQ polling table:

[X] =flip byte
[X+1] = mask byte
[X+2] = priority

(Y) = Device IRQ service routine address.
(U) = Address of service routine's static storage area.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LII - ESPoll. Error can be from full polling table or from bad mask
byte (0).

FUNCTION: IRQ isused to add adeviceto or remove adevice from the IRQ polling table. To remove
adevice from the table the input should be (X)=0, (U)= Add: of service routin€e's static storage. This
service request is primarily used by device driver routines. See the text of this manual for acomplete
discussion of the interrupt polling system.

95

FSNProc - Start next process

PACKET DEFINITIONS:

Flip Byte This byte selects whether the bits in the device status register are active when set or
activewhen cleared. A set bit(s) identifies the active low bit(s).

Mask Byte This byte selects one or more bits within the device status register that are interrupt
request flag(s). A set bit identifies an active hit(s)

Priority The device priority number:
0 = lowest
255 = highest

DATA: LlandLlIl -D.Init, D.PolThl

Note

Thisisaprivileged system mode service request.

11.2.7. F$NProc - Start next process

ASSEMBLER CALL: OS9 F$NProc

MACHINE CODE: 103F 2D

ROUTINE LOCATION: Ll andLIl - OS9p1

INPUT: None.

OUTPUT: Control does not return to caller.

FUNCTION: Thissystem mode service request takesthe next process out of the Active Process Queue
and initiates its execution. If there is no process in the queue, OS-9 waits for an interrupt, and then
checks the active process queue again.

DATA: LI - D.Proc, D.AProcQ, D.SWI2, D.UsrIRQ, D.SchIRQ
LIl - D.SysPrc, D.Proc, D.SysTsk, D.AProcQ, D.TSlice, D.Slice, D.UsrSvc,
D.XSWI2, D.UsrIRQ, D.XIRQ

SYSTEM CALLS: LI - F$EXIT*
LIl - F$EXIT*, F.AProc*, F.AIITsk*

CAVEATS: The process calling NProc must already be in one of the three process queues.
If it is not, then it will become unknown to the system even though the process
descriptor till exists and will be printed out by a Procs command.

Note

Thisisaprivileged system mode service request.

11.2.8. F$Ret64 - Deallocate a 64 byte memory block

ASSEMBLER CALL: 0OS9 F$Ret64
MACHINE CODE: 103F 31
ROUTINE LOCATION: Ll andLIl - OS9p1

INPUT: (A) = Block number.
(X) = Address of the base page.

OUTPUT: None.

96

F$SRgMem - System
memory request

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: This system mode service request deallocates a 64 byte block of memory as described
in the F$AI164 service request.

LI - FSRet64 is used to free up or return a path descriptor or a process descriptor
LIl - F$Ret64 is used to free only path descriptors.

DATA: LI and LIl - None.

SYSTEM CALLS: F$SRTMem

Note

Thisis a privileged system mode service request.

11.2.9. F$SRgMem - System memory request

ASSEMBLER CALL: OS9 F$SRgMem

MACHINE CODE: 103F 28
INPUT: (D) = Byte count.
OUTPUT: (V) = Beginning address of memory area.

(D) = New Memory size

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - ESMemFul

FUNCTION: This system mode service request all ocates a block of memory from the top of available
RAM of the specified size. The size requested is rounded to the next 256 byte page boundary.

LIl - Allocates memory for system address space only.

DATA: LI - D.FmBm
LIl - D.SysMem, D.SysDAT, D.BlkMap, D.SysPrc

SYSTEM CALLS: LI - F$AIIBit*
LIl - FAIlImg

Note

Thisisaprivileged system mode service request.

11.2.10. F$SRTMem - Return System Memory

ASSEMBLER CALL: OS9 F$SRTMem
MACHINE CODE: 103F 29
ROUTINE LOCATION: OS9pl

INPUT: (U) = Beginning address of memory to return.
(D) = Number of bytesto return.

OUTPUT: None.

97

F$VModul - Verify module

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E$BPAddr

FUNCTION: This system mode service request is used to deallocate a block of contiguous 256 byte
pages. The U register must point to an even page boundary.

LIl - Deallocates memory for system address space only.

DATA: LI - D.FmBm
LIl - D.SysMem, D.SysDAT, D.BIkMap

SYSTEM CALLS: LI-F.DBit
LIl - None.

Note

Thisisaprivileged system mode service request.

11.2.11. F$VModul - Verify module

ASSEMBLER CALL: 0OS9 F$VMODUL
MACHINE CODE: 103F 2B
ROUTINE LOCATION: LI and LIl - OS9p1
INPUT: LI - (X) = Address of new module
LIl - (D) = DAT image pointer
(X) = New module block offset
OUTPUT: (U) = Address of module directory entry.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E3KwnMod, E$DirFul, E$BMID, ESBMCRC
LIl ONLY - E$BMHP

FUNCTION: This system mode service request checks the module header parity and CRC bytes of
an OS-9 module. If these values are valid, than the module directory is searched for amodule with the
same name. If amodule with the same name and type exists, the one with the highest revision level is
retained in the module directory. Ties are broken in favor of the established module.

DATA: LI - D.FmBm, D.BtLo
LIl - D.ModDir, D.ModEnd, D.BlkMap, D.ModDAT

SYSTEM CALLS: LI - F$DelBit*, F.FModul
LIl - F.LDDDXY*, F.FModul, F$GCMDir*, F.LDAXY*, F$Sleep

Note

Thisis a privileged system mode service request.

11.3. 1/0 Service Requests
11.3.1. I$Attach - Attach a new device to the system.

ASSEMBLER CALL: OS9 ISATTACH

98

I$ChgDir - Change
working directory

MACHINE CODE: 103F 80
ROUTINE LOCATION: Ll andLIl - IOMAN

INPUT: (A) = Access mode.
(X) = Address of device name string.

OUTPUT: (U) = Address of devicetable entry.
(X) = Updated past device name

ERROR OUTPUT: (CC) = Chit =et.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$DevOvf, E$BMode, E$DevBsy
LIl - E$DevOvf, E$BMode, E$MemFul

FUNCTION: ATTACH isused to attach anew devicetothe system, or verify that itisalready attached.
The device's name string is used to search the system module directory to see if a device descriptor
modulewith the samenameisin memory (thisisthe namethedevicewill beknown by). The descriptor
modulewill contain the name of the device'sfile manager, device driver and other related information.
If it is found and the device is not already attached, OS-9 will link to its file manager and device
driver, and then place their address in a new device table entry. Any permanent storage needed by
the device driver is alocated, and the driver'sinitialization routine is called (which usualy initiaizes
the hardware).

If the device has dready been attached, it will not be reinitialized.

An ATTACH system call is not required to perform routine I/O. It does NOT “reserve’ the device
in question - it just prepares it for subsequent use by any process (see Note below). Most devices are
automatically installed, so it is used mostly when devices are dynamically installed or to verify the
existence of adevice. IOMAN attaches all devices at open, and detaches them at close.

The access mode parameter specifies which subsequent read and/or write operationswill be permitted
asfollows:

0 = Use device capabilities.
1=Read only.

2 =Writeonly.

3 = Both read and write.

Note: Attach and Detach are alike Link and Unlink for devices, and they are usually used together.
However, system performance can be improved slightly if all devices are attached at startup. This
increments each device's use count and prevents the device from being reinitialized every timeit is
opened. This also has the advantage of allocating the static storage for devices al at once, which
prevents fragmentation on Level One systems.

DATA: LI and LIl - D.Init, D.Deva
LIl - D.Proc, D.SysDAT, D.SysPrc

SYSTEM CALLS: LI - F$Link, I$Detach*, F$IOQU*, F$SrqMem
LIl - F$SLink, F$Link, 1$Detach*, F$IOQu*, F$SrgMem, F$ID*

11.3.2. I$ChgDir - Change working directory

ASSEMBLER CALL: OS9 1$ChgDir
MACHINE CODE: 103F 86
ROUTINE LOCATION: Ll and LIl - IOMAN

INPUT: (A) = Access mode.

99

I$Close - Close a
path to afile/device

(X) = Address of the pathlist.
OUTPUT: (X) = Updated past pathlist

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LI - E3BPNam, E$BMode

FUNCTION: ChgDir changes a process working directory to another directory file specified by the
pathlist. Depending on the access mode given, the current execution, the current data directory may be
changed, or both. Thefile specified must be adirectory file, and the caller must have access permission
for the specified mode.

ACCESS MODES:

1=Read

2 = Write

3 = Update (read and write)
4 = Execute

If the access mode is read, write, or update the current data directory is changed. If the access mode
is execute, the current execution directory is changed.

Note: The shell “CHD” directive uses UPDATE mode, which means you must have both read and
write permission to change directories from the shell.

DATA: Ll and LIl - D.PrhDBT, D.Proc
LIl - D.SysPrc

SYSTEM CALLS: LI - F$AII64, F$PrsNam, I$Attach, F$Ret64, F$IOQu, F$Send*, F$Find64*, |
$Detach*
LIl - F$AII64, FSLDABX*, F$PrsNam, |$Attach, F$Ret64, F$IOQU, F$Send,
F$GProcP

11.3.3. I$Close - Close a path to a file/device

ASSEMBLER CALL: OS9 I$CLOSE

MACHINE CODE: 103F 8F

INPUT: (A) = Path number.
OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: Ll and LIl - ESBPNum

FUNCTION: Close terminates the 1/0 path specified by the path number. The path number will no
longer be valid for any OS-9 calls unless it unless it becomes active again via 1$Open, |$Create,
or 1$Dup. Devices that are non-sharable become available to other requesting processes. All 0S-9
internally managed buffers and descriptors are deallocated.

Note: Because the OS9 F$EXit service request automatically closes all open paths, it may not be
necessary to close them individually with the OS9 I$Close service request.

Standard 1/0 paths are typically not closed except when it is desired to change the files/devices they
correspond to.

100

I$Create - Create a path to anew file

DATA: Ll and LIl - D.Proc, D.PthDBT
SYSTEM CALLS: Ll and LIl - F$Find64, I$Detach*, F$Ret64*, F$IOQu, F$Send*
LIl - F$GProcP*
CAVEATS: 1$Close does an implied 1$Detach call. If it causes the device use count to

become zero, the device termination routine will be executed. See |$Detach.

11.3.4. I$Create - Create a path to a new file

ASSEMBLER CALL: OS9I$CREATE
MACHINE CODE: 103F 83

INPUT: (A) = Access mode.
(B) = File attributes (access permission).
(X) = Address of the pathlist.

OUTPUT: (A) = Path number.
(X) = Updated past the pathlist (trailing blanks skipped)

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E$PthFul, E3BPNam

FUNCTION: CREATE isused to create anew fileon amultifile mass storage device. On non-multifile
devices, Create is synonymous with Open. The pathlist is parsed, and the new file nameisentered in
the specified (or default working) directory. The file is given the attributes passed in the B register,
which has individual bits defined as follows:

bit 0 = read permit

bit 1 = write permit

bit 2 = execute permit

bit 3 = public read permit
bit 4 = public write permit
bit 5 = public execute permit
bit 6 = nonsharablefile

The access mode parameter passed in register A must have the write bit set if any dataisto be written
to the file. This only affects the file until it is closed; it can be reopened later in any access mode
allowed by thefil attributes (see OPEN). These access codes are defined as given below:

2 = Writeonly.
3 = Update (read and write).

NOTE: If the execute bit (bit 2) is set, directory searching will begin with the working execution
directory instead of the working data directory.

The path number returned by OS-9 is used to identify the file in subsequent 1/0 service requests until
thefileisclosed.

Data storage is alocated for the file automatically by WRITE or explicitly by the PUTSTAT call.

An error will occur if the pathlist specifies a file name that already exists in. Create cannot be used
to make directory files (see I$SMakDir).

DATA: Ll and LIl - D.Proc, D.PthDBT

101

I$Delete - Delete afile

SYSTEM CALLS:

CAVEATS

LIl - D.SysPrc

LI - F$AII64, F$PrsNam, I$Attach, F$Ret64*, F$IOQu*, F$Send*, FSFind64*
LIl - F$AlI64, FSLDABX*, F$PrsNam, I$Attach, F$Ret64, F$IOQu*, F
$Send*, F$GProcp*

Create causes an implicit I$Attach call. If the device has not previously been
attached the device'sinitialization routine will be called.

11.3.5. I$Delete - Delete a file

ASSEMBLER CALL: OS9 I$DELETE

MACHINE CODE:

103F 87

ROUTINE LOCATION: Ll andLlIl -1/O

INPUT:

OUTPUT:

ERROR OUTPUT:

(X) = Address of pathlist.
(X) = Updated past pathlist (trailing spaces skipped).

(CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E$BPNam

FUNCTION: This service request deletes the file specified by the pathlist. The caller must have non-
sharable write access to the file or an error will result (i.e. The file may not be open by any process).
Attempts to delete non-multifile devices will result in an error.

DATA:

SYSTEM CALLS:

LI and LIl - D.PthDBT, D.Proc
LIl - D.SysPrc

LI - 1$Detach*, F$Ret64*, F$AI164, F$PrsNam, I$Attach, F$IOQu, F$Find64,
F$Send*

LIl - I$Detach*, FSRet64*, F$AIIG4, FSLDABX*, F$PrsNam, I$Attach, F
$GProcP, F$10Qu*, F$Send*

11.3.6. I$DeletX - Delete a file

ASSEMBLER
CALL:

MACHINE CODE:

INPUT:

OUTPUT:

ERROR OUTPUT:

OS9 I$DeletX

103F 90

(X) = Address of pathlist
(A) = Access mode

(X) Updated past pathlist (trailing spaces skipped)

(CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: This service request deletes the file specified in the pathlist. I$DeletX isidentical to |
$Delete except that it accepts amode byte, which allows the caller to specify the execution directory.
Not being able to specify a mode byte was an oversight in earlier versions of OS-9. I$DeletX is the
preferred system call to deletefiles.

The caller must have non-sharable write access to the file or an error will result. Attempts to delete
devices will result in error.

102

I$Detach - Remove a
device from the system

The access mode is used to specify the current working directory or the current execution directory
(but not both) in the absence of afull pathlist. If the access mode is read, write, or update, the current
data directory is assumed. If the access mode is execute, the current execution directory is assumed.
Note that if afull pathlist is given (a pathlist beginning with '/*), the access mode is ignored.

DATA: Ll and LIl - D.Proc, D.PthDBT
LI1 ONLY - D.SysPrc

SYSTEM CALLS: LI and LIl - F$AII64, FSPrsNam*, 1$Attach, F$Ret64, F$IOQu*, File Mgr, F
$Send*, F$Find64* , 1$Detach
LIl ONLY - FSLDABX*, F$GProcP*

11.3.7. I$Detach - Remove a device from the system

ASSEMBLER CALL: OS9 I$DETACH
MACHINE CODE: 103F 81

ROUTINE LOCATION: Ll andLlIl-1/O

INPUT: (U) = Address of the device table entry.
OUTPUT: None.
ERROR OUTPUT: (CC) = C hit set.

(B) = Appropriate error code.

FUNCTION: LIl - Removes adevice from the system device table if not in use by any other process.
The device driver'stermination routine is called, then any permanent storage assigned to the driver is
deallocated. The device driver and file manager modul es associated with the device are unlinked (and
may be destroyed if not in use by another process.

LI - Performs unlink of al three I/0 modules associated with the device (driver, descriptor, file
manager). Unlink then calls IODel to compl ete the device termination.

The I$DETACH service request must be used to un-attach devices that were attached with the |
$ATTACH service request. Both of these are used mainly by IOMAN and are of limited (or no use)
to the typical user. SCF also uses ATTACH/DETACH to setup its second (echo) device.

DATA: LI - None.
LIl - D.Init, D.Deva, D.Proc, D.SysPrc, D.SysDAT

SYSTEM CALLS: LI -F$UNnLink*
LIl - FSRtMem*, F$Send*, F$GProcP*, F$Unlink*

11.3.8. I$Dup - Duplicate a path
ASSEMBLER CALL.: 09 I$DUP
MACHINE CODE: 103F 82

ROUTINE LOCATION: Ll-and LIl - 1/O

INPUT: (A) = Path number of path to duplicate.
OUTPUT: (A) = New path number.
ERROR OUTPUT: (CC) = Chit st

(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E$PthFul, ESBPNum

103

1$GetStt - Get file/device status

FUNCTION: Given the number of an existing path, DUP returns a synonymous path number for the
same file or device. Shell usesthis service request when it redirects 1/O. Service requests using either
the old or new path numbers operate on the same file or device.

NOTE: This only increments the “use count” of a path descriptor and returns the synonymous path
number. The path descriptor is NOT copied. It is usually not agood idea for more than process to be
doing 1/0O on the same path concurrently. On RBF files, unpredictable results may be produced.

DATA: Ll and LIl - D.Proc, D.PthDBT
SYSTEM CALLS: Ll and LIl - F$Find64

CAVEATS: The DUP will always use the lowest available path number. For example, if the
user does 1$Close on path #0, then does 1$Dup on path #4, then path #0 will be
returned as the new path number. In this way, the standard 1/O paths may be
manipulated to contain any desired paths.

11.3.9. 1$GetStt - Get file/device status

ASSEMBLER CALL: 0S9 1$GetStt
MACHINE CODE: 103F 8D
ROUTINE LOCATION: LlandLlIl-1/O

INPUT: (A) = Path number.
(B) Function code.
(Other registers depend upon status code)

OUTPUT: (depends upon function code)

ERROR OUTPUT: (CC) =Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LI - E3BPNum

FUNCTION: Thissystemisa“wild card” call used to handle individua device parameters that:
a arenot uniform on all devices

b. are highly hardware dependent

. need to be user-changeable

The exact operation of this call depends on the device driver and file manager associated with the
path. A typical useisto determine aterminal's parameters for backspace character, delete character,
echo on/off, null padding, paging, etc. It is commonly used in conjunction with the 1$SetStt service
request which is used to set the device operating parameters. Below are presently defined function
codes for 1$GetStt:

MNEMONIC CODE FUNCTION

SS.Opt $0 Read the 32 byte option section of the path descriptor.
(IOMAN - LI, LII)

SS.Ready $1 Test for dataready. (RBF, Acia- LI, LII)
SS.Size $2 Return current file size (RBF - LI, LII)

SS.Pos $5 Get current file position. (RBF - LI, LII)
SS.EOF $6 Test for end of file. (RBF, Acia- LI, LII)
SS.DevNm $E Return device name. IOMAN - L1, LII)

104

1$GetStt - Get file/device status

MNEMONIC CODE FUNCTION
SS.FD $F Read file descriptor sector. (RBF - LII)

CODES 10-127 Reserved for future use.

CODES 128-255 These getstat codes and their parameter passing conventions are user definable (see
the sections of this manual on writing device drivers). The function code and register stack are passed

to the device driver.
Parameter Passing Conventions

The parameter passing conventions for each of these function codes are given below:

SS.OPT (code $0): Read option section of the path descriptor.

This call is handled mostly by IOMAN and should work with al File Managers.

INPUT: (A) = Path number
(B) = Function code 0.
(X) = Address of place to put a 32 byte status packet.

OUTPUT: Status packet.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: This getstat function reads the option section of the path descriptor and copies it into
the 32 byte area pointed to by the X register. It istypically used to determine the current settings for
echo, auto line feed, etc. For a complete description of the status packet, please see the section of this

manual on path descriptors.

SS.Ready (code $1): Test for data available on SCF supported devices.

RBF devices always return Ready.

INPUT: (A) = Path number.
(B) = Function code 1

OUTPUT: Ready Not Ready Error
(CO) C bit clear C bit set C bit set
(B) Zero $F6 (ESNRDY) Error code

SS.Size (code $2): Get current file Size (RBF supported devices only)

INPUT: (A) = Path number.
(B) = Function code 2
OUTPUT: (X) =M.S. 16 bits of current file size.

(U) = L.S. 16 bits of current file size.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

SS.POS (code $5): Get current file position (RBF supported devices only).

INPUT: (A) = Path number
(B) = Function code 5
OUTPUT: (X) =M.S. 16 bits of current file position.

(U) =L.S. 16 bits of current file position.

105

I$MakDir - Make a new directory

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

SS.EOF (code $6): Test for end of file.

SCF never returns EOF

INPUT: (A) = Path number.
(B) = Function code 6

OUTPUT: Not EOF EOF Error
(CO) C hit clear C hit set C bit set
(B) Zero $D3 (E$EOF) Error code

SS.DevNm (code $E) Return device name

INPUT: (A) = Path number
(B) = Function code $E
(X) = Address of 32 byte areafor device name

OUTPUT: Device name in 32 byte storage area

SS.FD (code $F) Read FD sector

INPUT: (A) = Path number
(B) = Function code $F
(X) = Address of 256 byte areafor FD.
(Y) = Number of bytesto read (<=256).

OUTPUT: File descriptor placed in reserved area.

11.3.10. I$MakDir - Make a new directory

ASSEMBLER CALL: OS9 ISMAKDIR
MACHINE CODE: 103F 85

ROUTINE LOCATION: Ll andLlIl-1/O

INPUT: (B) = Directory attributes.

(X) = Address of pathlist.
OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: LI and LIl - E$BPNam, E$CEF

FUNCTION: MAKDIR isthe only way anew directory file can be created. It will create and initialize
anew directory as specified by the pathlist. The new directoryA file contains no entries, except for an
entry for itself (".") and its parent directory (".."). MAKDIR will fail on non-multifile devices.

The caler is made the owner of the directory. MAKDIR does not return a path number because
directory files are not “opened” by this request (use OPEN to do so). The new directory will
automatically have its “directory” bit set in the access permission attributes. The remaining attributes
are specified by the byte passed in the B register, which hasindividual bits defined as follows:

106

1$Open - Open a path
to afile or device

bit O = read permit

bit 1 = write permit

bit 2 = execute permit

bit 3 = public read permit

bit 4 = public write permit
bit 5 = public execute permit
bit 6 = nonsharable directory
bit 7 = (don't care)

DATA: LI and L1l - D.Proc, D.PthDBT
LIl - D.SysPrc

SYSTEM CALLS: LI - F$AlI64, F$PrsNam*, I$Attach, F$Ret64*, FSIOQu*, F$Send*, F
$Find64*, FileMgr., I$Detach*
LIl - FSAII64, FSLDABX*, FSPrsNam*, I$Attach, F$Ret64*, FSIOQuU*, F
$Send*, F$GProcP*, FileMgr., I$Detach*

11.3.11. I$Open - Open a path to a file or device

ASSEMBLER CALL: 0OS9 I$OPEN
MACHINE CODE: 103F 84
ROUTINE LOCATION: Ll andLlIl-1/O

INPUT: (A) = Accessmode (D SPE PW PREW R)
(X) = Address of pathlist.

OUTPUT: (A) = Path number.
(X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - E$PthFul, E$BPNam

FUNCTION: Opens a path to an existing file or device as specified by the pathlist. A path number is
returned which is used in subsequent service requests to identify the path.

The access mode parameter specifies which subsequent read and/or write operations are permitted as
follows:

1 =read mode
2 = write mode
3 = update mode (both read and write)

For RBF devices, Read mode should be used if preference to Update if the file is not going to be
modified. This will inhibit record locking, and could dramatically improve system performance if
more than one user is accessing the file. The access mode must conform to the access permission
attributes associated with the file or device (see |$Create). Only the owner may access a file unless
the appropriate “ public permit” bits are set.

Files can be opened by several processes (users) simultaneously. Devices have an attribute that
specifies whether or not they are sharable on an individual basis.

DATA: LI and LIl - D.Proc, D.PthDBT
LIl - D.SysPrc

SYSTEM CALLS: LI - F$AII64, F$PrsNam, I$Attach, F$Ret64*, F$IOQu*, F$Send*, F$Find64

107

I$Read - Read data
from afile or device

CAVEATS

LIl - F$AII64, FSLDAEX*, FSPrsNam, I$Attach, FSRet64*, F$IOQu, F
$Send*, F$GProcP

If the execution bit is set in the access mode, OS-9 will begin searching for the
file in the working execution directory (unless the pathlist begins with a slash).

LI - The nonsharable bit (bit 6) in the access mode can not lock other users out
of afilein OS-9 Level I. It is present only for upward compatibility with OS-9
Level Il.

LI1 - If thenon-sharablebit is set, thefilewill be opened for non- sharable access
regardiessif thefileis sharable.

Directory files may be opened for read or write if the D bit (bit 7) is set in the
access mode.

Open will aways use the lowest path number available for the process during
the open.

11.3.12. I$Read - Read data from a file or device

ASSEMBLER CALL: OS9 ISREAD

MACHINE CODE:

103F 89

ROUTINE LOCATION: Ll andLlIl-1/O

INPUT:

OUTPUT:

ERROR OUTPUT:

(A) = Path number.
(X) = Address to store data.
(Y) = Maximum number of bytesto read.

(Y) Number of bytes actually read.

(CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$BPNum, E$BMode

LIl - E$BPNum, E$Read, E$BMode

FUNCTION: Reads aspecified number of bytesfrom the path number given. The path must previously
have been opened in READ or UPDATE mode. The data is returned exactly as read from the file/
device without additional processing or editing such as backspace, line delete, end-of-file, etc. If there
is not enough datain the file to satisfy the read request, fewer bytes will be read than requested, but
an end of file error is not returned.

After al datain afile has been read, the next ISREAD service request will return and end of file error.

DATA:

SYSTEM CALLS:

CAVEATS

Ll and LIl - D.Proc, D.PthDBT

LI and LIl - F$Find64, F$IOQu*, FileMgr, F$Send*
LIl - F$GProcP

The keyboard X-ON, X-OFF characters may be filtered out of the input data on
SCF-type devices unless the corresponding entries in the path descriptor have
been set to zero. It may be desirable to modify the device descriptor so that these
values in the path descriptor are initialized to zero when the path is opened.

For L1l RBF devices, if thefileisopenfor Update, therecord read will belocked
out. See the Record Locking section.

The number of bytes requested will be read unless:

108

I$ReadLn - Read a
text line with editing

A. An end-of-file occurs
B. An end-of-record occurs (SCF only)

C. An error condition occurs.

11.3.13. ISReadLn - Read a text line with editing

ASSEMBLER CALL: OS9 I$READLN
MACHINE CODE: 103F 8B
ROUTINE LOCATION: LlandLlIl-1/O

INPUT: (A) = Path number.
(X) = Address to store data.
(Y) = Maximum number of bytesto read.

OUTPUT: (Y) Actual number of bytes read.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$BPNum, E$BMode
LIl - E$BPNum, E$Read, E$BMode

FUNCTION: READLN issimilar to “READ” except it reads data from the input file or device until
a carriage return character is encountered. Also, ReadLn causes line editing to occur on SCF-type
devices. Line editing refers to backspace, line delete, echo, automatic line feed, etc.

SCF requires that the last byte entered be an end-of-record character (normally carriage return). If
more data is entered than the maximum specified, it will not be accepted and a PD.OVF character
(normally bell) will be echoed. For example, a ReadLn of exactly one byte will accept only a carriage
return to return without error.

After all datain afile has been read, the next I$ReadL n service request will return an end of file error.
NOTE: For more information on line editing, see 7.1.
DATA: Ll and LIl - D.Proc, D.PthDBT

SYSTEM CALLS: LI and LIl - F$Find64, I$10Qu*, FileMgr, F$Send*
LIl - F$GProcP*

11.3.14. I1$Seek - Reposition the logical file pointer

ASSEMBLER CALL: OS9 I$SEEK
MACHINE CODE: 103F 88
ROUTINE LOCATION: Ll andLlIl-1/O

INPUT: (A) = Path number.
(X) = M.S. 16 bits of desired file position.
(U) = L.S. 16 bits of desired file position.

OUTPUT: None.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

109

|$SetStt - Set file/device status

POSSIBLE ERRORS: Ll and LIl - E$BPNum

FUNCTION: SEEK repositions the path's “file pointer”; which is the 32- bit address of the the next
byte in thefile to be read or written.

A seek may be performed to any value even if the fileis not large enough. Subsequent WRITEs will
automatically expand the file to the required size (if possible), but READS will return an end-of-file
condition. Note that a SEEK to address zero isthe same asa“rewind” operation.

Seeks to non-random access devices are usually ignored and return without error.

DATA: LI and LIl - D.Proc, D.PthDBT
SYSTEM CALLS: LI and LIl - F$Find64, File Mgr, F$IOQu*, F$Send*
LIl - F$GProcP*
CAVEATS: On RBF devices, seeking to a new disk sector causes the internal disk buffer

to be rewritten to disk if it has been modified. Seek does not change the state
of record locking.

11.3.15. I$SetStt - Set file/device status

ASSEMBLER CALL: OS9I$SETSTT
MACHINE CODE: 103F BE

INPUT: (A) = Path number.
(B) = Function code.
(Other registers depend upon the function code).

OUTPUT: (Depends upon the function code).

ERROR OUTPUT: (CC) = Chit =et.
(B) = Appropriate error code.

POSSIBLE ERRORS: Ll and LIl - ESBPNum

FUNCTION: This system call isa“wild card” call used to handle individual device parameters that:
a arenot uniform on all devices

b. are highly hardware dependent

. need to be user-changeable

The exact operation of this call depends on the device driver and file manager associated with the path.
A typical useisto set aterminal's parameters for backspace character, delete character, echo on/off,
null padding, paging etc. It iscommonly used in conjunction with the GETSTT service request which
is used to read the device's operating parameters etc. Below are the presently defined function codes:

MNEMONIC CODE FUNCTION

SS.OPT $0 Write the 32 byte option section of the path descriptor
(SCF,RBF - LI,LII)

SS.Size $2 Set thefile size (RBF - LI,LII)
SS.Reset $3 Restore head to track zero*
SSWTrk $4 Write (format) track*

SS.Feed $9 Issue Form Feed (SCF)
SS.FRZ $A Freeze DD. information*

110

|$SetStt - Set file/device status

MNEMONIC CODE FUNCTION

SS.SPT $B Set Sectors per track*

SS.SQD $C Sequence down disk drive*

SS.DCmd $D Direct command to hard disk controller*
SS.FD $F Write FD sector (RBF - LI1I)

SS.Ticks $10 Set Lockout honor duration (RBF - LI1)
SS.Lock $11 Lock/Release record (RBF - LII)
SS.SSIG $1A Send signal on dataready (ACIA - LII)
SS.Relea $1B Release device (ACIA - LII)

* These setstats exist in Microware supplied disk drivers (if needed). Only SS.Reset and SSWTrk are
required; the others are implemented to allow reading nonstandard disks. Microware has not supplied
any software which makes use of them.

Codes 128 through 255 and their parameter passing conventions are user definabl e (see the sections of
this manual on writing device drivers). The function code and register stack are passed to the device

driver.
SS.OPT (code 0): Write option section of path descriptor.

INPUT: (A) = Path number
(B) = Function code 0
(X) = Address of a 32 byte status packet

OUTPUT: None.
FUNCTION: This setstat function writes the option section of the path descriptor from the 32 byte
status packet pointed to by the X register. It is typically used to set the device operating parameters,

such as echo, auto line feed, etc. This call is handled by the File Managers, only copies values that
are appropriate to be changed by user programs.

SS.SIZE (code 2): Set file size (RBF-type devices)

INPUT: (A) = Path number
(B) = Function code 2
(X) =M.S. 16 bits of desired file size.
(U) =L.S. 16 bits of desired file size.

OUTPUT: None.
FUNCTION: This setstat function is used to change thefile's size.

SS.RESET (code 3): Restore head to track zero.

INPUT: (A) = Path number
(B) = Function code 3
OUTPUT: None

FUNCTION: Home disk head to track zero. Used for formatting and for error recovery.
SS.WTRK (code 4): Write track.

INPUT: (A) = Path number
(B) = Function code 4
(X) = Address of track buffer.
(U) = Track number

111

|$SetStt - Set file/device status

(Y) - Side/density

For Floppy: Y = side/density
For Hard Disk Y = side only (may be more than one)

Bit BO = SIDE (0 = side zero, 1 = side one)
Bit B1=DENSITY (0=single, 1 = double)
OUTPUT: None

FUNCTION: This code causes a format track (most floppy disks) operation to occur. For hard disks
or floppy disks with a“format entire disk” command, this command should format the entire media

only when the track number equals zero.

SS.FRZ (code $A): Freeze DD. Information

INPUT: (A) = Path number
(B) = SS.FRZ function code
OUTPUT: None

FUNCTION: Inhibits the reading of identification sector (LSN 0) to memory DD.xxx variables (that
define disk formats) so non-standard disks may be read.

SS.SPT (Code $B): Set Sectors Per Track

INPUT: (A) = Path number
(B) = SS.SPT function code
(X) = new sectors per track

OUTPUT: None

FUNCTION: Sets adifferent number of sectors per track so non-standard disks may be read.

SS.SQD (Code $C): Sequence Down Disk

INPUT: (A) = path number
(B) = SS.SQD function code
OUTPUT: None

FUNCTION: Initiates power-down sequence for Winchester or other hard diskswhich have sequence-
down requirements prior to removal of power.

SS.DCmd (Code $D): Direct Command to Disk Controller

INPUT: Varies
OUTPUT: Varies

FUNCTION: Transmits a command directly to an intelligent disk controller for special functions.
Parameters and commands are hardware dependent for specific systems.

SS.FD (Code $F): Write FD sector

INPUT: (A) = Path number
(B) = Function code
(X) = Address of FD sector image

OUTPUT: None

112

|$SetStt - Set file/device status

FUNCTION: Change FD sector

NOTE: Only FD.OWN, FD.DAT, and FD.Creat can be changed. These are the only fields written
back to disk. If at least 16 bytes are not read using the GETSTT call, garbage could be written out
to the FD sector.

SS.Lock (Code $10): Lock out a section of a file.

INPUT: (A) = path number
(B) = SS.Lock code
(X) = M.S. of lockout size
(U) =L.S. of lockout size

OUTPUT: None

FUNCTION: SS.Lock locks out asection of thefile from the current position up to the number of bytes
requested. If O bytes are requested, all locks (Record Lock, EOF Lock, and File Lock) are removed. If
(X) and (U) contain $FFFF FFFF, then the entire file islocked out regardless of where the file pointer
is. Thisis a special type of file lock that remains in effect until released by SS.Lock(O), a read or
write of zero bytes, or the file is closed. There is no way to gain file lock using only Read or Write
system calls.

SS.Ticks (Code $11) Wait specified number of ticks for record release.

INPUT: (A) = path number
(B) = SS.Ticks code
(X) = Delay interva

OUTPUT: None.

FUNCTION: Normally, if aread or writerequest isissued for part of afilethat islocked out by another
user, RBF sleeps indefinately until the conflict is removed. The SS.Ticks call may be used to cause
an error (#252) to be returned to the user program if the conflict still exists after the specified number
of ticks of the system clock have elapsed.

Thedelay interval isused directly asaparameter to RBF'sconflict sleep request. Thevalue zero (RBF's
default) causes a sleep forever until the record isreleased. A delay value of one effectively means that
if the lock is not released immediately, an error is returned.

SS.SSIG (Code $1A) Send Signal on data ready

INPUT: (A) = path number
(B) = function code
(X) = user defined signal code

OUTPUT: None
FUNCTION: SS.SSIG sets up asignal to be sent to a process when a device has dataready. SS.SSIG
must be reset each time the signal is sent if it isto be used again. The device is considered busy, and

will return an error if any read request arrives before the signal is sent. Write requests are allowed to
the device while in this state.

SS.Relea (Code $1B) Release device

INPUT: (A) = path number
(B) = function code
OUTPUT: None

FUNCTION: SS.Relea clears the the signal to be sent from adevice so it will no longer send a signal
on data ready.

113

I$Write - Write data
to afile or device

11.3.16. I$Write - Write data to a file or device

ASSEMBLER CALL: OS9 ISWRITE
MACHINE CODE: 103F 8A
ROUTINE LOCATION: Ll andLlIl-1/O

INPUT: (A) = Path number.
(X) = Address of datato write.
(Y) = Number of bytesto write.

OUTPUT: (Y) Number of bytes actually written.

ERROR OUTPUT: (CC) = Chit =et.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI - E$BPNum, E$BMode
LIl - E$SBPNum, E$BMode, E$Write

FUNCTION: WRITE outputs one or more bytes to afile or device associated with the path number
specified. The path must have been OPENed or CREATEd in the WRITE or UPDATE access modes.

Data is written to the file or device without processing or editing. If data is written past the present
end-of-file, the file is automatically expanded.

DATA: Ll and LIl - D.Proc, D.PthDBT

SYSTEM CALLS: LI - F$Find64, F$IOQu*, File Mgr, F$Send*
LIl - F$GProcP*

11.3.17. I$WritLn - Write a line of text with editing

ASSEMBLER CALL: OS9 ISWRITLN
MACHINE CODE: 103F 8C
ROUTINE LOCATION: LlandLlIl-1/O

INPUT: (A) = Path number.
(X) = Address of datato write.
(Y) = Maximum number of bytesto write.

OUTPUT: (Y) = Actual number of byteswritten.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: LI and LIl - ESBPNum, E$BMode
LIl - E$Write

FUNCTION: Thissystem call issimilar to WRITE except it writesdatauntil acarriage return character
isencountered. Line editing isalso activated for character-oriented devices such asterminals, printers,
etc. Theline editing refersto auto line feed, null padding at end-of- line, etc.

For more information about line editing, see section 7.1.
DATA: Ll and LIl - D.Proc, D.PthDBT

SYSTEM CALLS: LI and LIl - F$Find64, F$IOQu*, File Mgr, F$Send*
LIl - F$GProcP

114

Chapter 12. Level Two System
Service Requests

12.1. Level Two System Service Requests
12.1.1. F$AIllImg - Allocate Image RAM blocks

ASSEMBLER CALL: OS9 F$AllImg
MACHINE CODE: 103F 3A
ROUTINE LOCATION: 0OS9pl1

INPUT: (A) = Beginning block number
(B) = Number of blocks
(X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: E$MemFul

FUNCTION: ALLIMG allocates RAM blocks for process DAT image. The blocks may not be
contiguous. This call is used to allocate data area for a process.

DATA: D.BlkMap

SYSTEM CALLS: None.

Note

Thisisaprivileged system mode service request.

12.1.2. F$AIIPrc - Allocate Process descriptor
ASSEMBLER CALL.: OS9 F$AlIPre

MACHINE CODE: 103F 4B

ROUTINE LOCATION: OS9p2

INPUT: None
OUTPUT: (V) = Process Descriptor pointer
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: ES$PrcFul

FUNCTION: ALLPROC alocates and initializes a 512-byte process descriptor. The address of the
descriptor is kept in the process descriptor table. Initialization consists of clearing the first 256 bytes
of the descriptor, setting up the state as system state, and marking as unallocated as much of the DAT
image as the system allows (typically 60 - 64k).

DATA: D.PrcDBT

115

F$AIIRAM - Allocate RAM blocks

SYSTEM CALLS: F$SrgMem

Note

Thisis a privileged system mode service request.

12.1.3. FSAIIRAM - Allocate RAM blocks

ASSEMBLER CALL: 0OS9 F$AIIRAM
MACHINE CODE: 103F 39

ROUTINE LOCATION: OS9pl

INPUT: (B) = Number of blocks
OUTPUT: (D) = Beginning RAM block number
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: E$NoRam

FUNCTION: ALLRAM searches the Memory Block map for the desired number of contiguous free
RAM blocks.

DATA: D.BlkMap
SYSTEM CALLS. None.

Note

Thisisaprivileged system mode service request.

12.1.4. F$AIITsk - Allocate process Task number

ASSEMBLER CALL: OS9 F$AIITsk
MACHINE CODE: 103F 3F

ROUTINE LOCATION: 0S9p1

INPUT: (X) = Process Descriptor pointer
OUTPUT: None.
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: E$NoTask

FUNCTION: ALLTSK determinesif atask number isassigned to the given process. Otherwise, atask
number is newly allocated, and the DAT imageis copied into the DAT hardware.

DATA: D.Tasks, D.SysTsk
SYSTEM CALLS: F.ResTsk, F.SetTsk*

Note

Thisisaprivileged system mode service request.

116

F$Boot - Bootstrap system

12.1.5. F$Boot - Bootstrap system
ASSEMBLER CALL.: OS9 F$Boot
MACHINE CODE: 103F 35

ROUTINE LOCATION: 0S9p1

INPUT: None
OUTPUT: None.
ERROR OUTPUT: (CC) = C hit set.

(B) = Appropriate error code.

FUNCTION: BOOQT links the module named “Boot” or as specified in the INIT module; calls linked
modul e; and expectsthe return of apointer and size of an areawhich isthen searched for new modules.

DATA: D.Boot, D.Init, D.SysDAT

SYSTEM CALLS: F$Link, Entry point of Boot Module, F$VModul

Note

Thisisaprivileged system mode service request.

12.1.6. F$BtMem - Bootstrap Memory request

ASSEMBLER CALL: 0OS9 F$BtMem
MACHINE CODE: 103F 36

ROUTINE LOCATION: 0OS9p1

INPUT: (D) = Byte count requested.

OUTPUT: (D) = Byte count granted.
(V) = Pointer to memory allocated.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: E$MemFul

FUNCTION: BTMEM allocates requested memory (rounded up to nearest block) as contiguous
memory in the system'’s address space.

Withtherelease of version 1.2 of Level Two, thissystem call isnot needed. It isequated to F$SrgMem.
Note

Thisisaprivileged system mode service request.

12.1.7. F$CIrBlk - Clear specific Block

ASSEMBLER CALL: OS9 F$ClIrBlk
MACHINE CODE: 103F 50

ROUTINE LOCATION: OS9p2

117

F$CpyMem - Copy external Memory

INPUT: (B) = Number of blocks
(U) = Address of first block

OUTPUT: None.

ERROR OUTPUT: None.

POSSIBLE ERRORS: ESIBA if the address is invalid, or if clearing area where the stack is
residing.

FUNCTION: CLRBLK marksblocksin process DAT image as unallocated. Thus, the blocks become
free for the processto use for other data or program area.

DATA: D.Proc

SYSTEM CALLS: None.

Note

Thisisauser mode service request.

12.1.8. F$CpyMem - Copy external Memory

ASSEMBLER CALL: 0OS9 F$CpyMem
MACHINE CODE: 103F 18
ROUTINE LOCATION: OS9p2
INPUT: (D) = DAT image ptr.
(X) = Offset in block to begin copy
(Y) = Byte count
(V) = Caller's destination buffer
OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

FUNCTION: CPYMEM reads external memory into the user's buffer for inspection. Any memory
in the system may be viewed in this way. CpyMem assumes X to be the address of the 64k space
described by the DAT image given. only the part of the DAT image which corresponds to the area
specified needs to be set up.

Examples: If the entire DAT image of aprocess is passed, then X = address in the process space. If a
partial DAT image is passed (upper half), then X = offset from beginning of DAT image ($8000).

DATA: D.TmpDAT, D.Proc
SYSTEM CALLS: F$LDDDXY*, FSLDAXY*, F$STABX*

Note

Thisisauser mode service request.

12.1.9. F$DATLog - Convert DAT block/offset to
Logical Addr

ASSEMBLER CALL: OS9 F$DATLog

118

F$Dellmg - Deallocate
Image RAM blocks

MACHINE CODE: 103F 44

ROUTINE LOCATION: 0S9p1

INPUT: (B) = DAT image offset
(X) = Block offset

OUTPUT: (X) = Logical address

ERROR OUTPUT: (CC) =C hit set.

(B) = Appropriate error code.

FUNCTION: DATLOG convertsaDAT image block number and block offset to its equivalent logical

address.

Note

Thisisaprivileged system mode service request.

+ +
| |
| |
--------------------- Input: B =
| | X =
| 2000 - 2FFF |
| |
| | Qutput: X =
| 1000 - 1FFF |
| |
| |
| 0 - FFF |

$0329

$2329

12.1.10. F$Dellmg - Deallocate Image RAM blocks

ASSEMBLER CALL: OS9 F$Dellmg
MACHINE CODE: 103F 3B
ROUTINE LOCATION: OS9p2

INPUT: (A) = Beginning block number
(B) = Block count
(X) = Process descriptor pointer
OUTPUT: None.
ERROR OUTPUT: (CC) =Chit st.

(B) = Appropriate error code.

FUNCTION: DELIMG deallocates memory from the process address space. Thiscall freesthe RAM
for system use and frees the DAT image for the process. It's main use is to allow the system to clean

up after process death.
DATA: D.BlkMap

SYSTEM CALLS:. None.

119

F$DelPrc - Deallocate
Process descriptor

Note

Thisisaprivileged system mode service request.

12.1.11. F$DelPrc - Deallocate Process descriptor
ASSEMBLER CALL.: OS9 F$DelPrc
MACHINE CODE: 103F 4C

ROUTINE LOCATION: OS9p2

INPUT: (A) = Process ID
OUTPUT: None.
ERROR OUTPUT: (CC) = C hit set.

(B) = Appropriate error code.

FUNCTION: DELPRC returns process descriptor memory to a free memory pool. Used for process
clean up after death.

DATA: D.PrcDBT

SYSTEM CALLS: F$DelTsk*, F$SrtMem

Note

Thisisaprivileged system mode service request.

12.1.12. F$DelRam - Deallocate RAM blocks

ASSEMBLER CALL: OS9 F$DelRam
MACHINE CODE: 103F 51

ROUTINE LOCATION: OS9p2

INPUT: (B) = Number of blocks

(X) = Starting block number
OUTPUT: None.
ERROR OUTPUT: None.

FUNCTION: DELRAM clears the block's “RAM in use flag” in the system memory block map.
DelRam assumes the blocks are not associated with any DAT image.

DATA: D.BlkMap
SYSTEM CALLS: None.

Note

Thisisaprivileged system mode service request.

12.1.13. F$DelTsk - Deallocate process Task number

ASSEMBLER CALL: OS9 F$Del Tsk

MACHINE CODE: 103F 40

120

F$ELink - Link using
module directory Entry

ROUTINE LOCATION: 0OS9p1

INPUT: (X) = Process descriptor pointer
OUTPUT: None.
ERROR OUTPUT: (CC) = Chit =t

(B) = Appropriate error code.

FUNCTION: DELTSK releases the Task number in use by the process whose descriptor pointer is
passed.

DATA: D.SysTsk, D.Tasks

SYSTEM CALLS: F.RelTsk

Note

Thisis a privileged system mode service request.

12.1.14. F$ELink - Link using module directory Entry

ASSEMBLER CALL: OS9 F$ELink
MACHINE CODE: 103F 4D
ROUTINE LOCATION: OS9pl

INPUT: (B) = Module type
(X) = Pointer to module directory entry

OUTPUT: (U) = Module header address
(Y) = Module entry point

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: E$ModBsy, ESMemFul

FUNCTION: ELINK performs a“Link” given a pointer to a module directory entry. Note that this
call differsfrom F$Link in that a pointer to the module directory entry is supplied rather than a pointer
to amodule name.

DATA: D.Proc

SYSTEM CALLS: F.FreeHB*, F.Setimg*, F.DATLog*, F.LDDDXY*

Note

Thisis a privileged system mode service request.

12.1.15. F$FModul - Find Module directory entry

ASSEMBLER CALL: 0OS9 F$FModul
MACHINE CODE: 103F 4B
ROUTINE LOCATION: OS9pl

INPUT: (A) = Module type
(X) = Pointer to name string

121

F$FreeHB - Get Free High block

(Y) = DAT image pointer (for name)

OUTPUT: (A) Module type
(B) = Module revision
(X) = Updated past name string
(U) = Module directory entry pointer

ERROR OUTPUT: (CC) = C bit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: E$SMNF, E$BNam.

FUNCTION: FMODUL returns a pointer to the module directory entry for the first module whose
name and type matches the given name and type. A module type of zero passed to FModul will find
any module.

DATA: D.ModDir, D.ModEnd

SYSTEM CALLS: F.LDAXY*, F.DATLog*, F.PrsNam, F.LDDDXY*, F.ChkNam*

Note

Thisis a privileged system mode service request.

12.1.16. F$FreeHB - Get Free High block

ASSEMBLER CALL: OS9 F$FreeHB
MACHINE CODE: 103F 3E

ROUTINE LOCATION: 0OS9pl1

INPUT: (B) = Block count

(Y) = DAT image pointer
OUTPUT: (A) = Beginning block number
ERROR OUTPUT: (CC) =Chit st.

(B) = Appropriate error code.
POSSIBLE ERRORS: E$MemFul

FUNCTION: FREEHB searches the DAT image for the highest set of contiguous free blocks of the
given size. FreeHB returns the block number of the beginning memory address of the free blocks.

Note

Thisisa privileged system mode service request.

12.1.17. F$FreelLB - Get Free Low block

ASSEMBLER CALL: OS9 F$FreelB
MACHINE CODE: 103F 3D
ROUTINE LOCATION: 0OS9p1

INPUT: (B) = Block count
(Y) = DAT image pointer

OUTPUT: (A) = Beginning block number

122

F$GBIkMp - Get
system Block Map copy

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

POSSIBLE ERRORS: E$MemFul

FUNCTION: FREELB searches the DAT image for the lowest set of contiguous free blocks of the
given size.

Note

Thisisaprivileged system mode service request.

12.1.18. F$GBIkMp - Get system Block Map copy

ASSEMBLER CALL: OS9 F$GBIkMp

MACHINE CODE: 103F 19

ROUTINE LOCATION: 0OS9p2

INPUT: (X) = 1024 byte buffer Pointer

OUTPUT: (D) = Number of bytes per block (MMU block size dependent)
(Y) = Size of system’'s memory block map

ERROR OUTPUT: (CC) = Chit =et.
(B) = Appropriate error code.

FUNCTION: GBLKMAP copiesthe system's memory block map into the user's buffer for inspection.
F$GBIkMp is used by Mfree to find how much free memory exists.

DATA: D.BlkMap, D.SysTsk, D.Proc

SYSTEM CALLS: F$Move

Note

Thisisauser mode service request.

12.1.19. F$GModDr - Get Module Directory copy

ASSEMBLER CALL: 0OS9 F$GModDr
MACHINE CODE: 103F 1A
ROUTINE LOCATION: OS9p2

INPUT: (X) = 2048 byte buffer pointer
(Y) = end of copied module dir
(V) = Start address of Module Directory in the system

ERROR OUTPUT: (CC) = Chit =et.
(B) = Appropriate error code.

FUNCTION: GMODDR copies the system’'s module directory into the user's buffer for inspection. F
$GModDr is used by Mdir to look at the module directory.

DATA: D.ModDir, D.ModEnd, D.SysTsk, D.Proc

SYSTEM CALLS: F$Move.

123

F$GPrDsc - Get
Process Descriptor copy

Note

Thisisauser mode service request.

12.1.20. F$GPrDsc - Get Process Descriptor copy
ASSEMBLER CALL: OS9 F$GPrDsc
MACHINE CODE: 103F 18

ROUTINE LOCATION: 0OS9p2

INPUT: (A) = Requested process ID
(X) = 512 byte buffer pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.

FUNCTION: GPRDSC copies a process descriptor into the calling process buffer for inspection.
There is no way to change datain a process- descriptor. FSGPrDsc is used by the Procs utility to gain
information about each existing process.

DATA: D.Proc, D.SysTsk

SYSTEM CALLS: F$GProcP

Note

Thisisauser mode service request.

12.1.21. F$GProcP - Get Process Pointer

ASSEMBLER CALL: 0OS9 F$GProCP
MACHINE CODE: 103F 37

ROUTINE LOCATION: OS9p2

INPUT: (A) = Process 1D
OUTPUT: (B) = Pointer to process descriptor
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: E$BPrcld

FUNCTION: GPROCP tranglates a process |D number to the address of its process descriptor in the
system address space. Process descriptors exist only in the system task address space. Therefore, the
address returned must refer to system address space.

DATA: D.PrcDBT
SYSTEM CALLS: None.

Note

Thisisaprivileged system mode service request.

124

F$LDABX - Load A
from0,X intask B

12.1.22. F$LDABX - Load A from 0,X in task B

ASSEMBLER OS9 F$LDABX
CALL:

MACHINE CODE: 103F 49

INPUT: (B) = Task Number
(X) = Data pointer

OUTPUT: (A) = Databyte at 0,X in task's address space

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: One byte is returned from the logical addressin (X) in the given task's address space.
LDABX istypicaly used to get one byte from the current process's memory in a system state routine.

Note

Thisis a privileged system mode service request.

12.1.23. F$LDAXY - Load A [X, [Y]]

ASSEMBLER OS9 F$LDAXY
CALL:

MACHINE CODE: 103F 46

INPUT: (X) = Block Offset
(Y) = DAT image pointer

OUTPUT: (A) = Data byte at (X) offset of (Y)

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: LDAXY returns one data byte in the memory block specified by the DAT imagein (Y),
offset by (X). LDAXY assumes the DAT image pointer is to the actual block desired and that X is
only an offset within the DAT block. Example: X must be less than the size of the block or invalid
datawill be returned. However, no error check is made for the situation.

Note

Thisis a privileged system mode service request.

12.1.24. F$LDDDXY - Load D [D+X],[Y]]

ASSEMBLER OS9 F$LDDDXY
CALL:

MACHINE CODE: 103F 48

INPUT: (D) = Offset to the offset within DAT image
(X) = Offset within DAT image
(Y) = DAT image pointer

OUTPUT: (D) = bytes addressed by [D+X,Y]

ERROROUTPUT: (CC) = C bit set.

125

F$MapBlk - Map specific block

(B) = Appropriate error code.

FUNCTION: Loadstwo bytes from the address space described by the DAT image pointed to by (Y).
The bytes are loaded from the address D+X in the address space.

Offsets must be set up to be oriented relative to the first block pointed to the DAT image pointer. If
the DAT image pointer is to the entire DAT, then D+X should equal the process address for data. If
the DAT imageis not the entire image (full 64k), then D+X must be adjusted relative to DAT image
beginning.

The use of D+X allows keeping alocal pointer within a block, yet offsetting into the DAT image to
ablock number is specified.

SYSTEM CALLS: F.LDAXY*

Note

Thisisaprivileged system mode service request.

12.1.25. F$MapBIk - Map specific block

ASSEMBLER CALL: OS9 F$MapBIk
MACHINE CODE: 103F 4F

ROUTINE LOCATION: 0OS9p2

INPUT: (B) = Number of blocks

(X) = Beginning block number
OUTPUT: (U) = Address of first block
ERROR OUTPUT: (CC) = C hit set.

(B) = Appropriate error code.
POSSIBLE ERRORS: E$IBA

FUNCTION: MAPBLK maps specified block(s) into unallocated blocks of process space. Blocks
are mapped in from the top down. In other words, new blocks are mapped into the highest address
available in the address space. See F$CIrBIk for information on “unmapping”.

DATA: D.Proc
SYSTEM CALLS: F$FreeHB, F$Setimg
Note

Thisisauser mode service request.

12.1.26. F$Move - Move Data (low bound first)

ASSEMBLER CALL: 0OS9 F$Move
MACHINE CODE: 103F 38
ROUTINE LOCATION: OS9pl

INPUT: (A) = Source Task Number
(B) = Destination Task Number
(X) = Source pointer
(Y) = Byte count

126

F$Rel Tsk - Release Task number

(V) = Destination pointer
OUTPUT: None.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: MOVE moves data bytes from one address space to another, usualy from system to
user or vice versa.

Note

Thisisaprivileged system mode service request.

12.1.27. F$RelTsk - Release Task number

ASSEMBLER CALL: OS9 F$Rel Tsk
MACHINE CODE: 103F 43

ROUTINE LOCATION: OS9pl

INPUT: (B) = Task number
OUTPUT: None.
ERROR OUTPUT: (CC) = C hit set.

(B) = Appropriate error code.

FUNCTION: RELTSK releases the specified DAT task number, which makes the task's DAT
hardware available for another user.

DATA: D.SysTsk, D.Tasks

SYSTEM CALLS. None.

Note

Thisisaprivileged system mode service request.

12.1.28. F$ResTsk - Reserve Task number

ASSEMBLER CALL: OS9 F$ResT sk
MACHINE CODE: 103F 42

ROUTINE LOCATION: 0OS9p1

INPUT: None.
OUTPUT: (B) = Task number
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.

FUNCTION: RESTSK finds free DAT task number, reserves it, and returns the task number to the
caler. The caller then (generaly) assigns the new task number to a process.

DATA: D.SysTsk, D.Tasks

SYSTEM CALLS. None.

127

F$Setimg - Set Process DAT Image

Note

Thisis a privileged system mode service request.

12.1.29. F$Setimg - Set Process DAT Image

ASSEMBLER CALL: OS9 F$Setimg

MACHINE CODE: 103F 3C

ROUTINE LOCATION: OS9pl

INPUT: (A) = Beginning image block number
(B) = Block count
(X) = Process descriptor pointer
(U) = New image pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: SETIMG copies DAT image, or aportion of the DAT image, into the process descriptor.
At the sametimeit setsanimage change flag in the process descriptor which guaranteesthat as process
returns from the system call, the hardware will be updated to match the new process DAT image.

DATA: None.

SYSTEM CALLS: None.

Note

Thisis a privileged system mode service request.

12.1.30. F$SetTsk - Set process Task DAT registers
ASSEMBLER CALL: OS9 F$SetTsk

MACHINE CODE: 103F 41

ROUTINE LOCATION: 0OS9p1

INPUT: (X) = Process descriptor pointer
OUTPUT: None.
ERROR OUTPUT: (CC) =Chit set.

(B) = Appropriate error code.

FUNCTION: SETTSK setsthe processtask hardware DAT registers and clears theimage change flag
in the process descriptor as well as writing the data into the hardware.

Note

Thisis a privileged system mode service request.

12.1.31. F$Slink - System Link

ASSEMBLER CALL: OS9 F$SLink

128

F$STABX - Store A at 0,X intask B

MACHINE CODE:

ROUTINE LOCATION:

INPUT:

OUTPUT:

ERROR OUTPUT:

POSSIBLE ERRORS:

103F 34
0S9pl

(A) = Module type
(X) = Module name string pointer
(Y) = Name string DAT image pointer

(A) = Module type

(B) = Module revision

(X) = Updated name string pointer
(Y) = Module entry point

(U) = Module pointer

(CC) = Chit set.
(B) = Appropriate error code.

E$ModBsy, ESMemFul

FUNCTION: SLINK linksamodulewhose nameisoutsidethe current (system) process address space
into the address space. F$SLink is used by the 1/0 system to get the modules specified by the device
namein auser cal (1$Create, 1$Open, etc.) linked into the system's address space.

DATA: D.Proc

SYSTEM CALLS: F.FModul, F.FreeHB*, F.Setimg*, F.DATLog*, F.LDDXY*

Note

Thisisaprivileged system mode service request.

12.1.32. F$STABX -

ASSEMBLER CALL:

MACHINE CODE:

ROUTINE LOCATION:

INPUT:

OUTPUT:

ERROR OUTPUT:

Store A at 0,X in task B

OS9 F$STABX
103F 4A
0OS9pl

(A) = Data byteto store in task's address space
(B) = Task number
(X) = Logical addressin task's address space to store

None.

(CC) = Chit set.
(B) = Appropriate error code.

FUNCTION: Thisissimilar totheassembly instruction“ STA 0,X”, except that (X) refersto an address
in the given task's address space rather than the current address space.

Note

Thisisaprivileged system mode service request.

12.1.33. F$SUser - Set User ID number

ASSEMBLER CALL:

MACHINE CODE:

OS9 F$SUser

103F 1C

129

F$UnLoad - Unlink module by name

ROUTINE LOCATION: 0OS9p1

INPUT: (Y) = Desired user |D number
OUTPUT: None.
ERROR OUTPUT: (CC) = Chit set.

(B) = Appropriate error code.

FUNCTION: SUSER dlters the current user ID to that specified, without error checking and without
regard to ID number of caller.

DATA: D.Proc
SYSTEM CALLS:. None.

Note

Thisisauser mode service request.

12.1.34. F$UnLoad - Unlink module by name

ASSEMBLER CALL: OS9 F$UnL oad
MACHINE CODE: 103F 1D

ROUTINE LOCATION: OS9p2

INPUT: (A) = Module type

(X) = Module name pointer
OUTPUT: None.
ERROR OUTPUT: (CC) = C hit set.

(B) = Appropriate error code.

FUNCTION: Locates the module in the module directory, decrements its link count, and removes
it from the directory if the count reaches zero. Note that this call differs from F$UnLink in that the
pointer to the module name is supplied rather that the address of the module header.

DATA: D.Proc, D.SysDAT, D.BlkMap, D.ModDir, D.ModEnd
SYSTEM CALLS: F$FModul, F$IODéel

Note

Thisisauser mode service request.

130

Appendix A. Standard Floppy Disk

VALUE (HEX)

Formats
Table A.1. Single Density Floppy Disk Format
SIZE 5"
DENSITY SINGLE
#TRACKS 35
#SECTORS/TRACK 10
BYTES/TRACK 3125
(UNFORMATTED)
FORMAT FIELD #BYTES
(DEC)

HEADER (ONCE PER TRACK) 40

1
12
SECTOR (REPEATED N TIMES) 6

TRAILER (ONCE PER TRACK) 85

BYTES/SECTOR 256
(FORMATTED)

BYTESTRACK (FORMATTED) 2560
BYTESDISK (FORMATTED) 89,600

FF
00

FC

FF

00

FE

(TRK #)
(SIDE #)
(SECT #)
(BYTCNT)
(CRC)

FF

00

FB
(DATA)
(CRC)

FF

FF

Table A.2. Double Density Floppy Disk Format

SIZE 5"
DENSITY DOUBLE
#TRACKS 35
#SECTORS/TRACK 16
BYTES/TRACK 6250
(UNFORMATTED)

g"
SINGLE
7

16

5208

#BYTES
(DEC)

40

10
380
256

4096
315,392

g"
DOUBLE
7

28

10,416

VALUE (HEX)

FF
00

FC

FF

00

FE

(TRK #)
(SIDE #)
(SECT #)
(BYTCNT)
(CRC)

FF

00

FB
(DATA)
(CRC)

FF

FF

131

FORMAT FIELD

HEADER (ONCE PER TRACK)

SECTOR (REPEATED N TIMES)

TRAILER (ONCE PER TRACK)

BYTES/SECTOR
(FORMATTED)

BYTES/TRACK (FORMATTED)
BYTES/DISK (FORMATTED)

#BYTES
(DEC)

80
12

22
682
256

4096
141,824

VALUE (HEX) #BYTES

4E
00

F5 (A1)
FC

4E

00

F5 (A1)
FE

(TRK #)
(SIDE #)
(SECT #)
(BYTCNT)
(CRC)
4E

00

F5 (A1)
FB
(DATA)
(CRC)
4E

4E

(DEC)
80
12

768
256

7168
548,864

VALUE (HEX)

4E
00

F5

FC

4E

00

F5

FE

(TRK #)
(SIDE #)
(SECT #)
(BYTCNT)
(CRC)
4E

00

F5 (A1)
FB
(DATA)
(CRC)
4E

4E

132

Appendix B. Error Codes
B.1. OS-9 Error Codes

The error codes are shown both in hexadecimal (first column) and decimal (second column). Error
codes other than those listed are generated by programming languages or user programs.

HEX DEC

$C8 200 E$PthFul PATH TABLE FULL - Thefile cannot be opened because
the system path tableis currently full.

$C9 201 E$BPNum ILLEGAL PATH NUMBER - Number too large or for
non-existant path.

$CA 202 ES$Poll INTERRUPT POLLING TABLE FULL

$CB 203 E$BMode ILLEGAL MODE - attempt to perform I/O function of
which the device or fileisincapable.

$CC 204 E$DevOvf DEVICE TABLE FULL - Can't add another device

$CD 205 E$BMID ILLEGAL MODULE HEADER - module not loaded
because its sync code, header parity, or CRC isincorrect.

$CE 206 E$DirFul MODULE DIRECTORY FULL - Can't add another
module

$CF 207 E$MemFul MEMORY FULL - Level One: not enough contigquous
RAM free. Level Two: process address space full

$DO0 208 E$UNkSvc ILLEGAL SERVICE REQUEST - System call had an
illegal code number

$D1 209 E$ModBsy MODULE BUSY - non-sharable module is in use by
another process.

$D2 210 E$BPAddr BOUNDARY ERROR - Memory dlocation or
deallocation request not on a page boundary.

$D3 211 E$EOF END OF FILE - End of file encountered on read.

$D4 212 NOT YOUR MEMORY - attempted to deallocate memory not
previously assigned.

$D5 213 ESNES NON-EXISTING SEGMENT - device has damaged file
structure.

$D6 214 ESFNA FILE NOT ACCESSIBLE - file attributes do not permit
access reguested.

$D7 215 E$BPNam BAD PATH NAME - syntax error in pathlist (illegal
character, etc.).

$D8 216 ESPNNFPATH NAME NOT FOUND - can't find pathlist specified.

$D9 217 E$SLF SEGMENT LIST FULL - file is too fragmented to be
expanded further.

$DA 218 E$CEF FILE ALREADY EXISTS - file name aready appears in
current directory.

$DB 219 ESIBA ILLEGAL BLOCK ADDRESS - device's file structure has
been damaged.

$DC 220 ILLEGAL BLOCK SIZE - device'sfile structure has been damaged.

$DD 221 ESMNF MODULE NOT FOUND - request for link to module not

found in directory.

133

Device Driver/Hardware Errors

HEX DEC

$DE 222 SECTOR OUT OF RANGE - device file structure damaged or
incorrectly formatted.

$DF 223 E$DelSP SUICIDE ATTEMPT - request to return memory where
your stack is located.

$EO 224 ES$IPrcID ILLEGAL PROCESSNUMBER - no such processexists.

$E2 226 E$NoChld NO CHILDREN - can't wait because process has no
children.

$E3 227 E$ISWI ILLEGAL SWI CODE - must be 1to 3.

$E4 228 E$PrcAbt KEYBOARD ABORT - process aborted by signal code 2.

$ES 229 E$PrcFul PROCESS TABLE FULL - can't fork now.

$E6 230 ES$IForkP ILLEGAL PARAMETER AREA - high and low bounds
passed in fork call are incorrect.

$E7 231 E$KwnMod KNOWN MODULE - for internal use only.

$ES 232 E$BMCRC INCORRECT MODULE CRC - module has bad CRC
value.

$E9 233 E$USIgP SIGNAL ERROR - receiving process has previous
unprocessed signal pending.

$EA 234 ESNEMod NON-EXISTENT MODULE - unable to locate module.

$EB 235 E$BNam BAD NAME - illegal name syntax.

$EC 236 E$BMHP BAD HEADER - module header parity incorrect

$ED 237 E$NoRam RAM FULL - no free system RAM available at thistime

$EE 238 E$BPrcld BAD PROCESS ID - incorrect process |D number

$EF 239 E$NoTask NO TASK NUMBER AVAILABLE - dl task numbers

in use

B.2. Device Driver/Hardware Errors

Thefollowing error codes are generated by 1/0 devicedrivers, and are somewhat hardware dependent.

Consult manufacturer's hardware manual for more details.

HEX DEC

$FO 240 E$Unit UNIT ERROR - device unit does not exist

$F1 241 E$Sect SECTOR ERROR - sector number is out of range.

$F2 242 ESWP WRITE PROTECT - device iswrite protected.

$F3 243 E$CRC CRC ERROR - CRC error on read or write verify

$F4 244 E$Read READ ERROR - Data transfer error during disk read
operation, or SCF (terminal) input buffer overrun.

$F5 245 E$Write WRITE ERROR - hardware error during disk write
operation.

$F6 246 E$NotRdy NOT READY - device has "not ready” status.

SF7 247 E$Seek SEEK ERROR - physical seek to non-existant sector.

$F8 248 E$Full MEDIA FULL - insufficient free space on media.

$F9 249 E$BTyp WRONG TY PE - attempt to read incompatible media (i.e.
attempt to read double-side disk on single-side drive)

$FA 250 E$DevBsy DEVICE BUSY - non-sharable deviceisin use

$FB 251 E$DIDC DISK ID CHANGE - disk removed and replaced

134

Device Driver/Hardware Errors

HEX DEC

$FC 252 E$Lock RECORD ISBUSY - record islocked out by another user.

$FD 253 E$Share NON-SHARABLE FILE BUSY - entirefileislocked out
by another user.

$FE 254 ESDEADLK 1/O DEADLOCK ERROR - two processes are

attempting to use the same two disk areas simultaneously.

135

136

Appendix C. Service Request

Summary

Table C.1. User Mode Service Requests

Code

103F 00
103F 01
103F 02
103F 03
103F 04
103F 05
103F 06
103F 07
103F 08
103F 09
103F 0A
103F 0C
103F 0D
103F OE
103F OF
103F 10
103F 11
103F 12
103F 13
103F 14
103F 15
103F 16
103F 17
103F 18
103F 19
103F 1A
103F 1B
103F 1C
103F 1D

Mnemonic
F$Link
F$Load
F$UnLink
F$Fork
F$Wait
F$Chain
F$EXxit
F$Mem
F$Send
F$ICPT
F$Sleep
F$ID
F$SPrior
F$SSWI
F$PErT
F$PrsNam
F$SCmpNam
F$SchBit
F$AIIBit
F$DelBit
F$Time
F$STime
F$CRC
F$GPrDsc
F$GBIKMp
F$GModDr
F$CpyMem
F$SUser
F$UnNL oad

Function

Link to memory module.

Load module(s) from afile.
Unlink amodule.

Create anew process.

Wait for child processto die.
Load and execute a new primary module
Terminate the calling process.
Resize data memory area,

Send a signal to another process,
Set up asignal intercept trap.
Put calling process to sleep.
Get process ID / user ID

Set process priority.

Set SWI vector.

Print error message.

Parse a path name,

Compare two names

Search bit map for afree area
Set bitsin an alocation bit map
Deallocate in abit map

Get system date and time.

Set system date and time.
Compute CRC

Get Process Descriptor copy
Get system Block Map copy
Get Module Directory copy
Copy external Memory

Set User ID number

Unlink module by name

Table C.2. System Mode Privileged Service Requests

Code

103F 28
103F 29
103F 2A
103F 2B
103F 2C

Mnemonic
F$SRgMem
F$SRtMem
F$IRQ
F$IOQU
F$AProc

Function

System memory request

System memory return

Add or remove device from IRQ table.
Enter I/O queue

Insert process in active process queue

137

Page

Page

Code

103F 2D
103F 2E
103F 2F
103F 30
103F 31
103F 32
103F 33
103F 34
103F 35
103F 36
103F 37
103F 38
103F 39
103F 3A
103F 3B
103F 3C
103F 3D
103F 3E
103F 3F
103F 40
103F 41
103F 42
103F 43
103F 44
103F 45
103F 46
103F 47
103F 48
103F 49
103F 4A
103F 4B
103F 4C
103F 4D
103F 4E
103F 4F
103F 50
103F 51

Mnemonic
F$NProc
F$VModul
F$Find64
F$AII64
F$Ret64
F$SSVC
F$IODel
F$SLink
F$Boot
F$BtMem
F$GProcP
F$Move
F$SAIIRAM
F$AllImg
F$Dellmg
F$Setlmg
F$Freel B
F$FreeHB
F$AIITsk
F$Del Tsk
F$SetTsk
F$ResTsk
F$Rel Tsk
F$DATLog
FSDATTmp
FSLDAXY
FSLDAXYP
F$SLDDDXY
F$LDABX
F$STABX
F$AlIPrc
F$DelPrc
F$ELink
F$FModul
F$MapBlk
F$CIrBlk
F$DelRam

Function

Start next process

Validate module

Find a 64 byte memory block
Allocate a 64 byte memory block
Deallocate a 64 byte memory block
Install function request

Delete 1/0O device from system
System Link

Bootstrap system

Bootstrap Memory request

Get Process Pointer

Move data (low bound first)
Allocate RAM blocks

Allocate Image RAM blocks
Deallocate Image RAM blocks
Set process DAT Image

get Free Low block

get Free High block

Allocate process Task number
Deallocate process Task humber
Set process Task DAT registers
Reserve Task number

Release Task humber

Convert DAT block/offset to Logical Addr

Make Temporary DAT image
Load A [X,[Y]]

Load A [X+,[Y]]

Load D [D+X, [Y]]

Load A from 0,1 intask B
Store A at 0,X intask B
Allocate Process descriptor
Deallocate Process descriptor
Link using module directory Entry
Find Module directory entry
Map specific Block

Clear specific Block
Dedllocate RAM blocks

Table C.3. Input/Output Service Requests

Code
103F 80
103F 81

M nemonic
|$Attach
I$Detach

Function
Attach a new device to the system.
Remove a device from the system.

138

Page

Page

Code Mnemonic
103F 82 1$Dup
103F 83 I$Create
103F 84 1$Open
103F 85 I$SMakDir
103F 86 |$ChgDir
103F 87 I$Delete
103F 88 | $Seek
103F 89 | $Read
103F 8A ISWrite
103F 8B I$ReadLn
103F 8C ISWritLn
103F 8D | $GetStt
103F 8E | $SetStt
103F 8F I$Close
103F 90 I$DeetX

Table C.4. Standard |/O Paths

0 = Standard Input
1 = Standard Output
2 = Standard Error Output

Table C.5. Module Types

$1 Program
Subroutine module
Multi-module
Data module
System Module
File Manager

$2
$3
$4
$C
$D

$E
$F

Device Driver
Device Descriptor

Table C.6. File Access Codes

READ $01
WRITE $02
UPDATE READ + WRITE
EXEC $04
PREAD $08
PWRIT $10
PEXEC $20
SHARE $40
DIR $30

Function
Duplicate a path.
Create apath to anew file.

Page

Open a path to afile or device
Make anew directory

Change working directory.
Delete afile.

Reposition the logical file pointer
Read data from afile or device
Write Datato File or Device
Read atext line with editing.
Write Line of Text with Editing
Get file device status.

Set file/device status

Close apath to afile/device.
Delete afile

139

Table C.7. Module Languages

$0 Data

$1 6809 Object code
$2 BASICO09 I-code
$3 Pascal P-Code

$4 C I-code
$5 Cobol I-code
$6 Fortran |-code

Table C.8. Module Attributes

$8 Reentrant

140

Appendix D. Operating System

Internals

D.1. OS-9 Level |

TableD.1. OS-9 Level | Process Descriptor

Name Offset Size Description

P$ID $00 1 Process ID

P$PID $01 1 Parent's ID

P$SID $02 1 Sibling's 1D

P$CID $03 1 Child'sID

P$SP $04 2 Stack ptr

P$CHAP $06 1 Process chapter number

P$SADDR $07 1 User address beginning page number
P$PagCnt $08 1 Memory Page Count

P$User $09 2 User Index

P$Prior $0B 1 Priority

P$Age $C 1 Age

P$State $OD 1 Status

P$Queue $O0E 2 Queue Link (Process ptr)

P$IOQP $10 1 Previous 1/0 Queue Link (Process ID)
P$SIOQN $11 1 Next 1/0 Queue Link (Process ID)
P$PM odul $12 2 Primary Module

P$SWI $14 2 SWI Entry Point

P$SWI2 $16 2 SWI2 Entry Point

P$SWI3 $18 2 SWI3 Entry Point

P$DIO $1A 12 Default I/O ptrs

P$PATH $26 16 1/0pathtable

P$Signa $36 Signal Code

P$SigVec $37 Signal Intercept Vector

P$SigDat $39 Signal Intercept Data Address

TableD.2. OS-9 Levd | Direct Page variables

Name Offset Size Description

D.FMBM $20 4 Free memory bit map pointers
D.MLIM $24 2 Memory limit

D.ModDir $26 4 Module directory

D.Init $2A 2 Rom base address

D.SWI3 $2C 2 Swi3 vector

D.SWI2 $2E 2 Swi2 vector

D.FIRQ $30 2 Firq vector

D.IRQ $32 2 Irg vector

141

OS9Leve |

Name Offset Size Description

D.SwWI $34 2 Swi vector

D.NMI $36 2 Nmi vector

D.SvclRQ $38 2 Interrupt service entry

D.Poll $3A 2 Interrupt polling routine
D.UsrIRQ $3C 2 User irq routine

D.SysIRQ $3E 2 System irq routine

D.UsrSvc $40 2 User service request routine
D.SysSvc $42 2 System service request routine
D.UsDis $4 2 User service request dispatch table
D.SysDis $46 2 System service reuest dispatch table
D.Slice $48 1 Process time slice count
D.PrcDBT $49 2 Process descriptor block address
D.Proc B 2 Process descriptor address
D.AProcQ $4D 2 Active process queue

D.WProcQ $4F 2 Waiting process queue

D.SProcQ $51 2 Sleeping process queue

D.Time $53 6

D.Year $53 1 Year - 1900

D.Month $54 1 Month (1-12)

D.Day $55 1 Day (1-31)

D.Hour $56 1 Hour (0-23)

D.Min $57 1 Minute (0-59)

D.Sec $58 1 Seconds (0-59)

D.Tick $59 1

D.TSec $5A 1 Ticks/ second

D.TSlice $5B 1 Ticks/ time-dice

D.IOML $5C 2 1/0 mgr free memory low bound
D.IOMH $5E 2 1/0 mgr free memory hi bound
D.DevThl $60 2 Device driver table addr

D.PolThl $62 2 Irq polling table addr

D.PthDBT $64 2 Path descriptor block table addr
D.BTLO $66 2 Bootstrap low address

D.BTHI $68 2 Bootstrap hi address

D.DMAReq $6A 1 DMA inuseflag

D.AItIRQ $6B 2 Alternate IRQ vector (CC)
D.KbdSta $6D 2 Keyboard scanner static storage (CC)
D.DskTmr $6F 2 Disk Motor Timer (CC)

D.CBStrt $71 16 Reserved for CC warmstart ($71)
D.Clock $81 2 Address of Clock Tick Routine (CC)

142

OS9Leve Il

D.2. OS-9 Level I

TableD.3. OS-9 Level Il Process Descriptor

Name Offset Size Description

P$ID $00 1 Process ID

P$PID $01 1 Parent's ID

P$SID $02 1 Sibling's ID

P$CID $03 1 Child'sID

P$SP $04 2 Stack ptr

P$Task $06 1 Task number

P$PagCnt $07 1 Memory Page Count

P$User $08 2 User Index

P$Prior $0A 1 Priority

P$Age $0B 1 Age

P$State $C 1 Status

P$Queue $0D 2 Queue Link (Process ptr)

P$I0QP $OF 1 Previous I/0O Queue Link (Process ID)

P$SIOQN $10 1 Next 1/0 Queue Link (Process ID)

P$PM odul $11 2 Primary Module

P$SWI $13 2 SWI Entry Point

P$SWI2 $15 2 SWI2 Entry Point

P$SWI3 $17 2 SWI3 Entry Point

P$Signal $19 1 Signal Code

P$SigVec $1A 2 Signal Intercept Vector

P$SigDat $1C 2 Signal Intercept Data Address

P$DeadLk $1D 1 Dominant proc 1D if 1/0 locked

P$DIO $20 16 Default I/O ptrs

P$Path $30 16 1/Opathtable

P$Datlmg $40 64 DAT Image

P$Links $80 32 Block Link counts

P$NIO $A0 12 Additional DIO ptrsfor net, compatible with 68K (Coco 3 only)
P$SelP $AC 1 Selected Path for COCO Windows(Coco 3 only)
P$ErrNam $A0 32 Areafor error messages path name (Dragon 128 only)

TableD.4. OS-9 Levd Il Direct Page variables

Name Offset Size Description Arch.
D.Tasks $20 2 Task User Table

D.TmpDAT $22 2 Temporary DAT Image stack

D.Init $24 2 Initialization Module ptr

D.Pall $26 2 Interrupt Polling Routine ptr

D.Time $28 6 SystemTime

D.Year $28 1

D.Month $29 1

143

OS9Leve Il

Name Offset Size Description Arch.
D.Day $2A 1
D.Hour $2B 1
D.Min $C 1
D.Sec $2D 1
D.Tick $2E 1
D.Slice $2F 1 Current diceremaining
D.TSlice $30 1 Ticksper Slice
D.Boot $31 1 Bootstrap attempted flag
D.MotOn $32 1 Floppy Disk Motor-On time out
D.ErrCod $33 1 Reset Error Code
D.Daywk $34 1 day of week, com-trol clock
D.DMPort $35 2 Port addressfor DMA Dragon 128
D.DMMem $37 2 Memory addressfor DMA Dragon 128
D.DMDir $39 1 Direction of DMA (1=write to port) Dragon 128
D.TimThl $3A 2 Address of timer polling table Dragon 128
D.GRReg $3C 1 Current value of graphics control port Dragon 128
D.LtPen $3D 1 Current value of control reg with light pen IRQ Dragon 128
D.Baud $3E 1 Current value of baud rate port Dragon 128
D.TkCnt $35 1 Tick Counter CoCo
D.BtPtr $36 2 Address of Boot in System Address space CoCo
D.BtSz $38 2 Sizeof Boot CoCo
D.BlkMap $40 4 Memory Block Map ptr
D.ModDir $44 4 Module Directory ptrs
D.PrcDBT $48 2 Process Descriptor Block Table ptr
D.SysPrc $4A 2 System Process Descriptor ptr
D.SysDAT $4C 2 System DAT Image ptr
D.SysMem $4E 2 System Memory Map ptr
D.Proc $50 2 Current Process ptr
D.AProcQ $52 2 Active Process Queue
D.WProcQ $54 2 Waiting Process Queue
D.SProcQ $56 2 Sleeping Process Queue
D.ModEnd $58 2 Module Directory end ptr
D.ModDAT $5A 2 Module Dir DAT image end ptr
D.CldRes $5C 2 Cold Restart vector
D.Crash $6B 6 Pointer to Crash Routine CoCo
D.CBStrt $71 11 Reserved for warmstart CoCo
D.DevThl $80 2 1/ODeviceTable
D.PolThl $82 2 1/OPolling Table

$84 4 reserved
D.PthDBT $88 2 Path Descriptor Block Table ptr
D.DMAReq $8A 1 DMA Request flag

Areafrom $90 to $BF is reserved for architecture-specific variables

144

OS9Leve Il

Name Offset Size Description Arch.
D.HINIT $90 1 GIMEINITO register (hardware setup $FF90) CoCo
D.TINIT $91 1 GIMEINIT1 register (timer/task register $FF91) CoCo
D.IRQER $92 1 Interrupt enable register ($FF92) CoCo
D.FRQER $93 1 Fast Interrupt enable register ($FF93) CoCo
D.TIMMS $94 1 Timer most significant nibble ($FF94) CoCo
D.TIMLS $95 1 Timer least significant byte ($FF95) CoCo
D.RESV1 $96 1 two reserved registers ($FF96) CoCo
D.RESV2 $97 1 ($FF97) CoCo
D.VIDMD $98 1 video mode register ($FF98) CoCo
D.VIDRS $99 1 video resolution register ($FF99) CoCo
D.BORDR $9A 1 border register ($FF9A) CoCo
D.RESV3 $9B 1 reserved register ($FF9B) CoCo
D.VOFF2 $C 1 vertical scroll/offset 2 register ($FF9C) CoCo
D.VOFF1 $9D 1 vertical offset 1 register ($FFOD) CoCo
D.VOFFO $9E 1 vertical offset O register ($FFOE) CoCo
D.HOFFO $OF 1 horizontal offset O register ($FF9F) CoCo
D.Speed $A0 1 Speed of COCO CPU 0=slow,1=fast CoCo
D.TskIPt $A1 2 Taskimage Pointer table CoCo
D.MemSz $A3 1 128/512K memory flag CoCo
D.SSTskN $A4 1 System State Task Number CoCo
D.CCMem $A5 2 Pointer to beginning of Memory CoCo
D.CCstk $A7 2 Pointer to top of Memory CoCo
D.Flip0 $A9 2 ChangetoTask O CoCo
D.Flip1 $AB 2 Changetoreserved Task 1 CoCo
D.VIRQ $AD 2 VIRQ Poalling routine CoCo
D.IRQS $AF 1 IRQ shadow register CoCo
D.CLTb $BO 2 VIRQ Table address CoCo
D.AItIRQ $B2 2 Alternate IRQ Vector CoCo
D.SysSvc $CO 2 System Service Routine entry

D.SysDis $C2 2 System Service Dispatch Table ptr

D.SysIRQ $C4 2 System IRQ Routine entry

D.UsrSve $C6 2 User Service Routine entry

D.UsrDis $C8 2 User Service Dispatch Table ptr

D.UsrIRQ $CA 2 User IRQ Routine entry

D.SysStk $CC 2 Systemstack

D.SvclRQ $CE 2 In-System IRQ service

D.SysTsk $D0 1 System Task number

D.Clock $EO 2

D.XSWI3 $E2 2

D.XSWI2 $E4 2

D.XFIRQ $E6 2

D.XIRQ $E8 2

145

OS9Leve Il

Name Offset Size Description Arch.
D.XSWI $EA 2
D.XNMI $EC 2
D.ErrRst $EE 2
D.SWI3 $F2 2
D.SWI2 $F4 2
D.FIRQ $F6 2
D.IRQ $F8 2
D.SWI $FA 2
D.NMI $FC 2

146

Colophon

This manua was discovered as a scanned PDF file on the Internet in 2017. The scan was produced by Marcus
Bennett in 2008. OCR was then applied to the pages and it was reformatted into Docbook 5.0.

Toexplainthe“DATA” sectioninthe service request descriptionsin chapters 11 and 12, an appendix D was added
describing the direct page (page 0) variables.

147

148

	OS-9 Operating System
	Table of Contents
	Chapter 1. Introduction
	1.1. History And Design Philosophy
	1.2. System Hardware Requirements

	Chapter 2. Basic System Organization
	Chapter 3. Basic Functions of the Kernel
	3.1. System Initialization
	3.2. Kernel Service Request Processing
	3.3. Kernel Memory Management Functions
	3.4. Memory Utilization
	3.4.1. Level Two Memory Management Hardware
	3.4.2. DAT Images and Level II System Calls

	3.5. Overview of Multiprogramming
	3.6. Process Creation
	3.7. Process States
	3.7.1. The Active State
	3.7.2. The Wait State
	3.7.3. The Sleeping State

	3.8. Execution Scheduling
	3.9. Signals
	3.10. Interrupt Processing
	3.10.1. Physical Interrupt Processing
	3.10.2. Logical Interrupt Polling System

	Chapter 4. Memory Modules
	4.1. Memory Module Structure
	4.2. Module Header Definitions
	4.2.1. Type/Language Byte
	4.2.2. Attribute/Revision Byte
	4.2.3. Other Level II Memory Management Characteristics

	4.3. Typed Module Headers
	4.4. Executable Memory Module Format
	4.5. ROMed Memory Modules
	4.6. Memory Module Examples

	Chapter 5. The OS-9 Unified Input/Output System
	5.1. The Input/Output Manager (IOMAN)
	5.2. File Managers
	5.2.1. Anatomy Of a File Manager
	5.2.2. Interfacing to the Device Driver

	5.3. Device Driver Modules
	5.3.1. OS-9 Interacting with Real World Devices
	5.3.2. SUSPEND STATE - A New Feature for LII V1.2

	5.4. Device Descriptor Modules
	5.5. Path Descriptors

	Chapter 6. Random Block File Manager
	6.1. Logical And Physical Disk Organization
	6.1.1. Identification Sector
	6.1.2. Disk Allocation Map
	6.1.3. File Descriptor Sectors
	6.1.4. Directory Files

	6.2. RBF Definitions of the Path Descriptor
	6.3. RBF Device Descriptor Modules
	6.4. RBF-type Device Drivers
	6.5. RBF Device Drivers
	6.5.1. NAME: INIT
	6.5.2. NAME: READ
	6.5.3. NAME: WRITE
	6.5.4. NAME: GETSTA PUTSTA
	6.5.5. NAME: TERM
	6.5.6. NAME: IRQ service routine
	6.5.7. NAME: BOOT (Bootstrap Module)

	6.6. RBF Record Locking
	6.6.1. Record Locking and Unlocking
	6.6.2. Non-sharable Files
	6.6.3. End of File Lock
	6.6.4. DeadLock Detection
	6.6.5. Specific Details for Particular I/O Functions

	Chapter 7. Sequential Character File Manager
	7.1. SCF Line Editing Functions
	7.2. SCF Definitions of The Path Descriptor
	7.3. SCF Device Descriptor Modules
	7.4. SCF Device Driver Storage Definitions
	7.5. SCF Device Driver Subroutines
	7.5.1. NAME: INIT
	7.5.2. NAME: READ
	7.5.3. NAME: WRITE
	7.5.4. NAME: GETSTA/SETSTA
	7.5.5. NAME: TERM
	7.5.6. NAME: IRQ SERVICE ROUTINE

	Chapter 8. The Pipe File Manager
	8.1. Outlines of Establishing a Pipe Between Two Processes in a Machine Language Program

	Chapter 9. Assembly Language Programming Techniques
	9.1. How to Write Position-Independent Code
	9.2. Addressing Variables and Data Structures
	9.3. Stack Requirements
	9.4. Interrupt Masks
	9.5. Using Standard I/O Paths
	9.6. Writing Interrupt-driven Device Drivers
	9.7. A Sample Program

	Chapter 10. Adapting OS-9 to a New System
	10.1. Adapting OS-9 Level I to a New System
	10.2. Adapting OS-9 to Disk-based Systems
	10.3. Using OS-9 in ROM-based Systems
	10.4. Adapting the Initialization Module
	10.5. Adapting the SYSGO Module

	Chapter 11. OS-9 Service Request Descriptions
	11.1. User Mode Service Requests
	11.1.1. F$AllBit - Set bits in an allocation bit map
	11.1.2. F$Chain - Load and execute a new primary module.
	11.1.3. F$CmpNam - Compare two names
	11.1.4. F$CRC - Compute CRC
	11.1.5. F$DelBit - Deallocate in a bit map
	11.1.6. F$Exit - Terminate the calling process.
	11.1.7. F$Fork - Create a new process
	11.1.8. F$ICPT - Set up a signal intercept trap
	11.1.9. F$ID - Get process ID / user ID
	11.1.10. F$Link - Link to memory module
	11.1.11. F$Load - Load module(s) from a file
	11.1.12. F$Mem - Resize data memory area
	11.1.13. F$PErr - Print error message
	11.1.14. F$PrsNam - Parse a path name
	11.1.15. F$SchBit - Search bit map for a free area
	11.1.16. F$Send - Send a signal to another process
	11.1.17. F$Sleep - Put calling process to sleep
	11.1.18. F$SPrior - Set process priority
	11.1.19. F$SSVC - Install function request
	11.1.20. F$SSWI - Set SWI vector
	11.1.21. F$STime - Set system date and time
	11.1.22. F$Time - Get system date and time
	11.1.23. F$UnLink - Unlink a module
	11.1.24. F$Wait - Wait for child process to die

	11.2. System Mode Service Requests
	11.2.1. F$All64 - Allocate a 64 byte memory block
	11.2.2. F$AProc - Insert process in active process queue
	11.2.3. F$Find64 - Find a 64 byte memory block
	11.2.4. F$IODel - Delete I/O device from system
	11.2.5. F$IOQu - Enter I/O queue
	11.2.6. F$IRQ - Add or remove device from IRQ table
	11.2.7. F$NProc - Start next process
	11.2.8. F$Ret64 - Deallocate a 64 byte memory block
	11.2.9. F$SRqMem - System memory request
	11.2.10. F$SRTMem - Return System Memory
	11.2.11. F$VModul - Verify module

	11.3. I/O Service Requests
	11.3.1. I$Attach - Attach a new device to the system.
	11.3.2. I$ChgDir - Change working directory
	11.3.3. I$Close - Close a path to a file/device
	11.3.4. I$Create - Create a path to a new file
	11.3.5. I$Delete - Delete a file
	11.3.6. I$DeletX - Delete a file
	11.3.7. I$Detach - Remove a device from the system
	11.3.8. I$Dup - Duplicate a path
	11.3.9. I$GetStt - Get file/device status
	11.3.10. I$MakDir - Make a new directory
	11.3.11. I$Open - Open a path to a file or device
	11.3.12. I$Read - Read data from a file or device
	11.3.13. I$ReadLn - Read a text line with editing
	11.3.14. I$Seek - Reposition the logical file pointer
	11.3.15. I$SetStt - Set file/device status
	11.3.16. I$Write - Write data to a file or device
	11.3.17. I$WritLn - Write a line of text with editing

	Chapter 12. Level Two System Service Requests
	12.1. Level Two System Service Requests
	12.1.1. F$AllImg - Allocate Image RAM blocks
	12.1.2. F$AllPrc - Allocate Process descriptor
	12.1.3. F$AllRAM - Allocate RAM blocks
	12.1.4. F$AllTsk - Allocate process Task number
	12.1.5. F$Boot - Bootstrap system
	12.1.6. F$BtMem - Bootstrap Memory request
	12.1.7. F$ClrBlk - Clear specific Block
	12.1.8. F$CpyMem - Copy external Memory
	12.1.9. F$DATLog - Convert DAT block/offset to Logical Addr
	12.1.10. F$DelImg - Deallocate Image RAM blocks
	12.1.11. F$DelPrc - Deallocate Process descriptor
	12.1.12. F$DelRam - Deallocate RAM blocks
	12.1.13. F$DelTsk - Deallocate process Task number
	12.1.14. F$ELink - Link using module directory Entry
	12.1.15. F$FModul - Find Module directory entry
	12.1.16. F$FreeHB - Get Free High block
	12.1.17. F$FreeLB - Get Free Low block
	12.1.18. F$GBlkMp - Get system Block Map copy
	12.1.19. F$GModDr - Get Module Directory copy
	12.1.20. F$GPrDsc - Get Process Descriptor copy
	12.1.21. F$GProcP - Get Process Pointer
	12.1.22. F$LDABX - Load A from 0,X in task B
	12.1.23. F$LDAXY - Load A [X, [Y]]
	12.1.24. F$LDDDXY - Load D [D+X],[Y]]
	12.1.25. F$MapBlk - Map specific block
	12.1.26. F$Move - Move Data (low bound first)
	12.1.27. F$RelTsk - Release Task number
	12.1.28. F$ResTsk - Reserve Task number
	12.1.29. F$SetImg - Set Process DAT Image
	12.1.30. F$SetTsk - Set process Task DAT registers
	12.1.31. F$Slink - System Link
	12.1.32. F$STABX - Store A at 0,X in task B
	12.1.33. F$SUser - Set User ID number
	12.1.34. F$UnLoad - Unlink module by name

	Appendix A. Standard Floppy Disk Formats
	Appendix B. Error Codes
	B.1. OS-9 Error Codes
	B.2. Device Driver/Hardware Errors

	Appendix C. Service Request Summary
	Appendix D. Operating System Internals
	D.1. OS-9 Level I
	D.2. OS-9 Level II

