
OS-9 Operating System

System Programmer’s Manual

OS-9 Operating System: System Programmer’s Manual
Copyright © 1980, 1982 Microware Systems Corporation

All rights reserved.
This manual, the OS-9 Program, and any information contained herein is the copyrighted property of Microware
Systems Corporation. Reproduction of this manual in part or whole by any means, electrical or otherwise, is
prohibited, except by written permission from Microware Systems Corporation.
The information contained herein is believed to be accurate as of the date of publication, however, Microware will
not be liable for any damages, including indirect or consequential, related to use of the OS-9 Operating System or
of this documentation. The information contained herein is subject to change without notice.

Revision History

Revision F-1 January 1983
Original Microware edition

Table of Contents
1. Introduction ..1

1.1. History And Design Philosophy..1
1.2. System Hardware Requirements ...2

2. Basic System Organization ..3
3. Basic Functions of the Kernel..5

3.1. Kernel Service Request Processing ..5
3.2. Kernel Memory Management Functions..5
3.3. Memory Utilization..6
3.4. Overview of Multiprogramming ...7
3.5. Process Creation ...7
3.6. Process States ..8

3.6.1. The Active State ...8
3.6.2. The Wait State...8
3.6.3. The Sleeping State..8

3.7. Execution Scheduling ..8
3.8. Signals ..9
3.9. Interrupt Processing...9

3.9.1. Physical Interrupt Processing ..10
3.9.2. Logical Interrupt Polling System...11

4. Memory Modules...13
4.1. Memory Module Structure ...13
4.2. Module Header Definitions ..13

4.2.1. Type/Language Byte...14
4.2.2. Attribute/Revision Byte ...14

4.3. Typed Module Headers...15
4.4. Executable Memory Module Format...15
4.5. ROMed Memory Modules ..16

5. The OS-9 Unified Input/Output System ...17
5.1. The Input/Output Manager (IOMAN)...17
5.2. File Managers..17
5.3. Device Driver Modules ...18
5.4. Device Descriptor Modules ..18
5.5. Path Descriptors ...19

6. Random Block File Manager ...21
6.1. Logical and Physical Disk Organization...21

6.1.1. Identification Sector...21
6.1.2. Disk Allocation Map Sector ...22
6.1.3. File Descriptor Sectors ..22
6.1.4. Directory Files ..23

6.2. RBFMAN Definitions of the Path Descriptor. ..23
6.3. RBF Device Descriptor Modules ..24
6.4. RBF-type Device Drivers...25
6.5. RBFMAN Device Drivers..27

6.5.1. NAME: INIT...28
6.5.2. NAME: READ ..28
6.5.3. NAME: WRITE...29
6.5.4. NAME: GETSTA PUTSTA..30
6.5.5. NAME: TERM ..30
6.5.6. NAME: IRQ SERVICE ROUTINE ...31
6.5.7. NAME: BOOT (Bootstrap Module)...31

7. Sequential Character File Manager..33
7.1. SCFMAN Line Editing Functions ..33
7.2. SCFMAN Definitions of The Path Descriptor..34
7.3. SCF Device Descriptor Modules ..35
7.4. SCF Device Driver Storage Definitions...36
7.5. SCFMAN Device Driver Subroutines ...37

7.5.1. NAME: INIT...38
7.5.2. NAME: READ ..38
7.5.3. NAME: WRITE...38
7.5.4. NAME: GETSTA/SETSTA ...39

iii

7.5.5. NAME. TERM ..40
7.5.6. NAME: IRQ SERVICE ROUTINE ...40

8. Assembly Language Programming Techniques ..41
8.1. How to Write Position-Independent Code...41
8.2. Addressing Variables and Data Structures...41
8.3. Stack Requirements..42
8.4. Interrupt Masks ..42
8.5. Writing Interrupt-driven Device Drivers..42
8.6. Using Standard I/O Paths ..42
8.7. A Sample Program ...43

9. Adapting OS-9 to a New System ..45
9.1. Adapting OS-9 to Disk-based Systems ...45
9.2. Using OS-9 in ROM-based Systems ..45
9.3. Adapting the Initialization Module...46
9.4. Adapting the SYSGO Module ..47

10. OS-9 Service Request Descriptions..49
10.1. User Mode Service Requests...49

10.1.1. F$AllBit - Set bits in an allocation bit map.................................49
10.1.2. F$Chain - Load and execute a new primary module50
10.1.3. F$CmpNam - Compare two names ..51
10.1.4. F$CRC - Compute CRC ..51
10.1.5. F$DelBit - Deallocate in a bit map...52
10.1.6. F$Exit - Terminate the calling process ..52
10.1.7. F$Fork - Create a new process ...52
10.1.8. F$ICPT - Set up a signal intercept trap.......................................54
10.1.9. F$ID - Get process ID / user ID...54
10.1.10. F$Link - Link to memory module ...55
10.1.11. F$Load - Load module(s) from a file ..55
10.1.12. F$Mem - Resize data memory area...55
10.1.13. F$PErr - Print error message ..56
10.1.14. F$PrsNam - Parse a path name..56
10.1.15. F$SchBit - Search bit map for a free area57
10.1.16. F$Send - Send a signal to another process57
10.1.17. F$Sleep - Put calling process to sleep58
10.1.18. F$SPrior - Set process priority ...58
10.1.19. F$SSVC - Install function request..58
10.1.20. F$SSWI - Set SWI vector ...60
10.1.21. F$STime - Set system date and time..60
10.1.22. F$Time - Get system date and time...61
10.1.23. F$Unlink - Unlink a module ..61
10.1.24. F$Wait - Wait for child process to die61

10.2. System Mode Service Requests ..62
10.2.1. F$All64 - Allocate a 64 byte memory block62
10.2.2. F$AProc - Insert process in active process queue63
10.2.3. F$Find64 - Find a 64 byte memory block63
10.2.4. F$IODel - Delete I/O device from system63
10.2.5. F$IOQU - Enter I/O queue ..64
10.2.6. F$IRQ - Add or remove device from IRQ table.........................64
10.2.7. F$NProc - Start next process ..65
10.2.8. F$Ret64 - Deallocate a 64 byte memory block...........................65
10.2.9. F$SRqMem - System memory request..65
10.2.10. F$SRtMem - Return System Memory65
10.2.11. F$VModul - Verify module ..66

10.3. I/O Service Requests ...66
10.3.1. I$Attach - Attach a new device to the system66
10.3.2. I$ChgDir - Change working directory67
10.3.3. I$Close - Close a path to a file/device..67
10.3.4. I$Create - Create a path to a new file..67
10.3.5. I$Delete - Delete a file ...68
10.3.6. I$Detach - Remove a device from the system............................68
10.3.7. I$Dup Duplicate a path...69
10.3.8. I$GetStt - Get file device status..69
10.3.9. I$MakDir - Make a new directory ...71

iv

10.3.10. I$Open - Open a path to a file or device...................................71
10.3.11. I$Read - Read data from a file or device72
10.3.12. I$ReadLn - Read a text line with editing..................................72
10.3.13. I$Seek - Reposition the logical file pointer...............................73
10.3.14. I$SetStt - Set file/device status ..73
10.3.15. I$Write - Write data to file or device ...75
10.3.16. I$WritLn - Write line of text with editing.................................75

A. Memory Module Diagrams ..77
B. Standard Floppy Disk Formats...81
C. Service Request Summary ..83
D. Error Codes ..87

D.1. OS-9 Error Codes...87
D.2. Device Driver/Hardware Errors ..88

E. Level Two System Service Requests..89
E.1. F$AllImg - Allocate Image RAM blocks...89
E.2. F$AllPrc - Allocate Process descriptor..89
E.3. F$AllRAM - Allocate RAM blocks ..89
E.4. F$AllTsk - Allocate process Task number ..89
E.5. F$Boot - Bootstrap system ..90
E.6. F$BtMem - Bootstrap Memory request ..90
E.7. F$ClrBlk - Clear specific Block...90
E.8. F$CpyMem - Copy external Memory...91
E.9. F$DATLog - Convert DAT block/offset to Logical Addr91
E.10. F$DATTmp - Make Temporary DAT image ..91
E.11. F$DelImg - Deallocate Image RAM blocks ..92
E.12. F$DelPrc - Deallocate Process descriptor ...92
E.13. F$DelRam - Deallocate RAM blocks ...92
E.14. F$DelTsk - Deallocate process Task number..92
E.15. F$ELink - Link using module directory Entry93
E.16. F$FModul - Find Module directory entry ..93
E.17. F$FreeHB - Get Free High block..93
E.18. F$FreeLB - Get Free Low block..94
E.19. F$GBlkMp - Get system Block Map copy ..94
E.20. F$GModDr - Get Module Directory copy ..94
E.21. F$GPrDsc - Get Process Descriptor copy ...94
E.22. F$GProcP - Get Process Pointer ...95
E.23. F$LDABX - Load A from 0,1 in task B ..95
E.24. F$LDAXY - Load A [X, [Y]]...95
E.25. F$LDAXYP - Load A [X+, [Y]] ..96
E.26. F$LDDDXY - Load D [D+X, [Y]] ..96
E.27. F$MapBlk - Map specific Block..96
E.28. F$Move - Move data (low bound first)...97
E.29. F$RelTsk - Release Task number..97
E.30. F$ResTsk - Reserve Task number ..97
E.31. F$SetImg - Set process DAT Image ...97
E.32. F$SetTsk - Set process Task DAT registers ...98
E.33. F$SLink - System Link...98
E.34. F$SRqMem - System Memory Request ..98
E.35. F$SRtMem - System Memory Return ...99
E.36. F$STABX - Store A at 0,X in task B..99
E.37. F$SUser Set User ID number..99
E.38. F$UnLoad - Unlink module by name ...100
E.39. I$DeletX - Delete a file...100

v

vi

Chapter 1. Introduction

OS-9 Level One is a versatile multiprogramming/multitasking operating system
for computers utilizing the Motorola 6809 microprocessor,. It is well-suited for a
wide range of applications on 6809 computers of almost any size or complexity.
Its main features are:

• Comprehensive management of all system resources: memory, input/output
and CPU time.

• A powerful user interface that is easy to learn and use.

• True multiprogramming operation.

• Efficient operation in typical microcomputer configurations.

• Expandable, device-independent unified I/O system.

• Full support for modular ROMed software.

• Upward and downward compatibility with OS-9 Level Two.

This manual is intended to provide the information necessary to install, maintain,
expand, or write assembly-language software for OS-9 systems. It assumes that
the reader is familiar with the 6809 architecture, instruction set, and assembly
language.

1.1. History And Design Philosophy
OS-9 Level One is one of the products of the BASIC09 Advanced 6809
Programming Language development effort undertaken by Microware and
Motorola from 1978 to 1980. During the course of the project it became evident
that a fairly sophisticated operating system would be required to support
BASIC09 and similar high-performance 6809 software.

OS-9’s design was modeled after Bell Telephone Laboratories’ UNIX® operating
system, which is becoming widely recognized as a standard for mini and mi-
cro multiprogramming operating systems because of its versatility and relatively
simple, yet elegant structure. Even though a “clone” of UNIX for the 6809 is rel-
atively easy to implement, there are a number of problems with this approach.
UNIX was designed for fairly large-scale minicomputers (such as large PDP-11s)
that have high CPU throughput, large fast disk storage devices and a static I/O
environment. Also, UNIX is not particularly time or disk-storage efficient, espe-
cially when used with low-cost disk drives.

For these reasons, OS-9 was designed to retain the overall concept and user in-
terface of UNIX, but its implementation is considerably different. OS-9’s design
is tailored to typical microcomputer performance ranges and operational envi-
ronments. As an example, OS-9, unlike UNIX, does not dynamically swap run-
ning programs on and off disk This is because floppy disks and many lower-cost
Winchester-type hard disks are simply too slow to do this efficiently. Instead, OS-
9 always keeps running programs in memory and emphasizes more efficient use
of available ROM or RAM.

OS-9 also introduces some important new features that are intended to make
the most of the capabilities of third-generation microprocessors, such as support
of reentrant, position-independent software that can be shared by several users
simultaneously to reduce overall memory requirements.

Perhaps the most innovative part of OS-9 is its “memory module” management
system, which provides extensive support for modular software, particularly
ROMed software. This will play an increasingly important role in the future
as a method of reducing software costs. The “memory module” and LINK
capabilities of OS-9 permit modules to be automatically identified, linked
together, shared, updated or repaired. Individual modules in ROM which are
defective may be repaired (without reprogramming the ROM) by placing a
“fixed” module, with the same name, but a higher revision number into
memory. Memory modules have many other advantages, for example, OS-9 can
allow several programs to share a common math subroutine module. The same

1

Chapter 1. Introduction

module could automatically be replaced with a module containing drivers for a
hardware arithmetic processor without any change to the programs which call
the module.

Users experienced with UNIX should have little difficulty adapting to OS-9. Here
are some of the main differences between the two systems:

1. OS-9 is written in 6809 assembly language, not C. This improves program
size and speed characteristics.

2. OS-9 was designed for a mixed RAM/ROM microcomputer memory en-
vironment and more effectively supports reentrant, position-independent
code.

3. OS-9 introduces the “memory module” concept for organizing object code
with built-in dynamic inter-module linkage.

4. OS-9 supports multiple file managers, which are modules that interface a
class of devices to the file system.

5. “Fork” and “Execute” calls are faster and more memory efficient than the
UNIX equivalents.

1.2. System Hardware Requirements
The OS-9 Operating system consists of building blocks called memory modules,
which are automatically located and linked together when the system starts up.
This makes it extremely easy to reconfigure the system. For example, reconfig-
uring the system to handle additional devices is simply a matter of placing the
corresponding modules into memory. Because OS-9 is so flexible, the minimum
hardware requirements are difficult to define. A bare-bones LEVEL I system re-
quires 4K of ROM and 2K of RAM, which may be expanded to 56K RAM.

Shown below are the requirements for a typical OS-9 software development sys-
tem. Actual hardware requirements may vary depending upon the particular ap-
plication.

• 6809 MPU

• 24K Bytes RAM Memory for Assembly Language Development. 40K Bytes
RAM Memory for High Level Languages such as BASIC09 (RAM Must Be Con-
tiguous From Address Zero Upward)

• 4K Bytes of ROM: 2K must be addressed at $F800 - $FFFF, the other 2K is
position-independent and self-locating. Some disk systems may require three
2K ROMs.

• Console terminal and interface using serial, parallel, or memory mapped
video.

• Optional printer using serial or parallel interface.

• Optional real-time clock hardware.

I/O device controller addresses can be located anywhere in the memory space,
however it is good practice to place them as high as possible to maximize RAM
expansion capability. Standard OS-9 packages for computers made by popular
manufacturers usually conform to the system’s customary memory map.

2

Chapter 2. Basic System Organization

OS-9 is composed of a group of modules, each of which provides specific func-
tions. When OS-9 is configured for a specific system various modules are selected
to provide a given level of functionality. For example, a small control computer
without a disk does not need the disk-related OS-9 modules. Most examples in
this manual describe a fully-configured OS-9 system.

+-----------------------+
+----------+ ! ! +----------+
! ! ! ! ! !
! INIT ! - - ! OS-9 KERNEL ! - - ! Clock !
! ! ! (ROM) ! ! !
+----------+ ! ! +----------+

+-----------------------+
!
!

+-----------------------+
! !
! Input/Output Manager !
! (IOMAN) !
! !
+-----------------------+

! !
! !

+--------------------+ +--------------------+
! ! ! !
! Disk File Manager ! ! Char. File Manager ! More
! (RBFMAN) ! ! (SCFMAN) ! -> opt.
! ! ! !
+--------------------+ +--------------------+

! ! ! !
! ! ! !

+--------+ +--------+ +--------+ +--------+
! ! ! ! ! ! ! !
! Disk ! ! Disk ! ! ACIA ! ! PIA ! More
! Driver ! ! Driver ! ! Driver ! ! Driver ! -> opt.
! ! ! ! ! ! ! !
+--------+ +--------+ +--------+ +--------+
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
!D0 ! !D1 ! !D2 ! !D3 ! !T1 ! !T2 ! !P1 ! !P2 !-> More
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ opt.
RBF Device Descriptors SCF Device Descriptors

Figure 2-1. OS-9 Component Module Organization

Notice that the diagram on the previous page indicates a multilevel organization.

The first level is the KERNEL and the CLOCK MODULE. The kernel provide
basic system services such as multitasking, memory management, and links all
other system modules. The CLOCK module is a software handler for the specific
real-time-clock hardware. INIT is an initialization table used by the kernel during
system startup. It specifies initial table sizes, initial system device names, etc.

The second level is the Input/Output Manager. It provides common processing
all I/O operations. It is required if any OS-supported I/O is to be performed.

The third level is the File Manager level. File managers perform I/O request pro-
cessing for similar classes of I/O devices. The Random Block File Manager (RBF-
MAN) processes all disk-type device functions, and the Sequential Character File
Manager (SCFMAN) handles all non-mass storage devices that basically operate
a character at a time, such as terminals and printers. The user can add additional
File Managers to handle classes of devices not covered by SCFMAN or RBFMAN.

The fourth level is the Device Driver Level. Device drivers handle basic phys-
ical I/O functions for specific I/O controller hardware. Standard OS-9 systems

3

Chapter 2. Basic System Organization

are typically supplied with a disk driver, a ACIA driver for terminals and se-
rial printers, and a PIA driver for parallel printers. Many users add customized
drivers of their own design or purchased from a hardware vendor.

The fifth level is the Device Descriptor Level. These modules are small tables that
are associate specific I/O ports with their logical names, and the port’s device
driver and file manager. They also contain the physical address of the port and
initialization data. By use of device descriptors, only one copy of each driver is re-
quired for each specific type of I/O controller regardless of how many controllers
the system uses.

One important component not shown is the shell, which is the command inter-
preter. It is technically a program and not part of the operating system itself, and
is described fully in the OS-9 Users Manual.

Even though all modules can be resident in ROM, generally only the KERNEL
and INIT modules are ROMed in disk-based systems. All other modules are
loaded into RAM during system startup by a disk bootstrap module (not shown
on diagram) which is also resident in ROM.

4

Chapter 3. Basic Functions of the Kernel

The nucleus of OS-9 is the “kernel”, which serves as the system administrator,
supervisor, and resource manager. It is about 3K bytes long and normally resides
in two 2K byte ROMs: “P1” residing at addresses $F800 - $FFFF, and “P2”, which
is position-independent. P2 only occupies about half (1K) of the ROM, the other
space in the ROM is reserved for the disk bootstrap module.

The kernel’s main functions are:

1. System initialization after restart.

2. Service request processing.

3. Memory management.

4. MPU management (multiprogramming).

5. Basic interrupt processing.

Notice that input/output functions were not included in the list above; this is
because the kernel does not directly process them. The kernel passes I/O service
requests directly to another the Input/Output Manager (IOMAN) module for
processing.

After a hardware reset, the kernel will initialize the system which involves: lo-
cating ROMs in memory, determining the amount of RAM available, loading any
required modules not already in ROM from the bootstrap device, and running the
system startup task (“SYSGO”). The INIT module is a table used during startup
to specify initial table sizes and system device names.

3.1. Kernel Service Request Processing
Service requests (system calls) are used to communicate between OS-9 and
assembly-language-level programs for such things as allocating memory,
creating new processes, etc. System calls use the SWI2 instruction followed
by a constant byte representing the code. Parameters for system calls are
usually passed in MPU registers. In addition to I/O and memory management
functions, there are other service request functions including interprocess
control and timekeeping.

A system-wide assembly language equate file called OS9Defs defines symbolic
names for all service requests. This file is included when assembling hand-written
or compiler-generated code. The OS-9 Assembler has a built-in macro to generate
system calls, for example:

OS9 I$Read

is recognized and assembled as the equivalent to:

SWI2
FCB I$Read

Service requests are divided into two categories:

I/O REQUESTS perform various input/output functions. Requests of this type
are passed by the kernel to IOMAN for processing. The symbolic names for this
category have a “I$” prefix, for example, the “read” service request is called
I$Read.

FUNCTION REQUESTS perform memory management, multiprogramming,
and miscellaneous functions. Most are processed by the kernel. The symbolic
names for this category begins with “F$”.

5

Chapter 3. Basic Functions of the Kernel

3.2. Kernel Memory Management Functions
Memory management is an important operating system function. OS-9 manages
both the physical assignment of memory to programs and the logical contents of
memory, by using entities called “memory modules”. All programs are loaded in
memory module format, allowing OS-9 to maintain a directory which contains
the name, address, and other related information about each module in memory.
These structures are the foundation of OS-9’s modular software environment.
Some of its advantages are: automatic run-time “linking” of programs to libraries
of utility modules; automatic “sharing” of reentrant programs; replacement of
small sections of large programs for update or correction (even when in ROM);
etc.

3.3. Memory Utilization
All usable RAM memory must be contiguous from address 0 upward. During the
OS-9 start-up sequence the upper bound of RAM is determined by an automatic
search, or from the configuration module. Some RAM is reserved by OS-9 for its
own data structures at the top and bottom of memory. The exact amount depends
on the sizes of system tables that are specified in the configuration module.

All other RAM memory is pooled into a “free memory” space. Memory space is
dynamically taken from and returned to this pool as it is allocated or deallocated
for various purposes. The basic unit of memory allocation is the 256-byte page .
Memory is always allocated in whole numbers of pages.

The data structure used to keep track of memory allocation is a 32-byte bit-map
located at addresses $0100 - $011F. Each bit in this table is associated with a spe-
cific page of memory. Bits are cleared to indicate that the page is free and available
for assignment, or set to indicate that the page is in use or that no RAM memory
is present at that address.

Automatic memory allocation occurs when:

1. Program modules are loaded into RAM.

2. Processes are created.

3. Processes request additional RAM.

4. OS-9 needs I/O buffers, larger tables, etc.

All of the above usually have inverse functions that cause previously allocated
memory to be deallocated and returned to the free memory pool.

In general, memory is allocated for program modules and buffers from high ad-
dresses downward, and for process data areas from lower addresses upward.

TYPICAL MEMORY MAP

+-----------------------+ <- $FFFF
| |
| OS-9 ROMS (4K) |
| |
+-----------------------+ <- $F000
| |
| I/O DEVICE ADDRESSES |
| |
+-----------------------+ <- $E000
| |
| SPACE FOR MORE |
| OPTIONAL ROMS |
| |
+-----------------------+ <- END OF RAM MEMORY
| |
| FILE MANAGERS |
| DEVICE DRIVERS, ETC. |
| (APPROXIMATELY 6K) |

6

Chapter 3. Basic Functions of the Kernel

| |
+-----------------------+
| |
| SHELL (1K) |
| |
+-----------------------+
| |
| OS-9 DATA STRUCTURES |
| (APPROXIMATELY 1K) |
| |
+-----------------------+
| |
| FREE MEMORY FOR |
| GENERAL USE |
| |
+-----------------------+ <- $0400
| |
| OS-9 DATA STRUCTURES |
| AND DIRECT PAGE |
| |
+-----------------------+ <- $0000 BEGINNING OF RAM MEMORY

The map above is for a “typical” system. Actual memory sizes and addresses may
vary depending on the exact system configuration.

3.4. Overview of Multiprogramming
OS-9 is a multiprogramming operating system, which allows several indepen-
dent programs called “processes” can be executed simultaneously. Each process
can have access to any system resource by issuing appropriate service requests to
OS-9. Multiprogramming functions use a hardware real-time clock that generates
interrupts at a regular rate of about 10 times per second. MPU time is therefore
divided into periods typically 100 milliseconds in duration. This basic time unit
is called a tick . Processes that are “active” (meaning not waiting for some event)
are run for a specific system-assigned period called a “time slice”. The duration
of the time slice depends on a process’s priority value relative to the priority of
all other active processes. Many OS-9 service requests are available to create, ter-
minate, and control processes.

3.5. Process Creation
New processes are created when an existing process executes a F$Fork service re-
quest. Its main argument is the name of the program module (called the “primary
module”) that the new process is to initially execute. OS-9 first attempts to find
the module in the “module directory”, which includes the names of all program
modules already present in memory. If the module cannot be found there. OS-
9 usually attempts to load into memory a mass-storage file using the requested
module name as a file name.

Once the module has been located, a data structure called a “process descriptor”
is assigned to the new process. The process descriptor is a 64-byte package that
contains information about the process, its state, memory allocations, priority,
queue pointers, etc. The process descriptor is automatically initialized and main-
tained by OS-9. The process itself has no need, and is not permitted to access the
descriptor.

The next step in the creation of a new process is allocation of data storage (RAM)
memory for the process. The primary module’s header contains a storage size
value that is used unless the F$Fork system call requested an optionally larger
size. OS-9 then attempts to allocate a CONTIGUOUS memory area of this size
from the free memory space.

If any of the previous steps cannot be performed, creation of the new process
is aborted, and the process that originated the F$Fork is informed of the error.

7

Chapter 3. Basic Functions of the Kernel

Otherwise, the new process is added to the active process queue for execution
scheduling.

The new process is also assigned a unique number called a “process ID” which
is used as its identifier. Other processes can communicate with it by referring to
its ID in various system calls. The process also has associated with it a “user ID”
which is used to identify all processes and files belonging to a particular user. The
user ID is inherited from the parent process.

Processes terminate when they execute an F$Exit system service request, or when
they receive fatal signals. The process termination closes any open paths, deallo-
cates its memory, and unlinks its primary module.

3.6. Process States
At any instant, a process can be in one of three states:

ACTIVE - The process is active and ready for execution.

WAITING - The process is suspended until a child process terminates or a signal
is received.

SLEEPING - The process is suspended for a specific period of time or until a
signal is received.

There is a queue for each process state. The queue is a linked list of the “process
descriptors” of processes in the corresponding state. State changes are performed
by moving a process descriptor to another queue.

3.6.1. The Active State
This state includes all “runnable” processes, which are given time slices for execu-
tion according to their relative priority with respect to all other active processes.
The scheduler uses a pseudo-round-robin scheme that gives all active processes
some CPU time, even if they have a very low relative priority.

3.6.2. The Wait State
This state is entered when a process executes a F$Wait system service request. The
process remains suspended until the death of any of its descendant processes, or,
until it receives a signal.

3.6.3. The Sleeping State
This state is entered when a process executes a F$Sleep service request, which
specifies a time interval. (a specific number of ticks) for which the process is to re-
main suspended. The process remains asleep until the specified time has elapsed,
or until a signal is received.

3.7. Execution Scheduling
The kernel contains a scheduler that is responsible for allocation of CPU time to
active processes. OS-9 uses a scheduling algorithm that ensures all processes get
some execution time.

All active processes are members of the active process queue, which is kept sorted
by process “age”. Age is a count of how many process switches have occurred
since the process’ last time slice. When a process is moved to the active process
queue from another queue, its “age” is initialized by setting it to the process’
assigned priority, i.e., processes having relatively higher priority are placed in the
queue with an artificially higher age. Also, whenever a new process is activated,
the ages of all other processes are incremented.

8

Chapter 3. Basic Functions of the Kernel

Upon conclusion of the currently executing process’ time slice, the scheduler se-
lects the process having the highest age to be executed next. Because the queue
is kept sorted by age, this process will be at the bead of the queue. At this time
the ages of all other active processes are incremented (ages are never incremented
beyond 255).

An exception is newly-active processes that were previously deactivated while
they were in the system state. These processes are noted and given higher priority
than others because they are usually executing critical routines that affect shared
system resources and therefore could be blocking other unrelated processes.

When there are no active processes, the kernel will set itself up to handle the next
interrupt and then execute a CWAI instruction, which decreases interrupt latency
time.

3.8. Signals
“Signals” are an asynchronous control mechanism used for interprocess commu-
nication and control. A signal behaves like a software interrupt in that it can cause
a process to suspend a program, execute a specific routine, and afterward return
to the interrupted program. Signals can be sent from one process to another pro-
cess (by means of the SEND service request), or they can be sent from OS-9 system
routines to a process.

Status information can be conveyed by the signal in the form of a one-byte nu-
meric value. Some of the signal “codes” (values) have predefined meanings, but
all the rest are user-defined. The defined signal codes are:

0 = KILL (non-interceptable process abort)

1 = WAKEUP - wake up sleeping process

2 = KEYBOARD ABORT

3 = KEYBOARD INTERRUPT

4 - 255 USER DEFINED

When a signal is sent to a process, the signal is noted and saved in the process
descriptor. If the process is in the sleeping or waiting state, it is changed to the
active state. It then becomes eligible for execution according to the usual MPU
scheduler criteria. When it gets its next time slice, the signal is processed.

What happens next depends on whether or not the process had previously set up
a “signal trap” (signal service routine) by executing an F$ICPT service request. If
it had not, the process is immediately aborted. It is also aborted if the signal code
is zero. The abort will be deferred if the process is in system mode: the process
dies upon its return to user state.

If a signal intercept trap has been set up, the process resumes execution at the
address given in the F$ICPT service request. The signal code is passed to this
routine, which should terminate with an RTI instruction to resume normal exe-
cution of the process.

NOTE: “Wakeup” signals activate a sleeping process: they do not vector through
the intercept routine.

If a process has a signal pending (usually because it has not been assigned a time
slice since the signal was received), and some other process attempts to send
it another signal, the new signal is aborted and the “send” service request will
return an error status. The sender should then execute a sleep service request for
a few ticks before attempting to resend the signal, so the destination process has
an opportunity to process the previously pending signal.

9

Chapter 3. Basic Functions of the Kernel

3.9. Interrupt Processing
Interrupt processing is another important function of the kernel. All hardware
interrupts are vectored to specific processing routines. IRQ interrupts are han-
dled by a prioritized polling system (actually part of IOMAN) which automati-
cally identifies the source of the interrupt and dispatches to the associated user or
system defined service routine. The real-time clock will generate IRQ interrupts.
SWI, SWI2, and SWI3 interrupts are vectored to user-definable addresses which
are “local” to each procedure, except that SWI2 is normally used for OS-9 ser-
vice requests calls. The NMI and FIRQ interrupts are not normally used and are
vectored through a RAM address to an RTI instruction.

3.9.1. Physical Interrupt Processing
The OS-9 kernel. ROMs contain the hardware vectors required by the 6809 MPU
at addresses $FFF0 through $FFFF. These vectors each point to jump-extended-
indirect instruction which vector the MPU to the actual interrupt service routine.
A RAM vector table in page zero of memory contains the target addresses of the
jump instructions as follows:

INTERRUPT ADDRESS

SWI3 $002C

SWI2 $002E

FIRQ $0030

IRQ $0032

SWI $0034

NMI $0036

OS-9 initializes each of these locations after reset to point to a specific service
routine in the kernel. The SWI, SWI2, and SWI3 vectors point to specific routines
which in turn read the corresponding pseudo vector from the process’ process
descriptor and dispatch to it. This is why the F$SSWI service request to be local to
a process since it only changes a pseudo vector in the process descriptor. The IRQ
routine points directly to the IRQ polling system, or to it indirectly via the real-
time clock device service routine. The FIRQ and NMI vectors are not normally
used by OS-9 and point to RTI instructions.

A secondary vector table located at $FFE0 contains the addresses of the routines
that the RAM vectors are initialized to. They may be used when it is necessary to
restore the original service routines after altering the RAM vectors. On the next
page are the definitions of both the actual hardware interrupt vector table, and
the secondary vector table:

VECTOR ADDRESS

Secondary Vector Table

TICK $FFE0 Clock Tick Service Routine

SWI3 $FFE2

SWI2 $FFE4

FIRQ $FFE6

IRQ $FFE8

SWI $FFEA

NMI $FFEC

WARM $FFEE Reserved for warm-start

Hardware Vector Table

SWI3 $FFF2

SWI2 $FFF4

10

Chapter 3. Basic Functions of the Kernel

VECTOR ADDRESS
FIRQ $FFF6

IRQ $FFF8

SWI $FFFA

NMI $FFFC

RESTART $FFFE

If it is necessary to alter the RAM vectors use the secondary vector table to exit the
substitute routine. The technique of altering the IRQ pointer is usually used by
the clock service routines to reduce latency time of this frequent interrupt source.

3.9.2. Logical Interrupt Polling System
In OS-9 systems, most I/O devices use IRQ-type interrupts, so OS-9 includes a
sophisticated polling system that automatically identifies the source of the inter-
rupt and dispatches to its associated user-defined service routine. The informa-
tion required for IRQ polling is maintained in a data structure called the “IRQ
polling table”. The table has a 9-byte entry for each possible IRQ-generating de-
vice. The table size is static and defined by an initialization constant in the System
Configuration Module.

The polling system is prioritized so devices having a relatively greater impor-
tance (i.e., interrupt frequency) are polled before those of lesser priority. This is
accomplished by keeping the entries sorted by priority, which is a number be-
tween 0 (lowest) and 255 (highest). Each entry in the table has 6 variables:

1. POLLING ADDRESS: The address of the device’s status register, which
must have a bit or bits that indicate it is the source of an interrupt.

2. MASK BYTE; This byte selects one or more bits within the device status
register that are interrupt request flag(s). A set bit identifies the active bit(s).

3. FLIP BYTE: This byte selects whether the bits in the device status register
are true when set or true when cleared. Cleared bits indicate active when
set.

4. SERVICE ROUTINE ADDRESS: The user-supplied address of the device’s
interrupt service routine.

5. STATIC STORAGE ADDRESS: a user-supplied pointer to the permanent
storage required by the device service routine.

6. PRIORITY; The device priority number: 0 to 255. This value determines the
order in which the devices in the polling table will be polled. Note: this is
not the same as a process priority which is used by the execution scheduler
to decide which process gets the next time slice for MPU execution.

When an IRQ interrupt occurs, the polling system is entered via the correspond-
ing RAM interrupt vector. It starts polling the devices, using the entries in the
polling table in priority order. For each entry, the status register address is loaded
into accumulator A using the device address from the table. An exclusive-or op-
eration using the flip-byte is executed, followed by a logical-and operation using
the mask byte. If the result is non-zero, the device is assumed to be the cause of
the interrupt.

The device’s static storage address and service routine address is read from the
table and executed.

Note: The interrupt service routine should terminate with an an RTS, not an RTI
instruction.

Entries can be made to the IRQ polling table by use of a special OS-9 service
request called F$IRQ. This is a privileged service request that can be executed

11

Chapter 3. Basic Functions of the Kernel

only when OS-9 is in System Mode (which is the case when device drivers are
executed).

Note: The actual code for the interrupt polling system is located in the IOMAN mod-
ule. The kernel P1 and P2 modules contain the physical interrupt processing routines.

12

Chapter 4. Memory Modules

Any object to be loaded into the memory of an OS-9 system must use the memory
module format and conventions. The memory module concept allows OS-9 to
manage the logical contents as well as the physical contents of memory. The basic
idea is that all programs are individual, named objects.

The operating system keeps track of modules which are in memory at all times
by use of a “module directory” . It contains the addresses and a count of how
many processes are using each module. When modules are loaded into memory,
they are added to the directory. When they are no longer needed, their memory is
deallocated and their name removed from the directory (except ROMs, which are
discussed later). In many respects, modules and memory in general, are managed
just like a disk. In fact, the disk and memory management sections of OS-9 share
many subroutines.

Each module has three parts; a module header, module body and a
cyclic-redundancy-check (CRC) value. The header contains information that
describes the module and its use. This information includes: the modules size,
its type (machine language. BASIC09 compiled code, etc); attributes (executable,
reentrant, etc), data storage memory requirements, execution starting address,
etc. The CRC value is used to verify the integrity of a module.

There are several different kinds of modules, each type having a different us-
age and function. Modules do not have to be complete programs, or even 6809
machine language. They may contain BASIC09 “I-code”, constants, single sub-
routines, subroutine packages, etc. The main requirements are that modules do
not modify themselves arid that they be position-independent so OS-9 can load
or relocate them wherever memory space is available. In this respect, the mod-
ule format is the OS-9 equivalent of “load records” used in older-style operating
systems.

4.1. Memory Module Structure
At the beginning (lowest address) of the module is the module header, which can
have several forms depending on the module’s usage. OS-9 family software such
as BASIC09, Pascal, C, the assembler, and many utility programs automatically
generate modules and headers. Following the header is the program/constant
section which is usually pure code. The module name string is included some-
where in this area. The last three bytes of the module are a three-byte Cyclic Re-
dundancy Check (CRC) value used to verify the integrity of the module.

Table 4-1. Module Format

MODULE HEADER

PROGRAM OR
CONSTANTS

CRC

The 24-bit CRC is performed over the entire module from the first byte of the
module header to the byte just before the CRC itself. The CRC polynomial used
is $800063. (See F$CRC)

Because most OS-9 family software (such as the assembler) automatically gener-
ate the module header and CRC values, the programmer usually does not have
to be concerned with writing routines to generate them.

4.2. Module Header Definitions
The first nine bytes of all module headers are identical:

13

Chapter 4. Memory Modules

MODULE
OFFSET

DESCRIPTION

$0,$1 = Sync Bytes ($87,$CD). These two constant bytes are used to
locate modules.

$2,$3 = Module Size. The overall size of the module in bytes (includes
CRC).

$4,$5 = Offset to Module Name. The address of the module name string
relative to the start (first sync byte) of the module. The name
string can be located anywhere in the module and consists of a
string of ASCII characters having the sign bit set on the last
character.

$6 = Module Type/Language Type. See text.

$7 = Attributes/Revision Level. See text.

$8 = Header Check. The one’s compliment of (the vertical parity
(exclusive OR) of) the previous eight bytes

4.2.1. Type/Language Byte
The module type is coded into the four most significant bits of byte 6 of the mod-
ule header. Eight types are pre-defined by convention, some of which are for
OS-9’s internal use only. The type codes are:

$1 Program module

$2 Subroutine module

$3 Multi-module (for future use)

$4 Data module

$5-$B User-definable

$C OS-9 System module

$D OS-9 File Manager module

$E OS-9 Device Driver module

$F OS-9 Device Descriptor module

Note: 0 is not a legal type code.

The four least significant bits of byte 6 describe the language type as listed below:

0 Data (non-executable)

1 6809 object code

2 BASIC09 I-code

3 PASCAL P-code

4 COBOL I-code

5-15 Reserved for future use

The purpose of the language type is so high-level language run-time systems can
verify that a module is of the correct type before execution is attempted. BA-
SIC09, for example, may run either I-code or 6809 machine language procedures
arbitrarily by checking the language type code.

4.2.2. Attribute/Revision Byte
The upper four bits of this byte are reserved for module attributes. Currently,

14

Chapter 4. Memory Modules

only bit 7 is defined, and when set indicates the module is reentrant and therefore
“sharable”.

The lower four bits are a revision level from zero (lowest) to fifteen. If more than
one module has the same name, type, language, etc., OS-9 only keeps in the mod-
ule directory the module having the highest revision level. This is how ROMed
modules can be replaced or patched: you load a new equivalent module having
a higher revision level. Because all modules locate each other by using the LINK
system call which searches the module directory by name, it always returns the
latest revision of the module, wherever it may be.

NOTE: A previously linked module can not be replaced until all processes which
linked to it have unlinked it (after its link count goes to zero).

4.3. Typed Module Headers
As mentioned before, the first nine bytes of the module header are defined iden-
tically for all module types. There is usually more header information immedi-
ately following, the layout and meaning varies depending on the specific module
type. Module types $C - $F are used exclusively by OS-9. Their format is given
elsewhere in this manual.

The module type illustrated below is the general purpose “user” format that is
commonly user for OS-9 programs that are called using the FORK or CHAIN
system calls. These modules are the “user-defined” types having type codes of 0
through 9. They have six more bytes in their headers defined as follows:

MODULE
OFFSET

DESCRIPTION

$9,$A = Execution Offset. The program or subroutine’s starting address,
relative to the first byte of the sync code. Modules having
multiple entry points (cold start, warm start, etc.) may have a
branch table starting at this address.

$B,$C = Permanent Storage Requirement. This is the minimum number
of bytes of data storage required to run. This is the number
used by F$Fork and F$Chain to allocate a process’ data area.
If the module will not be directly executed by a F$Chain or
F$Fork service request (for instance a subroutine package), this
entry is not used by OS-9. It is commonly used to specify the
maximum stack size required by reentrant subroutine modules.
The calling program can check this value to determine if the
subroutine has enough stack space.

4.4. Executable Memory Module Format

Relative Usage Check Range
Address

+------------------------------+ ---+--------+---
$00 | | | |

+-- Sync Bytes ($87CD) --+ | |
$01 | | | |

+------------------------------+ | |
$02 | | | |

+-- Module Size (bytes) --+ | |
$03 | | | |

+------------------------------+ | |
$04 | | | |

+-- Module Name Offset --+ header |

15

Chapter 4. Memory Modules

$05 | | parity |
+------------------------------+ | |

$06 | Type | Language | | |
+------------------------------+ | |

$07 | Attributes | Revision | | |
+------------------------------+ ---+-- module

$08 | Header Parity Check | CRC
+------------------------------+ |

$09 | | |
+-- Execution Offset --+ |

$0A | | |
+------------------------------+ |

$0B | | |
+-- Permanent Storage Size --+ |

$0C | | |
+------------------------------+ |

$0D | | |
(Add’l optional header	
extensions located here	
.	
Module Body	
object code, constants, etc.	
+------------------------------+	
+-- --+	
CRC Check Value	
+-- --+	
+------------------------------+ ------------+---

4.5. ROMed Memory Modules
When OS-9 starts after a system reset, it searches the entire memory space for
ROMed modules. It detects them by looking for the module header sync code
($87,$CD) which are unused 6809 opcodes. When this byte pattern is detected,
the header check is performed to verify a correct header. If this test succeeds, the
module size is obtained from the header and a 24-bit CRC is performed over the
entire module. If the CRC matches correctly, the module is considered valid, and
it is entered into the module directory. The chances of detecting a “false module”
are virtually nil.

In this manner all ROMed modules present in the system at startup are auto-
matically included in the system module directory. Some of the modules found
initially are various parts of OS-9: file managers, device driver, the configuration
module, etc.

After the module search OS-9 links to whichever of its component modules that
it found. This is the secret of OS-9’s extraordinary adaptability to almost any 6809
computer; it automatically locates its required and optional component modules,
wherever they are, and rebuilds the system each time that it is started.

ROMs containing non-system modules are also searched so any user-supplied
software is located during the start-up process and entered into the module di-
rectory.

16

Chapter 5. The OS-9 Unified Input/Output System

OS-9 has a unified I/O system that provides system-wide hardware-independent
I/O services for user programs and OS-9 itself. All I/O service requests (sys-
tem call) are received by the kernel and passed to the Input/Output Manager
(IOMAN) module for processing IOMAN performs some processing (such as al-
locating data structures for the I/O path) and calls the file managers and device
drivers to do much of the actual work. File manager, device driver, and device de-
scriptor modules are standard memory modules that can be loaded into memory
from files and used while the system is running.

The structural organization of I/O-related modules in an OS-9 system is hierar-
chical, as illustrated below:

+-----------------------+
! !
! Input/Output Manager !
! (IOMAN) !
! !
+-----------------------+

! !
! !

+--------------------+ +--------------------+
! ! ! !
! Disk File Manager ! ! Char. File Manager ! More
! (RBFMAN) ! ! (SCFMAN) ! -> opt.
! ! ! !
+--------------------+ +--------------------+

! ! ! !
! ! ! !

+--------+ +--------+ +--------+ +--------+
! ! ! ! ! ! ! !
! Disk ! ! Disk ! ! ACIA ! ! PIA ! More
! Driver ! ! Driver ! ! Driver ! ! Driver ! -> opt.
! ! ! ! ! ! ! !
+--------+ +--------+ +--------+ +--------+
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
!D0 ! !D1 ! !D2 ! !D3 ! !T1 ! !T2 ! !P1 ! !P2 !-> More
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ opt.
RBF Device Descriptors SCF Device Descriptors

5.1. The Input/Output Manager (IOMAN)
The Input/output Manager (IOMAN) module provides the first level of service
for I/O system calls by routing data on I/O paths from processes to/from the
appropriate file managers and device drivers. It maintains two important internal
OS-9 data structures: the device table and the path table. This module is used in
all OS-9 Level One systems and should never be modified.

When a path is opened, IOMAN attempts to link to a memory module having
the device name given (or implied) in the pathlist. This module is the device’s
descriptor, which contains the names of the device driver and file manager for
the device. This information is saved by IOMAN so subsequent system calls can
be routed to these modules.

5.2. File Managers
OS-9 systems can have any number of File Manager modules. The function of
a file manager is to process the raw data stream to or from device drivers for
a similar class of devices to conform to the OS-9 standard I/O and file structure,
removing as many unique device operational characteristics as possible from I/O
operations. They are also responsible for mass storage allocation and directory
processing if applicable to the class of devices they service.

17

Chapter 5. The OS-9 Unified Input/Output System

File managers usually buffer the data stream and issue requests to the kernel
for dynamic allocation of buffer memory. They may also monitor and process
the data stream, for example, adding line feed characters after carriage return
characters.

The file managers are reentrant and one file manager may be used for an entire
class of devices having similar operational characteristics. The two standard OS-9
file managers are:

RBFMAN: The Random Block File Manager which operates random-access,
block-structured devices such as disk systems, bubble memories, etc.

SCFMAN: Sequential Character File Manager which is used with
single-character-oriented devices such as CRT or hardcopy terminals, printers,
modems etc.

5.3. Device Driver Modules
The device driver modules are subroutine packages that perform basic, low-level
I/O transfers to or from a specific type of I/O device hardware controller. These
modules are reentrant so one copy of the module can simultaneously run sev-
eral different devices which use identical I/O controllers. For example the device
driver for 6850 serial interfaces is called “ACIA” and can communicate to any
number of serial terminals.

Device driver modules use a standard module header and are given a mod-
ule type of “device driver” (code $E).The execution offset address in the mod-
ule header points to a branch table that has a minimum of six (three-byte) en-
tries.Each entry is typically a LBRA to the corresponding subroutine. The File
Managers call specific routines in the device driver through this table, passing
a pointer to a path descriptor and the hardware control register address in the
MPU registers. The branch table looks like:

+0 = Device Initialization Routine
+3 = Read From Device
+6 = Write to Device
+9 = Get Device Status
+$C = Set Device Status
+$F = Device Termination Routine

For a complete description of the parameters passed to these subroutines see the
file manager descriptions. Also see the appendices on writing device drivers.

5.4. Device Descriptor Modules
Device descriptor modules are small, non-executable modules that provide in-
formation that associates a specific I/O device with its logical name, hardware
controller address(es), device driver name, file manager name, and initialization
parameters.

Recall that device drivers and file managers both operate on general classes of
devices, not specific I/O ports. The device descriptor modules tailor their func-
tions to a specific I/O device. One device descriptor module must exist for each
I/O device in the system.

The name of the module is the name the device is known by to the system and
user (i.e. it is the device name given in pathlists). Its format consists of a stan-
dard module header that has a type “device descriptor” (code $F). The rest of the
device descriptor header consists of:

$9,$A = File manager name string relative address.

$B,$C = Device driver name string relative address

$D = Mode/Capabilities. (D S PE PW PR E W R)

18

Chapter 5. The OS-9 Unified Input/Output System

$E,$F,$10 = Device controller absolute physical (24-bit) address

$11 = Number of bytes (“n” bytes in initialization table)

$12,$12+n = Initialization table

The initialization table is copied into the “option section” of the path descrip-
tor when a path to the device is opened. The values in this table may be used
to define the operating parameters that are changeable by the OS9 I$GetStt and
I$SetStt service requests. For example, a terminal’s initialization parameters de-
fine which control characters are used for backspace, delete, etc. The maximum
size of initialization table which may be used is 32 bytes. If the table is less than
32 bytes long, the remaining values in the path descriptor will be set to zero.

You may wish to add additional devices to your system. If a similar device con-
troller already exists, all you need to do is add the new hardware and load an-
other device descriptor. Device descriptors can be in ROM or loaded into RAM
from mass-storage files while the system is running.

The diagram on the next page illustrates the device descriptor module format.

MODULE DEVICE DESCRIPTOR MODULE FORMAT
OFFSET

+-----------------------------+ ---+--------+---
$0 | | | |

+-- Sync Bytes ($87CD) --+ | |
$1 | | | |

+-----------------------------+ | |
$2 | | | |

+-- Module Size (bytes) --+ | |
$3 | | | |

+-----------------------------+ | |
$4 | | | |

+-- Offset to Module Name --+ header |
$5 | | parity |

+-----------------------------+ | |
$6 | $F (TYPE) | $1 (LANG) | | |

+-----------------------------+ | |
$7 | Attributes | Revision | | |

+-----------------------------+ ---+-- module
$8 | Header Parity Check | CRC

+-----------------------------+ |
$9 | | |

+-- Offset to File Manager --+ |
$A | Name String | |

+-----------------------------+ |
$B | | |

+-- Offset to Device Driver --+ |
$C | Name String | |

+-----------------------------+ |
$D | Mode Byte | |

+-----------------------------+ |
$E | | |

+-- Device Controller --+ |
$F | Absolute Physical Address | |

+-- (24 bit) --+ |
$10 | | |

+-----------------------------+ |
$11 | Initialization Table Size | |

+-----------------------------+ |
$12,$12+N | | |

| (Initialization Table) | |
| | |
+-----------------------------+ |
| (Name Strings etc) | |
+-----------------------------+ |
| CRC Check Value | |
+-----------------------------+ ------------+---

19

Chapter 5. The OS-9 Unified Input/Output System

5.5. Path Descriptors
Every open path is represented by a data structure called a path descriptor
(“PD”). It contains the information required by the file managers and device
drivers to perform I/O functions. Path descriptors are exactly 64 bytes long and
are dynamically allocated and deallocated by IOMAN as paths are opened and
closed.

PDs are INTERNAL data structures that are not normally referenced from user
or applications programs. In fact, it is almost impossible to locate a path’s PD
when OS-9 is in user mode. The description of PDs is mostly of interest to, and
presented here for those programmers who need to write custom file managers,
device drivers, or other extensions to OS-9.

PDs have three sections: the first 10-byte section is defined universally for all file
managers and device drivers, as shown below.

Table 5-1. Universal Path Descriptor Definitions

Name Addr Size Description

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1=read 2=write 3=update

PD.CNT $02 1 Number of paths using this PD

PD.DEV $03 2 Address of associated device table entry

PD.CPR $05 1 Requester’s process ID

PD.RGS $06 2 Caller’s MPU register stack address

PD.BUF $08 2 Address of 236-byte data buffer (if used)

PD.FST $0A 22 Defined by file manager

PD.OPT $20 32 Reserved for GETSTAT/SETSTAT options

The 22-byte section called “PD.FST” is reserved for and defined by each type of
file manager for file pointers, permanent variables, etc.

The 32-byte section called “PD.OPT” is used as an “option” area for dynamically-
alterable operating parameters for the file or device. These variables are initial-
ized at the time the path is opened by copying the initialization table contained
in the device descriptor module, and can be altered later by user programs by
means of the I$GetStt and I$SetStt system calls.

These two sections are defined each file manager’s in the assembly language
equate file (SCFDefs for SCFMAN and RBFDefs for RBFMAN).

20

Chapter 6. Random Block File Manager

The Random Block File Manager (RBFMAN) is a file manager module that sup-
ports random access block-oriented mass storage devices such as disk systems,
bubble memory systems, and high-performance tape systems. RBFMAN can han-
dle any number or type of such systems simultaneously. It is a reentrant subrou-
tine package called by IOMAN for I/O service requests to random-access de-
vices. It is responsible for maintaining the logical and physical file structures.

In the course of normal operation, RBFMAN requests allocation and deallocation
of 256-byte data buffers; usually one is required for each open file. When physical
I/O functions are necessary, RBFMAN directly calls the subroutines in the associ-
ated device drivers. All data transfers are performed using 256-byte data blocks.
RBFMAN does not directly deal with physical addresses such as tracks, cylin-
ders, etc. Instead, it passes to device driver modules address parameters using a
standard address called a “logical sector number”, or “LSN”. LSNs are integers
in the range of 0 to n-1, where n is the maximum number of sectors on the me-
dia. The driver is responsible for translating the logical sector number to actual
cylinder/track/sector values.

Because RBFMAN is designed to support a wide range of devices having differ-
ent performance and storage capacity, it is highly parameter-driven. The physical
parameters it uses are stored on the media itself. On disk systems, this informa-
tion is written on the first few sectors of track number zero. The device drivers
also use this information, particularly the physical parameters stored on sector 0.
These parameters are written by the “format” program that initializes and tests
the media.

6.1. Logical and Physical Disk Organization
All mass storage volumes (disk media) used by OS-9 utilize the first few sectors
of the volume to store basic identification structure, and storage allocation infor-
mation.

Logical sector zero (LSN 0) is called the Identification Sector which contains de-
scription of the physical and logical format of the volume.

Logical sector one (LSN 1) contains an allocation map which indicates which disk
sectors are free and available for use in new or expanded files.

The volume’s root directory usually starts at logical sector two.

6.1.1. Identification Sector
Logical sector number zero contains a description of the physical and logical char-
acteristics of the volume. These are established by the format command program
when the media is initialized, the table below gives the OS-9 mnemonic name,
byte address, size, and description of each value stored in this sector.

Name Addr Size Description

DD.TOT $00 3 Total number of sectors on media

DD.TKS $03 1 Number of sectors per track

DD.MAP $04 2 Number of bytes in allocation map

DD.BIT $06 2 Number of sectors per cluster

DD.DIR $08 3 Starting sector of root directory

DD.OWN $0B 2 Owner’s user number

DD.ATT $0D 1 Disk attributes

DD.DSK $05 2 Disk identification (for internal use)

DD.FMT $10 1 Disk format: density, number of sides

DD.SPT $11 2 Number of sectors per track

21

Chapter 6. Random Block File Manager

Name Addr Size Description
DD.RES $13 2 Reserved for future use

DD.BT $15 3 Starting sector of bootstrap file

DD.BSZ $18 2 Size of bootstrap file (in bytes)

DD.DAT $1A 5 Time of creation: Y:M:D:H:M

DD.NAM $1F 32 Volume name: last char has sign bit set

DD.OPT $3F 32 Option area

6.1.2. Disk Allocation Map Sector
One sector (usually LSN 1) of the disk is used for the “disk allocation map” that
specifies which clusters on the disk are available for allocation of file storage
space The address of this sector is always assigned logical sector 1 by the format
program DD.MAP specifies the number of bytes in this sector which are actually
used in the map.

Each bit in the map corresponds to a cluster of sectors on the disk. The number
of sectors per cluster is specified by the “DD.BIT” variable in the identification
sector, and is always an integral power of two, i,e., 1, 2, 4, 8, 16, etc. There are a
maximum of 4096 bits in the map, so media such as double-density double-sided
floppy disks and hard disks will use a cluster size of two or more sectors. Each bit
is cleared if the corresponding cluster is available for allocation, or set if the sector
is already allocated, non-existent, or physically defective. The bitmap is initially
created by the format utility program.

6.1.3. File Descriptor Sectors
The first sector of every file is called a “file descriptor”, which contains the logical
and physical description of the file.. The table below describes the contents of the
descriptor.

Name Addr Size Description

FD.ATT $0 1 File Attributes: D S PE PW PR E W R

FD.OWN $1 2 Owner’s User ID

FD.DAT $3 5 Date Last Modified; Y M D H M

FD.LNK $8 1 Link Count

FD.SIZ $9 4 File Size (number of bytes)

FD.DCR $D 3 Date Created: Y M D

FD.SEG $10 240 Segment List: see below

The attribute byte contains the file permission bits. Bit 7 is set to indicate a di-
rectory file, bit 6 indicates a “sharable” file, bit 5 is public execute, bit 4 is public
write, etc.

The segment list consists of up to 48 five-byte entries that have the size and ad-
dress of each block of storage that comprise the file in logical order. Each entry
has a three-byte logical sector number of the block, and a two-byte block size (in
sectors). The entry following the last segment will be zero.

When a file is created, it initially has no data segments allocated to it. Write op-
erations past the current end-of-file (the first write is always past the end-of-file)
cause additional sectors to be allocated to the file. If the file has no segments, it is
given an initial segment having the number of sectors specified by the minimum
allocation entry in the device descriptor, or the number of sectors requested if
greater than the minimum. Subsequent expansions of the file are also generally
made in minimum allocation increments. An attempt is made to expand the last
segment wherever possible rather than adding a new segment. When the file is

22

Chapter 6. Random Block File Manager

closed, unused sectors in the last segment are truncated.

A note about disk allocation: OS-9 attempts to minimize the number of storage
segments used in a file. In fact, many files will only have one segment in which
case no extra read operations are needed to randomly access any byte on the
file. Files can have multiple segments if the free space of the disk becomes very
fragmented, or if a file is repeatedly closed, then opened and expanded at some
later time. This can be avoided by writing a byte at the highest address to be used
on a file before writing any other data.

6.1.4. Directory Files
Disk directories are files that have the “D” attribute set. Directory files contain an
integral number of directory entries each of which can bold the name and LSN of
a single regular or directory file.

Each directory entry is 32 bytes long, consisting of 29 bytes for the file name
followed by a three byte logical sector number of the file’s descriptor sector. The
file name is left-justified in the field with the sign bit of the last character set.
Unused entries have a zero byte in the first file name character position.

Every mass-storage media must have a master directory called the “root direc-
tory”. The beginning logical sector number of this directory is stored in the iden-
tification sector, as previously described.

6.2. RBFMAN Definitions of the Path Descriptor.
The table below describes the usage of the file-manager-reserved section of path
descriptors used by RBFMAN.

Name Addr Size Description

Universal Section (same for all file managers)

PD.PD $00 1 Path number

PD.MOD $01 1 Mode (read/write/update)

PD.CNT $02 1 Number of open images

PD.DEV $03 2 Address of device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of callers register stack

PD.BUF $08 2 Buffer address

RBFMAN Path Descriptor Definitions

PD.SMF $0A 1 State flags (see next page)

PD.CP $0B 4 Current logical file position (byte addr)

PD.SIZ $0F 4 File size

PD.SBL $13 3 Segment beginning logical sector number

PD.SBP $16 3 Segment beginning physical sector number

PD.SSZ $19 2 Segment size

PD.DSK $15 2 Disk ID (for internal use only)

PD.DTB $lD 2 Address of drive table

RBFMAN Option Section Definitions (Copied from device descriptor)

$20 1 Device class 0=SCF 1=NSF 2=PIPE 3=SBF

PD.DRV $21 1 Drive number (0..N)

PD.STP $22 1 Step rate

PD.TYV $23 1 Device type

23

Chapter 6. Random Block File Manager

Name Addr Size Description
PD.UNS $24 1 Density capability

PD.CYL $25 2 Number of cylinders (tracks)

PD.SID $27 1 Number of sides (surfaces)

PD.VFY $28 1 0 = verify disk writes

PD.SCT $29 2 Default number of sectors/track

PD.T0S $2B 2 Default number of sectors/track (track 0)

PD.ILV $2D 1 Sector interleave factor

PD.SAS $2E 1 Segment allocation size

(the following values are not copied from the device descriptor)

PD.ATT $33 1 File attributes (D S PE PW PR E W R)

PD.FD $34 3 File descriptor PSN (physical sector #)

PD.DFD $37 3 Directory file descriptor PSN

PD.DCP $3A 4 File’s directory entry pointer

PD.DVT $3E 2 Address of device table entry

State Flag (PD.SMF): the bits of this byte are defined as:

bit 0 = set if current buffer has been altered
bit 1 = set if current sector is in buffer
bit 2 = set if descriptor sector in buffer

The first section of the path descriptor is universal for all file managers, the
second and third sections are defined by RBFMAN and RBFMAN-type device
drivers. The option section of the path descriptor contains many device operating
parameters which may be read and/or written by the OS9 I$GetStt and I$SetStt
service requests. This section is initialized by IOMAN which copies the initializa-
tion table of the device descriptor into the option section of the path descriptor
when a path to a device is opened. Any values not determined by this table will
default to zero.

6.3. RBF Device Descriptor Modules
This section describes the definitions and use of the initialization table contained
in device descriptor modules for RBF-type devices.

Module
Offset

0-$11 Standard Device Descriptor Module Header

$12 IT.DTP RMB 1 DEVICE TYPE (0=SCF 1=RBF 2=PIPE 3=SBF)

$13 IT.DRV RMB 1 DRIVE NUMBER

$14 IT.STP RMB 1 STEP RATE

$15 IT.TYP RMB 1 DEVICE TYPE (See RBFMAN path descriptor)

$16 IT.DNS RMB 1 MEDIA DENSITY (0 - SINGLE, 1-DOUBLE)

$17 IT.CYL RMB 2 NUMBER OF CYLINDERS (TRACKS)

$19 IT.SID RMB 1 NUMBER OF SURFACES (SIDES)

$1A IT.VFY RMB 1 0 = VERIFY DISK WRITES

$1B IT.SCT RMB 2 Default Sectors/Track

$1D IT.T0S RMB 2 Default Sectors/Track (Track 0)

$1F IT.ILV RMB 1 SECTOR INTERLEAVE FACTOR

$20 IT.SAS RMB 1 SEGMENT ALLOCATION SIZE

24

Chapter 6. Random Block File Manager

IT.DRV - This location is used to associate a one byte integer with each drive that
a controller will handle. The drives for each controller should be numbered 0 to
n-1, where n is the maximum number of drives the controller can handle.

IT.STP - (Floppy disks) This location sets the head stepping rate that will be used
with a drive. The step rate should be set to the fastest value that the drive is ca-
pable of to reduce access time. The actual values stored depended on the specific
disk controller and disk driver module used. Below are the values which are used
by the popular Western Digital floppy disk controller IC:

Step Code FD1771 FD179X Family

5" 8" 5" 8"

0 40ms 20ms 30ms 15ms

1 20ms 10ms 20ms 10ms

2 12ms 6ms 12ms 6ms

3 12ms 6ms 6ms 3ms

IT.TYP - Device type (All types)
bit 0 -- 0 = 5" floppy disk

1 = 8" floppy disk
bit 6 -- 0 = Standard OS-9 format

1 = Non-standard format
bit 7 -- 0 = Floppy disk

1 = Hard disk

IT.DNS - Density capabilities (Floppy disk only)
bit 0 -- 0 = Single bit density (FM)

1 = Double bit density (MFM)

bit 1 -- 0 = Single track density (5", 48 TPI)
1 = Double track density (5", 96 TPI)

IT.SAS - This value specifies the minimum number of sectors to be allocated at
any one time.

6.4. RBF-type Device Drivers
An RBF type device driver module contains a package of subroutines that per-
form sector oriented I/O to or from a specific hardware controller. These mod-
ules are usually reentrant so that one copy of the module can simultaneously run
several different devices that use identical I/O controllers. IOMAN will allocate a
static storage area for each device (which may control several drives). The size of
the storage area is given in the device driver module header. Some of this storage
area will be used by IOMAN and RBFMAN, the device driver is free to use the
remainder in any manner. This static storage is used as follows:

Table 6-1. Static Storage Definitions

Offset ORG 0

0 V.PAGE RMB 1 PORT EXTENDED ADDRESS (A20 -
A16)

1 V.PORT RMB 2 DEVICE BASE ADDRESS

3 V.LPRC RMB 1 LAST ACTIVE PROCESS ID

4 V.BUSY RMB 1 ACTIVE PROCESS ID (0 = NOT BUSY)

5 V.WAKE RMB 1 PROCESS ID TO REAWAKEN

V.USER EQU . END OF OS9 DEFINITIONS

25

Chapter 6. Random Block File Manager

Offset ORG 0
6 V.NDRV RMB 1 NUMBER OF DRIVES

DRVBEG EQU . BEGINNING OF DRIVE TABLES

7 TABLES RMB
DRVMEM*N

RESERVE N DRIVE TABLES

RMB 1

FREE EQU FREE FOR DRIVER TO USE

Note: V.PAGE through V.USER are predefined in the OS9Defs file. V.NDRV, DRVBEG,
DRVMEM are predefined in the RBFDefs file.

V.PAGE, V.PORT These three bytes are defined by IOMAN as the 24-bit device
address.

V.LPRC This location contains the process ID of the last process to use the device.
Not used by RBF-type device drivers.

V.BUSY This location contains the process ID of the process currently using the
device. Defined by RBFMAN.

V.WAKE This location contains the process-ID of any process that is waiting for
the device to complete I/O (0 = NO PROCESS WAITING). Defined by device
driver.

V.NDRV This location contains the number of drives that the controller can use.
Defined by the device driver as the maximum number of drives that the controller
can work with. RBFMAN will assume that there is a drive table for each drive.
Also see the driver INIT routine in this section.

TABLES This area contains one table for each drive that the controller will handle
(RBFMAN will assume that there are as many tables as indicated by V.NDRV).
Some time after the driver INIT routine has been called, RBFMAN will issue a
request for the driver to read the identification sector (logical sector zero) from
a drive. At this time the driver will initialize the corresponding drive table by
copying the first part of the identification sector (up to DD.SIZ) into it, Also see
the “Identification Sector” section of this manual. The format of each drive table
is as given below:

Offset ORG 0

$00 DD.TOT RMB 3 Total number of sectors on media

$03 DD.TKS RMB 1 Number of sectors per track

$04 DD.MAP RMB 2 Number of bytes in allocation map

$06 DD.BIT RMB 2 Number of sectors per cluster

$08 DD.DIR RMB 3 Starting sector of root directory

$0B DD.OWN RMB 2 Owner’s user number

$0D DD.ATT RMB 1 Disk attributes

$05 DD.DSK RMB 2 Disk identification

$10 DD.FMT RMB 1 Disk format: density, number of sides

$11 DD.SPT RMB 2 Number of sectors per track

$13 DD.RES RMB 2 Reserved for future use

DD.SIZ EQU .

$15 V.TRAK RMB 2 Current Track Number

$17 V.BMB RMB 1 Bit-map Use Flag

$18 DRVMEM EQU . Size of Each Drive Table

26

Chapter 6. Random Block File Manager

DD.TOT This location contains the total number of sectors contained on the disk.

DD.TKS This location contains the track size (in sectors).

DD.MAP This location contains the number of bytes in the disk allocation bit
map.

DD.BIT This location contains the number of sectors that each bit represents in
the disk allocation bit map.

DD.DIR This location contains the logical sector number of the disk root directory.

DD.OWN This location contains the disk owner’s user number.

DD.APT This location contains the disk access permission attributes as defined
below:

BIT 7 - D (DIRECTORY IF SET)
BIT 6 - S (SHARABLE IF SET)
BIT 5 - PX (PUBLIC EXECUTE IF SET)
BIT 4 - PW (PUBLIC WRITE IF SET)
BIT 3 - PR (PUBLIC READ IF SET)
BIT 2 - X (EXECUTE IF SET)
BIT 1 - W (WRITE IF SET).
BIT 0 - R (READ IF SET)

DD.DSK This location contains a pseudo random number which is used to iden-
tify a disk so that OS-9 may detect when a disk is removed from the drive and
another inserted in its place.

DD.FMT DISK FORMAT:

BIT B0 - SIDE
0 = SINGLE SIDED
1 = DOUBLE SIDED

BIT B1 - DENSITY
0 = SINGLE DENSITY
1 = DOUBLE DENSITY

BIT B2 - TRACK DENSITY
0 = SINGLE (48 TPI)
1= DOUBLE (96 TPI)

DD.SPT Number of sectors per track (track zero may use a different value, speci-
fied by IT.T0S in the device descriptor).

DD.RES RESERVED FOR FUTURE USE

V.TRAK This location contains the current track which the head is on and is up-
dated by the driver.

V.BMB This location is used by RBFMAN to indicate whether or not the disk
allocation bit map is currently in use (0 = not in use). The disk driver routines
must not alter this location.

6.5. RBFMAN Device Drivers
As with all device drivers, RBFMAN-type device drivers use a standard exe-
cutable memory module format with a module type of “device driver” (CODE
$E). The execution offset address in the module header points to a branch table
that has six three byte entries. Each entry is typically a LBRA to the corresponding
subroutine. The branch table is defined as follows:

ENTRY LBRA INIT INITIALIZE DRIVE

LBRA READ READ SECTOR

27

Chapter 6. Random Block File Manager

LBRA WRITE WRITE SECTOR

LBRA GETSTA GET STATUS

LBRA SETSTA SET STATUS

LBRA TERM TERMINATE DEVICE

Each subroutine should exit with the condition code register C bit cleared if no
error occurred. Otherwise the C bit should be set and an appropriate error code
returned in the B register. Below is a description of each subroutine, its input
parameters, and its output parameters.

6.5.1. NAME: INIT

NAME: INIT

INPUT: (U) = ADDRESS OF DEVICE STATIC STOR-
AGE
(Y) = ADDRESS OF THE DEVICE DESCRIP-
TOR MODULE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: INITIALIZE DEVICE AND ITS STATIC
STORAGE AREA

1. If disk writes are verified, use the F$SRqMem service request to allocate a
256 byte buffer area where a sector may be read back and verified after a
write.

2. Initialize the device permanent storage. For floppy disk controller typically
this consists of initializing V.NDRV to the number of drives that the con-
troller will work with, initializing DD.TOT in the drive table to a non-zero
value so that sector zero may be read or written to, and initializing V.TRAK
to $FF so that the first seek will find track zero.

3. Place the IRQ service routine on the IRQ polling list by using the OS9
F$IRQ service request.

4. Initialize the device control registers (enable interrupts if necessary).

Note: Prior to being called, the device permanent storage will be cleared (set to zero)
except for V.PAGE and V.PORT which will contain the 24 bit device address. The
driver should initialize each drive table appropriately for the type of disk the driver
expects to be used on the corresponding drive.

6.5.2. NAME: READ

NAME: READ

INPUT: (U) = ADDRESS OF THE DE-
VICE STATIC STORAGE
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(B) = MSB OF DISK LOGICAL SECTOR NUM-
BER
(X) = LSB’s OF DISK LOGICAL SEC-
TOR NUMBER

28

Chapter 6. Random Block File Manager

OUTPUT: SECTOR IS RETURNED IN THE SECTOR
BUFFER

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: READ A 256 BYTE SECTOR

Read a sector from the disk and place it in the sector buffer (256 byte). Below are
the things that the disk driver must do:

1. Get the sector buffer address from PD.BUF in the path descriptor.

2. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the logical sector number.

4. Initiate the read operation.

5. Copy V.BUSY to V.WAKE, then go to sleep and wait for the I/O to complete
(the IRQ service routine is responsible for sending a wake up signal). After awak-
ening, test V.WAKE to see if it is clear, if not, go back to sleep.

If the disk controller can not be interrupt driven it will be necessary to perform
programmed I/O.

NOTE 1: Whenever logical sector zero is read, the first part of this sector must
be copied into the proper drive table (get the drive number from PD.DRV in the
path descriptor). The number of bytes to copy is DD.SIZ.

NOTE 2: The drive number (PD.DRV) should be used to compute the offset to
the corresponding drive table as follows:

LDA PD.DRV.Y Get drive number
LDB #DRVMEM Get size of a drive table
MUL
LEAX DRVBEG,U Get address of first table
LEAX D,X Compute address of table N

6.5.3. NAME: WRITE

NAME: WRITE

INPUT: (U) = ADDRESS OF THE DE-
VICE STATIC STORAGE
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(B) = MSB OF DISK LOGICAL SECTOR NUM-
BER
(X) = LSB’s OF DISK LOGICAL SEC-
TOR NUMBER

OUTPUT: THE SECTOR BUFFER IS WRITTEN OUT TO
DISK

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: WRITE A SECTOR

Write the sector buffer (256 bytes) to the disk. Below are the things that a disk
driver must do:

1. Get the sector buffer address from PD.BUF in the path descriptor.

2. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the logical sector number.

4. Initiate the write operation.

5. Copy V.BUSY to V.WAKE, then go to sleep and wait for the I/O to complete (the
IRQ service routine is responsible for sending the wakeup signal). After awak-

29

Chapter 6. Random Block File Manager

ening, test V.WAKE to see if it is clear, if it is not, then go back to sleep. If the
disk controller can not be interrupt-driven, it will be necessary to perform a pro-
grammed I/O transfer.

6. If PD.VFY in the path descriptor is equal to zero, read the sector back in and
verify that it was written correctly. This usually does not involve a compare of
the data.

NOTE 1: If disk writes are to be verified, the INIT routine must request the buffer
where the sector may be placed when it is read back in. Do not copy sector zero
into the drive table when it is read back to be verified.

NOTE 2: Use the drive number (PD.DRV) to compute the offset to the corre-
sponding drive table as shown for the READ routine.

6.5.4. NAME: GETSTA PUTSTA

NAME: GETSTA/PUTSTA

INPUT: (U) = ADDRESS OF THE DE-
VICE STATIC STORAGE AREA
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(A) = STATUS CODE

OUTPUT: (DEPENDS UPON THE FUNCTION CODE)

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: GET/SET DEVICE STATUS

These routines are wild card calls used to get (set) the device’s operating param-
eters as specified for the OS9 I$GetStt and I$SetStt service requests.

It may be necessary to examine or change the register stack which contains the
values of MPU registers at the time of the I$GetStt or I$SetStt service request.
The address of the register stack may be found in PD.RGS, which is located in
the path descriptor, . The following offsets may be used to access any particular
value in the register stack:

OFFSET MNEMONIC MPU REGISTER

$0 R$CC RMB 1 CONDITIONS CODE REGISTER

$1 R$D EQU . D REGISTER

$1 R$A RMB 1 A REGISTER

$2 R$B RMB 1 B REGISTER

$3 R$DP RMB 1 DP REGISTER

$4 R$X RMB 2 X REGISTER

$6 R$Y RMB 2 Y REGISTER

$8 R$U RMB 2 U REGISTER

$A R$PC RMB 2 PROGRAM COUNTER

6.5.5. NAME: TERM

NAME: TERM

INPUT: (U) = ADDRESS OF DEVICE STATIC
STORAGE AREA

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

30

Chapter 6. Random Block File Manager

FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use in the system, which is
defined to be when the link count of its device descriptor module becomes zero).
The TERM routine must:

1. Wait until any pending I/O has completed.

2. Disable the device interrupts.

3. Remove the device from the IRQ polling list.

4. If the INIT routine reserved a 256 byte buffer for verifying disk writes, return
the memory with the F$Mem service request.

6.5.6. NAME: IRQ SERVICE ROUTINE

NAME: IRQ SERVICE ROUTINE

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device driver module branch table
and is not called directly by RBFMAN, it is an key routine in interrupt-driven
device drivers. Its function is to:

1. Service device interrupts.

2. When the I/O is complete, the IRQ service routine should send a wake up
signal to the process whose process ID is in V.WAKE

Also clear V.WAKE as a flag to the mainline program that the IRQ has indeed
occurred.

NOTE: When the IRQ service routine finishes servicing an interrupt it must clear
the array and exit with an RTS instruction.

6.5.7. NAME: BOOT (Bootstrap Module)

NAME: TERM

INPUT: None.

OUTPUT: (U) = SIZE OF THE BOOT FILE (in bytes)
(X) = AD-
DRESS OF WHERE THE BOOT FILE WAS LOADED IN MEM-
ORY

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: LOAD THE BOOT FILE INTO MEMORY
FROM MASS-STORAGE

NOTE: The BOOT module is not part of the disk driver. It is a separate module
which is normally co-resident with the “OS9P2” module in the system firmware.

The bootstrap module contains one subroutine that loads the bootstrap file and
some related information into memory, it uses the standard executable module
format with a module type of “system” (code $C). The execution offset in the
module header contains the offset to the entry point of this subroutine.

It obtains the starting sector number and size of the OS9Boot file from the identi-
fication sector (LSN 0). OS-9 is called to allocate a memory area large enough for
the boot file, and then it loads the boot file into this memory area.

1. Read the identification sector (sector zero) from the disk. BOOT must pick its
own buffer area. The identification sector contains the values for DD.BT (the 24 bit

31

Chapter 6. Random Block File Manager

logical sector number of the bootstrap file), and DD.BSZ (the size of the bootstrap
file in bytes). For a full description of the identification sector. See Section 6.1.2.

2. After reading the identification sector into the buffer, get the 24 bit logical sector
number of the bootstrap file from DD.BT.

3. Get the size (in bytes) of the bootstrap file from DD.BSZ. The boot is con-
tained in one logically contiguous block beginning at the logical sector specified
in DD.BT and extending for (DD.BSZ/256+1) sectors.

4. Use the OS9 F$SRqMem service request to request the memory area where the
boot file will be loaded into.

5. Read the boot file into this memory area.

6. Return the size of the boot file and its location.

32

Chapter 7. Sequential Character File Manager

The Sequential Character File Manager (SCFMAN) is the OS-9 file manager mod-
ule that supports devices that operate on a character-by-character basis, such
as terminals, printers, modems, etc. SCFMAN can handle any number or type
of such devices. It is a reentrant subroutine package called by IOMAN for I/O
service requests to sequential character-oriented devices. It includes the exten-
sive input and output editing functions typical of line-oriented operation such
as: backspace, line delete, repeat line, auto line feed. Screen pause, return delay
padding, etc.

Standard OS-9 systems are supplied with SCFMAN and two SCF-type device
driver modules: ACIA, which run 6850 serial interfaces, and PIA, which drives a
6821-type parallel interface for printers.

7.1. SCFMAN Line Editing Functions
I$Read and I$Write service requests (which correspond to Basic09 GET and PUT
statements) to SCFMAN-type devices pass data to/from the device without any
modification, except that keyboard interrupt, keyboard abort, and pause charac-
ter are filtered out of the input (editing is disabled if the corresponding character
in the path descriptor contains a zero). In particular, carriage returns are not au-
tomatically followed by line feeds or nulls, and the high order bits are passed as
sent/received.

I$ReadLn and I$WritLn service requests (which correspond to Basic09 INPUT,
PRINT, READ and WRITE statements) to SCFMAN-type devices perform full
line editing of all functions enabled for the particular device. These functions
are initialized when the device is first used by copying the option table from
the device descriptor table associated with the specific device. They may be al-
tered anytime afterwards from assembly language programs using the I$SetStt
and I$GetStt service requests, or from the keyboard using the tmode command.
Also, all bytes transferred in this mode will have the high order bit cleared.

The following path descriptor values control the line editing functions:

If PD.UPC <> 0 bytes input or output in the range “a..z” are made “A..Z”

If PD.EKO <> 0, input bytes are echoed, except that undefined control characters
in the range $0..$1F print as “.”

If PD.ALF <> 0, carriage returns are automatically followed by line feeds.

If PD.NUL <> 0, After each CR/LF a PD.NUL “nulls” (always $00) are sent.

If PD.PAU <> 0, Auto page pause will occur after every PD.PAU lines since the
last input.

If PD.BSP <> 0, SCF will recognize PD.BSP as the “input” backspace character,
and will echo PD.BSE (the backspace echo character) if PD.BSO = 0, or PD.BSE,
space, PD.BSE if PD.BSO <> 0.

If PD.DEL <> 0, SCF will recognize PD.DEL the delete line character (on input),
and echo the backspace sequence over the entire line if PD.DLO = 0, or echo
CR/LF if PD.DLO <> 0.

PD.EOR defines the end of record character. This is the last character an each line
entered (I$ReadLn), and terminates the output (I$WritLn) when this character is
sent. Normally PD.EOR will be set to $0D. If it is set to zero, SCF’s I$ReadLn will
NEVER terminate, unless an EOF occurs.

If PD.EOF <> 0, it defines the end of file character. SCFMAN will return an end-
of-file error on I$Read or I$ReadLn if this is the first (and only) character input. It
can be disabled by setting its value to zero.

If PD.RPR <> 0, SCF (I$ReadLn) will, upon receipt of this character, echo a car-
riage return [optional line feed], and then reprint the current line.

If PD.DUP <> 0, SCF (I$ReadLn) will duplicate whatever is in the input buffer
through the first “PD.EOR” character.

33

Chapter 7. Sequential Character File Manager

If PD.PSC <> 0, output is suspended before the next “PD.EOR” character when
this character is input. This will also delete any “type ahead” input for I$ReadLn.

If PD.INT <> 0, and is received on input, a keyboard interrupt signal is sent to the
last user of this path. Also it will terminate the current I/O request (it any) with
an error identical to the keyboard interrupt signal code. This location normally is
set to a control+C character.

If PD.QUT <> 0, and is received on input, a keyboard abort signal is sent to the
last user of this path. Also it will terminate the current I/O request (if any) with
an error code identical to the keyboard interrrupt signal code. This location is
normally set to a control+Q character.

If PD.OVF <> 0, It is echoed when I$ReadLn has satisfied its input byte count
without finding a “PD.EOR” character.

NOTE: It is possible to disable most of these special editing functions by setting
the corresponding control character in the path descriptor to zero by using the
I$SetStt service request, or by running the tmode utility. A more permanent so-
lution may be had by setting the corresponding control character value in the
device descriptor module to zero.

Device descriptors may be inspected to determine the default settings for these
values for specific devices.

7.2. SCFMAN Definitions of The Path Descriptor
The table below describes the path descriptors used by SCFMAN and SCFMAN-
type device drivers.

Name Offset Size Description

Universal Section (same for all file managers)

PD.PD $00 1 Path number

PD.MOD $01 1 Mode (read/write/update)

PD.CNT $02 1 Number of open images

PD.DEV $03 2 Address of device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of callers register stack

PD.BUF $08 2 Buffer address

SCFMAN Path Descriptor Definitions

PD.DV2 $0A 2 Device table addr of 2nd (echo) device

PD.RAW $0C 1 Edit flag: 0=raw mode, 1=edit mode

PD.MAX $0D 2 Headline maximum character count

PD.MIN $0F 1 Devices are “mine” if cleared

PD.STS $10 2 Status routine module address

PD.STM $12 2 Reserved for status routine

SCFMAN Option Section Definition

$20 1 Device class 0=SCF 1=RBF 2=PIPE 3=SBF

PD.UPC $21 1 Case (0=BOTH, 1=UPPER ONLY)

PD.BSO $22 1 Backsp (0=BSE, 1=BSE SP BSE)

PD.DLO $23 1 Delete (0 = BSE over line, 1=CR LF)

PD.EKO $24 1 Echo (0=no echo)

PD.ALF $25 1 Auto LF (0=no auto LF)

PD.NUL $26 1 End of line null count

PD.PAU $27 1 Pause (0= no end of page pause)

34

Chapter 7. Sequential Character File Manager

Name Offset Size Description
PD.PAG $28 1 Lines per page

PD.BSP $29 1 Backspace character

PD.DEL $2A 1 Delete line character

PD.EOR $25 1 End of record character (read only)

PD.EOF $2C 1 End of file character (read only)

PD.RPR $2D 1 Reprint line character

PD.DUP $25 1 Duplicate last line character

PD.PSC $2F 1 Pause character

PD.INT $30 1 Keyboard interrupt character (CTL C)

PD.QUT $31 1 Keyboard abort character (CTL Q)

PD.BSE $32 1 Backspace echo character (BSE)

PD.OVF $33 1 Line overflow character (bell)

PD.PAR $34 1 Device initialization value (parity)

PD.BAU $35 1 Software settable baud rate

PD.D2P $36 2 Offset to 2nd device name string

PD.STN $38 2 Offset of status routine name

PD.ERR $3A 1 Most recent I/O error status

The first section is universal for all file managers, the second and third section
are specific for SCFMAN and SCFMAN-type device drivers. The option section
of the path descriptor contains many device operating parameters which may be
read or written by the OS9 I$GetStt or I$SetStt service requests. IOMAN initial-
izes this section when a path is opened to a device by copying the corresponding
device descriptor initialization table. Any values not determined by this table will
default to zero.

Special editing functions may be disabled by setting the corresponding control
character value to zero.

7.3. SCF Device Descriptor Modules
Device descriptor modules for SCF-type devices contain the device address and
an initialization table which defines initial values for the I/O editing features, as
listed below.

MODULE
OFFSET

ORG $12

TABLE EQU . BEGINNING OF OPTION TABLE

$12 IT.DVC RMB 1 DEVICE CLASS (0=SCF 1=RBF 2=PIPE 3=SBF)

$13 IT.UPC RMB 1 CASE (0=BOTH, 1=UPPER ONLY)

$14 IT.BSO RMB 1 BACK SPACE (0=BSE, 1=BSE,SP,BSE)

$15 IT.DLO RMB 1 DELETE (0=BSE OVER LINE, 1=CR)

$16 IT.EKO RMB 1 ECHO (0=NO ECHO)

$17 IT.ALF RMB 1 AUTO LINE FEED (0= NO AUTO LF)

$18 IT.NUL RMB 1 END OF LINE NULL COUNT

$19 IT.PAU RMB 1 PAUSE (0= NO END OF PAGE PAUSE)

$1A IT.PAG RMB 1 LINES PER PAGE

$1B IT.BSP RMB 1 BACKSPACE CHARACTER

$1C IT.DEL RMB 1 DELETE LINE CHARACTER

$1D IT.EOR RMB 1 END OF RECORD CHARACTER

35

Chapter 7. Sequential Character File Manager

MODULE
OFFSET

ORG $12

$1E IT.EOF RMB 1 END OF FILE CHARACTER

$1F IT.RPR RMB 1 REPRINT LINE CHARACTER

$20 IT.DUP RMB 1 DUP LAST LINE CHARACTER

$21 IT.PSC RMB 1 PAUSE CHARACTER

$22 IT.INT RMB 1 INTERRUPT CHARACTER

$23 IT.QUT RMB 1 QUIT CHARACTER

$24 IT.BSE RMB 1 BACKSPACE ECHO CHARACTER

$25 IT.OVF RMB 1 LINE OVERFLOW CHARACTER (BELL)

$26 IT.PAR RMB 1 INITIALIZATION VALUE (PARITY)

$27 IT.BAU RMB 1 BAUD RATE

$28 IT.D2P RMB 2 ATTACHED DEVICE NAME STRING OFFSET

$2A IT.STN RMB 2 OFFSET TO STATUS ROUTINE

$2C IT.ERR RMB 1 INITIAL ERROR STATUS

NOTES:

SCF editing functions will be “turned off” if the corresponding special character is
a zero. For example, it IT.EOF was a zero, there would be no end of file character.

IT.PAR is typically used to initialize the device’s control register when a path is
opened to it.

7.4. SCF Device Driver Storage Definitions
An SCFMAN-type device driver module contains a package of subroutines that
perform raw I/O transfers to or from a specific hardware controller. These mod-
ules are usually reentrant so that one copy of the module can simultaneously run
several different devices that use identical I/O controllers. For each “incarnation”
of the driver, IOMAN will allocate a static storage area for that device. The size of
the storage area is given in the device driver module header. Some of this storage
area will be used by IOMAN and SCFMAN, the device driver is free to use the
remainder in any way (typically as variables and butters). This static storage is
defined as:

OFFSET ORG 0

$0 V.PAGE RMB 1 PORT EXTENDED ADDRESS

$1 V.PORT RMB 2 DEVICE BASE ADDRESS

$3 V.LPRC RMB 1 LAST ACTIVE PROCESS ID

$4 V.BUSY RMB 1 ACTIVE PROCESS ID (0 NOT BUSY)

$5 V. WAKE RMB 1 PROCESS ID TO REAWAKEN

V. USER EQU . END OF OS9 DEFINITIONS

$6 V.TYPE RMB 1 DEVICE TYPE OR PARITY

$7 V.LINE RMB 1 LINES LEFT TILL END OF PAGE

$8 V.PAUS RMB 1 PAUSE REQUEST (0 = NO PAUSE)

$9 V.DEV2 RMB 2 ATTACHED DEVICE STATIC STORAGE

$B V. INTR RMB 1 INTERRUPT CHARACTER

$C V.QUIT RMB 1 QUIT CHARACTER

$D V.PCHR RMB 1 PAUSE CHARACTER

$E V. ERR RMB 1 ERROR ACCUMULATOR

36

Chapter 7. Sequential Character File Manager

OFFSET ORG 0

$F V.SCF EQU . END OF SCFMAN DEFINITIONS

FREE EQU . FREE FOR DEVICE DRIVER TO USE

V.PAGE, V.PORT These three bytes are defined by IOMAN to be the 24 bit device
address.

V.LPRC This location contains the process ID of the last process to use the device.
The IRQ service routine is responsible for sending this process the proper signal
in case a “QUIT” character or an “INTERRUPT” character is received. Defined by
SCFMAN.

V. BUSY This location contains the process ID of the process currently using the
device (zero if it is not being used). This is used by SCFMAN to prevent more than
one process from using the device at the same moment. Defined by SCFMAN.

V.WAKE This location contains the process ID of any process that is waiting for
the device to complete I/O (or zero if there is none waiting). The interrupt service
routine should check this location to see if a process is waiting and if so, send it a
wake up signal. Defined by the device driver.

V.TYPE This location contains any special characteristics of a device. It is typically
used as a value to initialize the device control register, for parity etc. It is defined
by SCFMAN which copies its value from PD.PAR in the path descriptor.

V.LINE This location contains the number of lines left till end of page. Paging is
handled by SCFMAN and not by the device driver.

V.PAUS This location is a flag used by SCFMAN to indicate that a pause character
has been received. Setting its value to anything other than zero will cause SCF-
MAN to stop transmitting characters at the end of the next line. Device driver
input routines must set V.PAUS in the ECHO device’s static storage area. SCF-
MAN will check this value in the ECHO device’s static storage when output is
sent.

V.DEV2 This location contains the address of the ECHO (attached) device’s
static storage area. Typically the device and the attached device are one and the
same. However they may be different as in the case of a keyboard and a memory
mapped video display. Defined by SCFMAN.

V.INTR Keyboard interrupt character. It is defined by SCFMAN, which copies its
value from PD.INT in the path descriptor.

V.QUIT Keyboard abort character. It is defined by SCFMAN which copies its
value from PD.QUT in the path descriptor.

V.PCHR Pause character. It is defined by SCFMAN which copies its value from
PD.PSC in the path descriptor.

V.ERR This location is used to accumulate I/O errors. Typically it is used by the
IRQ service routine to record errors so that they may be reported later when SCF-
MAN calls one of the device driver routines.

7.5. SCFMAN Device Driver Subroutines
As with all device drivers. SCFMAN device drivers use a standard executable
memory module format with a module type of “device driver” (CODE $5). The
execution offset address in the module header points to a branch table that has
six three byte entries. Each entry is typically a LBRA to the corresponding sub-
routine. The branch table is as follows:

ENTRY LBRA INIT INITIALIZE DEVICE

LBRA READ READ CHARACTER

LBRA WRITE WRITE CHARACTER

37

Chapter 7. Sequential Character File Manager

LBRA GETSTA GET DEVICE STATUS

LBRA SETSTA SET DEVICE STATUS

LBRA TERM TERMINATE DEVICE

Each subroutine should exit with the condition code register C bit cleared it no
error occurred. Otherwise the C bit should be set and an appropriate error code
returned in the B register. Below is a description of each subroutine, its input
parameters and its output parameters.

7.5.1. NAME: INIT

NAME: INIT

INPUT: (U) = ADDRESS OF DEVICE STATIC STOR-
AGE
(Y) = ADDRESS OF DEVICE DESCRIP-
TOR MODULE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: INITIALIZE DEVICE AND ITS STATIC
STORAGE

1. Initialize the device static storage.

2. Place the IRQ service routine on the IRQ polling list by using the OS9 F$IRQ
service request.

3. Initialize the device control registers (enable interrupts if necessary).

NOTE: Prior to being called, the device static storage will be cleared (set to zero)
except for V.PAGE and V.PORT which will contain the 24 bit device address.
There is no need to initialize the portion of static storage used by IOMAN and
SCFMAN.

7.5.2. NAME: READ

NAME: READ

INPUT: (U) = ADDRESS OF DEVICE STATIC STOR-
AGE (Y) = ADDRESS OF PATH DESCRIPTOR

OUTPUT: (A) = CHARACTER READ

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: GET NEXT CHARACTER

This routine should get the next character from the input buffer. If there is no
data ready, this routine should copy its process ID from V.BUSY into V.WAKE
and then use the F$Sleep service request to put itself to sleep.

Later when data is received, the IRQ service routine will leave the data in a buffer,
then check V.WAKE to see if any process is waiting for the device to complete
I/O. If so, the IRQ service routine should send a wakeup signal to it.

NOTE: Data buffers are not automatically allocated. It any are used, they should
be defined in the device’s static storage area.

38

Chapter 7. Sequential Character File Manager

7.5.3. NAME: WRITE

NAME: WRITE

INPUT: (U) = ADDRESS OF DEVICE STATIC STOR-
AGE
(Y) = ADDRESS OF THE PATH DESCRIPTOR
(A) = CHAR TO WRITE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables the device out-
put interrupts. It the data buffer is already full, this routine should copy its pro-
cess ID from V.BUSY into V.WAKE and then put itself to sleep.

Later when the IRQ service routine transmits a character and makes room for
more data in the buffer, it will check V.WAKE to see if there is a process waiting
for the device to complete I/O. It there is, it will send a wake up signal to that
process.

NOTE: This routine must ensure that the IRQ service routine will start up when
data is placed into the buffer. After an interrupt is generated the IRQ service
routine will continue to transmit data until the data butter is empty, and then
it will disable the device’s “ready to transmit” interrupts.

NOTE: Data buffers are not automatically allocated. If any are used, they should
be defined in the device’s static storage.

7.5.4. NAME: GETSTA/SETSTA

NAME: GETSTA/SETSTA

INPUT: (U) = ADDRESS OF DEVICE STATIC STOR-
AGE (Y) = ADDRESS OF PATH DESCRIPTOR
(A) = STATUS CODE

OUTPUT: DEPENDS UPON FUNCTION CODE

FUNCTION: GET/SET DEVICE STATUS

This routine is a wild card call used to get (set) the device parameters specified
in the I$GetStt and I$SetStt service requests. Currently all of the function codes
defined by Microware for SCF-type devices are handled by IOMAN or SCFMAN.
Any codes not defined by Microware will be passed to the device driver.

It may be necessary to examine or change the register packet which contains the
values of the 6809 registers at the time the OS9 service request was issued. The
address of the register packet may be found in PD.RGS, which is located in the
path descriptor. The following offsets may be used to access any particular value
in the register packet:

OFFSET MNEMONIC MPU REGISTER

$0 R$CC RMB 1 CONDITIONS CODE REGISTER

$1 R$D EQU . D REGISTER

$1 R$A RMB 1 A REGISTER

$2 R$B RMB 1 B REGISTER

$3 R$DP RMB 1 DP REGISTER

$4 R$X RMB 2 X REGISTER

$6 R$Y RMB 2 Y REGISTER

39

Chapter 7. Sequential Character File Manager

OFFSET MNEMONIC MPU REGISTER

$8 R$U RMB 2 U REGISTER

$A R$PC RMB 2 PROGRAM COUNTER

7.5.5. NAME. TERM

NAME: TERM

INPUT: (U) = PTR TO DEVICE STATIC STORAGE

OUTPUT: NONE

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

FUNCTION: TERMINATE DEVICE

This routine is called when a device is no longer in use, defined as when its device
descriptor module’s link count becomes zero). It must perform the following:

1. Wait until the output buffer has been emptied (by the IRQ service routine)

2. Disable device interrupts.

3. Remove device from the IRQ polling list.

NOTE: Static storage used by device drivers is never returned to the free memory
pool. Therefore, it is desirable to NEVER terminate any device that might be used
again. Modules contained in the Boot file will NEVER be terminated.

7.5.6. NAME: IRQ SERVICE ROUTINE

NAME: IRQ SERVICE ROUTINE

FUNCTION: SERVICE DEVICE INTERRUPTS

Although this routine is not included in the device drivers branch table and not
called directly from SCFMAN, it is an important routine in device drivers. The
main things that it does are:

1. Service the device interrupts (receive data from device or send data to it).
This routine should put its data into and get its data from buffers which
are defined in the device static storage.

2. Wake up any process waiting for I/O to complete by checking to see if
there is a process ID in V.WAKE (non-zero) and it so send a wakeup signal
to that process.

3. If the device is ready to send more data and the output buffer is empty,
disable the device’s “ready to transmit” interrupts.

4. If a pause character is received, set V.PAUS in the attached device static
storage to a non-zero value. The address of the attached device static stor-
age is in V.DEV2.

When the IRQ service routine finishes servicing an interrupt, it must clear the
carry and exit with an RTS instruction.

40

Chapter 8. Assembly Language Programming Techniques

There are four key rules for programmers writing OS-9 assembly language pro-
grams:

1. All programs must use position-independent-code (PIC). OS9 selects load
addresses based on available memory at run-time. There is no way to force
a program to be loaded at a specific address.

2. All programs must use the standard OS-9 memory module formats or they
cannot be loaded and run. Programs must not use self-modifying code.
Programs must not change anything in a memory module or use any part
of it for variables.

3. Storage for all variables and data structures must be within a data area
which is assigned by OS-9 at run-time, and is separate from the program
memory module.

4. All input and output operations should be made using OS-9 service re-
quest calls.

Fortunately, the 6809’s versatile addressing modes make the rules above easy
to follow,. The OS-9 Assembler also helps because it has special capabilities to
assist the programmer in creating programs and memory modules for the OS-9
execution environment.

8.1. How to Write Position-Independent Code
The 6809 instruction set was optimized to allow efficient use of Position Indepen-
dent Code (PIC). The basic technique is to always use PC-relative addressing; for
example BRA, LBRA, BSR and LBSR. Get addresses of constants and tables us-
ing LEA instructions instead of load immediate instructions. If you use dispatch
tables, use tables of RELATIVE, not absolute, addresses.

INCORRECT CORRECT

LDX #CONSTANT LEAX CONSTANT,PCR

JSR SUBR BSR SUBR or LBSR SUBR

JMP LABEL BRA LABEL or LBRA LABEL

8.2. Addressing Variables and Data Structures
Programs executed as processes (by F$Fork and F$Chain system calls or by the
Shell) are assigned a RAM memory area for variables, stacks, and data struc-
tures at execution-time. The addresses cannot be determined or specified ahead
of time. However, a minimum size for this area is specified in the program’s mod-
ule header. Again, thanks to the 6809’s full compliment of addressing modes this
presents no problem to the OS-9 programmer.

When the program is first entered, the Y register will have the address of the
top of the process’ data memory area. If the creating process passed a parameter
area, it will be located from the value of the SP to the top of memory (Y), and
the D register will contain the parameter area size in bytes. If the new process
was called by the shell, the parameter area will contain the part of the shell
command line that includes the argument (parameter) text. The U register will
have the lower bound of the data memory area, and the DP register will contain
its page number.

The most important rule is to not use extended addressing! Indexed and direct page
addressing should be used exclusively to access data area values and structures.
Do not use program-counter relative addressing to find addresses in the data
area, but do use it to refer to addresses within the program area.

The most efficient way to handle tables, buffers, stacks, etc., is to have the pro-

41

Chapter 8. Assembly Language Programming Techniques

gram’s initialization routine compute their absolute addresses using the data area
bounds passed by OS-9 in the registers. These addresses can then be saved in the
direct page where they can be loaded into registers quickly, using short instruc-
tions. This technique has advantages: it is faster than extended addressing, and
the program is inherently reentrant.

8.3. Stack Requirements
Because OS-9 uses interrupts extensively, and also because many reentrant 6809
programs use the MPU stack for local variable storage, a generous stack should
be maintained at all times. The recommended minimum is approximately 200
bytes.

8.4. Interrupt Masks
User programs should keep the condition codes register F (FIRQ mask) and I (IRQ
mask) bits off. They can be set during critical program sequences to avoid task-
switching or interrupts, but this time should be kept to a minimum. If they are
set for longer than a tick period, system timekeeping accuracy may be affected.
Also, some Level Two systems will abort programs having a set IRQ mask.

8.5. Writing Interrupt-driven Device Drivers
OS-9 programs do not use interrupts directly. Any interrupt-driven function
should be implemented as a device driver module which should handle
all interrupt-related functions. When it is necessary for a program to be
synchronized to an interrupt-causing event, a driver can send a semaphore to a
program (or the reverse) using OS-9’s signal facilities.

It is important to understand that interrupt service routines are asynchronous
and somewhat nebulous in that they are not distinct processes. They are in effect
subroutines called by OS-9 when an interrupt occurs.

Therefore, all interrupt-driven device drivers have two basic parts: the “main-
line” subroutines that execute as part of the calling process, and a separate inter-
rupt service routine.

The two routines are asynchronous and therefore must use signals for communications
and coordination.

The INIT initialization subroutine within the driver package should allocate static
storage for the service routine, get the service routine address, and execute the
F$IRQ system call to add it to the IRQ polling table.

When a device driver routine does something that will result in an interrupt, it
should immediately execute a F$Sleep service request. This results in the pro-
cess’ deactivation. When the interrupt in question occurs, its service routine is
executed after some random interval. It should then do the minimal amount of
processing required, and send a “wakeup” signal to its associated process using
the F$Send service request. It may also put some data in its static storage (I/O
data and status) which is shared with its associated “sleeping” process.

Some time later, the device driver “mainline” routine is awakened by the signal,
and can process the data or status returned by the interrupt service routine.

8.6. Using Standard I/O Paths
Programs should be written to use standard I/O paths wherever practical. Usu-
ally, this involves I/O calls that are intended to communicate to the user’s termi-
nal, or any other case where the OS-9 redirected I/O capability is desirable.

42

Chapter 8. Assembly Language Programming Techniques

All three standard I/O paths will already be open when the program is entered
(they are inherited from the parent process). Programs should not close these
paths except under very special circumstances.

Standard I/O paths are always assigned path numbers zero, one, and two, as
down below:

Path 0 - Standard Input. Analogous to the keyboard or other main data input
source.

Path 1 - Standard Output. Analogous to the terminal display or other main data
output destination.

Path 2 - Standard Error/Status. This path is provided so output messages which
are not part of the actual program output can be kept separate. Many times paths
1 and 2 will be directed to the same device.

8.7. A Sample Program
The OS-9 list utility command program is shown on this and the next page as an
example of assembly language programming.

Microware OS-9 Assembler 2.1 01/04/82 23:39:37 Page 001
LIST - File List Utility

* LIST UTILITY COMMAND
* Syntax: list <pathname>
* COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT

0000 87CD0048 mod LSTEND,LSTNAM,PRGRM+OBJCT,
REENT+1,LSTENT,LSTMEM

000D 4C6973F4 LSTNAM fcs "List"

* STATIC STORAGE OFFSETS
*

00C8 BUFSIZ equ 200 size of input buffer
0000 ORG 0
0000 IPATH rmb 1 input path number
0001 PRMPTR rmb 2 parameter pointer
0003 BUFFER rmb BUFSIZ allocate line buffer
00CB rmb 200 allocate stack
0193 rmb 200 room for parameter list
025B LSTMEM EQU .

0011 9F01 LSTENT stx PRMPTR save parameter ptr
0013 8601 lda #READ. select read access mode
0015 103F84 os9 I$Open open input file
0018 252E bcs LIST50 exit if error
001A 9700 sta IPATH save input path number
001C 9F01 stx PRMPTR save updated param ptr

001E 9600 LIST20 lda IPATH load input path number
0020 3043 leax BUFFER,U load buffer pointer
0022 10BE0C88 ldy #BUFSIZ maximum bytes to read
0026 103F8B os9 I$ReadLn read line of input
0029 2509 bcs LIST30 exit if error
002B 8601 lda #1 load std. out. path #
002D 103F8C os9 I$WritLn output line
0030 24EC bcc LIST20 Repeat if no error
0032 2014 bra LIST50 exit if error

0034 C1D3 LIST30 cmpb #E$EOF at end of file?
0036 2610 bne LIST50 branch if not
0038 9600 lda IPATH load input path number
003A 103F8F os9 I$Close close input path
003D 2509 bcs LIST50 ..exit if error
003F 9E01 ldx PRMPTR restore parameter ptr
0041 A684 lda 0,X
0043 810D cmpa #$0D End of parameter line?

43

Chapter 8. Assembly Language Programming Techniques

0045 26CA bne LSTENT ..no; list next file
0047 5F clrb
0048 103F06 LIST50 os9 F$Exit ... terminate

004B 95BB58 emod Module CRC

004E LSTEND EQU *

44

Chapter 9. Adapting OS-9 to a New System

Thanks to OS-9’s modular structure, it is easily portable to almost any 6809-based
computer, and in fact it has been installed on an incredible variety of hardware.
Usually only device driver and device descriptor modules need by rewritten or
modified for the target system’s specific hardware devices. The larger and more
complex kernel and file manager modules almost never need adaptation.

One essential point is that you will need a functional OS-9 development system
to use during installation of OS-9 on a new target system. Although it is possible
to use a non-OS-9 system, or if you are truly masochistic, the target system itself,
lack of facilities to generate and test memory modules and create system disks
can make an otherwise straightforward job a time-consuming headache that is
seldom less costly than a commercial OS-9-equipped computer. Over a dozen
manufacturers offer OS-9 based development systems in all price ranges with an
excellent selection of time-saving options such as hard disks, line printers. PROM
programmers, etc.

Microware sell source code for standard I/O drivers, and a “User Source Code
Package” (on OS-9 format disk only) which contains source code to the Kernel,
Shell, INIT, SYSGO, device driver and descriptor modules, and a selection of util-
ity commands which can be useful when moving OS-9 to a new target system.

Warning
Standard OS-9 software packages are licensed for use on a sin-
gle system. OS-9 cannot be resold or otherwise distributed (even
if modified) without a license. Contact Microware for information
regarding software licenses.

A group of OS-9 aficionados has over the years first written an alternative to
OS-9 called NitrOS9, then also disassembled all the original Microware code and
commented the source code. The software is available on the Internet.

9.1. Adapting OS-9 to Disk-based Systems
Usually, most of the work in moving OS-9 to a disk-based target system is writing
a device driver module for the target system’s disk controller. Part of this task
involves producing a subset of the driver (mostly disk read functions) for use as
a bootstrap module.

If terminal and/or parallel I/O for terminals, printers, etc., will use ACIA and/or
PIA-type devices, the standard ACIA and PIA device driver modules may be
used, or device drivers of your own design may be used in place of or in addition
to these standard modules Device descriptor modules may also require adapta-
tion to match device addresses and initialization required by the target system.

A CLOCK module may be adapted from a standard version, or a new one may
be created. All other component modules, such as IOMAN, RBFMAN, SCFMAN,
Shell, and utilities seldom require modification.

9.2. Using OS-9 in ROM-based Systems
One of OS-9’s major features is its ability to reside in ROM memory and work
effectively with ROMed applications programs written in assembler or high-level
languages such as Basic09, Pascal, and C.

All the component modules of OS-9 (including all commands and utilities) are di-
rectly ROMable without modification. In some cases, particularly when the target
system is to automatically execute an application program upon system start-up,
it may be necessary to reassemble the two modules used during system startup,
INIT and SYSGO.

The first step in designing a ROM-based system is to select which OS-9 modules
to include in ROM. The following checklist is designed to help you do so:

45

Chapter 9. Adapting OS-9 to a New System

a. Include OS9P1, OS9P2, SYSGO, and INIT. These modules are required in
any OS-9 system.

b. If the target system is perform any I/O or interrupt functions include
IOMAN.

c. If the target system is to perform I/O to character-oriented I/O devices us-
ing ACIAs, PIAs, etc., include SCFMAN, required device drivers (such as
ACIA and PIA, and/or your own), and device descriptors as needed (such
as TERM, T1, P, and/or your own). If device addresses and/or initializa-
tion functions need to be changed, the device descriptor modules must be
modified before being ROMed.

d. If the target system is to perform disk I/O, include RBFMAN, and appro-
priate disk driver and device descriptor modules. As in (c) above, change
device addresses and initialization if needed. If RBFMAN will not be in-
cluded, the INIT and SYSGO modules must be altered to remove references
to disk files.

e. If the target system requires multiprogramming, time-of-day, or other
time-related functions, include a CLOCK module for the target system’s
real-time clock. Also consider how the clock is to be started,. You may
want to ROM the setime command, or have SYSGO start the clock.

f. It the target system will receive commands manually, or if any application
program uses Shell functions, include the SHELL and SYSGO modules,
otherwise include a modified SYSGO module which calls your application
program instead of Shell.

9.3. Adapting the Initialization Module
INIT is a module that contains system startup parameters. It must be in ROM in
any OS-9 system (it usually resides in the same ROM as the kernel). It is a non-
executable module named “INIT” and has type “system” (code $C). It is scanned
once during the system startup. It begins with the standard header followed by:

MODULE
OFFSET

$9,$A,$B This location contains an upper limit RAM memory address
used to override OS-9’s automatic end-of-RAM search so that
memory may be reserved for I/O device addresses or other
special purposes.

$C Number of entries to create in the IRQ polling table. One
entry is required for each interrupt- generating device control
register.

$D Number of entries to create in the system device table. One
entry is required for each device in the system.

$E,$F Offset to a string which is the name of the first module to be
executed after startup, usually “SYSGO”. There must always
be a startup module.

$10,$11 Offset to the default directory name string (normally /D0).
This device is assumed when device names are omitted from
pathlists. If the system will not use disks (e.g., RBFMAN will
not be used) this offset mustbe zero.

$12,$13 Offset to the initial standard path string (typically /TERM).
This path is opened as the standard paths for the initial
startup module. This offset must contain zero if there is none.

$14,$15 Offset to bootstrap module name string. If OS-9 does not find
IOMAN in ROM during the start-up module search, it will
execute the bootstrap module named to load additional
modules from a file on a mass-storage device.

46

Chapter 9. Adapting OS-9 to a New System

MODULE
OFFSET
$16 to N All name strings referred to above go here. Each must have

the sign bit (bit 7) of the last character set.

9.4. Adapting the SYSGO Module
SYSGO is a program which is the first process started after the system start-up
sequence. Its function is threefold:

• It does additional high-level system initialization, for example, disk system
SYSGO call the shell to process the Startup shell procedure file.

• It starts the first “user” process.

• It thereafter remains in a “wait” state as insurance against all user processes
terminating, thus leaving the system halted. If this happens. SYSGO can restart
the first user program.

The standard SYSGO module for disk systems cannot be used on non-disk based
systems unless it is modified to:

1. Remove initialization of the working execution directory.

2. Remove processing of the Startup procedure file.

3. Possibly change the name of the first user program from Shell to the name
of a applications program. Here are some example name strings:

fcs /userpqm/ (object code module “userpgm”)

fcs /RunB userpgm/ (compiled Basie09 program using
RunB run-time-only system)

fcs /Basic09 userpgm/ (compiled Basic09 program using
Basic09)

47

Chapter 9. Adapting OS-9 to a New System

48

Chapter 10. OS-9 Service Request Descriptions

System calls are used to communicate between the OS-9 operating system and
assembly-language-level programs. There are three general categories:

1. User mode function requests
2. System mode function requests
3. I/O requests

System mode function requests are privileged and may be executed only while
OS-9 is in the system state (when it is processinq another service request, execut-
ing a file manager, device drivers, etc.). They are included in this manual primar-
ily for the benefit of those programmers who will be writing device drivers and
other system-level applications.

The system calls are performed by loading the MPU registers with the appropri-
ate parameters (if any), and executing a SWI2 instruction immediately followed
by a constant byte which is the request code. Parameters (if any) will be returned
in the MPU registers after OS-9 has processed the service request. A standard
convention for reporting errors is used in all system calls; if an error occurred, the
“C bit” of the condition code register will be set and accumulator B will contain
the appropriate error code. This permits a BCS or BCC instruction immediately
following the system call to branch on error/no error.

Here is an example system call for the I$Close service request:

LDA PATHNUM
SWI2
FCB $8B
BCS ERROR

Using the assembler’s “OS9” directive simplifies the call:

LDA PATHNUM
OS9 I$Close
BCS ERROR

The I/O service requests are simpler to use than in many other operating systems
because the calling program does not have to allocate and set up “file control
blocks”, “sector buffers”, etc. Instead OS-9 will return a one byte path number
when a path to a file/device is opened or created; then this path number may
be used in subsequent I/O requests to identify the file/device until the path is
closed. OS-9 internally allocates and maintains its own data structures and users
never have to deal with them: in fact attempts to do so are memory violations.

All system calls have a mnemonic name that starts with “F$” for system func-
tions, or “I$” for I/O related requests. These are defined in the assembler-input
equate file called OS9Defs.

In the service request descriptions which follow, registers not explicitly specified
as input or output parameters are not altered. Strings passed as parameters are
normally terminated by having bit seven of the last character set, a space charac-
ter, or an end of line character.

10.1. User Mode Service Requests

10.1.1. F$AllBit - Set bits in an allocation bit map

ASSEMBLER CALL: OS9 F$AllBit

MACHINE CODE: 103F 13

49

Chapter 10. OS-9 Service Request Descriptions

INPUT: (X) = Base address of allocation bit map.
(D) = Bit number of first bit to set.
(Y) = Bit count (number of bits to set)

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request sets bits in the allocation bit map specified by
the X register.

Bit numbers range from 0..N-1, where N is the number of bits in the allocation bit
map.

10.1.2. F$Chain - Load and execute a new primary module

ASSEMBLER CALL: OS9 F$Chain

MACHINE CODE: 103F 05

INPUT: (X) = Address of module name or file name
(Y) = Parameter area size (256 byte pages)
(U) = Beginning address of parameter area
(A) = Language / type code
(B) = Optional data area size (256 byte pages)

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call is similar to F$Fork, but it does not create a new process. It effec-
tively “resets” the calling process’ program and data memory areas and begins
execution of a new primary module. Open paths are not closed or otherwise af-
fected.

This system call is used when it is necessary to execute an entirely new program,
but without the overhead of creating a new process. It is functionally similar to a
F$Fork followed by an F$Exit, but with less processing overhead.

The sequence of operations taken by F$Chain is as follows:

1. The system parses the name string of the new process’ “primary module” -
the program that will initially be executed. Then the system module directory is
searched to see if a module with the same name and type / language is already
in memory. If so it is linked to. If not, the name string is used as the pathlist of a
file which is to be loaded into memory. Then the first module in this file is linked
to (several modules may have been loaded from a single file).

2. The process’ old primary module is unlinked.

3. The data memory area is reconfigured to the size specified in the new primary
module’s header.

The diagram below shows how F$Chain sets up the data memory area and reg-
isters for the new module.

+-----------------+ <-- Y (highest address)
! !
! Parameter !
! Area !
! !
+-----------------+ <-- X, SP
! !
! !
! Data Area !
! !
! !
+-----------------+
! Direct Page !
+-----------------+ <-- U, DP (lowest address)

50

Chapter 10. OS-9 Service Request Descriptions

D = parameter area size
PC = module entry point abs. address
CC = F=0, I=0, others undefined

Y (top of memory pointer) and U (bottom of memory pointer) will always have
a values at 256-byte page boundaries. If the parent does not specify a parameter
area, Y, X, and SP will be the same, and D will equal zero. The minimum overall
data area size is one page (256 bytes).

Warning
The hardware stack pointer (SP) should be located somewhere in
the direct page before the F$Chain service request is executed
to prevent a “suicide attempt” error or an actual suicide (system
crash). This will prevent a suicide from occurring in case the new
module requires a smaller data area than what is currently being
used. You should allow approximately 200 bytes of stack space for
execution of the F$Chain service request and other system “over-
head”.

For more information, please see the F$Fork service request description.

10.1.3. F$CmpNam - Compare two names

ASSEMBLER CALL: OS9 F$CmpNam

MACHINE CODE: 103F 11

INPUT: (X) = Address of first name. (B) = Length of first name.
(Y) = Address of second name.

OUTPUT: (CC) = C bit clear if the strings match.

Given the address and length of a string, and the address of a second string,
compares them and indicates whether they match. Typically used in conjunction
with “parsename”.

The second name must have the sign bit (bit 7) of the last character set.

10.1.4. F$CRC - Compute CRC

ASSEMBLER CALL: OS9 F$CRC

MACHINE CODE: 103F 17

INPUT: (X) = Starting byte address. (Y) = Byte count.
(U) = Address of 3 byte CRC accumulator.

OUTPUT: CRC accumulator is updated.

ERROR OUTPUT: None.

This service request calculates the CRC (cyclic redundancy count) for use by com-
pilers, assemblers, or other module generators. The CRC is calculated starting at
the source address over “byte count” bytes, it is not necessary to cover an entire
module in one call, since the CRC may be “accumulated” over several calls. The
CRC accumulator can be any three byte memory location and must be initialized
to $FFFFFF before the first F$CRC call.

The last three bytes in the module (where the three CRC bytes will be stored) are
not included in the CRC generation.

The polynomial is $800063. If you perform the CRC over the module minus the
stored CRC then you must exclusive-or the result with $FFFFFF to compare di-
rectly with the stored CRC. If you perform CRC over the module including the

51

Chapter 10. OS-9 Service Request Descriptions

last three bytes then the result must be $800FE3.

Example C code of CRC algorithm (with 32-bit longs):

unsigned long compute_crc()
unsigned long crc;
unsigned char *octets;
int len;

{
int i;

while (len--) {
crc ^= (*octets++) << 16;
for (i = 0; i < 8; i++) {

crc <<= 1;
if (crc & 0x1000000L)

crc ^= 0x800063L;
}

}
return crc & 0xffffffL;

}

10.1.5. F$DelBit - Deallocate in a bit map

ASSEMBLER CALL: OS9 F$DelBit

MACHINE CODE: 103F 14

INPUT: (X) = Base address of an allocation bit map.
(D) = Bit number of first bit to clear.
(Y) = Bit count (number of bits to clear).

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request is used to clear bits in the allocation bit map
pointed to by X.

Bit numbers range from 0..N-1, where N is the number of bits in the allocation bit
map.

10.1.6. F$Exit - Terminate the calling process

ASSEMBLER CALL: OS9 F$Exit

MACHINE CODE: 103F 06

INPUT: (B) = Status code to be returned to the parent process

OUTPUT: Process is terminated.

This call kills the calling process and is the only means by which a process can
terminate itself. Its data memory area is deallocated, and its primary module is
UNLINKed. All open paths are automatically closed.

The death of the process can be detected by the parent executing a F$Wait call,
which returns to the parent the status byte passed by the child in its F$Exit call.
The status byte can be an OS-9 error code the terminating process wishes to pass
back to its parent process (the shell assumes this), or can be used to pass a user-
defined status value. Processes to be called directly by the shell should only re-
turn an OS-9 error code or zero if no error occurred.

52

Chapter 10. OS-9 Service Request Descriptions

10.1.7. F$Fork - Create a new process

ASSEMBLER CALL: OS9 F$Fork

MACHINE CODE: 103F 03

INPUT: (X) = Address of module name or file name.
(Y) = Parameter area size.
(U) = Beginning address of the parameter area.
(A) = Language / Type code.
(B) = Optional data area size (pages).

OUTPUT: (X) = Updated past the name string.
(A) = New process ID number.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call creates a new process which becomes a “child” of the caller, and
sets up the new process’ memory and MPU registers.

The system parses the name string of the new process’ “primary module” - the
program that will initially be executed. Then the system module directory is
searched to see if the program is already in memory. If so, the module is linked to
and executed. If not, the name string is used as the pathlist of the file which is to
loaded into memory. Then the first module in this file is linked to and executed
(several modules may have been loaded from a single file).

The primary module’s module header is used to determine the process’ initial
data area size. OS-9 then attempts to allocate a contiguous RAM area equal to
the required data storage size, (includes the parameter passing area, which is
copied from the parent process’ data area). The new process’ registers are set
up as shown in the diagram on the next page. The execution offset given in the
module header is used to set the PC to the module’s entry point.

When the shell processes a command line it passes a string in the parameter
area which is a copy of the parameter part (if any) of the command line. It also in-
serts an end-of-line character at the end of the parameter string to simplify string-
oriented processing. The X register will point to the beginning of the parameter
string. If the command line included the optional memory size specification (#n
or #nK), the shell will pass that size as the requested memory size when execut-
ing the F$Fork.

If any of the above operations are unsuccessful, the F$Fork is aborted and the
caller is returned an error.

The diagram below shows how F$Fork sets up the data memory area and regis-
ters for a newly-created process.

+-----------------+ <-- Y (highest address)
! !
! Parameter !
! Area !
! !
+-----------------+ <-- X, SP
! !
! !
! Data Area !
! !
! !
+-----------------+
! Direct Page !
+-----------------+ <-- U, DP (lowest address)

D = parameter area size
PC = module entry point abs. address
CC = F=0, I=0, others undefined

Y (top of memory pointer) and U (bottom of memory pointer) will always have
a values at 256-byte page boundaries. If the parent does not specify a parameter
area, Y, X, and SP will be the same, and D will equal zero. The minimum overall

53

Chapter 10. OS-9 Service Request Descriptions

data area size is one page (256 bytes). Shell will always pass at least an end of
line character in the parameter area.

NOTE: Both the child and parent process will execute concurrently. If the par-
ent executes a F$Wait call immediately after the fork, it will wait until the child
dies before it resumes execution. Caution should be exercised when recursively
calling a program that uses the F$Fork service request since another child may
be created with each “incarnation”. This will continue until the process table be-
comes full.

10.1.8. F$ICPT - Set up a signal intercept trap

ASSEMBLER CALL: OS9 F$ICPT

MACHINE CODE: 103F 09

INPUT: (X) = Address of the intercept routine.
(U) = Address of the intercept routine local storage.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call tells OS-9 to set a signal intercept trap, where X contains the
address of the signal handler routine, and U contains the base address of the rou-
tine’s storage area. After a signal trap has been set, whenever the process receives
a signal, its intercept routine will be executed. A signal will abort any process
which has not used the F$ICPT service request to set a signal trap, and its termi-
nation status (B register) will be the signal code. Many interactive programs will
set up an intercept routine to handle keyboard abort (controlQ), and keyboard
interrupt (controlC).

The intercept routine is entered asynchronously because a signal may be sent at
any time (it is like an interrupt) and is passed the following:

U = Address of intercept routine local storage.

B = Signal code.

NOTE: The value of DP may not be the same as it was when the F$ICPT call was
made.

Whenever a signal is received. OS-9 will pass the signal code and the base address
of its data area (which was defined by a F$ICPT service request) to the signal
intercept routine. The base address of the data area is selected by the user and is
typically a pointer to the process’ data area.

The intercept routine is activated when a signal is received, then it takes some
action based upon the value of the signal code such as setting a flag in the pro-
cess’ data area. After the signal has been processed, the handler routine should
terminate with an RTI instruction.

10.1.9. F$ID - Get process ID / user ID

ASSEMBLER CALL: OS9 F$ID

MACHINE CODE: 103F 0C

INPUT: None

OUTPUT: (A) = Process ID. (Y) = User ID.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Returns the caller’s process ID number, which is a byte value in the range of 1
to 255, and the user ID which is a integer in the range 0 to 65535. The process
ID is assigned by OS-9 and is unique to the process. The user ID is defined in
the system password file, and is used by the file security system and a few other

54

Chapter 10. OS-9 Service Request Descriptions

functions. Several processes can have the same user ID.

10.1.10. F$Link - Link to memory module

ASSEMBLER CALL: OS9 F$LINK

MACHINE CODE: 103F 00

INPUT: (X) = Address of the module name string.
(A) = Module type / language byte.

OUTPUT: (X) = Advanced past the module name.
(Y) = Module entry point absolute address.
(U) = Module header absolute address.
(A) = Module type / language.
(B) = Module attributes / revision level.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call causes OS-9 to search the module directory for a module having
a name, language and type as given in the parameters. If found, the address of
the module’s header is returned in U, and the absolute address of the module’s
execution entry point is returned in Y (as a convenience: this and other infor-
mation can be obtained from the module header). The module’s link count’ is
incremented whenever a F$Link references its name, thus keeping track of how
many processes are using the module. If the module requested has an attribute
byte indicating it is not sharable (meaning it is not reentrant) only one process
may link to it at a time.

Possible errors:

(A) Module not found.

(B) Module busy (not sharable and in use).

(C) Incorrect or defective module header.

10.1.11. F$Load - Load module(s) from a file

ASSEMBLER CALL: OS9 F$LOAD

MACHINE CODE: 103F 01

INPUT: (X) = Address of pathlist (file name)
(A) = Language / type (0 = any language / type)

OUTPUT: (X) = Advanced past pathlist
(Y) = Primary module entry point address
(U) = Address of module header (A; - Language / type
(B) = Attributes / revision level

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Opens a file specified by the pathlist, reads one or more memory modules from
the file into memory, then closes the file. All modules loaded are added to the sys-
tem module directory, and the first module read is LINKed. The parameters re-
turned are the same as the F$Link call and apply only to the first module loaded.

In order to be loaded, the file must have the “execute” permission and contain
a module or modules that have a proper module header. The file will be loaded
from the working execution directory unless a complete pathlist is given.

Possible errors: module directory full; memory full; plus errors that occur on
I$Open, I$Read, I$Close and F$Link system calls.

55

Chapter 10. OS-9 Service Request Descriptions

10.1.12. F$Mem - Resize data memory area

ASSEMBLER CALL: OS9 F$Mem

MACHINE CODE: 103F 07

INPUT: (D) = Desired new memory area size in bytes

OUTPUT: (Y) = Address of new memory area upper bound
(D) = Actual new memory area size in bytes

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Used to expand or contract the process’ data memory area. The new size re-
quested is rounded up to the next 256-byte page boundary. Additional memory is
allocated contiguously upward (towards higher addresses), or deallocated down-
ward from the old highest address. If D = 0, then the current upper bound and
size will be returned.

This request can never return all of a process’ memory, or the page in which its
SP register points to.

In Level One systems, the request may return an error upon an expansion request
even though adequate free memory exists. This is because the data area is always
made contiguous, and memory requests by other processes may fragment free
memory into smaller, scattered blocks that are not adjacent to the caller’s present
data area. Level Two systems do not have this restriction because of the avail-
ability of hardware for memory relocation, and because each process has its own
“address space”.

10.1.13. F$PErr - Print error message

ASSEMBLER CALL: OS9 F$PErr

MACHINE CODE: 103F 0F

INPUT: (A) = Output path number. (B) = Error code.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This is the system’s error reporting utility. It writes an error message to the output
path specified. Most OS-9 systems will display:

ERROR #<decimal number>

by default. The error reporting routine is vectored and can be replaced with a
more elaborate reporting module. To replace this routine use the F$SSVC service
request.

10.1.14. F$PrsNam - Parse a path name

ASSEMBLER CALL: OS9 F$PrsNam

MACHINE CODE: 103F 10

INPUT: (X) = Address of the pathlist

OUTPUT: (X) = Updated past the optional “/”
(Y) = Address of the last character of the name + 1.
(B) = Length of the name

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.
(X) = Updated past space characters.

Parses the input text string for a legal OS-9 name. The name is terminated by any
character that is not a legal component character. This system call is useful for

56

Chapter 10. OS-9 Service Request Descriptions

processing pathlist arguments passed to new processes. Also if X was at the end
of a pathlist, a bad name error will be returned and X will be moved past any
space characters so that the next pathlist in a command line may be parsed.

Note that this system call processes only one name, so several calls may be
needed to process a pathlist that has more than one name.

BEFORE F$PrsNam CALL:

+---+---+---+---+---+---+---+---+---+---+---+---+---
! / ! D ! 0 ! / ! F ! I ! L ! E ! ! ! ! !
+---+---+---+---+---+---+---+---+---+---+---+---+---
^
X

AFTER THE F$PrsNam CALL:

+---+---+---+---+---+---+---+---+---+---+---+---+---
! / ! D ! 0 ! / ! F ! I ! L ! E ! ! ! ! !
+---+---+---+---+---+---+---+---+---+---+---+---+---

^ ^
X Y (B) = 2

10.1.15. F$SchBit - Search bit map for a free area

ASSEMBLER CALL: OS9 F$SchBit

MACHINE CODE: 103F 12

INPUT: (X) = Beginning address of a bit map.
(D) = Beginning bit number.
(Y) = Bit count (free bit block size).
(U) = End of bit map address.

OUTPUT: (D) = Beginning bit number. (Y) = Bit count.

This system mode service request searches the specified allocation bit map start-
ing at the “beginning bit number” for a free block (cleared bits) of the required
length.

If no block of the specified size exists, it returns with the carry set, beginning bit
number and size of the largest block.

10.1.16. F$Send - Send a signal to another process

ASSEMBLER CALL: OS9 F$Send

MACHINE CODE: 103F 08

INPUT: (A) = Receiver’s process ID number. (B) = Signal code.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call sends a “signal” to the process specified. The signal code is a
single byte value of 1 - 255.

If the signal’s destination process is sleeping or waiting, it will be activated so
that it may process the signal. The signal processing routine (intercept) will be
executed if a signal trap was set up (see F$ICPT), otherwise the signal will abort
the destination process, and the signal code becomes the exit status (see F$Wait).
An exception is the WAKEUP signal, which activates a sleeping process but does
not cause the signal intercept routine to be executed.

Some of the signal codes have meanings defined by convention:

57

Chapter 10. OS-9 Service Request Descriptions

0 = System Abort (cannot be intercepted)
1 = Wake Up Process
2 = Keyboard Abort
3 = Keyboard Interrupt
4-255 = user defined

If an attempt is made to send a signal to a process that has an unprocessed, pre-
vious signal pending, the current “send” request will be canceled and an error
will be returned. An attempt can be made to re-send the signal later. It is good
practice to issue a “sleep” call for a few ticks before a retry to avoid wasting MPU
time.

For related information see the F$ICPT, F$Wait and F$Sleep service request de-
scriptions.

10.1.17. F$Sleep - Put calling process to sleep

ASSEMBLER CALL: OS9 F$Sleep

MACHINE CODE: 103F 0A

INPUT: (X) = Sleep time in ticks (0 = indefinitely)

OUTPUT: (X) = Decremented by the number of ticks that the
process was asleep.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This call deactivates the calling process for a specified time, or indefinitely if X
= 0. If X = 1, the effect is to have the caller give up its current time slice. The
process will be activated before the full time interval if a signal is received, there-
fore sleeping indefinitely is a good way to wait for a signal or interrupt without
wasting CPU time.

The duration of a “tick” is system dependent but is most commonly 100 millisec-
onds.

Due to the fact that it is not known when the F$Sleep request was made dur-
ing the current tick, F$Sleep can not be used for precise timing. A sleep of one
tick is effectively a “give up remaining time slice” request; the process is imme-
diately inserted into the active process queue and will resume execution when it
reaches the front of the queue. A sleep of two or more ticks causes the process
to be inserted into the active process queue after N-1 ticks occur and will resume
execution when it reaches the front of the queue.

10.1.18. F$SPrior - Set process priority

ASSEMBLER CALL: OS9 F$SPrior

MACHINE CODE: 103F 0D

INPUT: (A) = Process ID number. (B) = Priority: 0 = lowest
255 - highest

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Changes the process’ priority to the new value given. $FF is the highest possible
priority, $00 is the lowest. A process can change another process’ priority only if
it has the same user ID.

10.1.19. F$SSVC - Install function request

58

Chapter 10. OS-9 Service Request Descriptions

ASSEMBLER CALL: OS9 F$SSVC

MACHINE CODE: 103F 32

INPUT: (Y) = Address of service request initialization table.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request is used to add a new function request to OS-9’s
user and privileged system service request tables, or to replace an old one. The
Y register passes the address of a table which contains the function codes and
offsets to the corresponding service request handler routines. This table has the
following format:

OFFSET

+----------------------+
$00 ! Function Code ! <--- First entry

+----------------------+
$01 ! Offset From Byte 3 !

+-- --+
$02 ! To Function Handler !

+----------------------+
$03 ! Function Code ! <--- Second entry

+----------------------+
$04 ! Offset From Byte 6 !

+-- --+
$05 ! To Function Handler !

+----------------------+
! ! <--- Third entry etc.
! MORE ENTRIES !
! !
! !
+----------------------+
! $80 ! <--- End of table mark
+----------------------+

NOTE: If the sign bit of the function code is set, only the system table will be
updated. Otherwise both the system and user tables will be updated. Privileged
system service requests may be called only while executing a system routine.

The service request handler routine should process the service request and re-
turn from subroutine with an RTS instruction. They may alter all MPU registers
(except for SP). The U register will pass the address of the register stack to the
service request handler as shown in the following diagram:

OFFSET OS9Defs
MNEMONIC

+------+
U ---> ! CC ! $0 R$CC

+------+ $1 R$D
! A ! $1 R$A
+------+
! B ! $2 R$B
+------+
! DP ! $3 R$DP
+------+------+
! X ! $4 R$X
+-------------+
! Y ! $6 R$Y
+-------------+
! U ! $8 R$U
+-------------+
! PC ! $A R$PC
+-------------+

Function request codes are broken into the two categories as shown below:

59

Chapter 10. OS-9 Service Request Descriptions

$00 - $27 User mode service request codes.

$29 - $34 Privileged system mode service request codes. When
installing these service request, the sign bit should be
set if it is to be placed into the system table only.

NOTE: These categories are defined by convention and not enforced by OS9.

Codes $25..$27, and $70..$7F will not be used by the operating system and are
free for user definition.

10.1.20. F$SSWI - Set SWI vector

ASSEMBLER CALL: OS9 F$SSWI

MACHINE CODE: 103F 0E

INPUT: (A) = SWI type code.
(X) = Address of user SWI service routine.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Sets up the interrupt vectors for SWI, SWI2 and SWI3 instructions. Each process
has its own local vectors. Each F$SSWI call sets up one type of vector according
to the code number passed in A.

1 = SWI
2 = SWI2
3 = SWI3

When a process is created, all three vectors are initialized with the address of the
OS-9 service call processor.

Warning
Software built for OS-9 uses SWI2 to call OS-9. If you reset this
vector these programs will not work. If you change all three vectors,
you will not be able to call OS-9 at all.

10.1.21. F$STime - Set system date and time

ASSEMBLER CALL: OS9 F$STime

MACHINE CODE: 103F 16

INPUT: (X) = Address of time packet (see below)

OUTPUT: Time/date is set.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This service request is used to set the current system date/time and start the
system real-time clock. The date and time are passed in a time packet as follows:

OFFSET VALUE

0 year

1 month

2 day

3 hours
60

Chapter 10. OS-9 Service Request Descriptions

OFFSET VALUE
4 minutes

5 seconds

10.1.22. F$Time - Get system date and time

ASSEMBLER CALL: OS9 F$Time

MACHINE CODE: 103F 15

INPUT: (X) = Address of place to store the time packet.

OUTPUT: Time packet (see below).

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This returns the current system date and time in the form of a six byte packet (in
binary). The packet is copied to the address passed in X. The packet looks like:

OFFSET VALUE

0 year

1 month

2 day

3 hours

4 minutes

5 seconds

10.1.23. F$Unlink - Unlink a module

ASSEMBLER CALL: OS9 F$Unlink

MACHINE CODE: 103F 02

INPUT: (U) = Address of the module header.

OUTPUT: None

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Tells OS-9 that the module is no longer needed by the calling process. The mod-
ule’s link count is decremented, and the module is destroyed and its memory
deallocated when the link count equals zero. The module will not be destroyed if
in use by any other process(es) because its link count will be non-zero. In Level
Two systems, the module is usually switched out of the process’ address space.

Device driver modules in use or certain system modules cannot he unlinked.
ROMed modules can be unlinked but cannot be deleted from the module direc-
tory.

10.1.24. F$Wait - Wait for child process to die

ASSEMBLER CALL: OS9 F$Wait

MACHINE CODE: 103F 04

INPUT: None

OUTPUT: (A) = Deceased child process’ process ID
(B) = Child process’ exit status code

61

Chapter 10. OS-9 Service Request Descriptions

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

The calling process is deactivated until a child process terminates by executing
an F$Exit system call, or by receiving a signal. The child’s ID number and exit
status is returned to the parent. If the child died due to a signal, the exit status
byte (B register) is the signal code.

If the caller has several children, the caller is activated when the first one dies, so
one F$Wait system call is required to detect termination of each child.

If a child died before the F$Wait call, the caller is reactivated almost immediately.
F$Wait will return an error if the caller has no children.

See the F$Exit description for more related information.

10.2. System Mode Service Requests

10.2.1. F$All64 - Allocate a 64 byte memory block

ASSEMBLER CALL: OS9 F$All64

MACHINE CODE: 103F 30

INPUT: (X) = Base address of page table (zero if the page table
has not yet been allocated).

OUTPUT: (A) = Block number (X) = Base address of page table
(Y) = Address of block.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request is used to dynamically allocate 64 byte blocks
of memory by splitting whole pages (256 byte) into four sections. The first 64
bytes of the base page are used as a “page table”, which contains the MSB of
all pages in the memory structure. Passing a value of zero in the X register will
cause the F$All64 service request to allocate a new base page and the first 64 byte
memory block. Whenever a new page is needed, an F$SRqMem service request
will automatically be executed. The first byte of each block contains the block
number; routines using this service request should not alter it. Below is a diagram
to show how 7 blocks might be allocated:

ANY 256 BYTE ANY 256 BYTE
MEMORY PAGE MEMORY PAGE

BASE PAGE ---> +-------------+ +-------------+
! ! !X !
! PAGE TABLE ! ! BLOCK 4 !
! (64 bytes) ! ! (64 bytes) !
+-------------+ +-------------+
!X ! !X !
! BLOCK 1 ! ! BLOCK 5 !
! (64 bytes) ! ! (64 bytes) !
+-------------+ +-------------+
!X ! !X !
! BLOCK 2 ! ! BLOCK 6 !
! (64 bytes) ! ! (64 bytes) !
+-------------+ +-------------+
!X ! !X !
! BLOCK 3 ! ! BLOCK 7 !
! (64 bytes) ! ! (64 bytes) !
+-------------+ +-------------+

Note: This is a privileged system mode service request.

62

Chapter 10. OS-9 Service Request Descriptions

10.2.2. F$AProc - Insert process in active process queue

ASSEMBLER CALL: OS9 F$AProc

MACHINE CODE: 103F 2C

INPUT: (X) = Address of process descriptor.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request inserts a process into the active process queue
so that it may be scheduled for execution.

All processes already in the active process queue are aged, and the age of the
specified process is set to its priority. If the process is in system state, it is inserted
after any other process’s also in system state, but before any process in user state.
If the process is in user state, it is inserted according to its age.

Note: This is a privileged system mode service request.

10.2.3. F$Find64 - Find a 64 byte memory block

ASSEMBLER CALL: OS9 F$Find64

MACHINE CODE: 103F 2F

INPUT: (X) = Address of base page. (A) = Block number.

OUTPUT: (Y) = Address of block.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request will return the address of a 64 byte memory
block as described in the F$All64 service request. OS-9 uses this service request
to find process descriptors and path descriptors when given their number.

Block numbers range from 1..N

Note: This is a privileged system mode service request.

10.2.4. F$IODel - Delete I/O device from system

ASSEMBLER CALL: OS9 F$IODel

MACHINE CODE: 103F 33

INPUT: (X) = Address of an I/O module, (see description).

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request is used to determine whether or not an I/O
module is being used. The X register passes the address of a device descriptor
module, device driver module, or file manager module. The address is used to
search the device table, and if found the use count is checked to see if it is zero. If
it is not zero, an error condition is returned.

This service request is used primarily by IOMAN and may be of limited or no
use for other applications.

63

Chapter 10. OS-9 Service Request Descriptions

Note: This is a privileged system mode service request.

10.2.5. F$IOQU - Enter I/O queue

ASSEMBLER CALL: OS9 F$IOQU

MACHINE CODE: 103F 2B

INPUT: (A) = Process Number.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request links the calling process into the I/O queue of
the specified process and performs an untimed sleep. It is assumed that routines
associated with the specified process will send a wakeup signal to the calling
process.

Note: This is a privileged system mode service request.

10.2.6. F$IRQ - Add or remove device from IRQ table

ASSEMBLER CALL: OS9 F$IRQ

MACHINE CODE: 103F 2A

INPUT: (X) = Zero to remove device from table, or the address of a
packet as defined below to add a de-
vice to the IRQ polling table: [X] = flip byte
[X+1] = mask byte [X+2] = priority
(U) = Address of service routine’s static storage area.
(Y) = Device IRQ service routine address.
(D) = Address of the device status register.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This service request is used to add a device to or remove a device from the IRQ
polling table. To remove a device from the table the input should be (X)=0, (U)=
Addr of service routine’s static storage. This service request is primarily used by
device driver routines. See the text of this manual for a complete discussion of
the interrupt polling system.

PACKET DEFINITIONS:

Flip Byte This byte selects whether the bits in the device status
register are active when set or active when cleared. A
set bit(s) identifies the active bit(s).

Mask Byte This byte selects one or more bits within the device
status register that are interrupt request flag(s). A set bit
identifies an active bit(s)

Priority The device priority number: 0 = lowest
255 = highest

Note: This is a privileged system mode service request.

64

Chapter 10. OS-9 Service Request Descriptions

10.2.7. F$NProc - Start next process

ASSEMBLER CALL: OS9 F$NProc

MACHINE CODE: 103F 2D

INPUT: None.

OUTPUT: Control does not return to caller.

This system mode service request takes the next process out of the Active Process
Queue and initiates its execution. If there is no process in the queue, OS-9 waits
for an interrupt, and then checks the active process queue again.

Note: This is a privileged system mode service request.

10.2.8. F$Ret64 - Deallocate a 64 byte memory block

ASSEMBLER CALL: OS9 F$Ret64

MACHINE CODE: 103F 31

INPUT: (X) = Address of the base page. (A) = Block number.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request deallocates a 64 byte block of memory as de-
scribed in the F$All64 service request.

Note: This is a privileged system mode service request.

10.2.9. F$SRqMem - System memory request

ASSEMBLER CALL: OS9 F$SRqMem

MACHINE CODE: 103F 28

INPUT: (D) = Byte count.

OUTPUT: (U) = Beginning address of memory area.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request allocates a block of memory from the top of
available RAM of the specified size. The size requested is rounded to the next 256
byte page boundary.

Note: This is a privileged system mode service request.

10.2.10. F$SRtMem - Return System Memory

ASSEMBLER CALL: OS9 F$SRtMem

MACHINE CODE: 103F 29

65

Chapter 10. OS-9 Service Request Descriptions

INPUT: (U) = Beginning address of memory to return.
(D) = Number of bytes to return.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request is used to deallocate a block of contiguous 256
byte pages. The U register must point to an even page boundary.

Note: This is a privileged system mode service request.

10.2.11. F$VModul - Verify module

ASSEMBLER CALL: OS9 F$VModul

MACHINE CODE: 103F 2E

INPUT: (X) = Address of module to verify

OUTPUT: (U) = Address of module directory entry

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system mode service request checks the module header parity and CRC
bytes of an OS-9 module. If these values are valid, then the module directory
is searched for a module with the same name. If a module with the same name
exists, the one with the highest revision level is retained in the module directory.
Ties are broken in favor of the established module.

Note: This is a privileged system mode service request.

10.3. I/O Service Requests

10.3.1. I$Attach - Attach a new device to the system

ASSEMBLER CALL: OS9 I$Attach

MACHINE CODE: 103F 80

INPUT: (X) = Address of device name string (A) = Access mode.

OUTPUT: (U) = Address of device table entry

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This service request is used to attach a new device to the system, or verify that it
is already attached. The device’s name string is used to search the system module
directory to see if a device descriptor module with the same name is in memory
(this is the name the device will be known by). The descriptor module will contain
the name of the device’s file manager, device driver and other related informa-
tion. It it is found and the device is not already attached, OS-9 will link to its file
manager and device driver, and then place their address’ in a new device table
entry. Any permanent storage needed by the device driver is allocated, and the
driver’s initialization routine is called (which usually initializes the hardware).

If the device has already been attached, it will not be reinitialized.

An I$Attach system call is not required to perform routine I/O. It does not “re-
66

Chapter 10. OS-9 Service Request Descriptions

serve” the device in question - it just prepares it for subsequent use by any pro-
cess. Most devices are automatically installed, so it is used mostly when devices
are dynamically installed or to verify the existence of a device.

The access mode parameter specifies which subsequent read and/or write oper-
ations will be permitted as follows:

0 = Use device capabilities.

1 = Read only.

2 = Write only.

3 = Both read and write.

10.3.2. I$ChgDir - Change working directory

ASSEMBLER CALL: OS9 I$ChgDir

MACHINE CODE: 103F 86

INPUT: (X) = Address of the pathlist. (A) = Access mode.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Changes a process’ working directory to another directory file specified by the
pathlist. Depending on the access mode given, the current execution or the cur-
rent data directory may be changed (but only one may be changed per call). The
file specified must be a directory file, and the caller must have read permission
for it (public read if not owned by the calling process).

ACCESS MODES

1 = Read

2 = Write

3 = Update (read or write)

4 = Execute

If the access mode is read, write, or update the current data directory is changed.
If the access mode is execute, the current execution directory is changed.

10.3.3. I$Close - Close a path to a file/device

ASSEMBLER CALL: OS9 I$Close

MACHINE CODE: 103F 8F

INPUT: (A) = Path number.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Terminates the I/O path specified by the path number. I/O can no longer be per-
formed to the file/device, unless another I$Open or I$Create call is used. Devices
that are non-sharable become available to other requesting processes. All OS-9
internally managed buffers and descriptors are deallocated.

Note: Because the OS9 F$Exit service request automatically closes all open paths
(except the standard I/O paths), it may not he necessary to close them individu-
ally with the OS9 I$Close service request.

Standard I/O paths are not typically closed except when it is desired to change
the files/devices they correspond to.

67

Chapter 10. OS-9 Service Request Descriptions

10.3.4. I$Create - Create a path to a new file

ASSEMBLER CALL: OS9 I$Create

MACHINE CODE: 103F 83

INPUT: (X) = Address of the pathlist. (A) = Access mode.
(B) = File attributes.

OUTPUT: (X) = Updated past the pathlist (trailing blanks skipped)
(A) = Path number.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Used to create a new file on a multifile mass storage device. The pathlist is parsed,
and the new file name is entered in the specified (or default working) directory.
The file is given the attributes passed in the B register, which has individual bits
defined as follows:

bit 0 = read permit
bit 1 = write permit
bit 2 = execute permit
bit 3 = public read permit
bit 4 = public write permit
bit 5 - public execute permit
bit 6 = sharable file

The access mode parameter passed in register A must be either “WRITE” or “UP-
DATE”. This only affects the file until it is closed; it can be reopened later in any
access mode allowed by the file attributes (see I$Open). Files open for “WRITE”
may allow faster data transfer than “UPDATE”, which sometimes needs to pre-
read sectors. These access codes are defined as given below:

2 = Write only
3 = Update (read and write)

NOTE: If the execute bit (bit 2) is set, the file will be created in the working exe-
cution directory instead of the working data directory.

The path number returned by OS-9 is used to identify the file in subsequent I/O
service requests until the file is closed.

No data storage is initially allocated for the file at the time it is created; this is
done automatically by I$Write or explicitly by the I$SetStt call.

An error will occur if the file name already exists in the directory. I$Create calls
that specify non-multiple file devices (such as printers, terminals, etc.) work cor-
rectly: the I$Create behaves the same as I$Open. Create cannot be used to make
directory files (see I$MakDir).

10.3.5. I$Delete - Delete a file

ASSEMBLER CALL: OS9 I$Delete

MACHINE CODE: 103F 87

INPUT: (X) = Address of pathlist.

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This service request deletes the file specified by the pathlist. The file must have
write permission attributes (public write if not the owner), and reside on a mul-
tifile mass storage device. Attempts to delete devices will result in an error.

68

Chapter 10. OS-9 Service Request Descriptions

10.3.6. I$Detach - Remove a device from the system

ASSEMBLER CALL: OS9 I$Detach

MACHINE CODE: 103F 81

INPUT: (U) = Address of the device table entry.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Removes a device from the system device table if not in use by any other process.
The device driver’s termination routine is called, then any permanent storage
assigned to the driver is deallocated. The device driver and file manager modules
associated with the device are unlinked (and may be destroyed if not in use by
another process.

The I$Detach service request must be used to un-attach devices that were
attached with the I$Attach service request. Both of these are used mainly by
IOMAN and are of limited (or no use) to the typical user. SCFMAN also uses
I$Attach/I$Detach to setup its second (echo) device.

10.3.7. I$Dup Duplicate a path

ASSEMBLER CALL: OS9 I$Dup

MACHINE CODE: 103F 82

INPUT: (A) = Path number of path to duplicate.

OUTPUT: (A) = New path number.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Given the number of an existing path, returns another synonymous path number
for the same file or device. Shell uses this service request when it redirects I/O.
Service requests using either the old or new path numbers operate on the same
file or device.

NOTE: This only increments the “use count” of a path descriptor and returns the
synonymous path number. The path descriptor is not copied.

10.3.8. I$GetStt - Get file device status

ASSEMBLER CALL: OS9 I$GetStt

MACHINE CODE: 103F 8D

INPUT: (A) = Path number. (B) Status code.
(Other registers depend upon status code)

OUTPUT: (depends upon status code)

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system is a “wild card” call used to handle individual device parameters
that:

a. are not uniform on all devices

b. are highly hardware dependent

c. need to be user-changeable

The exact operation of this call depends on the device driver an file manager
associated with the path. A typical use is to determine a terminal’s parameters for
backspace character, delete character, echo on/off, null padding, paging, etc. It is

69

Chapter 10. OS-9 Service Request Descriptions

commonly used in conjunction with the I$SetStt service request which is used to
set the device operating parameters. Below are presently defined function codes
for I$GetStt:

MNEMONIC CODE FUNCTION

SS.Opt 0 Read the 32 byte option section of the path descriptor.

SS.Ready 1 Test for data ready on SCFMAN-type device.

SS.Size 2 Return current file size (on RBFMAN-type devices).

SS.Pos 5 Get current file position.

SS.EOF 6 Test for end of file.

SS.ScSiz 38 Width of screen in characters.

CODES 7-127 Reserved for future use.

CODES 128-255 These getstat codes and their parameter passing conventions are
user definable (see the sections of this manual on writing device drivers). The
function code and register stack are passed to the device driver.

Parameter Passing Conventions

The parameter passing conventions for each of these function codes are given
below:

SS.Opt (code 0): Read option section of the path descriptor.

INPUT: (A) = Path number (B) = Function code 0
(X) = Address of place to put a 32 byte status packet.

OUTPUT: Status packet.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This getstat function reads the option section of the path descriptor and copies it
into the 32 byte area pointed to by the X register. It is typically used to determine
the current settings for echo, auto line feed, etc. For a complete description of the
status packet, please see the section of this manual on path descriptors.

SS.Ready (code 1): Test for data available on SCFMAN supported devices.

INPUT: (A) = Path number (B) = Function code 1

OUTPUT: ENTRYTBL not supported.

SS.Size (code 2): Get current file size (RBFMAN supported devices only)

INPUT: (A) = Path number (B) = Function code 2

OUTPUT: (X) = M.S. 16 bits of current file size.
(U) = L.S. 16 bits of current file size.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

SS.Pos (code 5): Get current file position (RBFMAN supported devices
only)

INPUT: (A) = Path number (B) = Function code 5

OUTPUT: (X) = M.S. 16 bits of current file position.
(U) = L.S. 16 bits of current file position.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

SS.EOF (code 6): Test for end of file.

INPUT: (A) = Path number (B) = Function code 6

70

Chapter 10. OS-9 Service Request Descriptions

OUTPUT: ENTRYTBL not supported.

SS.ScSiz (code 38): Return screen size for COCO (SCFMAN supported
devices only)

INPUT: (A) = Path number (B) = Function code 38

OUTPUT: (X) = Width of screen in characters. Typically 32 or 80.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

10.3.9. I$MakDir - Make a new directory

ASSEMBLER CALL: OS9 I$MakDir

MACHINE CODE: 103F 85

INPUT: (X) = Address of pathlist. (B) = Directory attributes.

OUTPUT: (X) = Updated path pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

I$MakDir is the only way a new directory file can be created. It will create and ini-
tialize a new directory as specified by the pathlist. The new directory file contains
no entries, except for an entry for itself (".") and its parent directory ("..")

The caller is made the owner of the directory. I$MakDir does not return a path
number because directory files are not “opened” by this request (use I$Open to
do so). The new directory will automatically have its “directory” bit set in the
access permission attributes. The remaining attributes are specified by the byte
passed in the B register, which has individual bits defined as follows:

bit 0 = read permit
bit 1 = write permit
bit 2 = execute permit
bit 3 = public read permit
bit 4 = public write permit
bit 5 - public execute permit
bit 6 = sharable file
bit 7 = (don’t care)

10.3.10. I$Open - Open a path to a file or device

ASSEMBLER CALL: OS9 I$Open

MACHINE CODE: 103F 84

INPUT: (X) = Address of pathlist.
(A) = Access mode (D S PE PW PR E W R)

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).
(A) = Path number.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Opens a path to an existing file or device as specified by the pathlist. A path
number is returned which is used in subsequent service requests to identify the
file.

The access mode parameter specifies which subsequent read and/or write oper-
ation are permitted as follows:

1 = read mode
71

Chapter 10. OS-9 Service Request Descriptions

2 = write mode
3 = update mode (both read and write)

Update mode can be slightly slower because pre-reading of sectors may be re-
quired for random access of bytes within sectors. The access mode must con-
form to the access permission attributes associated with the file or device (see
I$Create). Only the owner may access a file unless the appropriate “public per-
mit” bits are set.

Files can be opened by several processes (users) simultaneously. Devices have an
attribute that specifies whether or not they are sharable on an individual basis.

NOTES:

If the execution bit is set in the access mode, OS-9 will begin searching for the file
in the working execution directory (unless the pathlist begins with a slash).

The sharable bit (bit 6) in the access mode can not lock other users out of file in
OS-9 Level I. It is present only for upward compatibility with OS-9 Level II.

Directory files may be read or written if the D bit (bit 7) is set in the access mode.

10.3.11. I$Read - Read data from a file or device

ASSEMBLER CALL: OS9 I$Read

MACHINE CODE: 103F 89

INPUT: (X) = Address to store data.
(Y) = Number of bytes to read. (A) = Path number.

OUTPUT: (Y) = Number of bytes actually read.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Reads a specified number of bytes from the path number given. The path must
previously have been opened in READ or UPDATE mode. The data is returned
exactly as read from the file/device without additional processing or editing such
as backspace, line delete, end-of-file, etc.

After all data in a file has been read, the next I$Read service request will return
an end of file error.

NOTES:

The keyboard abort, keyboard interrupt, and end-of-file characters may be fil-
tered out of the input data on SCFMAN-type devices unless the corresponding
entries in the path descriptor have been set to zero. It may be desirable to modify
the device descriptor so that these values in the path descriptor are initialized to
zero when the path is opened.

The number of bytes requested will be read unless:

A. An end-of-file occurs
B. An end-of-record occurs (SCFMAN only)
C. An error condition occurs.

10.3.12. I$ReadLn - Read a text line with editing

ASSEMBLER CALL: OS9 I$ReadLn

MACHINE CODE: 103F 8B

INPUT: (X) = Address to store data.
(Y) = Number of bytes to read. (A) = Path number.

OUTPUT: (Y) = Actual number of bytes read.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

72

Chapter 10. OS-9 Service Request Descriptions

This system call is the same as I$Read except it reads data from the input file
or device until a carriage return character is encountered or until the maximum
byte count specified is reached, and that line editing will occur on SCFMAN-type
devices. Line editing refers to backspace, line delete, echo automatic line feed, etc.

SCFMAN requires that the last byte entered be an end-of-record character (nor-
mally carriage return). If more data is entered than the maximum specified, it will
not be accepted and a PD.OVF character (normally bell) will be echoed.

After all data in the file has been read, the next I$ReadLn service request will
return an end of file error.

NOTE: For more information on line editing, see 7.1.

10.3.13. I$Seek - Reposition the logical file pointer

ASSEMBLER CALL: OS9 I$Seek

MACHINE CODE: 103F 88

INPUT: (A) = Path number.
(X) = M.S. 16 bits of desired file position.
(U) = L.S. 16 bits of desired file position.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call repositions the path’s “file pointer”; which is the 32-bit address
of the next byte in the file to be read from or written to.

A seek may be performed to any value even if the file is not large enough. Subse-
quent WRITEs will automatically expand the file to the required size (if possible),
but READs will return an end-of-file condition. Note that a SEEK to address zero
is the same as a “rewind” operation.

Seeks to non-random access devices are usually ignored and return without error.

10.3.14. I$SetStt - Set file/device status

ASSEMBLER CALL: OS9 I$SetStt

MACHINE CODE: 103F 8E

INPUT: (A) = Path number. (B) Function code.
(Other registers depend upon function code)

OUTPUT: (depends upon function code)

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system is a “wild card” call used to handle individual device parameters
that:

a. are not uniform on all devices

b. are highly hardware dependent

c. need to be user-changeable

The exact operation of this call depends on the device driver and file manager
associated with the path. A typical use is to set a terminal’s parameters for
backspace character, delete character, echo on/off, null padding, paging, etc. It is
commonly used in conjunction with the I$GetStt service request which is used
to read the device operating parameters. Below are presently defined function
codes:

73

Chapter 10. OS-9 Service Request Descriptions

MNEMONIC CODE FUNCTION

SS.Opt $0 Write the 32 byte option section of the path descriptor

SS.Size $2 Set the file size (RBF)

SS.Reset $3 Restore head to track zero (RBF)

SS.WRT $4 Write (format) track (RBF)

SS.Feed $9 Issue Form Feed (SCF)

SS.FRZ $A Freeze DD. Information (RBF)

SS.SPT $B Set Sectors per track (RBF)

SS.SQD $C Sequence down disk drive (RBF)

SS.Dcmd $D Direct command to hard disk controller (RBF)

Codes 128 through 255 their parameter passing conventions are user definable
(see the sections of this manual on writing device drivers). The function code and
register stack are passed to the device driver.

SS.Opt (code 0): Write option section of the path descriptor.

INPUT: (A) = Path number (B) = Function code 0
(X) = Address of a 32 byte status packet.

OUTPUT: None.

This setstat function writes the option section of the path descriptor from the 32
byte status packet pointed to by the X register. It is typically used to set the device
operating parameters, such as echo, auto line feed, etc.

SS.Size (code 2): Set the file size (RBFMAN-type devices)

INPUT: (A) = Path number (B) = Function code 2
(X) = M.S. 16 bits of desired file size.
(U) = L.S. 16 bits of desired file size.

OUTPUT: None.

This setstat function is used to change the file’s size.

SS.Reset (code 3): Restore head to track zero.

INPUT: (A) = Path number (B) = Function code 3

OUTPUT: None.

Home disk head to track zero. Used for formatting and for error recovery.

SS.WTrk (code 4): Write track

INPUT: (A) = Path number (B) = Function code 4
(X) = Address of track buffer.
(U) = Track number (L.S. 8 bits) (Y) = Side/density
Bit B0 = SIDE (0 = side zero, 1 = side one)
Bit B1 = DENSITY (0 = single, 1 = double)

OUTPUT: None.

This code causes a format track (most floppy disks) operation to occur. For hard
disks or floppy disks with a “format entire disk” command, this command should
format the entire media only when the track number equals zero.

SS.FRZ (code $A): Freeze DD. Information

INPUT: none

74

Chapter 10. OS-9 Service Request Descriptions

OUTPUT: none

Inhibits the reading of identification sector (LSN 0) to DD.xxx variables (that de-
fine disk formats) so non-standard disks may be read.

SS.SPT (code $B): Set Sectors Per Track

INPUT: X = new sectors per track

10.3.15. I$Write - Write data to file or device

ASSEMBLER CALL: OS9 I$Write

MACHINE CODE: 103F 8A

INPUT: (X) = Address of data to write.
(Y) = Number of bytes to write. (A) = Path number.

OUTPUT: (Y) = Number of bytes actually written.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

I$Write outputs one or more bytes to a file or device associated with the path
number specified. The path must have been OPENed or CREATEd in the WRITE
or UPDATE access modes.

Data is written to the file or device without processing or editing. If data is written
past the present end-of-file, the file is automatically expanded.

10.3.16. I$WritLn - Write line of text with editing

ASSEMBLER CALL: OS9 I$WritLn

MACHINE CODE: 103F 8C

INPUT: (X) = Address of data to write.
(Y) = Maximum number of bytes to write.
(A) = Path number.

OUTPUT: (Y) = Actual number of bytes written.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This system call is similar to I$Write except it writes data until a carriage return
character is encountered. Line editing is also activated for character-oriented de-
vices such as terminals, printers, etc. The line editing refers to auto line feed, null
padding at end of line, etc.

For more information about line editing, see section 7.1.

75

Chapter 10. OS-9 Service Request Descriptions

76

Appendix A. Memory Module Diagrams

MODULE EXECUTABLE MEMORY MODULE FORMAT
OFFSET

+------------------------------+ ---+--------+---
$00 | | | |

+-- Sync Bytes ($87CD) --+ | |
$01 | | | |

+------------------------------+ | |
$02 | | | |

+-- Module Size (bytes) --+ | |
$03 | | | |

+------------------------------+ | |
$04 | | | |

+-- Module Name Offset --+ header |
$05 | | parity |

+------------------------------+ | |
$06 | Type | Language | | |

+------------------------------+ | |
$07 | Attributes | Revision | | |

+------------------------------+ ---+-- module
$08 | Header Parity Check | CRC

+------------------------------+ |
$09 | | |

+-- Execution Offset --+ |
$0A | | |

+------------------------------+ |
$0B | | |

+-- Permanent Storage Size --+ |
$0C | | |

+------------------------------+ |
$0D | | |

(Add’l optional header	
extensions located here	
.	
Module Body	
object code, constants, etc.	
+------------------------------+	
+-- --+	
CRC Check Value	
+-- --+	
+------------------------------+ ------------+---

MODULE DEVICE DESCRIPTOR MODULE FORMAT
OFFSET

+-----------------------------+ ---+--------+---
$0 | | | |

+-- Sync Bytes ($87CD) --+ | |
$1 | | | |

+-----------------------------+ | |
$2 | | | |

+-- Module Size (bytes) --+ | |
$3 | | | |

+-----------------------------+ | |
$4 | | | |

+-- Offset to Module Name --+ header |
$5 | | parity |

+-----------------------------+ | |
$6 | $F (TYPE) | $1 (LANG) | | |

+-----------------------------+ | |
$7 | Attributes | Revision | | |

77

Appendix A. Memory Module Diagrams

+-----------------------------+ ---+-- module
$8 | Header Parity Check | CRC

+-----------------------------+ |
$9 | | |

+-- Offset to File Manager --+ |
$A | Name String | |

+-----------------------------+ |
$B | | |

+-- Offset to Device Driver --+ |
$C | Name String | |

+-----------------------------+ |
$D | Mode Byte | |

+-----------------------------+ |
$E | | |

+-- Device Controller --+ |
$F | Absolute Physical Address | |

+-- (24 bit) --+ |
$10 | | |

+-----------------------------+ |
$11 | Option Table Size | |

+-----------------------------+ |
$12,$12+N | (Option Table) | |

.	
(Name Strings etc)	
+-----------------------------+	
+-- --+	
CRC Check Value	
+-- --+	
+-----------------------------+ ------------+---

MODULE CONFIGURATION MODULE FORMAT
OFFSET

+------------------------------+ ---+--------+---
$00 | | | |

+-- Sync Bytes ($87CD) --+ | |
$01 | | | |

+------------------------------+ | |
$02 | | | |

+-- Module Size (bytes) --+ | |
$03 | | | |

+------------------------------+ | |
$04 | | | |

+-- Module Name Offset --+ header |
$05 | | parity |

+------------------------------+ | |
$06 | $C (TYPE) | 0 (LANG) | | |

+------------------------------+ | |
$07 | Attributes | Revision | | |

+------------------------------+ ---+-- module
$08 | Header Parity Check | CRC

+------------------------------+ |
$09 | | |

+-- Forced Limit of Top --+ |
$0A | of Free RAM | |

+-- --+ |
$0B | | |

+------------------------------+ |
$0C | # IRQ Polling Table Entries | |

+------------------------------+ |
$0D | # Device Table Entries | |

+------------------------------+ |
$0E | | |

+-- Offset to Startup --+ |
$0F | Module Name String | |

+------------------------------+ |
$10 | | |

78

Appendix A. Memory Module Diagrams

+-- Offset to Default Mass- --+ |
$11 | Storage Device Name String | |

+------------------------------+ |
$12 | | |

+-- Offset to Initial --+ |
$13 | Standard Path | |

+------------------------------+ |
$14 | | |

+-- Offset to Bootstrap --+ |
$15 | Module Name String | |

+------------------------------+ |
$16-n | Name Strings | |

+------------------------------+ |
| | |
+-- --+ |
| CRC Check Value | |
+-- --+ |
| | |
+------------------------------+ ------------+---

79

Appendix A. Memory Module Diagrams

80

Appendix B. Standard Floppy Disk Formats

Table B-1. Single Density Floppy Disk Format

SIZE 5" 8"

DENSITY SINGLE SINGLE

#TRACKS 35 77

#SECTORS/TRACK 10 16

BYTES/TRACK
(UNFORMATTED)

3125 5208

FORMAT FIELD #BYTES
(DEC)

VALUE (HEX) #BYTES
(DEC)

VALUE (HEX)

HEADER (ONCE PER
TRACK)

30 FF 30 FF

6 00 6 00

1 FC 1 FC

12 FF 12 FF

SECTOR (REPEATED N
TIMES)

6 00 6 00

1 FE 1 FE

1 (TRK #) 1 (TRK #)

1 (SIDE #) 1 (SIDE #)

1 (SECT #) 1 (SECT #)

1 (BYTCNT) 1 (BYTCNT)

2 (CRC) 2 (CRC)

10 FF 10 FF

6 00 6 00

1 FB 1 FB

256 (DATA) 256 (DATA)

2 (CRC) 2 (CRC)

10 FF 10 FF

TRAILER (ONCE PER
TRACK)

96 FF 391 FF

BYTES/SECTOR
(FORMATTED)

256 256

BYTES/TRACK
(FORMATTED)

2560 4096

BYTES/DISK (FORMATTED) 89,600 315,392

Table B-2. Double Density Floppy Disk Format

SIZE 5" 8"

DENSITY DOUBLE DOUBLE

#TRACKS 35 77

#SECTORS/TRACK 16 28

BYTES/TRACK
(UNFORMATTED)

6250 10,416

FORMAT FIELD #BYTES
(DEC)

VALUE (HEX) #BYTES
(DEC)

VALUE (HEX)

81

Appendix B. Standard Floppy Disk Formats

FORMAT FIELD #BYTES
(DEC)

VALUE (HEX) #BYTES
(DEC)

VALUE (HEX)

HEADER (ONCE PER
TRACK)

80 4E 80 4E

12 00 12 00

3 F5 (A1) 3 F5

1 FC 1 FC

32 4E 32 4E

SECTOR (REPEATED N
TIMES)

12 00 12 00

3 F5 (A1) 3 F5

1 FE 1 FE

1 (TRK #) 1 (TRK #)

1 (SIDE #) 1 (SIDE #)

1 (SECT #) 1 (SECT #)

1 (BYTCNT) 1 (BYTCNT)

2 (CRC) 2 (CRC)

22 4E 22 4E

12 00 12 00

3 F5 (A1) 3 F5 (A1)

1 FB 1 FB

256 (DATA) 256 (DATA)

2 (CRC) 2 (CRC)

22 4E 22 4E

TRAILER (ONCE PER
TRACK)

682 4E 768 4E

BYTES/SECTOR
(FORMATTED)

256 256

BYTES/TRACK
(FORMATTED)

4096 7168

BYTES/DISK (FORMATTED) 141,824 548,864

82

Appendix C. Service Request Summary

Table C-1. User Mode Service Requests

Code Mnemonic Function Page

103F 00 F$LINK Link to memory module.

103F 01 F$LOAD Load module(s) from a file.

103F 02 F$Unlink Unlink a module.

103F 03 F$Fork Create a new process.

103F 04 F$Wait Wait for child process to die.

103F 05 F$Chain Load and execute a new primary module

103F 06 F$Exit Terminate the calling process.

103F 07 F$Mem Resize data memory area,

103F 08 F$Send Send a signal to another process,

103F 09 F$ICPT Set up a signal intercept trap.

103F 0A F$Sleep Put calling process to sleep.

103F 0C F$ID Get process ID / user ID

103F 0D F$SPrior Set process priority.

103F 0E F$SSWI Set SWI vector.

103F 0F F$PErr Print error message.

103F 10 F$PrsNam Parse a path name,

103F 11 F$CmpNam Compare two names

103F 12 F$SchBit Search bit map for a free area

103F 13 F$AllBit Set bits in an allocation bit map

103F 14 F$DelBit Deallocate in a bit map

103F 15 F$Time Get system date and time.

103F 16 F$STime Set system date and time.

103F 17 F$CRC Compute CRC

103F 18 F$GPrDsc Get Process Descriptor copy

103F 19 F$GBlkMp Get system Block Map copy

103F 1A F$GModDr Get Module Directory copy

103F 1B F$CpyMem Copy external Memory

103F 1C F$SUser Set User ID number

103F 1D F$UnLoad Unlink module by name

Table C-2. System Mode Privileged Service Requests

Code Mnemonic Function Page

103F 28 F$SRqMem System memory request

103F 29 F$SRtMem System memory return

103F 2A F$IRQ Add or remove device from IRQ table.

103F 2B F$IOQU Enter I/O queue

103F 2C F$AProc Insert process in active process queue

103F 2D F$NProc Start next process

103F 2E F$VModul Validate module

103F 2F F$Find64 Find a 64 byte memory block

83

Appendix C. Service Request Summary

Code Mnemonic Function Page
103F 30 F$All64 Allocate a 64 byte memory block

103F 31 F$Ret64 Deallocate a 64 byte memory block

103F 32 F$SSVC Install function request

103F 33 F$IODel Delete I/O device from system

103F 34 F$SLink System Link

103F 35 F$Boot Bootstrap system

103F 36 F$BtMem Bootstrap Memory request

103F 37 F$GProcP Get Process Pointer

103F 38 F$Move Move data (low bound first)

103F 39 F$AllRAM Allocate RAM blocks

103F 3A F$AllImg Allocate Image RAM blocks

103F 3B F$DelImg Deallocate Image RAM blocks

103F 3C F$SetImg Set process DAT Image

103F 3D F$FreeLB get Free Low block

103F 3E F$FreeHB get Free High block

103F 3F F$AllTsk Allocate process Task number

103F 40 F$DelTsk Deallocate process Task number

103F 41 F$SetTsk Set process Task DAT registers

103F 42 F$ResTsk Reserve Task number

103F 43 F$RelTsk Release Task number

103F 44 F$DATLog Convert DAT block/offset to Logical Addr

103F 45 F$DATTmp Make Temporary DAT image

103F 46 F$LDAXY Load A [X, [Y]]

103F 47 F$LDAXYP Load A [X+, [Y]]

103F 48 F$LDDDXY Load D [D+X, [Y]]

103F 49 F$LDABX Load A from 0,1 in task B

103F 4A F$STABX Store A at 0,X in task B

103F 4B F$AllPrc Allocate Process descriptor

103F 4C F$DelPrc Deallocate Process descriptor

103F 4D F$ELink Link using module directory Entry

103F 4E F$FModul Find Module directory entry

103F 4F F$MapBlk Map specific Block

103F 50 F$ClrBlk Clear specific Block

103F 51 F$DelRam Deallocate RAM blocks

Table C-3. Input/Output Service Requests

Code Mnemonic Function Page

103F 80 I$Attach Attach a new device to the system.

103F 81 I$Detach Remove a device from the system.

103F 82 I$Dup Duplicate a path.

103F 83 I$Create Create a path to a new file.

103F 84 I$Open Open a path to a file or device

103F 85 I$MakDir Make a new directory

103F 86 I$ChgDir Change working directory.

84

Appendix C. Service Request Summary

Code Mnemonic Function Page
103F 87 I$Delete Delete a file.

103F 88 I$Seek Reposition the logical file pointer

103F 89 I$Read Read data from a file or device

103F 8A I$Write Write Data to File or Device

103F 8B I$ReadLn Read a text line with editing.

103F 8C I$WritLn Write Line of Text with Editing

103F 8D I$GetStt Get file device status.

103F 8E I$SetStt Set file/device status

103F 8F I$Close Close a path to a file/device.

103F 90 I$DeletX Delete a file

Table C-4. Standard I/O Paths

0 = Standard Input

1 = Standard Output

2 = Standard Error Output

Table C-5. Module Types

$1 Program

$2 Subroutine module

$3 Multi-module

$4 Data module

$C System Module

$D File Manager

$E Device Driver

$F Device Descriptor

Table C-6. File Access Codes

READ $01

WRITE $02

UPDATE READ + WRITE

EXEC $04

PREAD $08

PWRIT $10

PEXEC $20

SHARE $40

DIR $80

Table C-7. Module Languages

$0 Data

$1 6809 Object code

$2 BASIC09 I-code

$3 Pascal P-Code

85

Appendix C. Service Request Summary

$4 C I-code

$5 Cobol I-code

$6 Fortan I-code

$7 6309 Object code

Table C-8. Module Attributes

$8 Reentrant

86

Appendix D. Error Codes

D.1. OS-9 Error Codes
The error codes are shown both in hexadecimal (first column) and decimal (sec-
ond column). Error codes other than those listed are generated by programming
languages or user programs.

HEX DEC

$C8 200 PATH TABLE FULL - The file cannot be opened because the
system path table is currently full.

$C9 201 ILLEGAL PATH NUMBER - Number too large or for
non-existant path.

$CA 202 INTERRUPT POLLING TABLE FULL

$CB 203 ILLEGAL MODE - attempt to perform I/O function of
which the device or file is incapable.

$CC 204 DEVICE TABLE FULL - Can’t add another device

$CD 205 ILLEGAL MODULE HEADER - module not loaded because
its sync code, header parity, or CRC is incorrect.

$CE 206 MODULE DIRECTORY FULL - Can’t add another module

$CF 207 MEMORY FULL - Level One: not enough contiquous RAM
free. Level Two: process address space full

$D0 208 ILLEGAL SERVICE REQUEST - System call had an illegal
code number

$D1 209 MODULE BUSY - non-sharable module is in use by another
process.

$D2 210 BOUNDARY ERROR - Memory allocation or deallocation
request not on a page boundary.

$D3 211 END OF FILE - End of file encountered on read.

$D4 212 RETURNING NON-ALLOCATED MEMORY - (NOT YOUR
MEMORY) attempted to deallocate memory not previously
assigned.

$D5 213 NON-EXISTING SEGMENT - device has damaged file
structure.

$D6 214 NO PERMISSION - file attributes do not permit access
requested.

$D7 215 BAD PATH NAME - syntax error in pathlist (illegal
character, etc.).

$D8 216 PATH NAME NOT FOUND - can’t find pathlist specified.

$D9 217 SEGMENT LIST FULL - file is too fragmented to be
expanded further.

$DA 218 FILE ALREADY EXISTS - file name already appears in
current directory.

$DB 219 ILLEGAL BLOCK ADDRESS - device’s file structure has
been damaged.

$DC 220 ILLEGAL BLOCK SIZE - device’s file structure has been
damaged.

$DD 221 MODULE NOT FOUND - request for link to module not
found in directory.

$DE 222 SECTOR OUT OF RANGE - device file structure damaged
or incorrectly formatted.

$DF 223 SUICIDE ATTEMPT - request to return memory where your
stack is located.

87

Appendix D. Error Codes

HEX DEC
$E0 224 ILLEGAL PROCESS NUMBER - no such process exists.

$E2 226 NO CHILDREN - can’t wait because process has no
children.

$E3 227 ILLEGAL SWI CODE - must be 1 to 3.

$E4 228 PROCESS ABORTED - process aborted by signal code 2.

$E5 229 PROCESS TABLE FULL - can’t fork now.

$E6 230 ILLEGAL PARAMETER AREA - high and low bounds
passed in fork call are incorrect.

$E7 231 KNOWN MODULE - for internal use only.

$E8 232 INCORRECT MODULE CRC - module has bad CRC value.

$E9 233 SIGNAL ERROR - receiving process has previous
unprocessed signal pending.

$EA 234 NON-EXISTENT MODULE - unable to locate module.

$EB 235 BAD NAME - illegal name syntax.

$EC 236 BAD HEADER - module header parity incorrect

$ED 237 RAM FULL - no free system RAM available at this time

$EE 238 UNKNOWN PROCESS ID - incorrect process ID number

$EF 239 NO TASK NUMBER AVAILABLE - all task numbers in use

D.2. Device Driver/Hardware Errors
The following error codes are generated by I/O device drivers, and are somewhat
hardware dependent. Consult manufacturer’s hardware manual for more details.

HEX DEC

$F0 240 UNIT ERROR - device unit does not exist

$F1 241 SECTOR ERROR - sector number is out of range.

$F2 242 WRITE PROTECT - device is write protected.

$F3 243 CRC ERROR - CRC error on read or write verify

$F4 244 READ ERROR - Data transfer error during disk read
operation, or SCF (terminal) input buffer overrun.

$F5 245 WRITE ERROR - hardware error during disk write
operation.

$F6 246 NOT READY - device has "not ready" status.

$F7 247 SEEK ERROR - physical seek to non-existant sector.

$F8 248 MEDIA FULL - insufficient free space on media.

$F9 249 WRONG TYPE - attempt to read incompatible media (i.e.
attempt to read double-side disk on single-side drive)

$FA 250 DEVICE BUSY - non-sharable device is in use

$FB 251 DISK ID CHANGE - Media was changed with files open

$FC 252 RECORD IS LOCKED-OUT - Another process is accessing
the requested record.

$FD 253 NON-SHARABLE FILE BUSY - Another process is accessing
the requested file.

$FE 254 I/O DEADLOCK ERROR - Two processes are attempting to
use the same two disk areas simultaneously.

88

Appendix E. Level Two System Service Requests

E.1. F$AllImg - Allocate Image RAM blocks

ASSEMBLER CALL: OS9 F$AllImg

MACHINE CODE: 103F 3A

INPUT: (A) = Beginning block number (B) = Number of blocks
(X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Allocates RAM blocks for process DAT image. The blocks do not need to be con-
tiguous.

Note: This is a privileged system mode service request.

E.2. F$AllPrc - Allocate Process descriptor

ASSEMBLER CALL: OS9 F$AllPrc

MACHINE CODE: 103F 4B

INPUT: none

OUTPUT: (U) = Process Descriptor pointer

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Allocates and initializes a 512-byte process descriptor.

Note: This is a privileged system mode service request.

E.3. F$AllRAM - Allocate RAM blocks

ASSEMBLER CALL: OS9 F$AllRAM

MACHINE CODE: 103F 39

INPUT: (B) = Desired block count

OUTPUT: (D) = Beginning RAM block number

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Searches the Memory Block map for the desired number of contuguous free RAM
blocks.

Note: This is a privileged system mode service request.

89

Appendix E. Level Two System Service Requests

E.4. F$AllTsk - Allocate process Task number

ASSEMBLER CALL: OS9 F$AllTsk

MACHINE CODE: 103F 3F

INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Allocates a Task number for the given process.

Note: This is a privileged system mode service request.

E.5. F$Boot - Bootstrap system

ASSEMBLER CALL: OS9 F$Boot

MACHINE CODE: 103F 35

INPUT: none

OUTPUT: none

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Links to the module named “Boot” or as specified in the INIT module; calls linked
module; and expects the return of a pointer and size of an area which is then
searched for new modules.

Note: This is a privileged system mode service request.

E.6. F$BtMem - Bootstrap Memory request

ASSEMBLER CALL: OS9 F$BtMem

MACHINE CODE: 103F 36

INPUT: (D) = Byte count requested.

OUTPUT: (D) = Byte count granted.
(U) = Pointer to memory allocated.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Allocates requested memory (rounded up to nearest block) as contigous memory
in the system’s address space.

Note: This is a privileged system mode service request.

E.7. F$ClrBlk - Clear specific Block

ASSEMBLER CALL: OS9 F$ClrBlk

90

Appendix E. Level Two System Service Requests

MACHINE CODE: 103F 50

INPUT: (B) = Number of blocks (U) = Address of first block

OUTPUT: None.

ERROR OUTPUT: None.

Marks blocks in process DAT image as unallocated.

Note: This is a privileged system mode service request.

E.8. F$CpyMem - Copy external Memory

ASSEMBLER CALL: OS9 F$CpyMem

MACHINE CODE: 103F 1B

INPUT: (D) = Starting Memory Block number
(X) = Offset in block to begin copy (Y) = Byte count
(U) = Caller’s destination buffer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Reads external memory into the user’s buffer for inspection. Any memory in the
system may be viewed in this way.

E.9. F$DATLog - Convert DAT block/offset to Logical Addr

ASSEMBLER CALL: OS9 F$DATLog

MACHINE CODE: 103F 44

INPUT: (B) = DAT image offset (X) = Block offset

OUTPUT: (X) = Logical address.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Converts a DAT imaqe block number and block offset to its equivalent logical
address.

Note: This is a privileged system mode service request.

E.10. F$DATTmp - Make Temporary DAT image

ASSEMBLER CALL: OS9 F$DATTmp

MACHINE CODE: 103F 45

INPUT: (D) = Block number

OUTPUT: (Y) = DAT image pointer

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Builds a temporary DAT image to access the given memory block.

91

Appendix E. Level Two System Service Requests

Note: This is a privileged system mode service request.

E.11. F$DelImg - Deallocate Image RAM blocks

ASSEMBLER CALL: OS9 F$DelImg

MACHINE CODE: 103F 3B

INPUT: (A) = Beginning block number (B) = Block count
(X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Deallocated memory from the process’ address space.

Note: This is a privileged system mode service request.

E.12. F$DelPrc - Deallocate Process descriptor

ASSEMBLER CALL: OS9 F$DelPrc

MACHINE CODE: 103F 4C

INPUT: (A) = Process ID.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Returns process descriptor memory to system free memory pool.

Note: This is a privileged system mode service request.

E.13. F$DelRam - Deallocate RAM blocks

ASSEMBLER CALL: OS9 F$DelRam

MACHINE CODE: 103F 51

INPUT: (B) = Number of blocks (X) = Beginning block number.

OUTPUT: None.

ERROR OUTPUT: None.

Marks blocks in system memory block map as unallocated.

Note: This is a privileged system mode service request.

E.14. F$DelTsk - Deallocate process Task number

92

Appendix E. Level Two System Service Requests

ASSEMBLER CALL: OS9 F$DelTsk

MACHINE CODE: 103F 40

INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Releases the Task number in use by the process.

Note: This is a privileged system mode service request.

E.15. F$ELink - Link using module directory Entry

ASSEMBLER CALL: OS9 F$ELink

MACHINE CODE: 103F 4D

INPUT: (B) = Module type.
(X) = Pointer to module directory entry.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Performs a “Link” given a pointer to a module directory entry. Note that this call
differs from F$Link in that a pointer to the module directory entry is supplied
rather than a pointer to a module name.

Note: This is a privileged system mode service request.

E.16. F$FModul - Find Module directory entry

ASSEMBLER CALL: OS9 F$FModul

MACHINE CODE: 103F 4E

INPUT: (A) = Module type. (X) = Module Name string pointer.
(Y) = Name string DAT image pointer.

OUTPUT: (A) = Module Type. (B) = Module Revision.
(X) = Updated past name string.
(U) = Module directory entry pointer.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This call returns a pointer to the module directory entry given the module name.

Note: This is a privileged system mode service request.

E.17. F$FreeHB - Get Free High block

ASSEMBLER CALL: OS9 F$FreeHB

93

Appendix E. Level Two System Service Requests

MACHINE CODE: 103F 3E

INPUT: (B) = Block count (Y) = DAT image pointer

OUTPUT: (A) High block number

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Searches the DAT image for the highest free block of given size.

Note: This is a privileged system mode service request.

E.18. F$FreeLB - Get Free Low block

ASSEMBLER CALL: OS9 F$FreeLB

MACHINE CODE: 103F 3D

INPUT: (B) = Block count (Y) = DAT image pointer

OUTPUT: (A) = Low block number

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Searches the DAT image for the lowest free block of given size.

Note: This is a privileged system mode service request.

E.19. F$GBlkMp - Get system Block Map copy

ASSEMBLER CALL: OS9 F$GBlkMp

MACHINE CODE: 103F 19

INPUT: (X) = 1024 byte buffer pointer

OUTPUT: (D) = Number of bytes per block (MMU block size de-
pendent). (Y) = Size of system’s memory block map.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Copies the system’s memory block map into the user’s buffer for inspection.

E.20. F$GModDr - Get Module Directory copy

ASSEMBLER CALL: OS9 F$GModDr

MACHINE CODE: 103F 1A

INPUT: (X) = 2048 byte buffer pointer

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Copies the system’s module directory into the user’s buffer for inspection.

94

Appendix E. Level Two System Service Requests

E.21. F$GPrDsc - Get Process Descriptor copy

ASSEMBLER CALL: OS9 F$GPrDsc

MACHINE CODE: 103F 18

INPUT: (A) = Requested process ID. (X) = 512 byte buffer pointer.

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Copies a process descriptor into the calling process’ buffer for inspection There is
no way to change data in a process descriptor.

E.22. F$GProcP - Get Process Pointer

ASSEMBLER CALL: OS9 F$GProcP

MACHINE CODE: 103F 37

INPUT: (A) = Process ID

OUTPUT: (Y) = Pointer to Process Descriptor

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Translates a process ID number to the address of its process descriptor in the
system address space.

Note: This is a privileged system mode service request.

E.23. F$LDABX - Load A from 0,1 in task B

ASSEMBLER CALL: OS9 F$LDABX

MACHINE CODE: 103F 49

INPUT: (B) = Task number (X) = Data pointer

OUTPUT: (A) = Data byte at 0,X in task’s address space

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

One byte is returned from the logical address in (X) in the given task’s address
space. This is typically used to get one byte from the current process’s memory
in a system state routine.

Note: This is a privileged system mode service request.

E.24. F$LDAXY - Load A [X, [Y]]

ASSEMBLER CALL: OS9 F$LDAXY

MACHINE CODE: 103F 46

INPUT: (X) = Block offset (Y) = DAT image pointer

OUTPUT: (A) = data byte at (X) offset of (Y)

95

Appendix E. Level Two System Service Requests

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Returns one data byte in the memory block specified by the DAT image in (Y),
offset by (X).

Note: This is a privileged system mode service request.

E.25. F$LDAXYP - Load A [X+, [Y]]

ASSEMBLER CALL: OS9 F$LDAXYP

MACHINE CODE: 103F 47

INPUT: (X) = Block offset (Y) = DAT image pointer

OUTPUT: (A) = Data byte at (X) offset of (Y)
(X) = incremented by one

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Similar to the assembly instruction “LDA ,X+”, except that (X) refers to an offset
in the memory block described by the DAT image at (Y).

Note: This is a privileged system mode service request.

E.26. F$LDDDXY - Load D [D+X, [Y]]

ASSEMBLER CALL: OS9 F$LDDDXY

MACHINE CODE: 103F 48

INPUT: (D) = Offset to offset (X) = Offset
(Y) = DAT image pointer

OUTPUT: (D) = bytes address by [D+X,Y]

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Loads two bytes from the memory block described by the DAT image pointed to
by (Y). The bytes loaded are at the offset (D+X) in the memory block.

Note: This is a privileged system mode service request.

E.27. F$MapBlk - Map specific Block

ASSEMBLER CALL: OS9 F$MapBlk

MACHINE CODE: 103F 4F

INPUT: (B) = Number of blocks. (X) = Beginning block number.

OUTPUT: (U) = Address of first block.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Maps specified block(s) into unallocated blocks of process address space.
96

Appendix E. Level Two System Service Requests

Note: This is a privileged system mode service request.

E.28. F$Move - Move data (low bound first)

ASSEMBLER CALL: OS9 F$Move

MACHINE CODE: 103F 38

INPUT: (A) = Source Task number (B) = Destination Task number
(X) = Source pointer (Y) = Byte count
(U) = Destination pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Moves data bytes from one address space to anotber, usually from System’s to
User’s, or vice-versa.

Note: This is a privileged system mode service request.

E.29. F$RelTsk - Release Task number

ASSEMBLER CALL: OS9 F$RelTsk

MACHINE CODE: 103F 43

INPUT: (B) = Task number

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Releases the specified DAT Task number.

Note: This is a privileged system mode service request.

E.30. F$ResTsk - Reserve Task number
DAT task number.

ASSEMBLER CALL: OS9 F$ResTsk

MACHINE CODE: 103F 42

INPUT: none

OUTPUT: (B) = Task number

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Finds a free DAT task number.

Note: This is a privileged system mode service request.

97

Appendix E. Level Two System Service Requests

E.31. F$SetImg - Set process DAT Image

ASSEMBLER CALL: OS9 F$SetImg

MACHINE CODE: 103F 3C

INPUT: (A) = Beginning image block number (B) = Block count
(X) = Process Descriptor pointer (U) New image pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Copies a DAT image into the process descriptor.

Note: This is a privileged system mode service request.

E.32. F$SetTsk - Set process Task DAT registers

ASSEMBLER CALL: OS9 F$SetTsk

MACHINE CODE: 103F 41

INPUT: (X) = Process Descriptor pointer

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Sets the process Task DAT registers.

Note: This is a privileged system mode service request.

E.33. F$SLink - System Link

ASSEMBLER CALL: OS9 F$SLink

MACHINE CODE: 103F 34

INPUT: (A) = Module Type. (X) = Module Name string pointer.
(Y) = Name string DAT image pointer.

OUTPUT: (A) = Module Type. (B) = Module Revision.
(X) = Updated Name string pointer.
(Y) = Module Entry point. (U) = Module pointer.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Links a module whose name is outside the current (system) process’ adress space
into the Address space that contains its name.

Note: This is a privileged system mode service request.

E.34. F$SRqMem - System Memory Request

ASSEMBLER CALL: OS9 F$SRqMem

98

Appendix E. Level Two System Service Requests

MACHINE CODE: 103F 28

INPUT: (D) = byte count of requested memory

OUTPUT: (D) = byte count of memory granted
(U) = pointer to memory block allocated

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Allocates the requested memory (rounded up to the nearest page) in the system’s
address space. Useful for allocating I/O buffers and other semi-permanent sys-
tem memory.

Note: This is a privileged system mode service request.

E.35. F$SRtMem - System Memory Return

ASSEMBLER CALL: OS9 F$SRtMem

MACHINE CODE: 103F 29

INPUT: (D) = Byte count of memory being returned
(U) = Address of memory block being returned

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Returns system memory (e.g., memory in the system address space) after it is no
longer needed.

Note: This is a privileged system mode service request.

E.36. F$STABX - Store A at 0,X in task B

ASSEMBLER CALL: OS9 F$STABX

MACHINE CODE: 103F 4A

INPUT: (A) = Data byte to store in Task’s address space
(B) = Task number
(X) = Logical address in task’s address space to store

OUTPUT: None.

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This is similar to the assembly instruction “STA 0,X”, except that (X) refers to an
address in the given task’s address space rather than the current address space.

Note: This is a privileged system mode service request.

E.37. F$SUser Set User ID number

ASSEMBLER CALL: OS9 F$SUser

MACHINE CODE: 103F 1C

99

Appendix E. Level Two System Service Requests

INPUT: (Y) = desired User ID number

OUTPUT: None

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Alters the current user ID to that specified, without error checking.

E.38. F$UnLoad - Unlink module by name

ASSEMBLER CALL: OS9 F$UnLoad

MACHINE CODE: 103F 1D

INPUT: (A) = Module Type (X) = Module Name pointer

OUTPUT: None

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

Locates the module to the module directory, decrements its link count and re-
moves it from the directory if the count reaches zero. Note that this call differs
from F$UnLink in that the a pointer to module name is supplied rather than the
address of the module header.

E.39. I$DeletX - Delete a file

ASSEMBLER CALL: OS9 I$DeletX

MACHINE CODE: 103F 90

INPUT: (X) = Address of pathlist (A) = Access mode.

OUTPUT: (X) = Updated past pathlist (trailing spaces skipped).

ERROR OUTPUT: (CC) = C bit set. (B) = Appropriate error code.

This service request deletes the file specified by the pathlist. The file must have
write permission attributes (public write if not the owner), and reside on a multi-
file mass storage device. Attempts to delete devices will result in error.

The access mode is used to specify the current working directory or me current
execution directory (but not both) in the absence of a full pathlist. If the access
mode is read, write, or update, the current data directory is assumed. If the access
mode is execute, the current execution directory is assumed. Note that if a full
pathlist (a pathlist beginning with a “/”) appears, the access mode is ignored.

ACCESS MODES:

1 = Read
2 = Write
3 = Update (read or write)
4 = Execute

100

	OS9 Operating System
	Table of Contents
	Chapter 1. Introduction
	1.1. History And Design Philosophy
	1.2. System Hardware Requirements

	Chapter 2. Basic System Organization
	Chapter 3. Basic Functions of the Kernel
	3.1. Kernel Service Request Processing
	3.2. Kernel Memory Management Functions
	3.3. Memory Utilization
	3.4. Overview of Multiprogramming
	3.5. Process Creation
	3.6. Process States
	3.6.1. The Active State
	3.6.2. The Wait State
	3.6.3. The Sleeping State

	3.7. Execution Scheduling
	3.8. Signals
	3.9. Interrupt Processing
	3.9.1. Physical Interrupt Processing
	3.9.2. Logical Interrupt Polling System

	Chapter 4. Memory Modules
	4.1. Memory Module Structure
	4.2. Module Header Definitions
	4.2.1. Type/Language Byte
	4.2.2. Attribute/Revision Byte

	4.3. Typed Module Headers
	4.4. Executable Memory Module Format
	4.5. ROMed Memory Modules

	Chapter 5. The OS9 Unified Input/Output System
	5.1. The Input/Output Manager (IOMAN)
	5.2. File Managers
	5.3. Device Driver Modules
	5.4. Device Descriptor Modules
	5.5. Path Descriptors

	Chapter 6. Random Block File Manager
	6.1. Logical and Physical Disk Organization
	6.1.1. Identification Sector
	6.1.2. Disk Allocation Map Sector
	6.1.3. File Descriptor Sectors
	6.1.4. Directory Files

	6.2. RBFMAN Definitions of the Path Descriptor.
	6.3. RBF Device Descriptor Modules
	6.4. RBFtype Device Drivers
	6.5. RBFMAN Device Drivers
	6.5.1. NAME: INIT
	6.5.2. NAME: READ
	6.5.3. NAME: WRITE
	6.5.4. NAME: GETSTA PUTSTA
	6.5.5. NAME: TERM
	6.5.6. NAME: IRQ SERVICE ROUTINE
	6.5.7. NAME: BOOT (Bootstrap Module)

	Chapter 7. Sequential Character File Manager
	7.1. SCFMAN Line Editing Functions
	7.2. SCFMAN Definitions of The Path Descriptor
	7.3. SCF Device Descriptor Modules
	7.4. SCF Device Driver Storage Definitions
	7.5. SCFMAN Device Driver Subroutines
	7.5.1. NAME: INIT
	7.5.2. NAME: READ
	7.5.3. NAME: WRITE
	7.5.4. NAME: GETSTA/SETSTA
	7.5.5. NAME. TERM
	7.5.6. NAME: IRQ SERVICE ROUTINE

	Chapter 8. Assembly Language Programming Techniques
	8.1. How to Write PositionIndependent Code
	8.2. Addressing Variables and Data Structures
	8.3. Stack Requirements
	8.4. Interrupt Masks
	8.5. Writing Interruptdriven Device Drivers
	8.6. Using Standard I/O Paths
	8.7. A Sample Program

	Chapter 9. Adapting OS9 to a New System
	9.1. Adapting OS9 to Diskbased Systems
	9.2. Using OS9 in ROMbased Systems
	9.3. Adapting the Initialization Module
	9.4. Adapting the SYSGO Module

	Chapter 10. OS9 Service Request Descriptions
	10.1. User Mode Service Requests
	10.1.1. F$AllBit Set bits in an allocation bit map
	10.1.2. F$Chain Load and execute a new primary module
	10.1.3. F$CmpNam Compare two names
	10.1.4. F$CRC Compute CRC
	10.1.5. F$DelBit Deallocate in a bit map
	10.1.6. F$Exit Terminate the calling process
	10.1.7. F$Fork Create a new process
	10.1.8. F$ICPT Set up a signal intercept trap
	10.1.9. F$ID Get process ID / user ID
	10.1.10. F$Link Link to memory module
	10.1.11. F$Load Load module(s) from a file
	10.1.12. F$Mem Resize data memory area
	10.1.13. F$PErr Print error message
	10.1.14. F$PrsNam Parse a path name
	10.1.15. F$SchBit Search bit map for a free area
	10.1.16. F$Send Send a signal to another process
	10.1.17. F$Sleep Put calling process to sleep
	10.1.18. F$SPrior Set process priority
	10.1.19. F$SSVC Install function request
	10.1.20. F$SSWI Set SWI vector
	10.1.21. F$STime Set system date and time
	10.1.22. F$Time Get system date and time
	10.1.23. F$Unlink Unlink a module
	10.1.24. F$Wait Wait for child process to die

	10.2. System Mode Service Requests
	10.2.1. F$All64 Allocate a 64 byte memory block
	10.2.2. F$AProc Insert process in active process queue
	10.2.3. F$Find64 Find a 64 byte memory block
	10.2.4. F$IODel Delete I/O device from system
	10.2.5. F$IOQU Enter I/O queue
	10.2.6. F$IRQ Add or remove device from IRQ table
	10.2.7. F$NProc Start next process
	10.2.8. F$Ret64 Deallocate a 64 byte memory block
	10.2.9. F$SRqMem System memory request
	10.2.10. F$SRtMem Return System Memory
	10.2.11. F$VModul Verify module

	10.3. I/O Service Requests
	10.3.1. I$Attach Attach a new device to the system
	10.3.2. I$ChgDir Change working directory
	10.3.3. I$Close Close a path to a file/device
	10.3.4. I$Create Create a path to a new file
	10.3.5. I$Delete Delete a file
	10.3.6. I$Detach Remove a device from the system
	10.3.7. I$Dup Duplicate a path
	10.3.8. I$GetStt Get file device status
	10.3.9. I$MakDir Make a new directory
	10.3.10. I$Open Open a path to a file or device
	10.3.11. I$Read Read data from a file or device
	10.3.12. I$ReadLn Read a text line with editing
	10.3.13. I$Seek Reposition the logical file pointer
	10.3.14. I$SetStt Set file/device status
	10.3.15. I$Write Write data to file or device
	10.3.16. I$WritLn Write line of text with editing

	Appendix A. Memory Module Diagrams
	Appendix B. Standard Floppy Disk Formats
	Appendix C. Service Request Summary
	Appendix D. Error Codes
	D.1. OS9 Error Codes
	D.2. Device Driver/Hardware Errors

	Appendix E. Level Two System Service Requests
	E.1. F$AllImg Allocate Image RAM blocks
	E.2. F$AllPrc Allocate Process descriptor
	E.3. F$AllRAM Allocate RAM blocks
	E.4. F$AllTsk Allocate process Task number
	E.5. F$Boot Bootstrap system
	E.6. F$BtMem Bootstrap Memory request
	E.7. F$ClrBlk Clear specific Block
	E.8. F$CpyMem Copy external Memory
	E.9. F$DATLog Convert DAT block/offset to Logical Addr
	E.10. F$DATTmp Make Temporary DAT image
	E.11. F$DelImg Deallocate Image RAM blocks
	E.12. F$DelPrc Deallocate Process descriptor
	E.13. F$DelRam Deallocate RAM blocks
	E.14. F$DelTsk Deallocate process Task number
	E.15. F$ELink Link using module directory Entry
	E.16. F$FModul Find Module directory entry
	E.17. F$FreeHB Get Free High block
	E.18. F$FreeLB Get Free Low block
	E.19. F$GBlkMp Get system Block Map copy
	E.20. F$GModDr Get Module Directory copy
	E.21. F$GPrDsc Get Process Descriptor copy
	E.22. F$GProcP Get Process Pointer
	E.23. F$LDABX Load A from 0,1 in task B
	E.24. F$LDAXY Load A [X, [Y]]
	E.25. F$LDAXYP Load A [X+, [Y]]
	E.26. F$LDDDXY Load D [D+X, [Y]]
	E.27. F$MapBlk Map specific Block
	E.28. F$Move Move data (low bound first)
	E.29. F$RelTsk Release Task number
	E.30. F$ResTsk Reserve Task number
	E.31. F$SetImg Set process DAT Image
	E.32. F$SetTsk Set process Task DAT registers
	E.33. F$SLink System Link
	E.34. F$SRqMem System Memory Request
	E.35. F$SRtMem System Memory Return
	E.36. F$STABX Store A at 0,X in task B
	E.37. F$SUser Set User ID number
	E.38. F$UnLoad Unlink module by name
	E.39. I$DeletX Delete a file

