
UniFLEX”

Utilities
|

Package Il

Iie (@technical systems
| (=e consultant, Inc.

UniFLEX”
Utilities ©

Package Il —

.. COPYRIGHT © 1984 by

Technical Systems Consultants, Ince

111 Providence Road

Chapel Hill, North Carolina 27514

All Rights Reserved

-

®@UnIFLEX registered In U.S, Patent end Trademark Offlos.

MANUAL REVISION HISTORY

Revision Date Change

A 3/84 Original Release

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its

contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in

whole or in part, by any means is prohibited. Use of this program and manual, or any part

thereof, for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of

undocumented features or parameters may cause unpredictable results for which Technical

Systems Consultants, Inc. cannot assume responsibility. Although every effort has been

made to make the supplied software and its documentation as accurate and functional. as

possible, Technical Systems Consultants, Ince will not assume responsibility for any

damages incurred or generated by such materiale Technical Systems Consultants, Inc.

reserves the right to make changes in such material at any time without notice.

Introduction

The UniFLEX® Utility Package II contains close to thirty utilities for
use under the UniFLEX Operating System. These utilities range in
function from dynamically displaying resource activity of the operating
system to executing commands at a specified date or time to an enhanced
shell . program. The manual. contains a complete description of each

command, and the disk contains "help" files for most commands (for all
those not residing in the directory "/etc").

.

The user may want to take this manual apart and insert the pages into
the "UniFLEX™ Utility Commands" section of the operating system manual.

The utilities appear in alphabetic order. The documentation for each

utility begins on a right-hand page.

The standard procedure for copying the utilities to the system disk is
to use the "insert" command, which is supplied on the master disk. If a

user does not want all the utilities on the system disk, the recommended

procedure is to use the "insert" command, then to delete the files that

are not needed.

manual.

I,

.

4.

56

2.

Syntax Conventions

The fol lowing conventions are used in syntax statements throughout

Items that are not enclosed in angle brackets, “<“ and “>”, —
or square brackets, “[° and “]”, are "keywords" and should

be typed as shown.

Angle brackets, “<° and “>”, enclose descriptions which the

user must replace with a specific argument. Expressions
enclosed only in angle brackets are essential parts of the

command line. For example, in the command »

newuser <user_name>

the name of a user must be specified in the place indicated

by <user_name>,

Square brackets, “[“ and °]”%, indicate optional items.
These items may be omitted if their effect is not. desired.

The underscore character, °°, is used to link separate
words that describe one term, such as "user" and "name".

Characters other than spaces that are not enclosed in angle
brackets or square brackets must appear in the command line

as they appear in the syntax statement.

If the word "list" appears as part of a term in a syntax
statement, that term consists. of one or. more. of the

elements. described by the rest of the term, separated by
spaces. For example, the term :

<user_name_list>

represents a list of user names.

Some utilities support optional features, known as options,
which alter the effect. of the command. Options consist of

either a single character or a single character, followed

by an equals sign, “=", followed by an argument. An

“option string" is a plus sign followed by one or more

options. An option string may contain any number of

single-character options but only one option which takes an

argument. An option requiring an argument must be the last

option in an option string. Thus, the command line must .
contain a separate option string for each option requiring
an argument. It may or may not contain a separate option
string for each single-character option.

(continued)

this

The following are valid option strings:

tabcdefg
+abc=<arg>

The following are not valid option strings:

t+abc=<arg>de
+a=<arg>b=<arg>

Unless specifically stated in the documentation about a

particular command, option strings may appear anywhere on

the command line after the command name.

Many common terns appear (often as abbreviations) in more than one

syntax statement. The manual does not explain these terms each time

they appear. However, the following table describes each one.

Table 1. Common Terms Used in Syntax Statements.

Term Meaning

char Character

dev Device

dir Directory
str String

file_name A valid file name

@©e@0e00e080880e08080880e0e2e00288
08088
C0C80C
88088at

atexecute

atinfo

backup
basename

basicerror

boottime

calendar

ert_termcap

dircompare
dirname

diskinfo

dsd

filedevice

flex-rel

keep
libinfo

more

newuser

nshell

objcmp
pack
pwfcheck
relinfo

strings
swapstats

trail

unique
unpack

Command Summaries for Utilities Package II

Queue commands and jobs for execution at a specified
time.

Activate the queue handler used by the "at" command.

List information about commands queued for later

execution.

An archival backup and restore program.

Extract the base file-name from a path name.
.

Translate BASIC error numbers into English messages. —
Report the date and time of the last system boot.
Display a calendar for any specified month or year.

Create a file of terminal capabilities.
Compare the entry names in two directories.
Extract the directory name from a path name.

Display detailed information about disk format, size,

and contents.
,

Dynamically display resource activity of the active

operating system.

Report the name of the device on which a specified file

resides.
Convert a UniFLEX relocatable file to FLEX format.
Retain selected files in a directory.

Display entry point and module information contained in

a library.
List text files with full user control.

Temporarily login as a new user.

An enhanced shell program.

Compare two object files and report differences.
Compress text files.

:

.

Validate the contents of the password file.

Display relocation, external, and symbol information of

an object file.

Extract strings from an object or binary file.

Report statistics for system swap device and memory

usage.
List a file as it grows.

List text files, omitting sequentially duplicated lines.

Restore text files compressed by "pack".

Syntax Summaries for Utilities Package II

at <when> [+bdmrwx]

/etc/atexecute [+krs]

atinfo [+hp]

backup <dev_name> [<file_name_list>] [+abdlnptABCLRT]
basename <path_name> [<suf fix>]
basicerror. <number_list>
boottime

calendar [<month>] [<year>]

/etc/ert_termcap <ttycap_file> <ttyassoc_file> <termcap_file>
4

dircompare <dir_l> <dir_2>

dirname <path name>
diskinfo <device_name> [<device_name_list>]
dsd [<sleep_time>]
filedevice <file_name> [<file_name_list>]
flex-rel <UniFLEX_file_name> <FLEX_f ile_name>

keep <file_name> [<£ile_name_list>] [+pq]

libinfo <library_name> [<Library_name_list>] [+emM]

more [<f£ile_name_list>]
newuser [<user_name>]
nshell [<+tabclnvx>] [<argument_list>]
objemp <file_name_1> [<£ile_name_2>] [+cq]

pack [<infile_name>] <outf ile_name>

pwfcheck [<file_name>] [+nw]

relinfo <file_name> [<file_name_list>] [+ehrs]

strings {<file_name_list>]
swapstats

trail <file_name> [+flns]

unique [<file_name_list>] [+d]
unpack <infile_name> [<outfile_name>]

at-l

at

Submit commandsfor execution at a later date and time.

SYNTAX

at <when> [+bdmrwx]

DESCRIPTION

The "at" command submits commands read from standard input for

execution at a later date and time, which are specified by the <when?

argument. If standard input is a terminal, the prompt "at>> "is issued

to standard error, requesting another line. To stop entering lines, the

user must type the end-of-file character (control-D) as the first

character of. a line.

Arguments

<when> The date and time to execute the commands.

Format for Arguments

<when> [<time>]
[<time>] <date>

[<time>] <day>
now

The <time> parameter may be of the form <hh>:[<mm>] where <hh> is the

hour number (0 through 23 inclusive), and <mm> is the minute number (0

through 59 inclusive, 0 by default). A twenty-four hour clock is

assumed unless the user appends "am" or "pm" (or "AM" or "PM") to the

<time> parameter (in which case the hour number <hh> must be between 1

and 12 inclusive). The <time> parameter may also be a keyword which
describes the time of day (see Keywords). If the <time> parameter 18

omitted, 00:00 (midnight) is assumed.

The <date> parameter may be of the form [<mm>/]<dd> or <dd>[.<mm>] or

[<mm>-]<dd> where <mm> is a number representing the month of the year

(1 through 12 inclusive) and <dd> is a number representing the day of

the month (1 through 31 inclusive, see NOTES). If the month <mm> is

omitted, it defaults to the next month if both the day of the month <dd>

and time <time> have passed in the current month or to the current month

if they have not. The <date> parameter may also be of the form <month>

<dd> or <dd> <month> where <month> is a keyword describing a month of

the year (see Keywords), and <dd> is a number between 1 and 31

inclusive.

(continued)

at-2

The <day> parameter is a keyword describing a day of the week (see
Keywords). The keyword "now" requests execution as soon as possible.
Keywords

A keyword is recognized by any sequence of adjacent characters,
beginning with the first character, that is unique to that keyword. For
example, "su", "sun", "sund", "sunda", and "sunday" are all recognized
as the keyword "sunday". However, "s" is not, since two other keywords,"september" and "saturday", also start with that sequence,

Keywords known to "at” are

Months Weekdays Time of Day Miscellaneous

january sunday midnight now

february monday noon

march tuesday
april wednesday
may thursday
june friday
july saturday
august

september
october

november

december

Options Available

b When the specified time arrives and execution
of the list of commands begins, do not wait for
its completion before starting to execute
commands queued by other "at" calls.

d If the list of commands has expired (i.e., the "atexecute"
command discovers that over an hour has passed since the

requested execution time), tell "atexecute"™ to execute
the commands at the first opportunity instead of deleting
them.

m Mail messages to the user telling at what times
execution of the list of commands began and ended.

r Resubmit the commands on successful completion
with the same <time> parameter.

w Execute on working days only.
x=<cmd> Execute the command supplied as an argument (<cmd>)

instead of obtaining a list of commands from standard

input (see NOTES).

(continued)

at-3

EXAMPLES

1. at 5:00pm wednesday <wed_cmnds
2. at

3. at 8:am “+rwmx=shell startday"

The first example submits commands for execution at 5:00.P.M. ona

Wednesday. The commands are read from the file “"wed_cmnds".

The second example submits commands for execution at midnight. These

commands are read from standard input. If standard input is a terminal ,
the prompt "“at>> "

requests the next command in the list being

submitted. The user must type an end~-of-file character as the first

character on the line in order to end the list.

The third example submits the command "shell startday" for execution at

8:00 A.M. on working days only and requests that the command be

resubmitted upon successful completion (the. quotation marks are

necessary because of the space character embedded in the command). This

example sends timestamps to the user through the system mail when the

command begins and when the command successfully ends.

NOTES

- The ‘time parameter <when> is the next occurrence of ‘that time. For

example, the command "at 14:00 1" should be tead as “at the next

14:00 hours on the first of a month" instead of as "on the next

first of the month at 14:00 hours." Notice the difference in meaning

if it is currently noon on the first of the month.

. If the user types a keyboard. interrupt (control-C), the commands

being submitted by “at” are discarded, and control returns to the

calling procedure (usually the shell program).

. If the argument to the “x” option contains a space or any other

character which has special meaning to the shell program (such as

the matching characters, the pipe symbol, or the symbols for 1/0

redirection), the user must enclose the option string which contains

the “x” option in quotation marks (see the third example). command.

. I£ the user represents a day of the month with a number that is

greater than the largest day of that month, "at" interprets it as

the last day of the month. For example, "2/31" always refers to the

last day of February.

. If a list of submitted commands expires (the requested execution

time passes by more than an hour and the “d° option has not been

requested) and the “r° option has been requested, the list of

commands is not executed, but is resubmitted with the same <time>

parameter as though it had been executed.

(continued)

at-4

ERROR MESSAGES

at error: Unknown option: <char>
The option <char> is not known to "at" (see SYNTAX and OptionsAvailable).

at error: Unrecognizable String: <str>
The characters <str> could not be deciphered by "at" (see Format ofArguments).

at error: Ambiguous string: <str>
The characters <str> are not unique to one keyword (see Keywords).

at error: Invalid construction of date and time.
The date and time specified contain conflicting information (seeFormat of Arguments).

at error: Month number is out of range.The month number specified is less than 1 or greater than 12 (seeFormat of Arguments).

at error: Day of month is out of range.The day of the month specified is less than 1 or greater than 31(see Format of Arguments).

at error: Hour number is out of range.
The hour number specified is greater than 23 (see Format ofArguments).

at error: Minute number is out of range.
The minute number specified is greater than 59 (see Format ofArguments).

at error: "AM" or "PM" with twelve hour clock only.Either "AM" or "PM" was used with an hour number which was notbetween 1 and 12 inclusive (see Format of Arguments).
at warning: “r” option ignored with “now” keyword.The repeat option “r~ is ignored if the <time> parameter is "now".The commands are not resubmitted upon successful completion.

at warning: “w option ignored with “now” keyword.The option that requests execution on working days only, ‘w’, isignored if the time specification is "now",

at warning: restart /etc/atexecute
The commands have been queued, but they cannot be successfullyexecuted unless the "atexecute" command is run before the executiontime arrives.

(continued)

:

at-5

atexecute

atinfo

nshell

shell

SEE ALSO

| DESCRIPTION

atexecute-1

atexecute

Prepare the "at" subsystem for execution and initiate the "at daemon"

that handles the lists of commands submitted by the "at" command.

SYNTAX.»

/etc/atexecute [+krs]

The “atexecute" command initiates the handling of lists of commands that

have been submitted through the "at" command. It first prepares the

directory containing the lists submitted ("Jusr/spooler/at"), then

Spawns the daemon, or continuous background task, that executes these

lists.

The command fails if the system is in single-user mode. All expired
lists of commands (those whose execution time has passed by more than

one hour) that were submitted through “at without the “d“ option are

removed.

Options Available

k Keep all lists of commands, including those which

have expired.
r Remove all lists of commands, regardless of their

execution times.

8 Permit execution in single-user mode.

The "at daemon"

The “at daemon" (from now on referred to as the daemon) handles the

execution of lists of commands submitted through the "at" command. It

normally sleeps until an event occurs to indicate that there is

something for it to do. These events are "alarm" interrupts, "hangup"

interrupts, and interrupts from the "at" command.
a

The “alarm” and “at" interrupts indicate to "atexecute” that it must

search the list of files containing lists of commands (called submitted

files) to see if one is ready for execution. Any submitted file whose

requested execution time has passed is ready for execution. If no file

is ready for execution, the daemon computes the time until something

will be ready to execute and sleeps for that amount of time. If at

least one file is ready for execution, the daemon selects a file for

execution.

(continued)

atexecute-2

If more than one file is ready to run, the daemon selects the files inorder of ascending execution time. If two or more files have the samerequested execution time, the files submitted with the “b” option areselected before those submitted without it. Otherwise, the order ofselection is indeterminable.

Submitted files have names of the form "########4###42" where each poundSign, “#°, is a digit (0-9), “A” is the letter “A°, and “?° is anyupper~ or lowercase letter. Encoded in that file name are the requestedexecution time and the execution flags. (The "atinfo" command decodesthat information.)

After a file has been selected for execution, the first number in itsName is changed to its corresponding letter of the alphabet (e.g., 0becomes “A”, 1 becomes “BY, etc.). A shell program is invoked toprocess the selected command list. The daemon waits for the shellprogram to complete before selecting another file unless the file wassubmitted with the “b” option. When the shell ends, “atexecute" removesthe file and searches to see if any remaining files are ready forexecution.

If the daemon receives a "hangup" interrupt, it terminates gracefully asSoon as possible. It terminates immediately if it is sleeping, but ifit is currently executing a file, it waits until that file completesbefore terminating. In all cases, the daemon immediately breaks the‘

communication link between "at" and itself.

Format of the "holidays" File

The "at" daemon handles the "at" option “w’ (execute on working daysonly). The daemon looks for a file called "/usr/spooler/at/holidays".If it does not find the file, the daemon assumes that all days of theweek are working days and that there are no holidays. If it finds thefile "holidays", it expects it to contain a list of days of the weekwhich are not working days and a list of dates which are holidays.
The first line of the file "holidays" is a list of keywords, separatedby spaces, Naming the days of the week which are not working days. AMaximum of five nonworking weekdays is accepted. (See "at" forinformation on keywords.)

On the second and subsequent lines, the dates of the year that are
holidays (nonworking days) are listed, one per line. The format for thedate is the same as that for the <date> parameter described for the "at"command. A maximum of thirty holiday dates is accepted.

(continued)

atexecute-3

NOTES

. The “k” and “r” options are mutually exclusive and may not be

specified together.

. If a file submitted through "at" with the “r° option expires, it is

resubmitted before it is removed.

+ Communications between "at" and the daemon are made through a file
~

called "/tmp/atxctrpid", which contains the task number of the

daemon and other information. If the daemon discovers that this
file has been deleted or corrupted, it terminates.

» The system manager can avoid having to execute the "atexecute"”
command every time the system is booted by putting the following
command in the file "/etc/startup":

/etc/atexecute +ks

ERROR MESSAGES

atexecute error: “r° incompatible with “k”

The “r” option (remove all submitted files) is incompatible with the

“k” option (keep all expired files).

atexecute error: “k” incompatible with “r”

The “k” option (keep all expired files) is incompatiblewith the “r’

option (remove all submitted files).

atexecute error: System is in single-user mode.

The “atexecute" command does not allow itself to run if the system
7?

is in single-user mode unless the user specifies the “s” option.

atexecute error: /tmp/atxctrpid already exists

The file that allows communication between the "at" command and the

"at" daemon already exists. Probably, the "“atexecute" command is

not necessary as a daemon is already running on the system.
However, if "at" commands are warning that they are unable to awaken

the daemon, the system manager should remove this file and try the

“atexecute" command again.

atexecute warning: no holidays
The file "/usr/spooler/at/holidays" could not be found or could not

be deciphered. No holidays (nonworking days) are recognized.

SEE ALSO

at

atinfo

atinfo-l

atinfo

Display the current status of the "at" subsystem.

SYNTAX

atinfo {+hp]

DESCRIPTION

The "“atinfo" command examines the "at" subsystem and writes its current

status, consisting of the status of the Yat" daemon and a ‘table of

submitted lists of commands, to standard output. If the user specifies
the “h” option, the file containing the information on nonworking days
and holidays is also displayed.

The “p” option allows a user to examine and remove files that. the same

user previously submitted. The system manager may examine or remove any

file. In response to the prompt "? ", the user may type an “1° to

examine (list). the list of commands, an “r” to remove the list of

commands, or an “n’ to go to the next list of commands. A. carriage

return must follow the character. Typing only a carriage return is the

same as typing an “n* followed by a carriage return. The “p’ option
causes "atinfo" to write all information to standard error. Otherwise,

it writes all information to standard output.
:

Options Available

h List the file containing information about holidays.

Pp Prompt to list and remove each list of commands
submitted.

ERROR MESSAGES

syntax: atinfo +hp
The “atinfo" command contains either an argument which is not an

option string or an unknown option.

e

“<char>” unknown. Use “1°, “n’, or “r”

The "at" command cannot recognize the character typed in response
to the question-mark prompt. The recognizable responses are ‘1’,

“n’, and “r’.

atinfo warning: Cannot be examined

The file has either been selected for execution or removed.

Therefore, it may not be examined.

(continued)

atinfo-2

atinfo warning: Cannot be removed

The file has either been selected for execution or removed.

Therefore, it may not be removed.

MESSAGES

"at" daemon is available, process id is <number>

The "at" subsystem is currently active and is available for the

execution of lists of commands. The process ID of the "at" daemon

is <number>.

"at" daemon is not available

The "at" subsystem is not currently active. Lists of commands

submitted by the "at" command cannot be executed until the subsystem
is activated by the “atexecute" command.

SEE ALSO

at

atexecute

backup-1

- backup

Backup or restore files.

SYNTAX

backup <dev_name> [<file_name_list>] [+abdlnptABCLR]

DESCRIPTION

The "backup" command is used to create and maintain archival backups of

files or directories on the system. Although the program is named

"backup", it can operate in four distinct modes, selected by options:
create mode, append mode, catalog mode, and restore mode. In create

mode “backup” copies the specified files or directories to the backup

device. It destroys any data that are already on the backup device. In

append mode, "backup" adds the specified files or directories to the

backup device beyond all existing files. Thus, it is possible to append
to a backup device a file with path and file names identical to those of

an existing backup file. In catalog mode "backup" lists the contentsof

the backup device in much the same format as that used by the "dir" and

ls" commands. In restore mode it retrieves files or directories from a

backup. device.

The "backup" command stores files and directories on, and retrieves them

from, block devices only. In most cases the backup device is some sort

of disk, probably a floppy diskette. The "backup" command uses a unique

file structure on backup devices, which is completely different from the

standard UniFLEX file structure. Therefore, backup devices must not be

mounted onto. the UniFLEX file system using the "mount" command. The

only way to read devices written by "backup" is to use "backup" in

restore mode. The only other UniFLEX command which the user should use
on a backup device is “devcheck".

If the backup device is a disk, it should generally be formatted before
the backup operation begins. Although the UniFLEX file structure

created by the format command is destroyed by "backup", the raw

track-formatting is essential. During the backup process, the user is

given the opportunity to request that “backup” format disks before
writing to them.

Backups may extend over more than. one volume of the backup medium.

There are no restrictions on the sizes of files copied. If necessary;

"backup" breaks files into segments and stores each segment on a

different volume.

(continued)

backup-2

Arguments

<dev_name> Name of the backup device.
<file_name_list> List of the names of files and directoriesto process. Default is the working directory.

If the user specifies a directory name as an argument in restore,create, or append mode, the program processes only the files within thatdirectory. Tf the user also Specifies the “d* option, the programrestores all files within the given directory and its subdirectories.
Options Available

a=<days> Copy only those files which are no older than theSpecified number of days. A value of 0 Specifies,files created since midnight on the current day; avalue of | specifies files created since midnightof the previous day, and so forth.
Print sizes of files in bytes.
Backup or restore entire directory structures.
List file names as they are copied or restored.
Only restore a file if the copy on the backupdevice is newer than the copy at the destination.If the destination file does not exist, the programrestores the file (unless prohibited by another
Option, such as the “B’ option).P Prompt the user with each file name to determinewhether or not the specified procedure (backup orrestore) should be performed on that particularfile.

tl=<file_name>]Backup only those files which have been created ormodified since the date in the specified file.When the backup is finished, update the date in thefile (see NOTES). If the user does not Specify a
file, the default is ".backup.time",

5

es

a

o

A
Append to a previous backup.B Do not backup or restore files which end in ".bak",C Print a catalog of the files on an existing backup.If the user specifies the °C” option, "backup"ignores all the names in <file_name_list>.L Do not unlink files before restoring.R Restore files from an archive.

All modes except catalog mode are quiet. The “17 option allows the userto see what the program is actually doing.

The “n” option is only used in restore mode.

The “t” option can be used only in create and append modes. If the userspecifies the “t* Option, but the "backup time" file specified as itsargument does not yet exist, "backup" copies all the files and

(continued)

eveeeaoevoevueevneneeseeoevneeoneeneeneeeneeeeee
eee backup-3

directories listed on the commandline. Thus, a user may obtain a full

backup (either without the “t” option or with a nonexistent "backup
time" file) or a partial backup, which includes only those files: created

since the last backup.

EXAMPLES

1. backup /dev/fd0 +1

2. backup /dev/£d0 +C

3. backup /dev/f£d0 +1R

4. backup /dev/fd0 +1d filel file2 dirl dir2

5. ‘backup /dev/f£d0 +1Rn filel dir2

6. backup /dev/atO +1t
7. backup /dev/f£d0 +1lAt=backup_time
8. backup /dev/fd0 +1d filel file2 dirl dir2 +a=5

The first example backs up all files in the working directory to the

device "/dev/fd0". The file names are listed as they are copied to the

device.
:

. .

The second example lists the contents of the backup on "/dev/fd0". If

this command is executed just after the command in the first example, a

detailed listing of the files copied is printed. The format of this

listing is very similar to that of the commands "dir" and "1s".

The third example restores all of the files, excluding subdirectories
and their contents, from the backup on "/dev/fd0". If this command is

executed just after the command in the first example, the files backed

up in that example are restored.

The fourth example copies (in order) the files "filel" and "file2", then

all files and directories contained in the directories “dirl" and

“dir2",

The fifth example restores the file "filel" from the backup. It then

restores the files contained in "dir2" on the backup, creating the

‘directory "dir2" if necessary. This example does not restore any

subdirectories in "dir2" or any files or directories contained in

subdirectories in "dir2".

The sixth example creates the same backup as the first example, but only

copies| the files created or modified after the time contained. in the

file .".backup.time". If this file does not exist, all the files are

copied.

The seventh example adds a set of files to a previously created backup.

In particular, it adds exactly the files which were created or modified

since the creation of the file "backup_time"™.

Ccontinued)

backup-4

The eighth example performs the same function as the fourth example
except that it copies only those files which are five days old or less.

NOTES

- When using append mode, the user mst place the final volume of the
backup medium in the backup device. The program then appends files
to that volume, requesting new volumes as necessary.

- In restore mode, file names or directory names on the command line
are used to select the files or directories to be restored. The
program searches the entire backup for each argument specified. If
multiple files satisfy the restoration criteria, the program
Testores them all, destroying the older version as the new one is
restored. Thus, the user mst provide all backup volumes (in order)
for each argument to ensure proper restoration.

- When files are restored, they are generally restored to the same

directory location as the user specified when they were backed up.As files are backed up, "backup" makes an indication of the pathhame for each file. When files are restored, the program uses the
path name to. place the file in its proper directory location. If
the path name is relative (i.e., does not begin with “/“), the path
Mame of the restored directory is also relative. Thus, files backed
up with a relative path name may be restored to a directory location
different from the one in which they were created. An example
should make this clear. If the working directory is backed up,
either by specifying no source files or by using the directory name

“.°, the files are backed up with a relative path of °.°. When
these files are restored, they are placed in the directory “.”,
which might not be the same directory they originally came from.
This feature allows the manipulation of entire file systems in a

general fashion. To specify a unique directory location for a file,
the user should specify its entire path name, Starting with “/%.

- It is possible to restore backed up data onto the device currently
being used as the root device or system disk. Two possible problems
arise, however. First of all, if the UniFLEX operating system is
restored from a backup, the result is not bootable. In such a case,
the UniFLEX file mst be copied from the original master diskette
and installed in order to allow booting. The second problem occurs
if the shell program or the device "ety00" is restored over the
current shell or "tty00". This operation leaves unreferenced files
in the file system. Unreferenced files must be corrected. with the
“diskrepair" command. In general, it is always a good idea to run

"diskrepair™ on the root device after restoring backed-up data to
it.

(continued)

backup-5

MESSAGES

Several of the following messages prompt the user for a positive or

negative response. The program interprets any response that does. not

begin with an upper- or lowercase “n” as a positive response.

Restore backup from "<file_name>"
Catalog of backup on "<file_name>"
Update backup on "<file_name>"
Backup to "<file_name>"

These messages are printed when "backup" begins. They notify the

user of the function about to be performed.

Volume name?

Each set of backup volumes has a name. The user should enter the

name in response to this prompt. The name may contain as many. as

forty characters.

Insert next volume ~ Hit C/R to continue:

This prompt is issued when the program needs a new backup volume.

The user should type a carriage return only when the next volume has

-been placed in the device. When creating new backups or when

appending to an old one, the user may enter the character “f",

followed by a carriage return. If the program is in append mode, it

automatically switches to create mode and starts a new backup. The

“¢° indicates that the volume has been inserted in the drive, but

that it mist be formatted before continuing. In this case the

program prompts the user for the specific information necessary to

format the volume. Subsequent format operations use the same

information; thus, all volumes which were not previously formatted

must have the same characteristics Ce.g-; single-sided,

double-density).

Format program name?

This prompt is issued in response to a "format" request for the next

volume. The user should respond with the name of the appropriate

formatting program for the given device.
:

Device model name?

The user should respond to this prompt with the model name which

corresponds to the volume being formatted. Refer to. the

documentation for the format program for the available models.

Do you wish to abort "append" function and create a new backup?

This message is printed at the initiation of the "append" operating

mode if an invalid header (indicating a bad backup format) is

detected. The user has the option of aborting from "append" mode

and switching to "create" mode.

(continued)

backup-~6

Volume <number> of "<vol_name>"
Whenever a new volume is inserted and properly validated, theprogram prints this message, which indicates the name of the backupvolume and its Sequence number.

This is Volume #<number_1> --

Expected Volume #<number_2> ~~

Continue?
The program expects the user to insert volumes in sequential order.If a volume appears out of order, "backup" prints this message. Ifthe user types anything except an “n’ or an “N° as the firstcharacter of the response to the message, "backup". ignores the factthat the volumes are out of order and continues with the backup.Otherwise, it Prompts the user for another volume. If the programis in restore mode, it is important to insert volumes sequentiallybecause "backup" cannot correctly restore files that are brokenacross volumes if the volumes are inserted out of order.

Copy "<file name>" (y/n)?
Restore "<file name>" (y/n)?

If the user Specifies the “p’ option, the program prints one ofthese prompts before it takes any action. A response of “n” or “N*indicates that the operation should not be performed for the givenfile. Any other response is interpreted as "yes",
link "<file name_1>" to "<file_name_2>"
copy "<file_name>"
====

Copying from "<dir_name>'"t
The program prints these messages as it takes the correspondingaction during a creation operation.

ERROR MESSAGES

~~

Formatting not allowed during Catalog/RestoreThe user may not format a disk if the program is in either catalogOr restore mode. .

*** Invalid Volume Header -- Not a "backup" disk ***
The program validates each backup volume before using it. If thisvalidation fails, the program prints this message to indicate thatSomething is wrong. The user then has another chance to insert theproper volume and continue. If validation fails while the programis in append mode, the user may abort from append mode and create atotally new backup instead.

(continued)

backup~7

** Warning: directory "<dir_name>" is too large!
** Some files were ignored ;

** Warning: directory "<dir_name>" is too large!
** Some directories were ignored

“The program uses some internal tables during the backup process (not

during restore or catalog). If the limits of these tables are

exceeded (highly unlikely), these messages are printed.

Read error! ~- file "<file_name>"
Write error! - file "<file_name>"

An I/O error occurred during the transfer of a file either to or

from the backup. An auxiliary message is printed indicating the

nature of the error. The program tries to continue for all errors

except “device full" during restore mode.

"<file name>" not located - try again?
When using the program in restore mode, the user may specify which

files or directories to restore. If the program cannot find a

specified file or directory after searching the entire backup, “at

prints this message. If the response is not “n” or “N’, the

program searches the entire archive again. This option is allowed

because volumes need not be inserted in order of their creation

when the program is in restore mode. If one volume is left out or

if the final volume is inserted before the entire archive has been

processed, some files might not be processed. Note that if the user

specifies more than one file name or directory name, the program

processes the entire archive for each file before proceeding to the

next one.

Unknown option: <char>

The character <char> js not a valid option for the program.

"backup" must run with system manager privileges!
Currently running as: <user_number>

Some features of "backup" require privileges only available to the

system manager. In most installations the program will be installed
so that these privileges are given to the program. If this message

is printed, the user should check with the system manager.

(“t’ or “a’) and (°C% or “R”) are incompatible options

“A’ and “C* are incompatible options
“A’ and “R’ are incompatible options
“R’ and “C’ are incompatible options
“a” and “t” are incompatible options

The program can run in only one of its four operating modes at a

time. Specifying certain combinations of options implies the

execution of more than one operating mode and is therefore illegal.

(continued)

backup-8

"<dev_name>" is not a block device
The destination device for the backup must be a block device. This
message indicates that the specified device (which is always the
first argument) is not such a device.

SEE ALSO

format

_ basename~1

basename

Extract the base file-name from a path name.

SYNTAX

basename <path_name> [<suffix>]

DESCRIPTION

The "“basename” command extracts the simple file-name from the path name

<path>, removes the suffix from the simple file-name (if a suffix was

specified), and produces a base file-name. It then writes this base

file-name, followed by a carriage return, to standard output.

Arguments

<path_name> The path name from which to derive a base

file~name.

<suf fix> A suffix to remove, if present.

EXAMPLES

1. basename hello.c .c

2. basename /usr/joe/docs.txt txt

3. basename /usr/ jan/sorted_data
4. basename /usr/kim/program.p .c

The first example writes the string "hello", followed by a carriage

return, to standard output. The "basename" commandremoves the suf fix

"co" from the path name "hello.c", but it does not remove a directory
name since there is none to remove. o

The second example writes the string "docs", followed by a carriage
return, to standard output. The "basename" command removes —the

directory name "/usr/joe/" and the suffix "txt" from the path name

"Jusr/ joe/docs.txt".

The third example writes the string “sorted_data", followed by a

carriage return, to standard output. The command removes the directory

name "/usr/jan/" from the given path name, but it does mot remove a

suffix since none is specified.

The fourth example writes the string "program.p", followed by a carriage

return, to standard output. The command removes the directory name

"/usr/kim/" from the path name, but does not remove the suffix ".c"

since the path name does not end with that suffix.

(continued)

basename-2

NOTES

- If the argument <path_name> ends with a slash character, “/°, or is
a null or blank string, the "basename" command © writes a carriagereturn to standard output.

ERROR MESSAGES

usage: basename <path_name> [<suffix>]
The "basename" command requires at least one and no more than two
arguments. This message indicates that the argument count is wrong.

SEE ALSO

dirname

basicerror-1

basicerror

Give an English interpretation of a BASIC error number.

SYNTAX

basicerror <number_list>

DESCRIPTION

The "“basicerror" command gives an English interpretation of each of the

BASIC error numbers specified as arguments.

Arguments

<number_list> .A list of one or more BASIC error numbers»

EXAMPLES

basicerror 30 72 208

In the example, "basicerror" prints an English. interpretation of BASIC

errors 30, 72, and 208.

NOTES

. The English interpretations of the BASIC error numbers less than 201

are stored in the file "/gen/errors/basic™. This file is in a

special format which the user should not try to modify.
,

The interpretations of error numbers greater than 200 are stored in

the file "/gen/errors/system", which may not exist on earlier

versions of the operating system. If “basicerror" cannot find the

file, it prints the corresponding UniFLEX error number. The file is

in a special format which the user should not try to modify.

ERROR MESSAGES

Error reading "/gen/errors/basic".
The operating system returned an error when. “basicerror" tried

read the file "/gen/errors/basic".

to

File "/gen/errors/basic" cannot be opened.
The operating system returned an error when "basicerror" tried to

open the file "/gen/errors/basic". This message is precede¢c by an

interpretation of the error returned by the operating systen.-

(continued)

basicerror-2

File "/gen/errors/basic" cannot be located.
The file "/gen/errors/basic" does not exist.

<argument> is net a valid BASIC error number,
The specified -argument either is not a number or is outside the
range of valid BASIC error numbers.

SEE ALSO

basic

boottime-1

boottime

Display the date and time of the last system boot.

SYNTAX

boottime

DESCRIPTION

The "boottime" command reports the date and time of the last system

boot. It accepts no arguments or options. Boot time is defined as the

time at which the system manager entered the date and time.

EXAMPLES

boottime

This example is the only valid form of the "boottime" command. It

displays the date and time of the last system boot.

ERROR MESSAGES

Syntaxerror - no arguments expected.
The user specified an argument or option to the "boottime" command,

which accepts neither.
,

calendar=1

calendar

Display a calendar for the specified year or month.

SYNTAX

calendar [<month>] [<year>]

DESCRIPTION

The "calendar" command prints a calendar for any year or month.

Arguments

<month> The month to display.

<year> ‘The year to display. Default is the current year.

Format for Arguments

<month> <name._or_number>
<year> <number>

The <month> argument may be either a number between 1 and 12 inclusive

(January is 1) or a character string representing the name of the month.
The name of a month is recognized by any sequence of adjacent
characters, beginning with the first character, that is unique to that

month. For example, "ja", "jan", "janu", "janua", "Januar", and

"january" are all valid representations of the first month of the year.

“However, “j” is not a valid representation because two other months,

June and July, also start with that sequence.

The <year> argument may be any number from 1 to 9999 inclusive. Numbers

under 100 are considered to be the corresponding year within the

twentieth century unless they contain a leading 0.

If the user supplies only one argument, and it is a number, "calendar"

must decide whether the argument specifies a month or a year. If the

number has a leading 0, it is always considered a year. If the number

is between l and 12 inclusive (without a leading 0), it is considered a

month. Otherwise, it is considered a year.

EXAMPLES

1. .calendar

2. calendar sept 85

3.. calendar 7 1776

4... calendar 085

(continued)

calendar-2

The first example prints a calendar for the current year.

The second examples prints a calendar for the month of September, 1985,

The third examples prints a calendar for the month of July, 1776.

The fourth examples prints a calendar for the year 0085 (first century).

NOTES

+ By September, 1752, when the Gregorian calendar was adopted, thevernal equinox had been displaced by eleven days. To correct forthis displacement the new calendar skipped eleven days. Therefore,the calendar for that month contains nineteen, rather than thirty,days.

ERROR MESSAGES

Invalid date.
The user specified either an invalid name for a month or a numberfor the month or year outside the ranges accepted by "calendar".

ert_termcap-l

crt_termcap

Create a file defining the capabilities of each terminal on the system.

‘SYNTAX

/etc/crt_termcap <ttycap_file> <ttyassoc_file> <termcap. file>

DESCRIPTION

The "crt_termcap" command creates a file ("termcap") which describes the

capabilities of each terminal on the system. This. file makes it

possible for programs to operate on many different terminals regardless
of the individual characteristics of the terminals. The "“crt_termcap"”
command must be used to create the file “termcap" before anyprograms
which need that file can operate successfully.

Arguments

<ttycap_file> File describing functional capabilities
of each terminal.

<ttyassoc_file> File associating each active port. with

a particular kind of terminal.

<termcap_file> Output file combining information from
the two input files.

The "crt_termcap" command uses two input files to produce one output

file. The first input file describes the functional capabilities of

each terminal on the system. The second file indicates what type of

terminal is on each active port in the system. These files must each

conform to a particular format. The following two sections describe

these formats.

Format of the File "ttycap"

The file “ttycap" contains one logical entry for each terminal on the

system. The format of an entry is

<terminal_name> ; <capability_list> :

where <terminal_name> is a character string (it may contain as many as

ten characters)which identifies the terminal, and <capability_list> is

a list describing the capabilities of the terminal. Each item in this

list has the following format:

<keyword> = <value_ list>

where <keyword> is a two-character sequence representing a function such

(continued)

crt_termcap-2

as clearing the screen and <value_list> is a list containing. decimalvalues, hexadecimal values, or both. Each value in the list must beSeparated from the following one by a plus sign, “+%, No spaces mayappear between the values and the plus signs. All hexadecimal valuesmust consist of two digits preceded by a dollar sign, °$’. Thefollowing are valid value strings:

14243

$01+S££4+$80

The keywords currently supported are

ho Home cursor.
cu Move cursor up without modifying display.ed Move cursor down.
el Move cursor left.
cr Move cursor right.
cs Clear entire screen.
nr Number of rows on screen (first row is 1).
nc Number of columns on screen (first column is 1).wt Number of seconds to wait between clearing the screenfunction and sending more information to the terminal.is A string of characters sent to the terminal when

Processing begins in order to initialize the terminal.bl Clear the current line from the present cursor positionthrough the end of the line without moving the cursor.bm Place the terminal in "background" mode. In this mode
characters are written to the terminal with a lower
intensity (brightness) than usual.

fm Place the terminal in foreground (normal) mode.
pe Position the cursor to an absolute location.ku Sent by the terminal in response to the up-arrow key.kd Sent by the terminal in response to the down-arrow key.kl Sent by the terminal in response to the left~arrow key.kr Sent by the terminal in response to the right-arrowkey.

kh Sent by the terminal in response to the home key.k0-k9 Sent by the terminal in response to other Special keys.
The following entry describes a ct82 terminal manufactured by SouthwestTechnical Products, Corporation:

ct82:ho=16 cu=01 cd=02 cr=09 cl=04 cs=30+07412 nr=20 nc=82ku=01 kd=02 kr=09 k1=04 is=28+18+30+19430+20+30+07b1=06bm=28+05 fm=28+21+30+07 wt=l pc=S0b+S££+$014+S££+S80:
Not all terminals can Support all the functions described here. All theinformation required to create the list of values should be contained inthe manual describing the particular terminal. As can be seen from theprevious example, definitions for all keywords are not necessary for the

(continued)

ert_termeap-3

correct functioning of the utilities that use the file “termeap".

However, definitions for the following keywords are essential:

es, ho, nr, nc, and either pe or cu, cd, cl, and cr

The keyword "pc" enables a utility to position the cursor to any

absolute location on the screen. Some terminals do not support this
feature, in which case the utilities must use relative positioning of

the cursor (using ho, cu, cd, cl, and cr) instead. Since the absolute

positioning of the cursor is different on almost all terminals, the

value string associated with the keyword "pc" is rather complex. At a

minimum, absolute cursor positioning requires the desired. row and column

numbers to be sent to the terminal as part of a control sequence.

Different terminals require the row and column portions of the sequence

to be in different forms. Theremust be a method of transforming the

desired row and column numbers, supplied in the range of 0 to some

maximum, into the form required by a specific terminal. Two special
portions of the the "pe" value string, called escape sequences,

accomplish this transformation. Each escape sequence is replaced by the
row ‘or column number in the proper form, as defined by the information
in the escape sequence. The escape sequence has the following format:

$££4+<f£lag>[+<bias>]

where <flag> is a set of 8 bits which describes the particular

operation. These bits are explained in the following table (0 is the

rightmost bit):

Bit Value Meaning
c=

mm
=

0 0 This is a row reference.

1 This is a column reference.

1 0 No bias is necessary.

1 + A bias must be added to the value before use.

2 0 Use the value as is.

1 Subtract the value from the maximum row or

column before use.

3 0 Do not convert the value to BCD.

1 Convert the value to BCD.

4 0 Do not convert the value to decimal ASCII.

1 Convert the value to decimal ASCII.

5 kKK Unused. Must be 0.

6 *eK Unused. Must be 0.

7 Value required if bits 0-6 are not all 0.

1 Value required if bits 0-6 are all 0.

A bias must be specified as part of the escape sequence if and only if

bit 1 of the flag is set to 1. Some examples should make this mechanism

clearer. Consider the following "pc" string for the ct82:

pc=SO0b+S££+$01+S££+$80

(continued)

crt_termcap-4

a

The $0b is required by the ct82 to initiate cursor positioning. The Sffis the start of an escape sequence. Its flag of $01 means that bit 0 is1, and all other bits are 0. Thus, the escape -

sequence is a rowreference with no bias. The binary value is used as is. It is not
converted to either binary coded decimal (BCD) or -decimal ASCII. Thesecond $ff starts the next escape sequence. Its flag of $80 means thatall bits from bit 0 through bit 6 are 0. Bit 7 is l, as it must be ifall other bits are 0. This flag is a column reference (bit 0 is 0), butin all other respects it means the same thing as the previous flag.

In order to position the cursor on a ct82 terminal to row 18, column 10,a utility must send the following characters to the terminal:

Character Meaning

$0b Initiate cursor positioning.
$09 Column 10 (0 is the leftmost column).
$11 Row 18 (0 is the uppermost row).

As another example consider the following cursor-positioning stringfor an Ambassador terminal manufactured by Ann Arbor Terminals:

pc=$1b+$5b+S$££+$124+$014S3b+4S££4+$134$014$48
The $1b and $5b are required by this terminal to initiate cursor
positioning. The Sff begins the first escape Sequence. Its flag of $12means that bits 1 and 4 are 1, and all other bits are 0. Thus; the
escape sequence is a row reference with a bias (the next number in thevalue list, $01) that must be added to the binary value before use. The
binary value is used as is. It should be sent in decimal ASCII. The$3b following the bias is required by this terminal as a row/column
Separator. The second Sff starts the second escape sequence. Its flagof $13 means the same thing as a flag of $12 except that bit 0 is 1,indicating that this flag is a column reference. The $48 immediatelyfollowing the bias of $01 is required by this terminal to terminate

cursor positioning.

In order to position the cursor on this terminal to row 18, column 10, a
utility must send the following characters to the terminal:

Character Meaning

$1b $5b Initiate cursor positioning.
$31 $38 Row 18 in decimal ASCII

(0 relative, +1 bias).
$3b Row/column separator.
$31 $30 Column 10 in decimal ASCII

(0 relative, +1 bias).
$48 Terminate cursor positioning.

(continued)

- ert_termcap-5

As a final example, consider the cursor-positioning string for an
Infoton 100 terminal from Infoton:

pe=$1b+$66+S££4+$03+$20+S££+$02+$20

The $lb and the $66 are required by the terminal to initiate cursor

positioning. The $ff starts the first escape sequence. Its escape flag
of $03 means that bits 0 and 1 are 1, and all other bits are 0. Thus,

the escape sequence is a column reference with a bias of $20 that must

be added to the binary value before use. The next escape sequence has

the flag $02, which means that only bit 1 is 1. All other bits are 0.

Thus, this escape sequence is a row reference with a bias of $20. In

order to position the cursor on this terminal to row 18, column 10, a

utility must send the following characters to the terminal:

Character. Meaning

$1b $66 Initiate cursor positioning.
$29 Column 10 (0 relative, +$20 bias).

$31 Row 18 (0 relative, +$20 bias).

Format of the File "ttyassoc"

The second file used by the "crt_termcap" command contains a list

indicating what type of terminal is actually connected to each port on

the system. This file, called “ttyassoc" for terminal association file,
can be created very simply using the file "/etc/ttylist", which is

supplied on all systems. The file "ttylist” can, in fact, be used as

the file "ttyassoc" if it is modified to appear exactly as described in

this section. All that is required in "ttylist" is a plus or minus
sign, “+ or “-°, in column 1, followed by a space, followed by a

two-digit number representing a terminal. The file "ttyassoc" requires
two additional fields. Existing programs which use the file "ttylist"
ignore anything beyond the terminal number, so the file can be modified

to look. like the file "ttyassoc" without affecting the rest of the

system.

The file "ttyassoc" contains one line for each terminal on the system.
Each line has the following format:

+ <nn> : <terminal_type> : [<name>]

An explanation of this format follows:

<nn> A two-digit number representing the terminal.

<terminal_type> The type of terminal attached to the port.
This name should. be one of the terminals

described in the file "ttycap". The name may

contain as many as ten characters.

(continued)

crt_termcap~6

<name> A descriptive name, used primarily fordocumentation, This name is normally the
hame of the person most commonly using the
terminal. However, it has no functionalmeaning and need not be present.

If the file "/etc/ttylist" is used as the "ttyassoc" file, inactivePorts require as an absolute mini mum the entry

“omnis:

for the "cert_termcap"command to function Properly. The colons used asfield separators must appear even if the fields are empty.
To access the file “ttylist" as the file "ttyassoc" thespecify "/etc/ttylist" user mustas the second argument on the. command 1 ine.

EXAMPLES
w

/etc/crt_termcap /etc/ttycap /ete/ttyassoc /etc/termcap
This example combines the information in the files "/etc/ttycap" and"ete/ttyassoc" to form the file "/etc/termcap",

NOTES

- All three arguments must be
names. Arguments must appear in
Statement.

supplied; there are no default file
the order specified in the syntax

« The user can specify any file names as the three arguments to"crt_termcap",

- All utilities which use the "termcap" functions expect the file"/etc/termcap" to exist. Although any name can be Specified as thethird argument to the "ert_termcap" command, if the output file isnot named "Jetc/termeap", it should be linked to a file that is.

ERROR MESSAGES

usage : ++
crt_termcap ttycap ttyassoc termcapThe utility expects exactly three arguments. This message indicatestha: the argument count is wrong.

**k ERROR : <system_error_message>while <action>This general class of
encuntered while performi
opening, or closing files.

error messages describes any system errors
ng such functions as reading, writing,

(continued)

‘erttermcap-7

*kk Can’t access ttycap file "<file_name>"
The utility did not have read permissions in the file specified as

the “ttycap" file.

*ek Can’t access ttyassoc file "<file_name>" |

The utility did not have read permissions in the file specified as

the "ttyassoc" file.

*** Unrecognized option "<char_1>", Terminal = <terminal_name>,

Last valid option "<char_2>".
The option shown is not one of the legal options allowed in the

"ttycap" file. The file "termcap" will not be built.

*kk Can’t find description of the terminal "<term_name>".
A terminal name specified in the "ttyassoc" file was not one of the

terminal names contained in the "ttycap" file. The “termcap" file

will not be created. .

dircompare-1

dircompare

Compare. two directories and list the files found in one directory but
not in the other.

SYNTAX

dircompare <dir_l> <dir_2>

DESCRIPTION

The "dircompare" command compares the names in the directory <dir_1>
with the names in the directory <dir_2>. It first reports any names

found in <dir_l> but not in <dir_2>, then reports any names found in

<dir_2> but not in <dir_l>. It sorts the lists of names alphabetically.

Arguments

<dir_l> | First directory to compare.

<dir_2> Second directory to compare.

EXAMPLES

1. dircompare /proj/utils /ris/utl
2. dircompare . ../bkup

The first example compares the names in the directory "/proj/utils" with

the names in the directory "/rls/ut1".

The second example compares the names in the directory "." (the working
directory) with the names in the directory "bkup", which is found in the

parent of the working directory ("..").

NOTES

. The "dircompare" command compares neither the characteristics nor

the contents of the entries found in the directories specified. It

compares only the names in the directories.

ERROR MESSAGES

usage: dircompare <dir_1> <dir_2>
The "dircompare" command requires exactly two arguments. This

message indicates that the argument count is wrong.

(continued)

dircompare-2

Not a directory: <arg>
The argument <arg> is not a directory and cannot be used as an

argument to the "dircompare”" command.

Directories are too large to compare
Not enough memory is available to contain the two specified
directories. The combined number of entries mist exceed 3,000 for

this error to occur.

Read error on directory: <dir_name>
The UniFLEX Operating System reported a read error while trying to

read from the directory <dir_name>.

MESSAGES

These are in <dir_1> but not in <dir_2>
The names that follow were found in the directory <dir_l> but not in
the directory <dir_2>. This message is written to standard output.

All entries in <dir_l> are in <dir_2>
All of the names in the directory <dir_l> are also in the directory
<dir_2>. This message is written to standard output.

Directories <dir_l> and <dir_2> are identical
The directories <dir_1> and <dir_2> contain exactly the same names.

This message is written to standard output.

SEE ALSO

ls

dirname-1

dirname

Extract the directory name from a path name.

SYNTAX

dirname <path_name>

DESCRIPTION

The "dirname" command extracts the directory-name prefix from a path
name and writes it, followed by a carriage return, to standard output.

Arguments

<path_name> The path name from which to derive a directory
name.

EXAMPLES

1. dirname hello.c

2. dirname /usr/joe/docs.txt
3. dirname ../ jan/sorted_data

The first example writes only a carriage return to standard output since

no directory name is prefixed to the string "hello.c".

The second example writes the string "/usr/joe", followed by a carriage

return, to standard output.

The third example writes the string "../jan", followed by a carriage

return, to standard output.

NOTES

. If the argument <path_name> does not contain a slash character, “I,

"dirname" writes only a carriage return to standard output.

. If the argument <path_name> is just a slash character (indicating
the root directory of the file system), "dirname" writes a slash,

followed by a carriage return, to standard output.

ERROR MESSAGES

usage: dirname <path_name>
The "dirname" command requires exactly one argument. This message

indicates that the argument count is wrong.

(continued)

2

basename

dirname-2

SEE ALSO

diskinfo-l

diskinfo

Display information about the size and contents of the specified disk.

SYNTAX

diskinfo <device_name> [<device_name_list>]

‘DESCRIPTION .

The "“diskinfo" command displays information about the specified disk or

list of disks. The information includes the following:
‘

Disk name

Date of creation
Date of last update
Disk size

Size of fdn. space
Size of file space
Size of swap space
Free space remaining
Free fdns. remaining
Disk type (e.g., Double-sided, single-density floppy)

The disk from which the information is beingobtained need not. be

mounted on the file system.

Arguments

<device_mame> Name of block disk device.

EXAMPLES

diskinfo /dev/fdl

This example displays information about the floppy disk inserted in

device "/dev/fdl" (floppy disk drive #1).

NOTES

- The determination of disk type is based on disk types known to

“diskinfo" at the time of its release. If <device_name> refers to a.

nonstandard disk, the disk type displayed may not be valid.

(continued)

diskinfo-2

ERROR MESSAGES

"<device_name>" is not a block device.
The argument specified as the "<device_name>" is not the name of ablock device.

Can°t get status for "<device_name>",
An error occurred while trying to obtain the status of the specifieddevice.

Can“t open "<device_name>",
The program was unable to open the specified device for reading.

Can*t’'read SIR.
An I/o error occurred while attempting to read the SystemInformation Record (block 1) from the specified device.

Must specify device.
No device was specified on the command line.

dsd=1

dsd

Produce a dynamic display of system use.

SYNTAX

dsd [<sleep_time>]

DESCRIPTION

The "ded" command, which stands for "dynamic system display", displays

the current status of most of the system resources~~including CPU usage,

disk usage, and memory usage. At the top of the screen “dsd" displays a

dynamic bar graph, representing the overall system load. The longer the

line, the busier the system. The command updates the display every five

seconds unless the user specifies another length of time.
:

Most items displayed are self-explanatory. The boot time is defined as

the time at which the system manager entered the date and time. The

disk efficiency is the ratio of the number of times UniFLEX found the.

block it needed in its buffer cache to the number of times it had to go

to the disk to get a_ block. The maximum possible efficiency is

approximately 67%. "Swap busy" represents the amount of swap space’ that

is currently in use.

The "ded" command requires the "termcap" facility to be installed on the

system. It also requires a terminal with at least twenty lines per

screen. On a terminal with less than twenty-four lines "dsd" does not

display swap statistics. The user terminates the display by typing a

keyboard interrupt (control-C).

Arguments

<sleep_time> The amount of time (in seconds) to sleep

between displays. Default is 5.

EXAMPLES

dsd 30

This example displays the system information on the user’s terminal and

updates it every thirty seconds.

r

(continued)

dsd~2

ERROR MESSAGES

Syntax error - dsd [<sleep time>]
The "dsd" command expects no more than one argument. This messageindicates that the argument count is wrong.

Can“t initialize terminal from "termcap" data.
Either "ded" could not find the file "termcap" or the user’s
terminal is not described in the file.

Needs at least 20 lines on the terminal.
The terminal being used displays less than twenty lines at a time.

Can“t open system memory.
The system-memory file, "/dev/smem", could not be opened.

Can“t open physical memory.
The system physical-memory file, "/dev/pmem", could not be opened.

SEE ALSO ,

status

'

filedevice-1

filedevice

Report the name of the device on which a specified file resides.

SYNTAX

filedevice <file_name> [<file_name_list>]

DESCRIPTION

The "filedevice" command reports the full device name ‘of the diskdevice
on which the specified file or files reside.

Arguments

<file_name> Name of file to report on.

EXAMPLES

filedevice .

This example prints the full name of the deviceon which the working
directory (“.%) resides.

ERROR MESSAGES

Can“t determine device for "<file_name>". :

The program was unable to find the name of the device which

corresponds to the device number associated with the specified file.
This error should never occur and indicates a serious problem.

Can“t obtain status for "<file_name>".
An error occurred while trying to obtain the status of the specified
file.

Can“t open "/dev" directory.
;

An error occurred while tryifg to open the "/dev" directory. This
directory must be read in order to determine the device names.

Error reading "/dev" directory.
An error occurred while trying to read the "/dev" directory. This

directory must be read in order to determine the device names.

Must specify file.
No file was specified on the command line.

flex-rel-1l

flex-rel

Convert a UmniFLEX relocatable binary file to a file containing FLEX

relocatable binary code.

SYNTAX

flex~rel <UniFLEX_file_name> <FLEX_file_name>

DESCRIPTION

The "flex-rel" command converts a UniFLEX relocatable binary. file,
created by the program "relasmb", to a file containing FLEX relocatable
binary code. The main purpose of this command is to allow the

development of FLEX relocatable binary modules under the UniFLEX

operating system. Note that the output of the "flex-rel" command is a

UniFLEX. file whose contents are in the FLEX relocatable binary format.

This file may then be transported to a FLEX disk using the "flex-copy"
utility or other means, Since the FLEX relocating assembler and

linking-loader do not support segmentation, "flex-rel" combines the TEXT

and DATA portions of the UniFLEX file. .It also replaces any BSS

segments by an appropriate number of zeros in the FLEX file.

Arguments

<UniFLEX_file_name> The UniFLEX relocatable binary file to

convert.
<FLEX! file_name> The resulting FLEX relocatable binary

file.

EXAMPLES

flex-rel file.r file.f

This command converts the UniFLEX relocatable binary file "file.r" into
the FLEX relocatable binary file "file.f". Note that the output from
this command is a UniFLEX file which must then be transported to a FLEX

system.

ERROR MESSAGES

Invalid UniFLEX binary header
The UniFLEX file was not recognizable as a relocatable binary file.

File contains negative linking
The format for a FLEX relocatable binary file does not include the

provision for negative linking. If the UniFLEX file uses this feature,
"flex-rel" cannot transform it.

(continued)

flex-rel-2

SEE ALSO

link-edit

£lex-copy
relasmb

keep-1

keep

Retain files in the working directory.

SYNTAX

keep <file_name> [<file_name_list>] [+pq]
keep +p [+q]

DESCRIPTION

The "keep" command deletes all data files: in the workingdirectory
except those whose names are specified as arguments or whose names start
with a period.

Arguments

<file_name> Name of one file to be kept.
<file_name_list> Names. of additional files to be kept.

Description of the Arguments

The file names specified as arguments must refer to files existing in
the working directory. The names may not contain path information. If
no file names are specified, the “p” option, described later, must be
specified.

If one or more of the file names specified as arguments either do not
exist in the working directory or refer to devices or directories,
"keep" issues messages to that effect and requests permission to
continue from the user. The format of this request is

Continue?

The user must respond by typing a string followed by a carriage return,
or by typing the end-of-file character. If the first character of..the
String is “y”, "keep" begins to delete files, leaving devices or
directories intact. If the first character of the string is “n°, or if
the user types the end-of-file character as the first character of a

line, "keep" terminates. If the first character of the string is not
one of these three characters, "keep" reissues the prompt.

Options Available:

p Prompt before deleting each file.
q Use quiet mode.

(continued)

keep-2

Complete descriptions of the options follow.

The “p” Option.

If the “p” option is specified, "keep" asks the user for permission to
delete each data file in the working directory except those whose names

appear as arguments or whose names begin with a period. The format of
this request is

Delete "<file_ name>"?

The user must respond to each request by typing a string followed by a

carriage return or by typing the end~of-file character. If the first
character of the string is “y”, "keep" deletes the file; if it is “n’,
the file is not deleted. If the string starts with any other character
except the end-of-file character, "keep" repeats the request. If the
user typesthe end-of-file character as the first character on the line,
"keep" terminates.

The “q” Option.

Normally "keep" lists the names of the files as they are deleted.
Specifying the “q” option suppresses this list of names.

EXAMPLES

1. keep datafile
2. keep +p
3. keep *.c *.h +pq

In the first example, "keep" deletes all data files in the working
directory except the file named "datafile" and any files whose names

begin with a period. Messages are issued naming the files that are

deleted.

In the second example,"keep" prompts the user for permission to delete

every data file in the working directory except those whose names begin
with a _ period. The user must grant or deny this permission for each
file.

In the third example, "keep" requests permission to delete all files
whose names do not end in ".c" or ".h" except those whose names begin
with a period. The user must grant or deny this permission for each
file. The “q” option suppresses the informative messages which list the
names of the files as they are deleted.

(continued)

keep-3

NOTES

- It is not possible to use "keep" to delete a directory, a device, or

a file whose name begins with a period.

- Fatal error messages are sent to standard error; prompts and

informative messages, to standard output.

ERROR MESSAGES

Error reading working directory.
The operating system returned an error when "keep" tried to read the

working directory. This message is preceded by an interpretation of
the error.

Cannot open working directory.
The operating system returned an error when "keep" tried to open the

working directory. This message is preceded by an interpretation of
the error.

No permission to delete files in this directory.
The user does not have write permission for the working directory.

Unknown option "<char>" ignored.
The option specified by <char> is not a valid option to "keep".
This error is not fatal.

Argument "<file_name>" contains path information.

Arguments to the "keep" command may not contain path information
(elements separated by the slash character, “/*).

"<file_name>" not located.

The specified file does not exist in the working directory.

"<file_name>" is a device or a directory.
The specified name refers to a device or a subdirectory.

Cannot delete "<file_ name>".
The operating system returned an error when "keep" tried to delete
the specified file. This message is preceded by an interpretation
of the: error.

SEE ALSO

kill

libinfo-1

libinfo

Display information about a library.

SYNTAX

libinfo <library_name> [<library_name_list>] [+emM]

DESCRIPTION|
The "libinfo" command produces a list of the entry points and: module
names contained in a library produced by the "lib-gen" command. The
user can optionally display only the entry points or only the module
names. Information about a particular module within a library can also
be displayed.

Options Available

e Display only entry points in the specified library.
m Display only module names in the specified library.

_M=<mod_name> Display information about module "<mod_name>".

EXAMPLES

1. libinfo testlib
2. -libinfo runlib +m

3. libinfo /lib/mathlib +M=Arctan

The first example lists all entry points and module names in the library
"cestlib", ,

The second example lists all the module names contained in the library
"runlib",

The third example displays the entry points and module names in the
module "Arctan" in the library "/lib/mathlib".

NOTES

- The °“M” option is incompatible with both the “e’ and “m’ options.
If the user specifies incompatible options, "libinfo" uses the “M’

option and ignores any others.

(continued)

libinfo~2

ERROR MESSAGES

Unknown option “<char>” ignored.
An unknown option was found and ignored.

*** “M” taken, others ignored ***

The “m” and “e” options are incompatible with the °M’ option. If
the user specifies incompatible options, "libinfo" uses the °M’
option and ignores any others.

Error opening “<file_name>” : <reason>
The operating system returned an error when "libinfo" tried to open
the specified file.

Error reading “<file_name>” : <reason>
The operating system returned an error when "Libinfo" tried to read
the specified file.

Error seeking to <location> in “<file name>” : <reason>
The operating system returned an error when "libinfo" tried to seek
to the specified location (in hexadecimal) in the specified file.

“<file_name>” is not a library!
The file specified does not have the correct format for a library
created with the "lib-gen" command.

SEE ALSO

lib~gen
relinfo

“« more~1

more

Display ASCII data with user control.

SYNTAX

more [<file_name_list>]

DESCRIPTION

The "more" command displays data on the user’s terminal. It lets the
user both control the number of lines displayed at a time and skip
lines.

|

If the list of file names is omitted, the "more" command accepts data
from standard input. It displays enough lines to fill the terminal’s
screen, then prompts for a command. If the list of file names contains
a single name, the "more" command displays enough lines to fill the
terminal’s screen, then prompts for a command. The prompt contains the
percentage of the file that has been displayed. If the list of file
hames contains multiple names, the "more" command introduces each file
with a prompt and indicates when it reaches the end of each file.

Arguments

<file_name_list> The list of files to display with user

control.

User Gontrol

The "more" command prompts the user for a command with the prompt
"More? ". Unless "more" is reading from standard input, this prompt is
preceded by either the percentage of the file listed, "(<n>%) ", or the
message, "Beginning: <file_name>

"
where <file_name> is the name of the

file whose contents are about to be to displayed. In response to the

prompt, the user types a single~character command telling the "more"
command what to do next. The single-character command should not be

followed by a carriage-return. The "more" command sends a control-G
(bell) to the terminal if the character typed is not a command. A list
of commands follows.

The space command,
©

“, starts at the next line (or at the first
line of the next file) and displays lines until it either
fills the screen or reaches the end of the file.

:

The period command, °.”, starts at the next line (or with the

_ first line of the next file) and displays lines until it
either displays enough lines to scroll half of the screen or

(continued)

more~-2

reaches the end of the file.

The carriage-return command displays the next line (or the first
line of the next file) if there is one.

The “s” or “’/* response requests a search for a character
String. When the "more" command issues the prompt, "Search
string? ", the user should type the string to find, followed
by a carriage return. The "more" command starts at the nextline (or with the first line of the next file) and searchesfor that string. If it finds the string, it displays lines,Starting with the line in which the search string first
appears, until it either fills the screen or reaches the = end
of the file. If it does not find the String, it stopsSearching and begins to display the next file if there is one.

If "more" cannot accept a character, it sends a control-G
(bell) to the terminal. The command does not accept control
characters. Nor does it accept any characters after it fills
the search~string buffer. Typing a character-delete character
(usually a control-H) as the first character in response tothe prompt, "Search string? ", or typing a line-delete
character (usually a control-X) any time while entering the
Search string returns the "more" command to the "More? "

prompt.

The “n” response Stops processing the current file and beginsprocessing the next file in the list of file names, if thereis one.

The “q° response ends the "more" command. An end-of-file
character (control-D) performs the same function.

EXAMPLES

1. more hello.c
2. more *.c

3. list hello.c | more

The first example displays the file "hello.c" at the terminal with usercontrol. It first clears the screen, then lists enough lines from thefile to fill the Screen. It then requests a command from the user byissuing a prompt that indicates the percentage of the file that it hasdisplayed.

The second example displays at the terminal with user control all of thefiles in the working directory whose names contain the suffix "ee". Itfirst clears the screen, then introduces the first file by issuing a
prompt containing its name. This prompt is a request for a command,After executing the first command, "more" prompts the user for another

(continued)

more-3

command with a prompt that indicates the percentage of the file that it
has already displayed. When "more" reaches the end of the first file,it introduces the. next file. This process continues until "more" has
processed all the files in the list.

The third example displays at the terminal with user control the outputfrom the "List" command. It first clears the screen, then lists enoughlines to fill the screen. After filling the screen, "more" prompts the
user for a command,

NOTES

- The "more" command uses the .UniFLEX terminal capabilities
_ information ("termcap") if that information is available.for the

terminal being used. If the "more" command seems to be handling. a

terminal poorly, the system manager. should verify that the terminal
Capabilities for that terminal are correctly set.

- Tf no terminal capabilities are available for the terminal in use,
the "more" command assumes that there are eighty columns to a lineand twenty lines on the screen. It also assumes that the backspace
character (hexadecimal 08) moves the cursor one place to the left
and that the space character (hexadecimal 20) moves the cursor one

place to the right and clears the character at that place.

- The "more" command does not use the last column of a line. Some
terminals automatically advance to the next line after writing to
the last column of a line; others do not. The last column is not
used to avoid having to differentiate between the —two types of
terminals. Lines longer than the width of the terminal are. split

and displayed as two lines.

- The "more" command displays all control characters as "*X"' where “X’
is the key which, if struck while the "control" key is depressed,
normally produces that control character. For example, it displays
each embedded tab character (control-I) as "*I",

- The "more" command automatically clears the screen before displaying
any data.

ERROR MESSAGES

Broken pipe
;The "more" command caught a broken-pipe interrupt. A broken-pipe

interrupt immediately stops the "more" command.

File is not a regular file: <file_name>
The file specified exists but is not a regular data file. The

"more" command works only with regular data files.

(continued)

more-4

Hang up

The "more" command caught. a hang-up interrupt. A hang-up interrupt
immediately stops the "more" command.

Input must come from a file or a pipe
Data from standard input must come from a pipe or a redirected data
file. This message indicates that standard input is something other
than a pipe or a redirected data file, such as a terminal.

INTERRUPT!
The "more" command caught a keyboard interrupt. A keyboard
interrupt immediately stops the "more" command.

Output must go to a terminal
Standard output must be a character-special file (i.e., a terminal).
This message indicates that it is not.

Quit
The "more" command caught a quit interrupt. A quit interrupt
immediately stops the "more" command.

SEE ALSO

list

page

newuser-]

newuser

Temporarily login as a new user.

SYNTAX

newuser [<user_name>]

DESCRIPTION

The ""newuser" command allows the user to log in as’ another user without

logging out. If a name is specified on the command line, that name

becomes the.new login name. If no name is specified, "system" is used.
If a password exists for the login name specified, "newuser" prompts for
the - password. The advantage of this command is that when finished as

this’ new user, the user does not need to log in again but simply . logs
out and returns to the state that existed prior to the execution of the

"newuser" command. Note that no options are supported.

Arguments

<user_name> The name of the user as whomto temporarily
log in. Default is "system".

EXAMPLES

é

newuser mary

This example temporarily logs in the user as "mary" (assuming any

existing password is known).

SEE ALSO

log
login

v

“nshell-1

nshell

“An enhanced shell program.

SYNTAX

nshell [<+abclnvx>] [<argument_list>]

DESCRIPTION

The "“nshell" program is an enhanced version of the UniFLEX program
"shell". A description of the differences between the standard shell

program as shipped with UniFLEX and "nshell" follows.

Features of the Enhanced Shell

1. Redirecting standard error.

Standard error may be redirected to a file, piped to a program, or

duplicated onto standard output. The percent sign, “4°, is used as

the symbol that redirects standard error. A single percent sign
followed by a file name causes the system to create the specified
file and to redirect standard error to it. Two percent signs
followed by a file name cause the system to append standard error
to the specified file.

Standard error may be piped by concatenating the pipe symbol of

choice (either the vertical bar, “|°, or the caret, “*") to a

single percent sign (the percent sign comes first). This procedure
does not affect standard output. It is impossible to pipe standard

error and standard output to different tasks. It is, however,

possible to pipe both standard output and standard error to the

~ game task by duplicating standard error onto standard output

(described in the next paragraph) before piping standard output to

the task.

Standard error may be duplicated onto standard output by specifying
either ">Z" or "%>". These constructions do not take a file name,

To redirect both standard error and standard output to the same

file, the user must redirect standard output (using “>° or ">>") in

addition to duplicating standard error onto standard output.

(continued)

nshell-2

2.

wee

Specification of. the null device.
The following constructions redirect I/0 from or to the null

device, "/dev/null": "<-" for standard input, ">-" for standard

output, and "%—-""for standard error.

Matching characters in file name specifications.
Matching characters may appear in any or all components of a path.
For example, "/usr?/*" is a valid path name. All components of a

path name except the last component are only matched by directory
names. For example, the command "echo /*/*" echoes the names of

files and directories that are contained in first-level

subdirectories of the root directory. It does not echo names of

files in the root directory.

Script arguments.

Arguments to "nshell" scripts may appear anywhere in a command

argument. For example, the following one-line script may be used

to format a floppy diskette:

/etc/formatfd +qnd=/dev/fd$1 +m=FD-$2

If this script is stored in an executable file named “f°, the

command

£ 0 DD

formats the diskette in drive 0 as double-sided, double-density.

Definition of the command search-path.
The user may specify which directories "nshell" is to search for

commands with the "addpath" and "setpath" commands. The "addpath"
command adds its arguments to the list of paths to search. For

example, the command

addpath /usr/ games

adds the path "/usr/games" to the list of paths to search.

The "setpath" command is used either to display or to specify all

paths for "nshell" to search. If called withovt an argument,

"setpath" displays the current paths that are searched in the order

in which they are searched. When called with arguments, the

arguments replace the current set of search paths. The paths are

searched in the order that they are specified as arguments. For

example, the command

setpath . /bin /usr/games

(continued)

nshel 1-3

tells "nshell" to search the directories °.°, "/bin", and

"/usr/games", in that order.
:

:

The default directories are °*.°, "<home>/bin", "/bin", and

"/usr/bin" where <home> is the user’s home (login) directory. If.

"nshell" is not running as a login shell (see the “1° option), it

does not know what the home directory is and, therefore, cannot

search it. The system manager is also given the directory "/etc".

Continuation of the command line. :
Command lines may be continued across more than one physical. line

by terminating each line, except the last, with a. -backslash

followed by a carriage return. The prompt "+>" is used to indicate

that the line being entered is a continuation of the previous line.

When "nshell" processes the line, it replaces the backslash and

carriage return with a space. Typing a line-delete character

(control-X) only affects the physical line being typed. The user

may delete previous lines of a continued command line by typing a

keyboard interrupt (control-C), which deletes the entire command

line.

The. "prompt" command.

The "prompt" command has been modified. to allow the user to change

both the prompt and continuation-prompt strings. If. the user

specifies only one argument, "nshell" changes only the regular

prompt. If the user specifies two arguments, the first argument

becomes the regular prompt, and the second argument becomes the

continuation prompt. It is impossible to change the continuation

prompt without specifying the regular prompt.

The prompt time~indicator (the tilde, “~”) may appear anywhere in

either or both prompt strings. If multiple tildes appear in a

prompt string, only the first one is replaced by the time.

Conjunction and disjunction of commands.

Two additional command separators, "&&"' and "||", are available for

the conjunction and disjunction of commands. A command is "true"

if it terminates with a zero termination status, indicating

successful completion, and "false" if it terminates with a nonzero

termination status, indicating failure. When two commands are

separated by a conjunction operator, "nshell" executes the second
one only if it completes the first one successfully (it is "true").

When two commands are separated by a disjunction operator, "nshel1"

executes the second one only if the first one fails (it is

"false"). Conjunction has a higher priority than disjunction.
Parentheses may be used to alter the priority (commands in

parentheses are executed by a subshell).

(continued)

nshell-4

9. The "verbose" command and the “v~ option.

10.

When "nshell" executes a script file, it does not normally echo the
commands being executed. The "verbose" command and the “v~ option
are used to cause "nshell" to echo commands from a script file as

they are executed. Each line is preceded by two hyphens and a

Space character.

The "verbose" command may be called without arguments or with one

argument, which must be one of the strings "on" or "off". lf
called with no arguments, it assumes the default argument "on".
Once it has executed "verbose on", "nshell" displays the commands
from all scripts it executes until it executes the command
"verbose off".

If "nshell" is invoked explicitly with the name of a script file as

an argument, verbose mode may be enabled by specifying the ‘v’
option to "nshell". In this case the “v’ option must appear before
the name of the script file. If it appears after the file name,
"nshell" interprets it as an argument to the script file. For

example, the command

nshell +v runjob

instructs "nshell" to process the script file "runjob" and = to

display the commands as it executes them.

The "exit", "proceed", and "sabort" commands.
The "nshell" program permits a limited amount of user control over

the processing of script files. The standard shell program stops
processing commands from a script file when one command fails
(returns a nonzero status). When a command in an "nshell" script
fails, "“nshell" searches the remainder of the script file for a

line that contains either "exit" or "proceed". If it encounters

one of these commands, "nshell" resumes processing after that line.
The difference between the commands "exit" and "proceed" is that

during successful execution of a script file "nshell" stops
processing the file if it encounters an "exit" command, whereas it

ignores a "proceed" command. An example of the use of "proceed"
follows:

/etc/mount /dev/fd0 /usr2

/usr2/runjob
echo "Successful execution."

proceed
/etc/unmount /dev/fd0

In this example, "nshell" executes the "unmount" command whether or

not "/usr2/runjob" fails. If "/usr2/runjob" does not fail, script
processing continues with the "echo" command. If "/usr2/runjob"
does fail, "nshell]" skips commands until it encounters the

(continued)

@esoceaeeeeeaeeeeaeeeeeee
eee
@

)

nshel1-5

"proceed" command. It resumes execution at the following. line.

A similar example using the "exit" statement follows:

/etc/mount /dev/£d0 /usr2

/usr2/runjob
/etc/unmount /dev/£d0
echo “Successful execution."

exit

/etc/unmount /dev/f£d0
echo "Unsuccessful execution."

In this example, if "/usr2/runjob" succeeds, execution continues
with the “unmount" command, and the "echo" command proclaims
successful execution. The "exit" command that follows the "echo"

command causes "nshell" to stop processing the script because it

has encountered the "exit" command during normal execution. If

"/usr2/runjob" fails, "nshell" skips lines until it encounters the

"exit" command. It then resumes execution with the "unmount"

command, followed by the "echo" | command which . proclaims.

unsuccessful execution. The search for the "proceed" and "exit"

commands takes place before any argument or file~name substitution

takes place. Thus, these commands are not seen by "nshell" if they

are created as the result of file-name or argument substitution.

The "“sabort" command is used in script files to force execution of

all lines in a script file in spite of command failures. Normally,

if any command in a script file fails, "nshell" begins searching
for a "proceed" or "exit" command. However, if "sabort" is. “off",

"nshell" acts as if it successfully completes each command.

The “sabort" command may be called without arguments or with one-

argument, which must be one of the strings "on" or "off". Once it

‘has executed "sabort off", "nshell" processes commands sequentially
from the script file even if one or more commands fail. The

command "sabort on" rescinds the effect of "sabort off". When

executed with no arguments, the "sabort" command rescinds the

_ effect of a previous "sabort on" and also fails. Thus, "nshell"

immediately begins searching for a "proceed" or “exit" command.

If "nshell" is invoked explicitly with the name of a script file as

an argument, “sabort off" may be set by specifying the “a” option.
In this case, the “a” option must appear before the name of the

script file. If it appears after the file name, "nshell"

interprets it as an argument to the script file... For example, the

command

nshell +a rcunjob

instructs "nshell" to process the script file "runjob" with "sabort

off", The effect of the “a” option may be rescinded inside the

(continued)

nshel 1-6

script file by an "sabort on" or "sabort".

11. The "wait any" command.
The "wait" command has been modified to accept an argument
consisting of the word "any". When the user has more than one task

running in the background, the "wait any" command is used to wait
for any one task to terminate. The "wait any" command returns

control to the user as soon as any background task started by
"nshell" terminates, regardless of which task it is.

Options Available

The options to "nshell" must appear immediately after the name "nshell".

a Start script with "sabort off".
b Ignore control-C and control-\.
c Process the next argument as a command.
1 Run as a “login” shell.
n Run all background tasks with lowered priority.
v Set "verbose on".
x Execute next command without forking unless necessary.

NOTES

The enhanced shell is substantially larger than the standard shell.

It should not be used on systems with less than 256K of memory.

If "nshell" cannot find a match for any of the arguments containing
matching characters, it aborts the command. This behavior differs

from that of the standard shell program which, in such a case,

passes the arguments as typed by the user to the program. If

"nshell" finds a match for at least one argument containing matching
characters, it ignores any other arguments containing matching
characters for which it cannot find a match.

It is impossible to specify a null string as an argument to a

command because "nshell" removes null strings from the command jine.

Whenever "nshell" receives an error from UniFLEX, it attempts to

give an English interpretation of that error. These interpretations
are read from the file "/gen/errors/system". Early versions of

UniFLEX do not include this file. If the file does not exist,
"nshell" merely reports the UniFLEX error number.

The "nshell" program may replace the standard shell. Since shell

programs are normally shared text, it is not possible to copy over

one if it is currently being used. To replace the staudard shell

(continued)

nshel 1-7

with "nshell", the following command sequence should be executed
from. single-user mode with the master disk for Utilities Package II

in drive l.
,

/etc/mount /dev/fdl /usr2 (Mount utility master)
kill /bin/shell (Kill standard shell)
copy /usr2/nshell /bin/shell (Copy enhanced shell)
/etc/unmount /dev/fdl /usr2 (Unmount utility master).
/etc/stop (Stop the system)

-

If “nshell" coexists with the standard shell, individual users may

specify "nshell". as their login program in the password file. In

these cases, the “1” option should be specified so that "nshel1"
knows that it should act like a login shell program. A. sample
password-file entry demonstrating this follows.

username: 123: encrypt edpasswor:/usr/username:nshell +1

SEEALSO

shell

objcmp

Compare two object files and report differences. |

SYNTAX

objemp <file_name_1> [<file_name_2>] [+cq]

DESCRIPTION

The "“objemp" command compares two object files or an object file and a

core file by using the information encoded in the binary headers. It

first displays differences detected in the binary -headers, then

differences found in the actual core images of the files. It compares
the corresponding text and data segments of relocatable files. Offsets
shown with the differences are relative to the beginning of the

corresponding segment. Absolute files are compared record by record.

Only records with the same load address can be compared, so records that

do not match are skipped. When comparing an object file with a core

file, “objcmp" relies on the information contained in the header of the
object file to find the corresponding sections in the core file. A

quiet mode is available which does not show the differences but simply
states whether or. not the files are the same. If only one file is

specified on the command line, "objcmp" looks in the working directory
for a file called "core" and uses it as the second file (automatically
turning on the “c” option).

Arguments
<file_name_1> The name of an object file.

<file_name_2> The name of an object file or a core file.

If it is a core file, the “c” option must be

used.

Options Available

c ‘Thesecond file on the command line is a core file.

q Use quiet mode. Do not show the differences.

EXAMPLES

1. objcmp runner

2. objcmp tester oldcore +c

3. objemp runner tester +q
)

The first example compares the object file "runner" with the file "core"

in the working directory and reports any differences.

(continued)

objcmp-2

The second example compares the object file "tester" with the file

“oldcore". The “c” option informs "objcmp" that the second file is

actually a core file, not an object file.

The third example compares the two object files "runner" and "tester".

Since the “q” option is specified, "“objcemp" does not show all the

differences but simply reports whether or not the files are the same.

NOTES

- Only files of the same type can be compared. For example, absolute

files cannot be compared with relocatable files, shared-text files

cannot be compared with no-text files, and so forth.

» Only executable files can be compared to core files.

- Executable, shared-text files cannot be compared with core. files.

ERROR MESSAGES

usage : objemp <file_name_1> [<file_name_2>] [+cq]
This message is issued when no files are present on the command

line. At least one file name must be on the command line.

Extra file “<file_name>” : ignored.
If more than two file names appear on the command line, only the

first two are used, others are ignored.

Illegal option “<char>” : ignored.
An illegal option was found on the command line and ignored.

“<file_name>” is not a legal object file!

The specified file does not have a valid binary header.

“<file_name_1>” is <type_l1> and “<file_name_2>° is <type_2> :

Cannot compare.

The two specified files have incompatible types and. cannot be

compared.

SEE ALSO

bcompare

pack-l

pack

CompressASCII data and write the compressed data to a file.

SYNTAX

pack [<infile_name>] <outfile_name>

DESCRIPTION

The pack" command compressesASCII data and writes the compresseddata
to the specified file. The ASCII data may come from a file or from
standard input.

The command determines the frequency of each ASCII character in the file

being compressed, then transforms the most freqyently occurring
characters into bit patterns between 2 and 7 bits long. Files of ASCII

data. are typically compressed between 25% and 45% of their original
size.

'

Arguments

<infile_name> Name of the file containing the data to

compress. Default is standard input.
<out file_name> Name of the file to contain the

compressed data.

EXAMPLES

1. pack Listing packedlisting
2. pack packedlisting <listing
3.°. list listing | pack packedlisting

All three examples compress the data in the file "listing" and write the

compressed data to the file "packedlisting".

The first. example explicitly references the input file "listing" and the

output file "packedlisting".

The second example uses input redirection to give the "pack" commandits
ASCII data from the file "listing".

The third example uses the UniFLEX "pipe" feature, in which the output

from one command ("list") is used as the input to another command

("pack") .

(continued)

pack-2

NOTES

. If the file specified as the output file already exists and its

permissions allow the user to write to it, "pack" replaces its
contents with the compressed ASCII data.

- If the file specified as the output file does not exist, "pack"
attempts to create it with read and write permissions for the user,

read permission for others, and the current user as its owner.

ERROR MESSAGES

usage: pack [<infile_name>] <outfile_name>
The "pack" command requires at least one and no more than _ two

arguments. This message indicates that the argument count is wrong.

Non-ASCII data read from standard input
The data being piped, directed, or otherwise sent to "pack" through
Standard input contain non-ASCII data. ASCII data are 8-bit byte
values between 0 and 127 (decimal) inclusive.

File contains non-ASCII data: <infile_name>
The file containing the data to be packed contains non-ASCII data.

ASCII data are 8-bit byte values between 0 and 127 (decimal)
inclusive.

Unable to open temporary file
.

A temporary’ file needed to save the data read from standard input
could not be opened. Another message follows to explain why the

file could not be opened.

SEE ALSO

unpack

pwfcheck-l

pwfcheck

Validate the password file.

SYNTAX

pwfcheck [<file_name>] [+nw]

DESCRIPTION .

The “pwfcheck" command checks the entries in a password file for

defects. The possible defects are divided ‘into three classes:

(1) errors, (2) warnings, and (3) notes. An “error” is a serious defect

which the system manager. should immediately correct. These “errors” may

cause the "login" program to behave unpredictably. A "warning" is a

defect which has a high probability of preventing a given user from

logging in. A "note" is an inconsistency that is probably the result of

an oversight by the system manager when adding the new user to the

password file.

Arguments

<file_name> The name of the password file.
Defaults to "/etc/log/password".

Options Available

n Suppress "note" messages.

w Suppress both "warning" and mote" messages.

EXAMPLES

1. pwfcheck
2. pwfcheck /usr2/etc/log/password +n

The first example validates of the password file currently used by the

system. No messages are suppressed.

The second example validates the file "/usr2/etc/log/password". The “n’

option instructs "pwfcheck" to suppress "note" messages.

NOTES

nd requires system~manager permissions in order

If it does not have these permissions, it

fect and runs as many checks as it
>

can.
be run without system-manager permissions

. The "pwfcheck" comma

to perform all checks.

issues a message to that ef

The checks that cannot

(continued)

pwfcheck-2

pertain to checking the accessibility of the login directory and the

login program.

- The checks for execute permission on the login program and the login

directory are not complete in that not all components of the path

necessary to reach them are examined for the proper permissions.

. If an error exists in the field containing the user ID of an entry
in the password file, the checks for directory and file permissions
are suppressed for that entry.

ERROR MESSAGES

The program precedes error messages that refer to defects in an entry in

the password file by a display of the defective entry. A defective

entry is. displayed only once. If several errors relate to that entry,

“pwfcheck" groups them under the display of the entry.

Not running with system-manager permissions.
Not all checks can be performed.

The “pwfcheck" command requires system~manager permissions to check

the accessibility of both the login directory and the login program.

Not enough memory to check for duplicates. .

Checking for duplicate names and user IDs requires that the entries

in the password file be sorted. If the password file is very large
(several hundred entries), the sort cannot be performed. In this

case, "pwfcheck" does not check for duplicate entries.

File "<file_name>" is a device or a directory.
The file name passed as an argument specified a device or a

directory.

File "<file_name>" cannot be opened.
The operating system returned an error when "pwfcheck" tried to open

the specified file. This message is preceded by an interpretation
of the error returned by the operating system.

File "<file_ name>" cannot be located.

The operating system returned an status when "pwfcheck" tried to

locate the specified file. This message is preceded by an

interpretation of the error returned by the operating system.

Note: The following names are duplicated
This message precedes a list of those names that appear in more than

one entry in the password file.

(continued)

pwfcheck-3

Note: The following user IDs are duplicated
|

This message precedes a list of those user IDs that appear in more

than one entry in the password file.

Error: Entry longer than 128. characters

An entry in the password file may not exceed 128 characters,

including the carriage return. Only the first 128 characters of the

entryare displayed.

Error: There are not exactly four colons

A password file entry must contain exactly four colons.
Error: Field for the user name is empty

No information is in the field for the user name. This field

precedes the first colon.

Warning: User name is longer than 8 characters

A user name may not contain more than eight characters.

Warning: User name contains uppercase or separator characters

A user name may not contain uppercase or separator characters.

Warning: User name starts with a digit
A user name may not start with a digit.

Note: User name contains digits
A user name that contains any digits cannot be used from a terminal

that does not have lowercase capability. If such terminals are on

the system, user names should not contain digits.

Warning: Password field is not 16 characters long
The encrypted form of the password should always be sixteen

characters long.

Warning: Password field is not all lowercase characters

The encrypted form of the password should contain only lowercase

characters.

Error: Field for the user ID is empty
No information is in the field for the user ID. This field is

between the second and third colons.

Warning: User ID is larger than 32767

User IDs must be between 0 and 32767 inclusive.

Warning: Field for the user ID is not all digits
The user ID is a number, so the field must contain only digits.

(continued)

pwficheck-4

Error: Field for the login directory is empty

No login directory was specified for this entry. The field for

login directory is between the third and fourth colons.

the

|

relinfo-1

relinfo \

Display information about an object file.

SYNTAX

xrelinfo <file_name> [<file_name_list>] [+ehrs]

DESCRIPTION

The "relinfo" command displays information about the binary header, the

symbol table, and both the relocation and external records in either an

object file or all modules of a library. Normally, "relinfo" displays
all the information. The available options restrict the display to the

specified information (see Options Available).

Options Available

Display only information about external records.
e

h Display only information about the binary header.

r Display only information about relocation records.

8 Display only information about the global symbol table.

EXAMPLES

l. relinfo tester

2. relinfo /lib/mathlib +h

3. relinfo reporter +se

The first example displays information about the binary header, the

symbol table, and both the relocation and external records in the object —
file "tester" in the working directory.

The second example displays the information about the binary headers

from all the modules in the library "/lib/mathlib".

The third example displays the information about both the relocation

and external records in the file "reporter" in the working directory.

ERROR MESSAGES

Unknown option “<char>” ignored.
An unknown option was found and ignored.

Error opening “<file_name>” : <reason>

The operating system returned an error when "relinfo" tried to open

the specified file.

(continued)

relinfo-2

Error reading “<file_name>” : <reason>

The operating system returned an error when "relinfo" tried to read
the specified file.

Error seeking to <location> in “<file_name>” : <reason>

The operating system returned an error when "relinfo" tried to seek

to the specified location (in hexadecimal) in the specified file.

“<file_name>” is not a binary file!

The specified file does not have a valid binary header.

SEE ALSO

asmb

lib-gen
libinfo

link-edit

relasmb

strings-1

strings

Write any ASCII strings contained in a file or files to standard output.

SYNTAX.

strings [<file_name_list>]

DESCRIPTION

The “strings” command finds and sends to standard output the ASCII

strings in a file or list of files. An ASCII string is defined as any

sequence of four or more printable characters terminated by a null

character or a carriage return. This command is useful for determining

information about unknown binary files. “The user may specify any number

of file names. If no file names are specified, "strings" reads standard

input. No options are supported.

Arguments

<file_name_list> A list of the names of files to

process.

EXAMPLES

strings /bin/dir test

d output the strings in the
This example first finds and sends to standar

" in the working directory.
file "/bin/dir", then those in the file "test

NOTES
t

. For efficiency, the algorithm used is a simple one. It may not find

every string, and some strings it does find may be nonsense.

ERRORMESSAGES

Can’t open “<file_name>’.
The specified file could not be found or could not be opened for

reading.

eeoeoeveeoeaoeeaeneneoeneaeneonoenoeaoen@eaeaeneoee
eee
eee
8
8
e@

swapstats-1-

swapstats

Report the current statistics about system swapping.

SYNTAX

swapstats

DESCRIPTION

The "“swapstats" command writes to standard output a report on the

current status of swap activity on the system. The statistics reported

include the number of swap operations since boot time, the amount of

swap space currently occupied (in blocks and as a percentage of total
swap space), the percentage of time the system has spent swapping tasks,

and the degree of memory utilization. No options are supported.

EXAMPLES

swapstats

This example is the only valid form of the "swapstats" command. It

reports the current status of swap activity on the system.

NOTES

. In some cases “swapstats" comments on the extent of memory

utilization. ‘These comments are simply suggestions.

ERROR MESSAGES

Syntax error ~ no. arguments expected. a

The user specified an argument or option to the "swapstats" utility,

which accepts neither.

Can’t open system memory.

The system-memory file, "/dev/smem", cannot be opened.

> trail-1

trail

List a file as it grows.

SYNTAX

trail <file_name> [+f1ns]

-

DESCRIPTION.

The “trail command lists a file but does not terminate when it reaches

the end of the file. Instead, "trail" sleeps for a specified interval,

after which the listing process is resumed if the file has grown.
"Trail" might be used, for example, to monitor the output of another

program which is slowly writing data to a disk file.

Arguments

<file_name> Name of the file to List.

Options Available

£ Wait for the file to appear.

1=<time_limit> Specify the time limit in seconds.

n List new waterial only.

s=<interval> Specify the sleep interval in seconds.

Complete descriptions of the. options follow.

The “f° Option.

The “f° option instructs "trail" to wait for the specified file to.

appear if it does not already exist. While waiting, "trail" uses the

same sleep interval that it uses when waiting for new material to appear

in the file and is subject to either the specified or the default time

limit.

The “1° Option.

The “1° option specifies a time limit, in seconds, that is imposed on

"trail" while it is waiting for either a file or new material.to appear.

The syntax for the “1” option is

+1=<time_limit>

where <time_limit> is an integer between 0 and 32767 inclusive. If the

(continued)

trail-2

file or new material does not appear before the specified time limit is

exceeded, "trail" terminates. If this option is omitted, "trail"
assumes a time limit of 600 seconds. Specifying a time limit of 0
seconds disables the time limit. In this case the user must terminate
"trail" by typing a keyboard interrupt (control-C).

The “n” Option.

The “n° option instructs "trail" to skip over any material already in
the file and to immediately begin waiting for additional material to

appear.

The “s” Option.

The “s° option specifies the time interval, in seconds, for which
"trail" is to sleep before checking to see if the file itself or new

material in the file has appeared. The syntax for the “s” option is

+s=<interval>

where <interval> is an integer between 0 and 32767 inclusive. If this

option is omitted, "trail" uses the default interval of fifteen seconds.
If the specified time interval is 0, "trail" also uses the default
interval.

EXAMPLES

1, trail output
2. trail listing +nl1=60
3. trail out_file +fs=30

In the first example, "trail" lists the contents of the file "output",
then checks at 15-second intervals to see if new information has

appeared in that file. When "trail" detects new information, it lists
this information. If no new information appears during an interval of

600 seconds, "trail" terminates.

In the second example, the “n” option instructs "trail" to skip over any
information that is already in the file "listing". "Trail" then waits
for additional material to appear in the file. If no new information
appears in the file during a period of sixty seconds, as specified by
the “1° option, "trail" terminates.

In the third example, the “f° option instructs "trail" to wait for the
file "“out_file" to appear if it does not already exist. While waiting
for the file, as well as while waiting for new material to appear in the
file once it exists, "trail" uses a sleep interval of thirty seconds, as

- er

specified by the “s” option.

(continued)

trail-3

NOTES

“1° option is less than the

’

option, "trail" terminates if

terial in the file after one

If the time limit specified by the

sleep interval specified by the “8

it does not find the file or any new ma

‘sleep interval.

.

. Material in a file is considered "new" only if it is appended to

the file. ."Trail" does not consider the alteration of existing

data in the file as the addition of new material.

ERROR MESSAGES

File "<file_name>" not found.

The file named <file_name> was not

not specified.

located, and the “f° option was

File "<file_name>" is a device or 4 directory.
The file name used specified a device or a directory, not a data

file.

Cannot open "<file name>".
The file named <file_nam

it for reading. This message is prece

the error returned by the operating system when

to open the file.

e> was located, but Ntrail" could not open

ded by an interpretation of

"trail" attempted

Time limit is negative.
The time limit specified by the “1° option was a negative number.

Sleep time is negative.
The sleep interval specified by the

number.

’s° option was 4a negative

Unknown option letter "<char>" ignored.

The option. specified by <char> is not a va

This error is not fatal.

lid option to "trail".

SEE ALSO

list

unique-l

unique

Write sequentially unique lines.

SYNTAK

unique [<file_name_list>] [+d]

DESCRIPTION

The "unique" command reads ASCII data and writes sequentially unique

lines to standard output. A sequentially unique line is one which is

not identical to the line that immediately precedes it. If the list of

file names is omitted, "unique" reads the ASCII data from standard

input. Otherwise, it reads the ASCII data from the files in

<file_name_list>.

line appear
If the lines of data are sorted, all duplicates of any given

it lists
sequentially. Thus, when "unique" operates on a sorted file,
one copy of each unique line.

Standard input may be referenced in the list of file names by using the

plus-sign “+” as an argument in the list.

Arguments

<file_name_list> The list of files to read. A

“+’ indicates standard input.

Options Available

d Print the first of each sequentially duplicated
line instead of each unique line.

EXAMPLES

1. unique sortedfile
2. list sortedfile | unique td

3. unique sortedfilel + sortedfile2 >uniquelines

The first example writes the sequentially unique lines from the file
"sortedfile" to standard output.

ntially duplicated
The second example writes only the first copy of seque

The data are piped
lines read from standard input to standard output.
to “unique” from the "List" command.

(continued)

unique-2

The third example writes to standard output the sequentially uniquelines from the file "sortedfilel", followed by those from standard
input, followed by those from the file "sortedfile2". The shell program
redirects standard output to the file "uniquelines".

NOTES

- The standard input specifier “+” should not be used more than once
in <file_name_list> because the "unique" command cannot reopen
Standard input once it has closed it.

- The first line of a file is always a sequentially unique line, even
if it is identical to the last line of the file immediately
preceding it in the list of file names.

ERROR MESSAGES

Unknown option: <char>

The letter <char> is not a valid option to the "unique" command.

SEE ALSO

list

@

e
@

@

e

@

e

e

@

@

@

@

@

@

@

@

@

@

®

e

@

e

e

@

®

e

@

@

@

@

®@
@

@

@

unpack-1—

unpack

Expand packed ASCII data.

SYNTAX

unpack <infile_name> [<out£ ile_name>]

DESCRIPTION

The “unpack” command expands packed ASCII data generated by the "pack"

command. It reads the packed ASCII data from the file <infile_name> and

writes the expanded version to either <outfile_name> or standard output.

Arguments

<infile_name> Data file containing packed ASCII

data.

<outf£ile_name> File to contain the expanded data.

Default is standard output.

EXAMPLES

1. unpack packedlisting listing

2. unpack packedlisting >Llisting
3. unpack packedlisting | tee listing

All three examples do the same thing. First of all, "unpack"examines

the file "packedlisting” to determine whether or not it contains packed

ASCIL data. If it does, "unpack" expands the data and writes them to

the file "listing".

explicitly references both an input and an output
The first example

the expanded data to the. file

file . It instructs "unpack" to write
"listing".

write the expanded data to

The second example instructs "unpack" to
to the file

standard output, which the shell program redirects

"listing".
to write the expanded data to

ipes to the command "tee".

ds from standard input to both
The third example instructs “unpack”

standard output, which the shell program Pp

(The "tee" command writes whatever it rea

the specified file and to standard output.) —

(continued)

unpack-2

NOTES

- If the file specified as the output file already exists andPermissions allow the user to write to it, "unpack"Contents with the expanded ASCII data.

its

replaces its

Specified as the output file does not exist, "unpack"ate it with read and write permissions for the user,read permission for others, and the current user as its owner.

ERROR MESSAGES

usage: unpack <infile_name> [<outfile name>]The "unpack" command requires at least one argument and no more thantwo arguments, This message indicates that the argument count iswrong.

File does not contain packed ASCII data: <inf ile_name>The file <infile_name> does not contain ASCII data compressed by the"pack" command.

File has wrong version number: <inf ile_name>The file <infile_name> contains ASCII data compressed by the "pack"command, but the format is obsolete and cannot be expanded, (Notethat the version number of the data file containing packed ASCIIdata changes only when the format for packing ASCII data changes,not necessarily when the version number of the "pack" or "unpack"command changes.)

SEE ALSO

pack

e

@

®@

@

@

@

®

@

®

e

@

®

®

®

®

®@

@

@

@

@

®

®

@

e

e

@

®

e

@

®

®

@

®

e

